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Energy-diminishing integration of gradient systems
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For gradient systems in Euclidean space or on a Riemannian manifold the energy decreases monotonically
along solutions. Algebraically stable Runge–Kutta methods are shown to also reduce the energy in each
step under a mild step-size restriction. In particular, Radau IIA methods can combine energy monotonic-
ity and damping in stiff gradient systems. Discrete-gradient methods and averaged vector field collocation
methods are unconditionally energy-diminishing, but cannot achieve damping for very stiff gradient sys-
tems. The methods are discussed when they are applied to gradient systems in local coordinates as well
as for manifolds given by constraints.
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1. Introduction

Given a potential function U : Rn → R, the associated gradient system is the differential equation (see
Hirsch & Smale, 1974; Hale, 1988)

ẏ = −∇U(y). (1.1)

More generally, for a potential U defined on a Riemannian manifold M with metric g, the corresponding
gradient system takes the form

gy(ẏ, v) = −U ′(y)v for all v ∈ TyM , (1.2)

where TyM denotes the tangent space of M at y ∈ M . Gradient systems arise in a variety of applica-
tions, both in a finite-dimensional and infinite-dimensional setting. They describe dissipative physical
systems that evolve into a state of minimal energy. Examples include phase-field models in mate-
rial science (Chen, 2002; Penzler et al., 2012) such as the Allen–Cahn and the Cahn–Hilliard partial
differential equations (Chafee & Infante, 1974; Elliott & Zheng, 1986), the porous medium equation
(Otto, 2001), and models in image processing (Strzodka et al., 2004; Michailovich et al., 2007), in
differential geometry (Droske & Rumpf, 2004; Bobenko & Schröder, 2005) and in quantum systems
(Bao & Du, 2004).
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A key property of the gradient flow is that the potential U(y(t)) decreases monotonically with t:

U(y(t)) � U(y(s)) for t > s,

with strict inequality except at stationary points of U .
In the numerical treatment we would like to preserve the monotonicity, so that, after one step of the

method starting from y0 with a time step h, we would obtain

U(y1) � U(y0).

One approach to achieve this objective is to determine y1 ∈ M from the condition (Stuart & Humphries,
1996, Section 4.4.6; Otto, 1998)

1

2h
dist(y1, y0)

2 + U(y1) → min . (1.3)

When the manifold is the Euclidean space Rn, then this method becomes the implicit Euler method.
When the manifold is embedded by constraints c(y) = 0, then it becomes the implicit Euler method
constrained to the manifold,

y1 = y0 − h∇U(y1) − h∇c(y1)λ1, c(y1) = 0.

The implicit Euler method only yields a first-order approximation. Our interest in this note is to explore
higher-order methods that ensure a reduction of the potential.

In Section 2 we study the energy reduction in standard implicit Runge–Kutta methods, when applied
to (1.1) or to (1.2) if the manifold is given by a local parametrization. It turns out that algebraically stable
methods, such as Gauss and Radau IIA methods, behave favourably under a mild time-step restriction
that involves a local Lipschitz bound of the Hessian matrix of U . In particular, the Radau IIA methods
combine good energy reduction and favourable damping properties in stiff gradient systems. Gauss
methods, on the other hand, have no damping property on very stiff gradient systems.

In Section 3 we discuss methods that reduce the energy without any restriction of the step size. It is
known from McLachlan et al. (1999) that discrete-gradient methods have this property. A particularly
interesting example is the average vector field integrator which, applied to (1.1), reads

y1 = y0 − h
∫ 1

0
∇U(y0 + τ(y1 − y0)) dτ .

Generalizations of this method to higher order are the modified collocation methods of Hairer (2010),
which were constructed such that they conserve the energy in Hamiltonian systems. When applied to
gradient systems, also these methods diminish the energy without any step-size restriction. Like the
Gauss methods, these integrators have no damping property on very stiff gradient systems.

In Section 4 we consider the differential equation (1.2) where the manifold is given by constraints
c(y) = 0, so that we are concerned with a differential-algebraic equation. We study the energy reduction
of implicit Runge–Kutta methods and of suitable extensions to differential-algebraic equations of the
discrete-gradient methods and the averaged vector field collocation methods.
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2. Implicit Runge–Kutta methods for gradient flows

We consider the gradient system (1.2) in coordinates,

G(y)ẏ = −∇U(y), (2.1)

with a potential U that is twice continuously differentiable. The symmetric matrix G(y) is assumed to
satisfy, for all y and for all vectors v |= 0,

vTG(y)v � vTΓ v > 0, (2.2)

where Γ is a fixed positive-definite matrix. Along every exact solution we have

d

dt
U(y(t)) = ∇U(y(t))Tẏ(t) = −ẏ(t)TG(y(t))ẏ(t) � 0, (2.3)

implying that U(y(t)) is monotonically decreasing.
For the numerical solution of (2.1) we consider implicit Runge–Kutta methods, given by

Yi = y0 + h
s∑

j=1

aijẎj, i = 1, . . . , s,

y1 = y0 + h
s∑

i=1

biẎi,

(2.4)

with

G(Yi)Ẏi = −∇U(Yi). (2.5)

Associated to the Runge–Kutta coefficients we consider the diagonal matrix B = diag(b1, . . . , bs) and
the symmetric s × s matrix M with entries

mij = biaij + bjaji − bibj.

We denote by δ a bound on the deviation from the starting value,

‖y1 − y0‖ � δ, ‖Yi − y0‖ � δ, i = 1, . . . , s. (2.6)

Our aim is to prove a discrete analogue of (2.3).

Theorem 2.1 We consider the gradient system (2.1) with a twice differentiable function U(y) and we
assume that the Hessian matrix ∇2U(y) is Lipschitz continuous in the ball of radius δ centred at y0 with
Lipschitz constant L. If the Runge–Kutta weights bi are non-negative, if the matrix

B ⊗ Γ + h

2
M ⊗ ∇2U(y0)

is positive definite and if hLδ is bounded by a sufficiently small constant, then we have

U(y1) � U(y0).
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Proof. We follow the ideas of the proof for algebraic stability of implicit Runge–Kutta methods; see,
for example, Hairer & Wanner, 1996, Section IV.12. Taylor series expansion of U(y1) around y0 yields

U(y1) = U(y0) + h
s∑

i=1

bi∇U(y0)
TẎi + h2

2

s∑
i,j=1

bibjẎ
T
i ∇2U(ŷ)Ẏj,

where ŷ lies on the segment connecting y0 with y1. From the relation

∇U(Yi) = ∇U(y0) + h
s∑

j=1

aij

∫ 1

0
∇2U(y0 + s(Yi − y0)) dsẎj,

we extract ∇U(y0) and insert it into the previous relation. Using (2.5), this gives

U(y1) = U(y0) − h
s∑

i=1

biẎ
T
i G(Yi)Ẏi − h2

2

s∑
i,j=1

Ẏ T
i (mij∇2U(y0) + Rij)Ẏj,

with remainder terms Rij bounded by cLδ, where c depends only on the coefficients of the Runge–Kutta
method. With the relation (2.2) this yields

U(y1) � U(y0) − hẎ T

(
B ⊗ Γ + h

2
M ⊗ ∇2U(y0) + h

2
R

)
Ẏ ,

where Ẏ = (Ẏi)
s
i=1 and R = (Rij)

s
i,j=1. This proves the statement of the theorem. �

Remark 2.2 For the implicit Euler method the condition of Theorem 2.1 requires that (for G(y) = I)

I + h

2
∇2U(y0) is positive definite.

On the other hand, the condition for a minimum of (1.3) requires I + h∇2U(y1) to be positive semidef-
inite, which can give a stronger step-size restriction when the Hessian matrix ∇2U(y1) has negative
eigenvalues. To our knowledge, energy decay for the implicit Euler method under such a condition was
first studied by Elliott & Stuart (1993, Proposition 5.5).

Remark 2.3 Humphries & Stuart (1994, Theorem 4.6) showed, for G(y) = I, that, for every Runge–
Kutta method, the energy decreases if the product of the step size h and the Lipschitz constant of ∇U
(not that of the Hessian of U) is sufficiently small. In contrast, as we shall see next, Theorem 2.1 shows
that, for suitable Runge–Kutta methods, the energy is diminished without any restriction of the step size
by the Lipschitz constant of ∇U , which in the case of a predominantly quadratic potential can be much
larger than the Lipschitz constant of the Hessian ∇2U .

Theorem 2.1 shows that favourable Runge–Kutta methods are those with positive weights bi and a
symmetric positive-semidefinite matrix M . Such methods are known as algebraically stable methods
and play an important role in the numerical treatment of stiff differential equations; see Burrage &
Butcher (1979), Crouzeix (1979) and Hairer & Wanner (1996, Section IV.12). Well-known algebraically
stable Runge–Kutta methods are the Gauss methods of order 2s, which have M = 0, and the Radau IIA
methods of order 2s − 1.
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We now consider potentials of the form

U(y) = 1
2 yTAy + V(y), (2.7)

with a symmetric positive-semidefinite matrix A of arbitrarily large norm. Such problems arise from the
spatial discretization of Allen–Cahn and Cahn–Hilliard partial differential equations (Barrett & Blowey,
2002; Feng & Prohl, 2004). We have the following direct consequence to Theorem 2.1.

Theorem 2.4 Suppose that an algebraically stable Runge–Kutta method is applied to a gradient system
with potential (2.7), and assume that the Hessian matrix ∇2V(y) is Lipschitz continuous in the ball of
radius δ centred at y0 with Lipschitz constant L. Then, independently of the norm of A, if the matrix

B ⊗ Γ + h

2
M ⊗ ∇2V(y0) (2.8)

is positive definite, and if hLδ is bounded by a sufficiently small constant, we have

U(y1) � U(y0).

Proof. This result follows from the fact that M ⊗ A is positive semidefinite. �

Note that, for Gauss methods, we have M = 0, and hence the matrix (2.8) reduces to B ⊗ Γ , which
is always positive definite.

For a quadratic potential (i.e., V(y) = 0 in (2.7)) and for G(y) = I the numerical solution of an
implicit Runge–Kutta method is given by

y1 = R(−hA)y0,

where R(z) is the stability function; see Hairer & Wanner (1996, Section IV.3). Every algebraically stable
Runge–Kutta method is A-stable, so that ‖R(−hA)‖ = maxi |R(−hλi)| � 1, where λi are the eigenvalues
of the matrix A. Radau IIA methods have R(∞) = 0 and hence eigencomponents corresponding to
very large eigenvalues of A are strongly damped. This is not the case for Gauss methods, for which
|R(∞)| = 1. The importance of the damping property |R(∞)| < 1 for the approximation properties of
a Runge–Kutta method applied to semilinear parabolic equations is well understood; see Lubich &
Ostermann (1993, 1996). For the role of the condition R(∞) = 0 in the approximation of stiff differential
equations of singular perturbation type see Hairer & Wanner (1996, Chapter VI).

3. Unconditionally energy-diminishing methods

3.1 Discrete-gradient methods

Discrete-gradient methods, applied to (1.1), are of the form

Ḡ(y1, y0)(y1 − y0) = −h∇̄U(y1, y0), (3.1)

where Ḡ(y1, y0) is a symmetric positive-definite matrix with Ḡ(y, y) = G(y), and the discrete gradient
satisfies

∇̄U(y, z)T(y − z) = U(y) − U(z), ∇̄U(y, y) = ∇U(y). (3.2)
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Well-known examples are the midpoint discrete gradient (Gonzalez, 1996)

∇̄U(y, z) = ∇U

(
y + z

2

)
+ U(y) − U(z) − ∇U((y + z)/2)T(y − z)

‖y − z‖2
(y − z),

and the average vector field (McLachlan et al., 1999)

∇̄U(y, z) =
∫ 1

0
∇U(z + τ(y − z)) dτ .

With Ḡ(y, z) = G((y + z)/2) these methods are of order 2. Higher-order discrete-gradient methods are
derived in Dahlby et al. (2011) and Norton & Quispel (2012).

As was noted in McLachlan et al. (1999), multiplying (3.1) by (y1 − y0)
T and using (3.2) imme-

diately yields U(y1) � U(y0). This does not require any restriction on the step size other than what is
needed for the existence of the numerical solution.

In the case of a quadratic potential, both discrete-gradient methods given above reduce to the implicit
midpoint rule. Therefore, these methods show no damping for very stiff gradient systems.

3.2 Averaged vector field collocation methods

The following class of methods was introduced in Hairer (2010) and Cohen & Hairer (2011), where they
are called energy-preserving collocation methods in view of their energy conservation for Hamiltonian
systems. For given distinct nodes c1, . . . , cs (usually 0 � ci � 1) we use the notation

�i(τ ) =
s∏

j=1,j |= i

τ − cj

ci − cj
, bi =

∫ 1

0
�i(τ ) dτ

for the Lagrange polynomials. Assuming bi |= 0 for all i, we consider the polynomial u(t) of degree s
satisfying u(t0) = y0 and, for i = 1, . . . , s,

G(u(t0 + cih))u̇(t0 + cih) = − 1

bi

∫ 1

0
�i(τ )∇U(u(t0 + τh)) dτ , (3.3)

and define y1 = u(t0 + h). This method is of order 2s if the nodes are those of the Gaussian quadrature.

Theorem 3.1 We assume that the nodes ci are such that bi > 0 for all i. When applied to the gradient
system (2.1), the averaged vector field collocation method then reduces the energy so that U(y1) �
U(y0).

Proof. From the fundamental theorem of calculus we have

U(u(t0 + h)) − U(u(t0)) = h
∫ 1

0
u̇(t0 + τh)T∇U(u(t0 + τh)) dτ .

Substituting

u̇(t0 + τh) =
s∑

i=1

�i(τ )u̇(t0 + cih)
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in this relation and using (3.3) yields

U(y1) − U(y0) = −h
s∑

i=1

biẎ
T
i G(Yi)Ẏi � 0,

where Yi = u(t0 + cih) and Ẏi = u̇(t0 + cih). �

In the case of a quadratic potential, the averaged vector field collocation method reduces to the Gauss
collocation method. Therefore, also these methods show no damping for very stiff gradient systems.

4. Constrained gradient systems

On a manifold M given by constraints c(y) = 0 with a continuously differentiable c : Rn → Rm, the
gradient system becomes

G(y)ẏ = −∇U(y) − ∇c(y)λ,

0 = c(y),
(4.1)

where λ ∈ Rm is the vector of Lagrange multipliers and ∇c(y) denotes the transpose of the Jacobian
matrix of c(y).

4.1 Runge–Kutta methods

A Runge–Kutta method applied to (4.1) is given by (2.4), where

G(Yi)Ẏi = −∇U(Yi) − ∇c(Yi)Λi, (4.2)

and Λi is defined either by

0 = c(Yi) (index-2 formulation) or

0 = ∇c(Yi)
TẎi (index-1 formulation).

In general, the approximation y1 does not lie on the manifold, and we therefore add an energy-preserving
projection after every step:

ŷ1 = y1 − ∇c(y1)λ1 − ∇U(y1)μ,

0 = c(ŷ1),

0 = U(ŷ1) − U(y1).

The next step would then start with ŷ1, which is an approximation of the full order of the Runge–
Kutta method (Hairer & Wanner, 1996, Section VI.1). Theorem 2.1 extends directly to the index-1
formulation.

Theorem 4.1 We consider the constrained gradient system (4.1) and apply an implicit Runge–Kutta
method in its index-1 formulation. Then, the statement of Theorem 2.1 remains valid without any
change.

Proof. The proof is nearly the same as that of Theorem 2.1. Instead of using (2.5) we now use (4.2)
and we note that Ẏ T

i ∇c(Yi) = 0 for the index-1 formulation of the method. �
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4.2 Discrete-gradient methods

A natural extension of discrete-gradient methods to systems of the form (4.1) is

Ḡ(y1, y0)(y1 − y0) = −h∇̄U(y1, y0) − h∇̄c(y1, y0)λ,

0 = c(y1).
(4.3)

Starting from a consistent initial value, c(y0) = 0, and using the defining property of the discrete gradi-
ent, we note that

∇̄c(y1, y0)
T(y1 − y0) = c(y1) − c(y0) = 0.

Therefore, multiplying the first equation of (4.3) by (y1 − y0)
T yields again U(y1) � U(y0).

An extension of discrete-gradient methods to problems with constraints was proposed in Gonzalez
(1999) within a Hamiltonian setting, and in Gonzalez (2000) for models in nonlinear elasticity.

4.3 Averaged vector field collocation methods

The extension of the averaged vector field collocation method to the constrained system (4.1) replaces
(3.3) by

G(u(t0 + cih))u̇(t0 + cih) = − 1

bi

∫ 1

0
�i(τ )∇U(u(t0 + τh)) dτ − 1

bi

∫ 1

0
�i(τ )∇c(u(t0 + τh)) dτΛi,

where Λi is determined such that

∫ 1

0
�i(τ )∇c(u(t0 + τh))T dτ u̇(t0 + cih) = 0. (4.4)

Summing this relation from i = 1 to s yields

0 = h
∫ 1

0
∇c(u(t0 + τh))Tu̇(t0 + τh) dτ = c(y1) − c(y0),

so that y1 automatically satisfies the constraint. When the ci are chosen as the Gaussian nodes, the
method has order at least s + 1. This follows from approximating the integral in (4.4) by the Gaussian
quadrature, which gives an error of size O(hs+1). If the constraints c(y) = 0 are linear or quadratic,
condition (4.4) is equivalent to ∇c(u(t0 + cih))Tu̇(t0 + cih) = 0 and the analysis of Cohen & Hairer
(2011) can be applied to prove that the order equals 2s.

The same proof as for Theorem 3.1 shows that U(y1) � U(y0). As for the unconstrained case, this
does not require any restriction on the step size other than that needed for the existence of the numerical
solution.
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