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SUMMARY

Hogg & Lenth (1984) reviewed some adaptive tests. The main problems encountered while
using such a procedure are the need for a good selector statistic and the size inflation due to the
choice. At present, the solution to the latter problem is to construct a distribution-free procedure
(Randies & Hogg, 1973). In this paper we propose a simple adaptive exact procedure. We then
use it to construct an adaptive randomization test for matched pairs. This test has exactly size a,
the actual size of test components and its power is asymptotically equal to the maximum power
of the components. Finally, to observe the behaviour of the method for finite sample sizes we
conduct a simulation study.
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1. INTRODUCTION

Randomization tests can be used whenever a set of treatments has been randomly assigned to
experimental units. After observation of the treatment response, the method consists in analyzing
the given observations using all the different possible assignments of treatments to units. If we
compare, for example, a treatment to a control using n and m units, there are (n + m)\/(n\m\)
different assignments of the treatment to the (n + m) units. The randomization test computes a
test statistic for each assignment and compares the value at the actual assignment to the randomi-
zation distribution. In the case of a comparison of a treatment and a control, a typical test statistic
is Student's t.

Box & Andersen (1955) investigated the power of randomization tests. They showed that the
power depends on the test statistic used, as well as on the underlying distribution of the
observations. Moreover, an optimality theory for randomization would be problematic. For
example, if we want to test the difference in mean of two normal populations, we should use the
classical t distance. The optimal choice is therefore only possible if the underlying distribution
is known, which is exactly the assumption we want to avoid. In practice we rarely know the
distribution of the observations, in which case classical randomization, while being exact, is not
necessarily powerful.

2. THE PROCEDURE AND ITS EXACTNESS

2-1. Description of the adaptive test
Let XnsR" be the outcome of a randomization experiment and let Fn be the empirical

distribution of Xn. Let Gn be a group of transformations of R" onto itself and let ftn =
{gnXn \gn € Gn) be the set of all possible assignments. Note in particular that Xn e ft,,. Let T, and
T2 be two different test statistics and let c, and c2 be two positive real functions defined on the
empirical distributions F'n (i = 1 , . . . , card (ftn)) of the resamples gnXn. In a first step these two
functions tell us which of the two tests is better for the data at hand. For example if c,(Fn)<c2(Fn),
the statistic T", is preferable. We suppose that big values of the test statistics T, and T2 indicate
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a departure from the null hypothesis. In this paper we study the following adaptive randomization
test.

(i) Evaluate the criteria c, and c2 on the observed outcome and let 'opt' refer to the index of
the criterion having smaller value.

(ii) Partition the set iln in two classes ill and il2
n denned by

ill = {gnXn : ct(F'n) < c2{F'n), gn £ C } ,

ill = {gnXn : ct(F'n) > c2(F'n), gn € Gn}.

(iii) Let Hopl be the randomization distribution obtained by evaluating the optimal test statistic
Topl on each element of the class that contains Xn. For example, if Xneill, then the
optimal test is T,.

(iv) Reject the null hypothesis at the level a if Topt(Fn)> H'^il-a).

2-2. Exactness of the adaptive test
Let n, = card (flj,), let RQ denote the rejection of Ho and let C, denote the choice of the test

T,. The size of the adaptive randomization test can be calculated as

PrH0(^o) = prH0(^o|C1) pr(C,) + prHo(^o|C'2) pr(C2)
= «{ni/("i + n2)} + a{n2/(n, + n2)} = a.

We have used the fact that, under the null hypothesis, the sample Xn is uniformly distributed in
the set iln. The exactness of the adaptive test is, therefore, independent of the choice of the
criteria. Note that the crude strategy of using a criterion to choose the test and then applying it
in the classical manner of randomization tests would lead to a size larger than a, unless the choice
is independent of Tt and T2.

The asymptotic power property of the adaptive test depends on the criteria and the test statistics
used. In the next paragraph we develop an example of an adaptive randomization test with good
power properties.

3. AN ADAPTIVE TEST FOR MATCHED PAIRS

3-1. Description of the test
The simplest situation in which a randomization test is possible occurs if we compare one

treatment to a control, using matched pairs. Let {(x,, y,),..., (xn, yn)} be the actual observations
and let

Zn = {zl=xl-yi,...,zn = xn -yn}.

There are 2" = N possible assignments of treatment and control, since we can switch for each of
the n pairs. The set fln = {gnZn\gne Gn} consists of all possible samples of the form {±z ±zn}.
The null hypothesis is Ho: the treatment has no effect, which is often interpreted in a more
restricted manner as Ho: the centre of the distribution of Z is equal to 0. Without loss of generality
we consider alternatives of the form //,: the treatment has a positive effect. Let ct(F) be the
Pitman efficacy of the test T, when F is the underlying distribution and let c,(Fn) be consistent
estimates of c,(F).

We consider the following two test statistics.
(i) The classical / of Student: T,(Fn) = nsz/s, where z = 2zi/n and s2 = ( n - I)"1 2 (z,-z)2,

associated with the criterion ct(Fn) = n~^s.
(ii) A robust test based on a M-estimate of location: T2(Fn) = 0{var (0)}~J, where

' z, -1\

[I,
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with ip(u) = p'(u). We work with Huber's function (Huber, 1981, p. 146)

[ |M|-5 otherwise.

The mean absolute deviation m is denned as the median of

with z = med {z, , . . . , zn}. The parameter k is a number close to 1-5. Associated with this robust
statistic we use the criterion c2(Fn) = {var (0)}', which is then the estimated asymptotic standard
error of the robust M-estimate. Note that the criteria Ci(Fn) and c2(Fn) are straightforward
estimates of the Pitman efficacy of the tests T, and T2.

3-2. Asymptotic power of the adaptive test

The power of our adaptive test depends on the ability of the criteria to select the better test,
at least asymptotically, for the sample at hand. In other words, we would like the criterion to
recognize certain attributes of the true distribution which generated a given sample. To see why
the criteria lead to an adaptive test having good asymptotic power properties, we use the asymptotic
power theory developed by Pitman and presented in the context of permutation theory by Albers,
Bickel & Van Zwet (1976) or Puri & Sen (1971, p. 70). Our purpose is to show that the proposed
adaptive test has asymptotic power equal to the power of its better component. This is shown in
the following proposition.

PROPOSITION. If the underlying distribution F is symmetric under the null hypothesis and with the
notation of % 2, we have pr (Cl2

n)-» 1 i/c,(F)> c2(F), and pr(nj;)-»0 ifcl(F)<c2(F).
The asymptotic power of the adaptive test at alternatives of the form 0n~^ is

max | l-*(<t>-'(l-a) •?-( 1 = 1 - * I* - ' ( l - a ) - 0 /(min c,(F)]l. (31)
'-1.2 L I C,(F)JJ L / l'-'-2 JJ

A short proof of these results can be found in the Appendix.

4. NUMERICAL SIMULATION RESULTS

The asymptotic properties developed in § 3 do not ensure that the adaptive test has a good
behaviour for small samples sizes. To compare the performances of the two individual tests and
the adaptive test, we simulated samples of size n = l, n = 9, n = ll and n = 13. At n = 13 the power
of the adaptive test should be close to the power of the better component. This case provides a
check of our theoretical results. To simulate, we use a normal distribution and a Student's /
distribution with 2 degrees of freedom. The estimates are based on 5000 simulated samples
generated at alternative 0 = n~*, and are given in Table 1. As our estimates are based on the
percentage of rejection of the null hypothesis, the standard errors do not exceed 0-0071. Finally,
to observe the convergence of the simulated power of the adaptive test, we add the asymptotic
power obtained by formula (3 1).

Table 1. Simulated power of the adaptive test, 6 = n~J, a = 005

n

7
9

11
13
vmi

'2

Student's
test

0-183
0149
0-163
0155

D. 0-050

distribution
Robust

test

0178
0159
0180
0180
0186

Adaptive
test

0160
0158
0171
0179
0186

Normal distribution
Student's

test

0-220
0-231
0-236
0-239
0-256

Robust
test

0-190
0-201
0-202
0-209
0-243

Adaptive
test

0-210
0-223
0-228
0-234
0-256
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5. COMMENTS

Even for these moderate sample sizes, the adaptive procedure behaves in the way we hoped,
in the sense that the power of the adaptive test converges to the power of the better component.
The advantages of this adaptive procedure lie in the two following properties. First, we obtain a
test that is exact and secondly, we obtain a test which has asymptotically good power properties.
This new method bridges robustness of the size inherent in all randomization techniques with
robustness of efficiency. In our example, we wanted to prevent the use of the t test when the
underlying distribution has heavy tails. It is possible to generalize the ideas explained here to
more than two components and to other linear model testing problems.
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APPENDIX

Proof of the Proposition

The result is straightforward under the null hypothesis. Let goo={±l, ± 1 , . . •} be an infinite
sequence of ±1 and let gn be the first n components of gx. Let Zco= {z,, z2,...} be an infinite
sequence of independent and identically distributed variables from the symmetric distribution F,
and let Zn be the first n components of Z^. Consider the resample wn=gnZn with empirical
distribution Fn. For each gn, the convergence of the estimates cx{Fn) and c2(Fn) to ct(F) and
c2(F) ensures the desired result.

Consider now alternatives of the form 9 = n~K Let vn = gn(Zn + n"1) be the perturbed sample
based on Zn and gn so that vn is a random sample from the distribution

Using the definitions

c\(Hn) = ̂ z2 dHn(z), c\{Hn) = J *2(z) d t f n (z ) / j J ¥'(2) d//n(z)} ,

we obtain

This proves (3 1).
Since the t test and the robust test have limiting normal distribution, (31) is a consequence of

Theorem 5 1 of AJbers, Bickel & van Zwet (1976, p. 131).
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