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ABSTRACT
This study, using publicly available simulations, focuses on the characterization of the non-
Gaussianity produced by radio point sources and by infrared (IR) sources in the frequency
range of the cosmic microwave background from 30 to 350 GHz.

We propose a simple prescription to infer the angular bispectrum from the power spectrum
of point sources considering independent populations of sources, with or without clustering.
We test the accuracy of our prediction using publicly available all-sky simulations of radio
and IR sources and find very good agreement.

We further characterize the configuration dependence and the frequency behaviour of the
IR and radio bispectra. We show that the IR angular bispectrum peaks for squeezed triangles
and that the clustering of IR sources enhances the bispectrum values by several orders of
magnitude at scales � ∼ 100. At 150 GHz the bispectrum of IR sources starts to dominate that
of radio sources on large angular scales, and it dominates the whole multipole range at 350
GHz.

Finally, we compute the bias on f NL induced by radio and IR sources. We show that the
positive bias induced by radio sources is significantly reduced by masking the sources. We
also show, for the first time, that the form of the IR bispectrum mimics a primordial ‘local’
bispectrum f NL. The IR sources produce a negative bias which becomes important for Planck-
like resolution and at high frequencies (�f NL ∼ −6 at 277 GHz and �f NL ∼ −60–70 at 350
GHz). Most of the signal being due to the clustering of faint IR sources, the bias �f IR

NL is not
reduced by masking sources above a flux limit and may, in some cases, even be increased due
to the reduction of the shot-noise term.

Key words: methods: statistical – galaxies: statistics – cosmic background radiation – large-
scale structure of Universe – infrared: galaxies – radio continuum: galaxies.

1 IN T RO D U C T I O N

In the last few decades, the cosmic microwave background (CMB)
has become a very successful probe of the early and late Universe.
The smallness of the perturbations in the cosmic fluids, and hence
in the space–time metric, allows us to use linear perturbation the-
ory to compute their evolution efficiently and accurately through
Boltzmann codes (Seljak & Zaldarriaga 1996; Lewis, Challinor &
Lasenby 2000; Lesgourgues 2011).

Since COBE (Smoot et al. 1992) the measurement of the CMB
power spectrum has been achieved by many experiments and over
a wide range of scales. The most recent CMB data are those of
the seven-year Wilkinson Microwave Anisotropy Probe (WMAP)

�E-mail: Fabien.Lacasa@ias.u-psud.fr

(Larson et al. 2011), Atacama Cosmology Telescope (ACT)
(Barrientos et al. 2010) and South Pole Telescope (SPT) (Keisler
et al. 2011). Constraints from all these measurements, combined
with probes of the geometry of the Universe, like baryonic acoustic
oscillations (e.g. Percival et al. 2010; Blake et al. 2011), Type Ia su-
pernovae (e.g. Astier et al. 2006; Hicken et al. 2009; Guy et al. 2010)
and Hubble constant measurements (e.g. Freedman et al. 2001,
2009; Riess et al. 2009), give a converging view of our Universe
and have led to the establishment of a ‘standard model’ of cosmol-
ogy (e.g. Larson et al. 2011) known as � cold dark matter (�CDM).
In this model, the universe is flat, dominated by a CDM component
and a ‘dark energy’ component compatible with a cosmological
constant. The present constraints suggest that CMB anisotropies
are a realization of a primordial random process that generated the
initial perturbations from quantum fluctuations which were then
stretched to macroscopic scales by inflation (e.g. Starobinskiǐ 1979;
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Guth 1981; Liddle & Lyth 2000, see also Bassett, Tsujikawa &
Wands 2006; Linde 2008, for reviews).

The microwave sky is however not made of a CMB primary
signal alone; it also consists of secondary anisotropies such as those
associated with the integrated Sachs–Wolfe effect (ISW) – arising
from the time-variable metric perturbations (Sachs & Wolfe 1967)
– those arising from the Sunyaev–Zel’dovich (SZ) effect (inverse
Compton scattering) in the direction of galaxy clusters (Sunyaev &
Zeldovich 1972) and those due to the Doppler effect from moving
structures (e.g. kinetic SZ effect from clusters and inhomogeneous
reionization), see Aghanim, Majumdar & Silk (2008) for a review
on secondary anisotropies. In addition, there are other astrophysical
components in the microwave domain such as the dust, synchrotron
and free–free emissions from our Galaxy (Planck Collaboration
2011e), the emission from radio sources that dominate at lower
frequencies but contribute significantly at microwave frequencies
(de Zotti et al. 2005) and the emission from dusty star-forming
galaxies emitting mainly in the infrared (IR) domain (Low & Tucker
1968).

In this study, we will focus only on the characterization of the
extragalactic point sources, namely the radio sources and the IR
dusty galaxies. They contribute notably to the power spectrum at
CMB frequencies and start dominating the CMB at about � ∼
2000 when the CMB signal plummets. Active galactic nuclei are
observed as radio sources via their synchrotron emission. They
have been widely studied in the CMB context especially at low
frequencies ν ≤ 90 GHz (e.g. de Zotti et al. 2005; Boughn &
Partridge 2008; Sajina et al. 2011). They affect mostly the lower
end of frequencies observed by CMB experiments. Their largest
impact was thought to be in the frequency bands from 30 to 90 GHz
but the recent Planck results (Planck Collaboration 2011a,c) show
that radio sources are detected at frequencies as high as 217 GHz.
At the CMB frequencies, radio sources do not cluster (Toffolatti
et al. 1998; González-Nuevo, Toffolatti & Argüeso 2005) and thus
exhibit a flat power spectrum (see Appendix A).

Star-forming galaxies are observed as IR sources via the ther-
mal emission from dust heated by the ultraviolet emission of young
stars. These IR sources contribute to the signal observed by CMB
experiments at frequencies higher than 150 GHz; thus, they are
particularly relevant for the most recent CMB experiments, e.g.
SPT, ACT and Planck High Frequency Instrument observations.
The cumulated emission from the IR sources, the cosmic infrared
background (CIB), was first discovered by Puget et al. (1996), and
its anisotropies were first characterized by Lagache & Puget (2000)
and Matsuhara et al. (2000). Many other observations were possi-
ble in the last decade in the IR and submillimetre domain (Lagache
et al. 2007; Viero et al. 2009; Hall et al. 2010; Amblard et al.
2011; Planck Collaboration 2011d). In particular, the latest con-
straints of the CIB from Planck showed that its power spectrum,
at frequencies 217, 353, 545 and 857 GHz, is well modelled by
a power law CCIB

� (ν) = A(ν) × (
�

1000

)n
with e.g. A = (104 ±

4) × 102 Jy2 sr−1 and n = −1.08 ± 0.06 at 545 GHz. This be-
haviour contrasts with the flat spectrum of radio sources and is due
to the clustering of the IR galaxies and their host dark matter (DM)
haloes.

These point sources are superimposed on the primordial fluc-
tuations. The simplest models of inflation (single field and slow
roll) predict a small primordial non-Gaussianity (NG) (Acquaviva
et al. 2003; Maldacena 2003; Creminelli & Zaldarriaga 2004) that
is subdominant to the NG induced by the non-linear evolution of
the perturbations, a contribution that is necessarily always present.
More complex inflationary models, e.g. multi-field scenarios, may

predict larger NG (Byrnes & Choi 2010), to the point of being de-
tectable. A simple and yet powerful probe of NG is the three-point
function in harmonic space, the angular bispectrum (see Section 2
for more details), which is defined as a function of a multipole
triplet (�1, �2, �3). The angular bispectrum vanishes for a Gaussian
field like all odd-order moments. Besides the bispectrum, connected
even-order moments may also be used to probe NG and the four-
point function or trispectrum has indeed been a focus of interest
(Kunz et al. 2001), especially for lensing studies (Cooray & Kesden
2002).

There are many different models of inflation, and they often pre-
dict very similar power spectra that are close to being scale invariant.
For models that lead to a measurable bispectrum, however, this de-
generacy can often be broken by studying the dependence of the
bispectrum amplitude on (�1, �2, �3), e.g., a large signal for squeezed
triangles is indicative of slow-roll multifield inflation models, equi-
lateral triangles are enhanced for models with non-canonical kinetic
terms and folded triangles for non-standard vacuum initial condi-
tions (e.g. Bartolo et al. 2004; Renaux-Petel 2009; Lewis 2011).
The most studied and constrained form of NG is the local ansatz
parametrized by a factor f NL, and predicted by several inflation
models. Current constraints on local NG show that the CMB is con-
sistent with being Gaussian at the 95 per cent CL (Komatsu et al.
2011), and constraints on other shapes all show consistency with
Gaussianity as well.

Given the current limits on primordial NG, astrophysical sig-
nals are the dominant contribution to NG. While Galactic emission
and resolved sources may be accounted for by masking, unresolved
sources and residuals have to be characterized. As opposed to pri-
mordial NG, radio sources’ NG has been detected, and was studied
for the WMAP mission showing that it yields a non-zero flat angu-
lar bispectrum parametrized as bsrc or bps. The fiveyear WMAP best
estimate in the Q band is bsrc = 4.3 ± 1.3 μK3 sr2 (Komatsu et al.
2009). Characterizing the NG signal from astrophysical components
and more importantly from extragalactic point sources is important
for two main reasons: (i) to avoid mistaking it for a primordial
contribution (and to allow the development of robust methods to
isolate primordial NG) and (ii) to learn more about astrophysical
processes, i.e. to go beyond the description of point sources by their
number counts and their power spectrum.

The study of NG from extragalactic point sources has been pio-
neered by Argueso, Gonzalez-Nuevo & Toffolatti (2003), focusing
mostly on the radio sources and including clustering. They showed
that the point-source angular bispectrum is mostly flat at WMAP
frequencies and dominates the CMB bispectrum in most configu-
rations. Babich & Pierpaoli (2008) investigated the bias on the f NL

estimator induced by radio sources, considering the modulation of
their number density with ISW, of their magnification with lensing
and of the flux cut-off with selection effects. Serra & Cooray (2008)
studied the bias on f NL due to radio sources, SZ-lensing and ISW-
lensing bispectra, investigating the dependence of this bias with the
resolution scale. Finally, Munshi et al. (2009) defined skew spec-
tra for cross-correlation analysis, derived estimators for the skew
spectra and applied them to secondary anisotropies.

In this paper, we study the NG produced by infrared and radio
point sources in the frequency range of the CMB from 30 to 350
GHz, based on numerical simulations by Sehgal et al. (2010). We
investigate the frequency and configuration dependence of the an-
gular bispectrum. We particularly focus on the NG from IR sources
and their clustering term. We restrict the study to the simplest case
of full-sky maps without masks. Furthermore, we do not take into
account noise and beam effects. Statistical isotropy of all fields
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considered will be assumed throughout this paper. The case of
noisy, partially masked maps will be addressed in future studies.

In Section 2, we review the estimator of the (binned) angular
bispectrum and f NL and develop a parametrization of the bispectrum
to display and visualize it efficiently. In Section 3, we develop a
prescription to infer the bispectrum from the power spectrum for
clustered sources and for different populations. In Section 4, we use
publicly available full-sky simulations of radio and infrared sources
to compute and characterize their bispectrum at CMB frequencies
and we compare them to the predictions from the prescription. We
examine the configuration dependence of the point-source bispectra
and study the bias they induce on the estimation of the primordial
local NG in Section 5. We finally conclude and discuss our results
in Section 6.

2 THREE-POINT N G ESTIMATORS

2.1 Full-sky angular bispectrum estimator

Given a full-sky map of the temperature fluctuations �T (n) of some
signal, it can be decomposed in the spherical harmonic basis

a�m =
∫

d2n Y ∗
�m(n) �T (n) (1)

with the usual orthonormal spherical harmonics Y�m,∫
d2n Y�m(n) Y ∗

�′m′ (n) = δ��′ δmm′ .

Observational data are pixelized, so that the integral is replaced
by a sum over pixels. We will assume that the solid angle of a
pixel, �pix, is a constant, which is for example the case for the
HEALPIX1 pixelization scheme that we will adopt for the numerical
calculations. In this case we have

a�m =
∑

ni

Y ∗
�m(ni) �T (ni) �pix . (2)

This discreteness effect will be important e.g. in Section 3.1.
In order to compute the angular bispectrum, which is the har-

monic transform of the three-point correlation function, we will
resort to scale maps as defined by Spergel & Goldberg (1999) and
also used by Aghanim et al. (2003) and De Troia et al. (2003):

T�(n) =
∑

m

a�mY�m(n) =
∫

d2n′ �T (n′) P�(n · n′), (3)

where P� is the Legendre polynomial of order �.
The optimal bispectrum estimator is then (Spergel & Goldberg

1999)

b̂�1�2�3 = 4π

(2�1 + 1)(2�2 + 1)(2�3 + 1)

(
�1 �2 �3

0 0 0

)−2

×
∫

d2n T�1 (n) T�2 (n) T�3 (n) (4)

or it can be written in the form

b̂�1�2�3 =
√

4π

(2�1 + 1)(2�2 + 1)(2�3 + 1)

(
�1 �2 �3

0 0 0

)−1

×
∑

m1,m2,m3

(
�1 �2 �3

m1 m2 m3

)
a�1m1 a�2m2 a�3m3 , (5)

1 http://healpix.jpl.nasa.gov

where the expression in brackets represents the Wigner 3j symbols.
Equation (5) is computationally expensive when implemented at
high � due to the large number of Wigner symbols to calculate.
Equation (4) still requires a few cpu-days for a full computation at a
Planck-like resolution, Nside = 1024–2048. Binning the multipoles
in �, as in Bucher, Tent & Carvalho (2010), has the advantage of
speeding up the computations and smoothing out the variations due
to cosmic variance.

For a given triangle in harmonic space (�1, �2, �3) the number of
independent configurations on the sphere is

N�1�2�3 = (2�1 + 1)(2�2 + 1)(2�3 + 1)

4π

(
�1 �2 �3

0 0 0

)2

. (6)

When multipoles are binned in bins of width �� the expression
for the scale maps (equation 3) becomes

T��(n) =
∑

�∈��,m

a�m Y�m(n) (7)

and a binned bispectrum estimator identically weighting triangles
is given by

b̂��1,��2,��3 = 1

N�(��1,��2, ��3)

∫
d2n T��1 (n) T��2 (n) T��3 (n),

(8)

where

N�(��1, ��2,��3) =
∑

�i∈��i

N�1�2�3 .

One can easily check that the obtained binned bispectrum esti-
mator is unbiased for a constant bispectrum and that the bias can
be neglected as long as the bispectrum does not vary significantly
within a bin ��. In the following, we have chosen �max = 2048 and
a bin width �� = 64 for simplicity and computational speed while
retaining enough information on the scale dependence (Bucher et al.
2010).

2.2 f NL estimator

The most studied and constrained form of primordial NG is the local
ansatz, whose amplitude is parametrized by a non-linear coupling
constant f NL:

	(x) = 	G(x) + fNL

(
	2

G(x) − 〈	2
G(x)〉) , (9)

where 	(x) is the Bardeen potential and 	G(x) is a Gaussian field.
This form of NG yields the following CMB angular bispectrum
(Komatsu & Spergel 2001):

bloc
�1�2�3

=
∫

r2 dr α�1 (r) β�2 (r) β�3 (r) + permutation, (10)

with

α�(r) = 2

π

∫
k2dk gT,�(k) j�(kr) (11)

β�(r) = 2

π

∫
k2dk P (k) gT ,�(k) j�(kr), (12)

where gT,� is the radiation transfer function, which can be computed
with a Boltzmann code, j� are the spherical Bessel functions and
P (k) ∝ kns−4 is the primordial power spectrum, with a spectral
index ns.

On large angular scales, the SW effect is the dominant contribu-
tion to the CMB signal. In this regime, the CMB bispectrum takes
the following analytical form:

bloc
�1�2�3

∝ −
(

1

�2
1 �2

2

+ 1

�2
1 �2

3

+ 1

�2
2 �2

3

)
. (13)
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This bispectrum is maximal when one of the multipoles is minimal
(�1 � �2 � �3) which is called the squeezed configuration.

A commonly used cubic estimator of f NL has been developed by
Komatsu, Spergel & Wandelt (2005). It is much faster than perform-
ing the whole bispectrum analysis and fitting the local bispectrum.
In its original version, the estimator takes into account beam pro-
file and homogeneous noise, and has been used on WMAP data to
yield the current constraint −10 < f NL < 74 (Komatsu et al. 2011).
The estimator was then further developed by several authors by
adding a linear term accounting for masking and inhomogeneous
noise (Creminelli et al. 2006). Here, we will only consider noise-
less full-sky maps without beam smoothing so that we can apply
the estimator in its original form.

To build the f NL estimator we first define the filtered maps at
comoving distance r and direction n:

A(r, n) =
∑
�m

α�(r)

C�

a�m Y�m(n) (14)

B(r, n) =
∑
�m

β�(r)

C�

a�m Y�m(n), (15)

where C� is the CMB power spectrum. B(r, n) is then an estimated
map of the primordial potential fluctuations 	(r n) via Wiener
filtering.

The integral of AB2 permits us to estimate f NL as

f̂NL

∑
�1≤�2≤�3

(
B loc

�1�2�3

)2

C�1C�2C�3

=
∫

r2dr d2n A(r, n) B2(r, n), (16)

where B loc
�1�2�3

= √
N�1�2�3 bloc

�1�2�3
is the local bispectrum for

f NL = 1, to be compared with the observed value Bobs
�1�2�3

.
It can be shown that this estimator takes analytically the form

f̂NL =
∑

�1≤�2≤�3

Bobs
�1�2�3

B loc
�1�2�3

C�1 C�2 C�3∑
�1≤�2≤�3

(
B loc

�1�2�3

)2

C�1 C�2 C�3

. (17)

It is near optimal in the sense that it minimizes the χ2 for weak NG
(under some assumptions on isosceles and equilateral triangles).
The estimator becomes suboptimal (e.g. Elsner & Wandelt 2009)
for large enough f NL, when the variance of the bispectrum gets
O

(
f 2

NL

)
correction compared to the weak NG computation with

Wick’s theorem (see Appendix B).

2.3 Parametrization of the angular bispectrum

Several ways of visualizing the angular bispectrum have been pro-
posed in the literature, e.g. isosurfaces in the (�1, �2, �3) 3D space
by Fergusson & Liguori (2010), or slices of constant perimeter in
the orthogonal transverse coordinate (�⊥a, �⊥b) space by Bucher
et al. (2010).

Under the assumption of statistical isotropy, the bispectrum
b�1�2�3 is invariant under permutations of �1, �2 and �3, i.e. it is
a function of the shape and size of the triangle (�1, �2, �3) only, i.e.
independent of its orientation. Therefore, we can find a parametriza-
tion invariant under permutation of �1, �2 and �3, which avoids re-
dundancy of information and allows convenient visualization and
interpretation of data. Let us denote as (�1, �2, �3) the equivalence
class of the triplet under permutations.

The elementary symmetric polynomials ensure the invariance
under permutations:

(i) σ 1 = �1 + �2 + �3

Figure 1. Triangles of constant perimeter, P, in the parametrization defined
by the normalized symmetric polynomials (upper panel), or in the parameter
space (F, S) defined in the text (bottom panel).

(ii) σ 2 = �1�2 + �1�3 + �2�3

(iii) σ 3 = �1�2�3.

Through Cardan’s formula, there is a one-to-one correspondence
between (�1, �2, �3), defined by the roots of the polynomial X3 −
σ 1X2 + σ 2X − σ 3, and the triplet (σ 1, σ 2, σ 3). We further define the
scale-invariant parameters σ̃2 = 12σ2/σ

2
1 − 3 and σ̃3 = 27σ3/σ

3
1

with coefficient chosen so that σ̃2 and σ̃3 vary in the range [0,1]. As
illustrated in the upper panel of Fig. 1, this parametrization does not
allow us to discriminate efficiently between the different triangles.

We find that the parameters noted (P, F, S) and defined as

(i) P = σ 1,
(ii) F = 32(σ̃2 − σ̃3)/3 + 1 and
(iii) S = σ̃3

provide a clearer distinction of the triangles as is illustrated in the
bottom panel of Fig. 1.

To illustrate the use of our (P, F, S) parametrization, we plot in
Fig. 22 the theoretical CMB bispectrum produced by the local NG
model f NL, computed through equation (10). The triangle perime-
ters, P, vary between Pmin = 30 (equilateral configuration with
�min = 10) and Pmax = 6120 (equilateral configuration with �max =
2040). We plot representative perimeters tracing the building up
of the bispectrum with scale, giving P/3 on each panel. The colour
code scales from deep purple/black (most negative) to red/dark grey
(positive).

In the first panels for the smallest perimeters, few triangles are
present. As the perimeter increases the (F, S) space is populated

2 For space reasons we include only some of the bins in the figures in the
paper. Full resolution plots with all perimeter bins are available upon request.
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Figure 2. Theoretical CMB angular bispectrum produced by the local
model in the (P, F, S) parametrization. With chosen representative perimeters
and asinh colour scale from deep purple/black (most negative) to red/dark
grey (positive). P/3 is given on each panel. The axes are the same as those
in Fig. 1.

starting with equilateral configurations (upper-right corner) first to
reach squeezed configuration (upper-left corner) later. Conversely
in the last panels for the largest perimeters, the resolution limit
�max = 2048 limits the possible configurations, leaving only the
equilateral triangles in the end.

The SW shape (see equation 13) is visible at low perimeters, with
the colours (value of the bispectrum) varying horizontally with S but
not vertically with F. We note that the strong negative values (deep
purple/black) are located in the near-squeezed configuration (upper-
left corner). The sign of the radiation transfer function can be traced
via the equilateral triangles which are positive for P/3 ∼ 200 (first
acoustic peak) and become negative for P/3 ∼ 500 (second acoustic
peak). The squeezed configuration in turn is always negative as the
smallest multipole has a negative transfer function via SW. The
folded configuration has relatively large negative values when the
two smallest multipoles are in the first acoustic peak while the
biggest multipole is in the second acoustic peak (P ∼ 900–1200
⇒ P/3 ∼ 300–400). For larger perimeters the structure becomes
complex as several acoustic peaks intervene.

3 PH Y S I C A L P R E S C R I P T I O N FO R T H E
P O I N T-S O U R C E A N G U L A R B I S P E C T RU M

In this section we develop a prescription which permits us to pre-
dict the (bi)spectrum of point sources, starting from the simplest
case of a single randomly distributed population to the case of mul-
tiple clustered populations. This is a situation that is encountered
in current and future CMB analyses. Indeed until recently, CMB
experiments have focused on frequencies where unclustered radio
sources are the only dominant kind of point sources, but the CMB
is also non-negligible at higher frequencies where an independent
population of dusty galaxies becomes important together with the

SZ signal of clusters. This is of particular relevance for Planck
which has a large frequency range covering both populations.

3.1 Single-source population: shot-noise contribution

A source with flux S enclosed in a pixel with solid angle �pix yields
a temperature variation �T = kν

S
�pix

, where kν = ∂B(ν,T )
∂T

|TCMB ,
B(ν, T) is the blackbody spectrum and TCMB is the CMB mean
temperature.

As shown in Appendix A the power spectrum of a source popu-
lation is given by

C� = Cclust
� + Cshot

� . (18)

The discreteness of the sources produces a constant-term spectrum
Cshot

� which is usually named ‘Poissonian’ because the number of
unclustered point sources is driven a priori by Poisson statistics
(Sehgal et al. 2010). The shot-noise term reads

Cshot
� = k2

ν

4π
×

∫ Scut

0
S2 dn

dS
dS, (19)

where dn
dS

is the differential number counts of sources and Scut is the
detection limit, i.e. sources with S > Scut are detected and masked,
the rest being unresolved.

The discreteness property of sources, when computing the three-
point correlation function, yields a statistically isotropic angular
bispectrum constant with �:

bshot
�1�2�3

= k3
ν

4π
×

∫ Scut

0
S3 dn

dS
dS (20)

for �i �= 0. Equations (18), (19) and (20) are derived in more detail
in Appendix A.

The case of sources randomly and independently distributed on
the sky is that of the radio sources at CMB frequencies. The corre-
lation vanishes and the total (bi)spectrum is equal to the shot-noise
(bi)spectrum. The distribution of the sources is that of a white noise
entirely characterized by the one-point probability distribution. In
this case, equations (19) and (20) for the shot-noise contribution can
be reformulated simply in terms of temperature variations where the
white-noise spectrum and bispectrum are related to the variance σ 2

and skewness κ3 of �T:

Cwhite
� = σ 2 �pix (21)

bwhite
�1�2�3

= κ3 �2
pix, (22)

with σ 2 = 〈(�T − 〈�T〉)2〉 and κ3 = 〈(�T − 〈�T〉)3〉.

3.2 Single-source population with correlations

The effect of clustering of a single population of sources, namely
radio sources, on the bispectrum was pioneered by Argueso et al.
(2003) who proposed a prescription to address this issue. The ele-
ments entering the prescription are the number counts of sources and
a theoretical or observational correlation function w(θ ). Defining

P (k)clust = 2π

∫
w(θ )J0(kθ )dθ, (23)

where θ is the distance on the flat patch and J0 the Bessel function
of the first kind and of order zero, the prescription is

δk(tot) =
√

P (k)clust + P (k)shot

P (k)white
× δk(white), (24)
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where δk are the Fourier coefficient of the map; ‘shot’ and ‘white’
refer, respectively, to the shot-noise and white-noise process. Then
Argueso et al. compute the angular bispectrum from simulated
square maps based on their prescription.

In our study, we have extended the above-described prescription
to analytically derive the full-sky angular bispectrum. The full-sky
scale maps read

T tot
� (n) =

√
Cclust

� + Cshot
�

Cwhite
�

× T white
� (n),

which reduces to equation (24) in the flat-sky approximation � =
2πk, and assuming P(k) does not vary much within a k bin.

So the power spectrum is given by

C tot
� = Cclust

� + Cshot
� .

We remind the reader that Argueso et al.’s prescription is specifically
made to meet the above relation and that Cshot

� = Cwhite
� = const.

More interestingly the bispectrum is found to be

btot
�1�2�3

=
√

1 + Cclust
�1

Cwhite
�1

√
1 + Cclust

�2

Cwhite
�2

√
1 + Cclust

�3

Cwhite
�3

× bwhite
�1�2�3

= α
√

C tot
�1

C tot
�2

C tot
�3

, (25)

with bwhite
�1�2�3

= const and α = bwhite
�1�2�3√

Cwhite
�1

Cwhite
�2

Cwhite
�3

.

Equation (25) of the bispectrum relates to the clustered power
spectrum or conversely the correlation function entering in the
prescription.

3.3 Two populations of sources with clustering

The previous prescription, equation (24), describes well a single-
point-source population. However, it fails at describing the cases
where more than one population contribute to the signal. In particu-
lar, the case of the present generation of CMB experiments observ-
ing the CMB from low (30 GHz) to high (860 GHz) frequencies
calls for an appropriate prescription which deals with independent
source populations. Indeed, early results from the Planck mission
(Planck Collaboration 2011b,c) show that radio and IR galaxies both
contribute at frequencies of 100 GHz and above. In the following
we thus extend and generalize the prescription accordingly.

Hence we define the harmonic coefficients as

a
(tot)
�m = a

(white,1)
�m +

√
Cclust

� + Cshot
�

Cwhite,2
�

× a
(white,2)
�m , (26)

where a
(white,1)
�m and a

(white,2)
�m are independent realizations of white

noise with different number counts. Index 1 refers to the radio
population and 2 to the infrared population. The spectrum has then
a form similar to the case of a single-source population:

C� = Cclust
� + Cshot,1+2

� .

But the angular bispectrum differs and reads

btot
�1�2�3

= bwhite,1
�1�2�3

+
√√√√ C tot,2

�1

Cwhite,2
�1

C tot,2
�2

Cwhite,2
�2

C tot,2
�3

Cwhite,2
�3

× bwhite,2
�1�2�3

. (27)

For illustration, let us compare equations (25) and (27) in the
equilateral configuration with white noises of both populations de-
rived from the same number counts, and neglecting the shot noise
of the second population:

b
1pop
��� =

(
1 + Cclust

�

Cwhite
�

)3/2

bwhite
��� , (28)

b
2pop
��� =

(
1 +

(
Cclust

�

Cwhite
�

)3/2
)

bwhite
��� . (29)

The difference between these two formula is maximal when
Cclust

� /Cwhite
� � 1 and can be up to 40 per cent, illustrating the

need to properly account for the different populations.
The two-population case, representative of the CMB context in

the frequency range of interest, can be straightforwardly general-
ized to more point-source populations with or without clustering
properties.

4 R ESULTS

In this section we present the bispectra of radio and IR sources com-
puted on simulations described below, showing the configuration
dependence of the angular bispectrum and its frequency behaviour.

4.1 Data used

For our analysis, we used the all-sky simulated maps3 of the IR and
radio point sources provided by Sehgal et al. (2010) at 30, 90, 148,
219 and 350 GHz. We provide here a brief summary of the map
construction. For a detailed description, we refer the reader to the
above-cited paper. The maps are based on N-body simulations of
the large-scale structure, with a volume 1000 h−1 Mpc on a side,
produced using a tree-particle mesh code. DM haloes are identified
and are then populated with infrared and radio galaxies. The model
for the radio sources is adapted so that the radio luminosity function
matches that of the observed radio sources at 151 MHz.

The IR source model was partially based on Righi, Hernández-
Monteagudo & Sunyaev (2008). The DM haloes are populated
with galaxies of given luminosities taking into account a Poisson
term and a correlation term. The model was constructed so that
it is compatible with constraints on the luminosity function, the
source counts and the fluctuations from Submillimetre Common-
User Bolometer Array (SCUBA), Balloon-borne Large-Aperture
Sub-millimeter Telescope (BLAST), Spitzer and Arcminute Cos-
mology Bolometer Array Receiver (ACBAR) (see Sehgal et al.
2010 for details). However, the simulation of IR sources, used here,
does not account for the most recent observational constraints from
ACT, SPT, Herschel and Planck results.

Maps of the different astrophysical contributions, in HEALPIX for-
mat at Nside = 8192, were produced by replication of one simulated
octant of the sky. This procedure does not properly account for the
signal at the largest scales especially up to the octopole, � = 3;
it also introduces excess power at � ≤ 300 for infrared sources as
discussed by Sehgal et al. (2010), but the power is correct for higher
multipoles. The produced maps have half-arcminute resolution but
we degraded them to Nside = 1024 and used a uniform binning
�� = 64 to speed up computations. We checked that this procedure
does not introduce a bias by comparing the binned spectrum in the
degraded map to the unbinned spectrum in the original map and
find excellent agreement. The octant replication in the map making
translates mainly into a lack of power in the first bin (centred around
� = 32) which is hence discarded in later plots.

4.2 Radio source characterization

We first investigate the bispectrum dependence on the configura-
tions at a given frequency. We plot the angular bispectrum in four

3 The frequency maps are available on Lambda website,
http://lambda.gsfc.nasa.gov/toolbox/tb_cmbsim_ov.cfm
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Figure 3. Thick black line: radio angular bispectrum at 90 GHz in different
configurations: equilateral (�, �, �), isosceles orthogonal (�, �,

√
2�), isosce-

les flat (�, �, 2�) and squeezed (�min, �, �). The thin red line is the fit with
prescription. The unit of the bispectra is Jy3 sr−1.

commonly used configurations, namely equilateral (�, �, �), isosce-
les orthogonal (�, �,

√
2�), isosceles flat (�, �, 2�) and squeezed

(�min, �, �) configurations. They furthermore sample rather well the
configuration space (see Fig. 1).

We see in Fig. 3, black thick line, that the bispectrum is constant.
This result is independent of the frequency. Moreover, the value of
the constant is independent of the configuration. This is what we
expect from white noise and it shows that radio sources are indeed
randomly distributed over the sky.

We show in Fig. 4 the dependence with frequency of the bispec-
trum amplitude averaged over all the configurations, in equivalent
temperature unit for the upper panel and flux unit for the bottom
panel. The amplitude is maximal at the lowest frequency 30 GHz;
it then decreases to become mostly flat above 90 GHz because of
free–free emission and inverted spectra sources.

The bispectrum was fitted with the one-population prescription
described in Section 3.2, using the power spectrum extracted from
the simulations and the multiplicative constant which minimizes the
χ2 of the observed bispectrum to the prescribed one with error bars
from Wick’s expansion (see Appendix B). The fit of the bispectrum
with the prescription is very good: Fig. 5 shows that the relative
error (exact to fit) lies in the range between −2 per cent and +2
per cent with a mean relative error always less than 1.

4.3 IR source characterization

Fig. 6 shows the amplitude of the angular bispectrum in the equi-
lateral configuration for the different frequencies. Dusty galaxy
emission peaks at IR frequencies and plummets in the radio do-
main and so does the amplitude of the bispectrum. The bispectrum
decreases with �, well fitted by a power law for 100 ≤ � ≤ 1000,
and with a flattening at higher multipoles. The decrease is expected
from the clustering of IR galaxies on large scales. We found that

Figure 4. Amplitude of the radio angular bispectrum, averaged over all
configurations, at 30, 219, 148, 277, 90 and 350 GHz, in temperature units
for the upper panel and flux units for the bottom panel.

the slopes were about the same for equilateral, flat and orthogonal
configurations except for the squeezed triangles. Indeed, for the lat-
ter �1 is fixed, while for the other configurations �1, �2, �3 are all
proportional to �.

The flattening of the bispectrum at high multipoles, indicative
of the shot-noise contribution, occurs at lower multipoles with in-
creasing frequency (e.g. at 350 GHz the bispectrum deviates from
a power law at � ∼ 1000 while at 90 GHz it is not before � ∼
1500). This is explained by the contribution of the high-flux galax-
ies, in Sehgal et al.’s simulations, that accounts for the shot noise
(bshot ∼ ∫

S3 dn
dS

dS) and at the same time have a steeper emission
than the galaxies accounting for the clustering term.

The bispectrum was fitted with the one-population prescription
described in Section 3.2, using the multiplicative constant which
minimizes the χ2, as previously for radio sources. We show in Fig. 7
how the bispectrum of the IR sources compares with the prescribed
one. We see that the bispectrum obtained with the prescription is
good, with a mean relative error always ≤5 per cent and a standard
deviation ≤31 per cent. At 350 GHz an outlier at −400σ was dis-
carded for the computation of the standard deviation. Figs 5 and 7
show the distribution of the relative error between the bispectrum
derived from the prescription and the actual bispectrum measured
in the simulated maps. In other words, it exhibits departures from
the predicted bispectrum values. The dispersion of these relative
errors is larger for the IR sources (Fig. 7) than for the radio sources
(Fig. 5) at all the frequencies. This behaviour is not an indication of
a mismatch between the predicted and the actual bispectra; it relates
to the intrinsic sample variance of both the IR and radio bispectra.
The IR sources being weakly non-Gaussian (the value for α defined
in equation (25) is 3 × 10−3 for the IR sources, compared to 0.3
for radio sources) the variance of their bispectrum is indeed large
compared to the bispectrum value (see Appendix B).

C© 2012 The Authors, MNRAS 421, 1982–1995
Monthly Notices of the Royal Astronomical Society C© 2012 RAS



Non-Gaussianity of radio and IR point sources 1989

Figure 5. Relative error distribution with the prescription for radio sources
alone. The vertical bar shows the mean of the distribution.

Figure 6. Infrared equilateral bispectrum at 90, 148, 219, 277 and 350 GHz
from bottom to top. The dotted corresponding lines are the power-law fit.

Figure 7. Relative error distribution with the prescription for infrared
sources alone. The vertical bar shows the mean of the distribution. The
quoted standard deviation at 350 GHz is computed after discarding one
unique negative bispectrum outlier at 400σ .

4.4 Total contribution from IR and radio source populations

We now present the results when the two populations of sources
contribute to the signal at the frequencies 30, 90, 148, 219, 277
and 350 GHz. To do so, we simply add the simulated maps at each
frequency.

We illustrate the angular bispectrum dependence on frequency
for one single configuration, namely equilateral, see Fig. 8.

The frequency behaviour is as expected from an independent
combination of the IR and RAD bispectra. The radio source con-
tribution dominates at low frequencies 30 and 90 GHz (blue and
purple lines) and its bispectrum is flat. Infrared galaxies dominate
at the highest frequencies 277 and 350 GHz (black and red upper
lines) and show the characteristic power-law dependence due to
clustering followed by the flattening of the bispectrum. At inter-
mediate frequencies both populations contribute to the signal. The
clustering-induced term of IR galaxies dominates on large angular
scale while the random-noise term of radio galaxies dominates at
small angular scale. The cross-over between radio and IR-galaxy
bispectra is shifted to higher �s with increasing frequency. It is
worth noting in Fig. 9 that at the lowest multipoles and at highest
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Figure 8. Infrared + radio orthogonal bispectrum at 30, 90, 148, 219, 277
and 350 GHz. The purple flat upper line is 30 GHz, the blue flat lowest line
is 90 GHz and the more variable decreasing lines from bottom to top are
148, 219, 277 and 350 GHz.

Figure 9. Ratio of the IR angular bispectrum to the radio one at 90, 148,
219, 277 and 350 GHz from bottom to top. The dotted line indicates equality.

frequencies, the IR galaxies produce a bispectrum at least 10 times
more important than the radio sources.

We illustrate the angular bispectrum dependence on configura-
tions at 350 GHz, see Fig. 10, thick black line. The error bars
were computed in the weak NG approximation (see Appendix B).
We note that infrared-radio cross-over occurs at about the same
scale for the equilateral, orthogonal and flat configurations, but is
at higher � in squeezed configuration. This is expected because the
squeezed IR bispectrum decreases more slowly than other config-
urations, one of the multipoles being fixed. Fig. 10 also displays

Figure 10. Infrared + radio bispectrum at 350 GHz in different configura-
tions, with error bars. The thick black line is the computed bispectrum. The
smoother solid lines are the fit with prescriptions: the upper blue line with
the single-source prescription and the lower red line with the two-source
prescription.

(thin red line) the bispectrum computed with two-population pre-
scription derived in Section 3, i.e. adding up independently the
prescription for radio sources and infrared sources derived in the
previous sections. This is compared to a bispectrum computation
considering only a single population (thin blue line). From Fig. 10,
and Fig. 11 showing the distribution of relative errors with respect
to these two prescriptions, we see that the two-population prescrip-
tion performs much better than the single-population prescription.
The former captures well the overall shape of the bispectrum and
it adjusts particularly well the high �s. As a matter of fact, the
mean relative error is lower than 2.5 per cent up to 350 GHz and
the dispersion increases from 1 per cent at 30 GHz to 21 per cent at
350 GHz.

As expected, at 30 and 90 GHz the two prescriptions give same
results since radio sources totally dominate the signal. At higher
frequencies, both the mean errors and the dispersions derived us-
ing the two-population prescription are smaller than those obtained
with the single-population prescription. Interestingly enough, at the
highest frequency (350 GHz) where IR emission from galaxies is
dominant, the single-population prescription is not satisfactory. As
a matter of fact, configurations with at least one high multipole
dominate the distributions (e.g. 7/8th of the configurations have at
least one �i ≥ 1000). At 350 GHz these �s are dominated by in-
frared shot noise, so the computation of the prescriptions combine
the IR shot noise and radio spectrum which are both flat. The radio
emission is subdominant compared to infrared shot noise but nev-
ertheless not negligible so the single-population prescription leads
to an overestimate of the total bispectrum. This is clearly visible
in Fig. 10 where the single-population prescription (blue thin line)
is systematically higher than the computed bispectrum (black thick
line) and the two-population prescription (red thin line), particularly
at high multipoles.
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Figure 11. Relative error distribution with the prescriptions for the com-
bination of infrared and radio sources. The dotted line is obtained with the
single-population prescription, and the solid line with the two-populations
prescription. The vertical bars show the mean of the distribution, the blue
for the single-population prescription and the red for the two-population
prescription.

5 C ONSEQU ENCES O N N ON-GAU SSIANIT Y
ME ASURES

5.1 (P, F, S) parametrization

The parametrization of the angular bispectrum proposed in Sec-
tion 2.3 allows us to visualize the bispectrum dependence on the
configurations. The bispectrum is computed for 32 perimeters in the
� space. Only nine perimeters are shown for illustration in Figs 12
and 13, for the radio and IR-source populations, respectively. The
bispectrum values are colour coded from blue (lowest value) to red
(highest value). The succession of plots, arranged by increasing
perimeters, exhibits the allowed configurations at given perime-
ter with the equilateral configuration being the starting (upper-left
panel) and ending point (lower-right panel). Unsurprisingly, the bis-
pectrum amplitude of the radio sources does not vary with the con-
figuration (same colour code for all points in Fig. 12). As for the IR
sources, Fig. 13, the bispectrum amplitude decreases with perime-
ter, thus from the upper-left to the lower-right panel. Moreover, it
is worth noting that the bispectrum values do not vary vertically.

Figure 12. Radio bispectrum in the (P, F, S) parametrization at 90 GHz.
Each plot is a slice of constant perimeter P; the value of the bispectrum is
encoded in a logarithmic colour scale from violet-blue to red. The axes are
the same as those in Fig. 1.

Figure 13. IR bispectrum in the (P, F, S) parametrization at 148 GHz. The
axes are the same as those in Fig. 1.

This means that within the proposed (P, F, S) parametrization the
bispectrum of the IR sources is quasi-independent of F, reducing
the full bispectrum to a function of the two parameters P and S.
Finally, at a given perimeter, i.e. scale, the bispectrum of the IR
sources is more dependent on the configuration and peaks in the
squeezed triangles, upper-left points in panels 2–5.
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5.2 Point-source contamination of f NL

We now explore the point-source NG in terms of the contamina-
tion of the f NL estimation. For pedagogical purposes, we consider
the SW regime, i.e. a constant transfer function without acoustic
oscillations, damping, etc.

For IR sources alone, which dominate at high frequencies,
b(�1, �2, �3) ∝ √

C�1C�2C�3 . Combined with Planck’s latest con-
straints on the CIB � × C� � const (Planck Collaboration 2011d),
this yields

bIR(�1, �2, �3) ∝ 1√
�1�2�3

,

which has a similar shape to the local template in the SW limit,
equation (13). We define the scalar product between the bispectra
f , g:

〈f , g〉 =
∑

�1≤�2≤�3

N�1�2�3

f (�1, �2, �3) × g(�1, �2, �3)

CCMB
�1

CCMB
�2

CCMB
�3

,

where the denominator is the variance of the local bispectrum, for
triangles with �1 �= �2 �= �3. The correlation coefficient between a
bispectrum bα and the local bispectrum bloc is

cos θα = 〈bα, bloc〉
‖bα‖ ‖bloc‖ ,

with α being IR or radio.
Fig. 14 shows that, for � < 200, the correlation between radio

and local bispectra decreases quickly, so that the two bispectra may
be distinguished efficiently. Conversely, even when using a large

Figure 14. Correlation between SW local bispectrum and, respectively, IR
(red) and radio (blue) bispectrum, as a function of the maximum multipole
used (�min = 2).

multipole range, the IR bispectrum is significantly correlated with
the local one.

The contribution of the bispectrum of a point-source population
α to f NL is

�f α
NL = 〈bα, bfNL=1〉

〈bfNL=1, bfNL=1〉 = ‖bα‖
‖bfNL=1‖ cos θα. (30)

This equation is the usual bias (Serra & Cooray 2008) of the local-
optimized NG estimator, when the local bispectrum has the form of
equation (13).

A more comprehensive computation of �f α
NL is achievable by

applying the full local estimator described in Section 2.2. We built up
this estimator using the full transfer function from the latest version
of CAMB (Lewis et al. 2000) with WMAP7+BAO+H0 cosmological
parameters (Larson et al. 2011), and we tested the estimator on
simulations from Elsner & Wandelt (2009). We found the previously
noted result that the variance of the estimator increases with f NL. It
is unbiased in the range we have tested (0 ≤ f NL ≤ 200).

We used this f NL estimator on two sets of simulated maps: maps
containing all the point sources and maps with only sources below
the flux limit of Planck’s Early Release Compact Source Catalogue
(ERCSC) (Planck Collaboration 2011a), namely Sc =0.5, 0.5, 0.3,
0.3, 0.3 and 0.25 Jy as a function of frequency. Moreover, we have
computed the estimator at three resolutions, �max, recalibrating the
Sprim normalization in each case. Tables 1 and 2 summarize these
results.

The bias �f RAD
NL (see Table 1) is negative on large angular scales,

for �max = 50. The bias due to radio sources becomes positive
at higher multipoles in agreement with Serra & Cooray (2008).
This is due to the CMB bispectrum being negative in the SW-
dominated regime and the radio bispectrum being positive. The
bias increases by five orders of magnitude at the highest resolution,
�max = 2048. The reason for the rapid increase of the bias with �max

relates to the weight of the observed bispectrum in equation (17),
B loc

�1�2�3
/C�1C�2C�3 , which rapidly increases with multipole as the

product of spectra decreases more quickly than the bispectrum. This
leads to a 1/C� dependence in squeezed configurations and to a 1/C2

�

dependence in equilateral configurations. When the observed bis-
pectrum is associated with a CMB signal alone, its decrease cancels
the increase of the weights so that the sum in equation (17) con-
verges. Conversely, the sum diverges when the observed bispectrum
is associated with a non-CMB signal and does not decrease with �

as fast as the CMB.
The bias �f RAD

NL is maximal at 30 GHz and rapidly decreases with
frequency. It slightly increases again at the two highest frequencies
following the amplitude of the bispectrum in temperature units
which is plotted in the upper panel of Fig. 4. The relative error of
�f RAD

NL for �max = 700 is of the order of 1.5 per cent independently
of the frequency. It amounts to 2.3 per cent for �max = 2048. These

Table 1. Bias on the f NL estimator, �f RAD
NL , due to radio sources.

ν (GHz) 30 90 148 219 277 350

without flux cut

�max = 50 −4.2 −0.0025 −0.000 37 −0.000 21 −0.000 27 −0.000 68
�max = 700 3850 2.5 0.38 0.21 0.27 0.65
�max = 2048 177 000 117 18 9.7 12 30

with flux cut

�max = 700 108 0.17 0.0071 0.0031 0.0035 0.0064
�max = 2048 4930 7.5 0.31 0.14 0.16 0.29
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Table 2. Bias of the f NL estimator, �f IR
NL, due to IR sources.

ν (GHz) 30 90 148 219 277 350

without flux cut

�max = 50 −3.5 × 10−8 −5.9 × 10−6 −9.2 × 10−5 −0.0027 −0.023 −1.0
�max = 700 −1.3 × 10−6 −0.000 19 −0.0033 −0.063 −0.55 −9.0
�max = 2048 −1.8 × 10−5 −0.0026 −0.039 −0.68 −4.8 −67

with flux cut

�max = 700 −1.3 × 10−6 −0.000 19 −0.0033 −0.078 −0.74 −11
�max = 2048 −1.8 × 10−5 −0.0026 −0.039 −0.67 −6.3 −66

error bars were computed with simulations using the catalogue of
sources present in Sehgal et al.’s maps.

As shown in Table 1, masking sources above the ERCSC flux
limit proves very efficient to significantly decrease the radio con-
tamination to f NL at all the frequencies. At a Planck-like resolution,
�max = 2048, the bias �f RAD

NL is reduced below unity above 150
GHz. It is of the order of Planck’s expected error bars at 90 GHz.
At 30 GHz the bias is still important.

The bias due to IR sources �f IR
NL is always negative, see Table 2.

As a matter of fact, we have shown that the IR bispectrum peaks
in squeezed configurations just like the CMB bispectrum and these
configurations thus dominate the sum in equation (17). Moreover,
in the squeezed limit the CMB bispectrum is negative while the IR
bispectrum is positive. For the same reason as for radio sources,
the bias �f IR

NL blows up at high multipoles. This is particularly
important at a Planck-like resolution, �max = 2048, where primordial
NG tests will need to carefully handle the contamination by IR
sources. The IR source emission plummets at radio frequencies so
that �f IR

NL is completely negligible below 220 GHz. It becomes of
the order of Planck’s error bars at 277 GHz and it reaches WMAP’s
central values for f NL at 350 GHz. The relative error of �f IR

NL ranges
between 6 and 7 per cent from 148 to 350 GHz for �max = 700. It
ranges between 3 and 7 per cent for �max = 2048. (These error bars
were computed analytically with the weak NG approximation – see
Appendix B.) At higher frequencies the IR contamination to the
bispectrum is likely larger but the contamination from our Galaxy
needs to be taken into account as well.

Interestingly, masking sources above the ERCSC flux limit does
not diminish �f IR

NL, as most of the IR sources are unresolved and
the IR clustering is mostly due to faint sources. Masking may even
artificially boost �f IR

NL, for example at 277 GHz, since it mostly
affects the flat shot noise which produces a positive bias �f NL.

6 C O N C L U S I O N S A N D D I S C U S S I O N

We have studied the NG produced by point sources in the frequency
range of the CMB from 30 to 350 GHz. We have developed a simple
and accurate prescription to infer the angular bispectrum from the
power spectrum of point sources, considering different independent
populations of sources, with or without clustering.

Using publicly available all-sky simulations of radio and IR
sources, we have computed the full-sky binned bispectra for these
two populations of sources. We have compared the measured bis-
pectra to those predicted from our prescription and found very good
agreement between the two. We have displayed the angular bispec-
trum using a new parametrization which highlights efficiently the
configuration dependence.

We have characterized the angular bispectrum of the IR and radio
sources showing the configuration dependence and the frequency
behaviour. In particular and for the first time, we showed that the IR
bispectrum peaks in the squeezed triangles and that the clustering
of IR sources enhances the bispectrum values by several orders of
magnitude on large angular scales � ∼ 100. The bispectrum of IR
sources starts to dominate that of radio sources on large angular
scales at 150 GHz, and it dominates the whole multipole range at
350 GHz.

Finally, to illustrate the contamination of local CMB NG by point
sources, we derive the bias on f NL induced by radio and IR sources,
for WMAP or Planck-like angular resolutions. Radio sources pro-
duce a positive bias which is significantly reduced (�f NL < 1 for
ν ≥ 150 GHz) by masking the sources above a given flux limit taken
as the ERCSC cut. The form of the IR bispectrum mimics a primor-
dial ‘local’ bispectrum, f NL, on large angular scales. The IR sources
produce a negative bias which becomes important for Planck-like
resolution and at high frequencies (�f NL ∼ −6 at 277 GHz and
�f NL ∼ −60–70 at 350 GHz). Most of the signal is associated with
the clustering of faint IR sources. Therefore, the bias �f IR

NL is not
reduced by masking sources above a flux limit but, in some cases,
even increased due to the reduction of the shot-noise term.

Our analysis highlights the sensitivity of the bias on f NL to the ex-
perimental properties (maximum resolution and frequency range),
the point-source models (clustering or no, resolved or not) and their
scale dependence with respect to the CMB. For high-resolution,
high-frequency CMB experiments, primordial NG estimations need
to take special care of astrophysical contaminations. One solution
would be to estimate the primordial and astrophysical NG simulta-
neously.
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2002, ApJ, 566, 19
Komatsu E., Spergel D. N., Wandelt B. D., 2005, ApJ, 634, 14
Komatsu E. et al., 2009, ApJS, 180, 330
Komatsu E. et al., 2011, ApJS, 192, 18
Kunz M., Banday A. J., Castro P. G., Ferreira P. G., Górski K. M., 2001,
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A P P E N D I X A : C L U S T E R E D S O U R C E S SH OT
NOI SE

A source with flux S enclosed in a pixel �pix yields a rise of tem-
perature compared to the CMB:

�T = S

�pix
× (ex − 1)2

x2ex
× c2

2ν2kB︸ ︷︷ ︸
≡kν

, (A1)

where x = hν/kBTCMB and kν = ∂B(ν,T )
∂T

∣∣
TCMB

.
The two-point correlation function of point sources takes the form

〈�T (n)�T (n′)〉 = F (n, n′) + � δn,n′ ,

where F (n, n′) is the correlation function coming from the spatial
distribution of the sources, and the Kronecker term comes from the
discreteness of the sources:

� = 〈�T 2〉 − F (n, n).

Assuming statistical isotropy, we get

C� = Cclust
� + Cshot

� with Cshot
� = � �pix.

Indeed,

〈a�m a∗
�′m′ 〉 =

∫
d2n d2n′ Y�m(n) Y ∗

�′m′ (n′)〈�T (n)�T (n′)〉

=
∫

d2n d2n′ Y�m(n) Y ∗
�′m′ (n′) F (n, n′)︸ ︷︷ ︸

=Cclust
� δ��′ δmm′

+
∑
ni ,n′

j

Y�m(ni) Y ∗
�′m′ (n′

j )×� δni ,n′
j
�2

pix

= Cclust
� δ��′ δmm′ + � �pix

∑
ni

Y�m(ni) Y ∗
�′m′ (ni) �pix

= Cclust
� δ��′ δmm′ + � �pix

∫
d2n Y�m(n) Y ∗

�′m′ (n)

= Cclust
� δ��′ δmm′ + � �pix δ��′ δmm′ . (A2)

C� has units μK2 sr. Let us number by i = 1, . . . , N all sources of
the sky; then the temperature of a pixel is given by

�T (n) = kν

�pix

N∑
i=1

Si × 1[i∈n], (A3)
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where 1[i∈n] is 1 if the source i is in the pixel and 0 otherwise. We
have

〈1[i∈n]〉 = 1/npix.

Hence for n �= n′,

F (n, n′) = 〈�T (n)�T (n′)〉

= k2
ν

�2
pix

〈∑
i �=j

Si Sj × 1[i∈n]1[j∈n′]

〉
.

Then we find

〈�T (n)2〉 = k2
ν

�2
pix

〈
N∑

i,j=1

Si Sj × 1[i∈n]1[j∈n]

〉

= k2
ν

�2
pix

〈∑
i �=j

Si Sj × 1[i∈n]1[j∈n]

〉

+ k2
ν

�2
pix

N∑
i=1

S2
i × 〈1[i∈n]〉

= lim
n→n′〈�T (n)�T (n′)〉 + k2

ν

�2
pix

1

npix

∑
sources

S2.

Recalling �pix = 4π
npix

and introducing dn
dS

the number counts of
sources

〈�T (n)2〉 = F (n, n) + k2
ν

4π �pix

∫
S2 dn

dS
dS︸ ︷︷ ︸

=�

.

And finally

Cshot
� = � �pix = k2

ν

4π

∫
S2 dn

dS
dS, (A4)

which is the shot-noise formula (19).
The integrals run from S = 0 to Scut, the flux detection limit of the

survey, i.e. sources with S > Scut have been removed. Note that this
result is independent of the two-point correlation function, which
we did not specify.

At order 3 for the angular bispectrum, the computation is a bit
more involved but follows the same line, and we find

〈a�1m1a�2m2a�3m3 〉 = G
m1m2m3
�1�2�3

× b�1�2�3 (A5)

with

bshot
�1�2�3

= k3
ν

4π
×

∫
S3 dn

dS
dS, (A6)

which is the shot-noise formula (20).

APPENDIX B: BISPECTRU M VARIANCE IN
THE W EAK N G A PPROX IMATION

The bispectrum estimator (4) can be put in the form

b̂123 = 1

N123
×

∑
m123

G123 a1 a2 a3, (B1)

where a shortened notation is used: N123 is the number of triangles
defined in equation (6) and G123 is the Gaunt coefficient:

G123 =
∫

d2n Y�1m1 (n)Y�2m2 (n)Y�3m3 (n) . (B2)

Then the bispectrum covariance takes the form

Cov(b̂123 , b̂1′2′3′ ) = 1

N123 N1′2′3′

∑
m123,m′

123

G123 G1′2′3′

(〈a1a2a3a1′a2′a3′ 〉 − 〈a1a2a3〉〈a1′a2′a3′ 〉) .

(B3)

When the field is close to Gaussian, the 6-point correlation function
can be computed with Wick’s theorem (Wick 1950; Komatsu et al.
2002, and references therein)

〈a1a2a3a1′a2′a3′ 〉 = (C�)123 δ1∗,1′ δ2∗,2′ δ3∗,3′ + 14 permutations,
(B4)

where δi∗,j = (−1)mi δ�i ,�j
δ−mi ,mj

.
The 15 permutations of (1, 2, 3, 1′, 2′, 3′) are listed below along

with their contribution δCov to the covariance:

(1∗2)(3∗1′)(2′∗3′) → δCov = 0 except if �3 = �′
1 = 0 (B5)

(1∗2)(3∗2′)(1′∗3′) → δCov = 0 except if �3 = �′
2 = 0 (B6)

(1∗2)(3∗3′)(1′∗2′) → δCov = 0 except if �3 = �′
3 = 0 (B7)

(1∗3)(2∗1′)(2′∗3′) → δCov = 0 except if �2 = �′
1 = 0 (B8)

(1∗3)(2∗2′)(1′∗3′) → δCov = 0 except if �2 = �′
2 = 0 (B9)

(1∗3)(2∗3′)(1′∗2′) → δCov = 0 except if �2 = �′
3 = 0 (B10)

(1∗1′)(2∗3)(2′∗3′) → δCov = 0 except if �1 = �′
1 = 0 (B11)

(1∗1′)(2∗2′)(3∗3′) → δCov = C�1C�2C�3

N123
δ�1�′

1
δ�2�′

2
δ�3�′

3
(B12)

(1∗1′)(2∗3′)(3∗2′) → δCov = C�1C�2C�3

N123
δ�1�′

1
δ�2�′

3
δ�3�′

2
(B13)

(1∗2′)(2∗3)(1′∗3′) → δCov = 0 except if �1 = �′
2 = 0 (B14)

(1∗2′)(2∗1′)(3∗3′) → δCov = C�1C�2C�3

N123
δ�1�′

2
δ�2�′

1
δ�3�′

3
(B15)

(1∗2′)(2∗3′)(3∗1′) → δCov = C�1C�2C�3

N123
δ�1�′

2
δ�2�′

3
δ�3�′

1
(B16)

(1∗3′)(2∗3)(1′∗2′) → δCov = 0 except if �1 = �′
3 = 0 (B17)

(1∗3′)(2∗1′)(3∗2′) → δCov = C�1C�2C�3

N123
δ�1�′

3
δ�2�′

1
δ�3�′

2
(B18)

(1∗3′)(2∗2′)(3∗1′) → δCov = C�1C�2C�3

N123
δ�1�′

3
δ�2�′

2
δ�3�′

1
. (B19)

Here we do not consider bispectrum coefficients with one multipole
equal to zero (which amounts to considering the power spectrum
times the monopole). So the bispectrum covariance is diagonal and
we find

Var(b̂123) = C�1C�2C�3

N123
×

⎧⎪⎪⎨
⎪⎪⎩

6 equilateral triangle

2 isosceles triangle

1 general triangle.

(B20)
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