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1. Introduction

Arithmetic Fuchsian groups are the most interesting and most important Fuchsian

groups owing to their significance for number theory and owing to their geometric

properties. However, for a fixed signature there exist only finitely many non-

conjugate arithmetic Fuchsian groups; it is therefore desirable to extend this class of

Fuchsian groups. This is the motivation of our definition of semi-arithmetic Fuchsian

groups. Such a group may be defined as follows (for the precise formulation see

Section 2). Let Γ be a cofinite Fuchsian group and let Γ# be the subgroup generated

by the squares of the elements of Γ. Then Γ is semi-arithmetic if Γ is contained in an

arithmetic group ∆ acting on a product Hr of upper halfplanes. Equivalently, Γ is

semi-arithmetic if all traces of elements of Γ# are algebraic integers of a totally real

field. Well-known examples of semi-arithmetic Fuchsian groups are the triangle

groups (and their subgroups of finite index) which are almost all non-arithmetic with

the exception of 85 triangle groups listed by Takeuchi [16].

While it is still an open question as to what extent the non-arithmetic Fuchsian

triangle groups share the geometric properties of arithmetic groups, it is a fact that

their automorphic forms share certain arithmetic properties with modular forms for

arithmetic groups. This has been clarified by Cohen and Wolfart [5] who proved that

every Fuchsian triangle group Γ admits a modular embedding, meaning that there

exists an arithmetic group ∆ acting on Hr, a natural group inclusion

f :ΓMN∆

and a compatible holomorphic embedding

F :HMNHr

that is with
F(γz)¯ f(γ)F(z)

for all γ `Γ and all z `H.

This theorem extends to all finite index subgroups of Fuchsian triangle groups

(and of course also holds for all arithmetic Fuchsian groups which are not triangle

groups). Modular embeddings are related to transcendence questions (see [5]) ; for a

description of the image of the modular embedding of the triangle group [2, 5,¢] (see

Schmidt [12]).

It is a natural question (first asked in [5]) as to whether there is a wider class of semi-

arithmetic Fuchsian groups admitting a modular embedding. In order to treat this

question one should first find more examples of such groups. We therefore construct

in Section 3 some new sequences of semi-arithmetic groups showing that there are
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infinitely many non-conjugate semi-arithmetic groups of the same signature; hence

they really constitute an extension of the arithmetic groups. However, we will see in

Section 4 that in contrast to triangle groups they do not admit modular embeddings.

These new semi-arithmetic Fuchsian groups have the following property.

Let Γ be a semi-arithmetic Fuchsian group. Let φ be one of the embeddings of the

corresponding number field k (generated by the traces of the elements of Γ#) into R,

extendable in a natural way to an embedding of Γ# and even of Γ into PSL(2,R). Then

(this is the property) there exists an embedding φ such that φ(Γ) is again a Fuchsian

group, but φ is not a conjugation in PSL(2,R).

2. Definition of semi-arithmetic Fuchsian groups

D 1. (i) Denote by H the upper halfplane.

(ii) Let k be a totally real number field of degree n¯ [k :Q]. Denote by φ
"

the

identity
φ
"
:kMNR.

Let B be a quaternion algebra over k such that from the embeddings

φ
i
:kMNR, i¯ 2,… , n,

φ
r+"

,φ
r+#

,…φ
n
, r& 1, extend to embeddings of B into the Hamilton quaternion

algebra while φ
"
,…,φ

r
extend to embeddings of B into the matrix algebra M(2,R).

Let O be an order of B and put

UB ²ε `O :εO¯O and n(ε)¯det ε¯ 1´

where n(ε) is the reduced norm. Define Γ(B,O)Bφ
"
(U )ZSL(2,R). Define the action

of Γ(B,O) on Hr by components :

ε : (z
"
,… , z

r
)PN (φ

"
(ε) z

"
,… ,φ

r
(ε) z

r
)

where z
i
PNφ

i
(ε) z

i
is the usual action given by linear fractional transformation,

i¯ 1,… , r.

(iii) A subgroup of SL(2,R) is called an arithmetic group acting on Hr if it is

commensurable to a Γ(B,O) defined above. By abuse of language, we also call its

canonical image ∆ in PSL(2,R) an arithmetic group acting on Hr, obtained by the

identification of each element with its negative. In the particular case r¯ 1 we call it

an arithmetic Fuchsian group.

R 1. (i) By Shimura [14] the above-defined action of Γ(B,O) on Hr is

discontinuous and of finite covolume. Therefore, in the case r¯ 1, an arithmetic

group Γ is a discrete subgroup of PSL(2,R). For basic material on arithmetic

Fuchsian groups, see for example Katok [8].

(ii) The definition given above is the classical definition of arithmetic Fuchsian

groups. Takeuchi [15] proved that the following Definition 2(iv) is equivalent.

D 2. (i) For a Fuchsian group Γ put

Γ#B©γ# :γ `Γª.

(ii) Let Γ be a Fuchsian group. Then

Tr(Γ)B ²rtr(γ)r :γ `Γ´

is called the trace set of Γ (tr(γ) is the trace of γ).
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(iii) A Fuchsian group Γ is called cofinite if the corresponding Riemann surface

H}Γ has finite area; it is called cocompact if H}Γ is compact (‘cocompact ’ implies

‘cofinite ’).

(iv) A cofinite Fuchsian group Γ is an arithmetic Fuchsian group if and only if the

two following conditions hold:

(a) k¯Q(Tr(Γ#)) is a number field of finite degree n¯ [k :Q] and Tr(Γ#) is

contained in the ring of integers / of k.

(b) Let φ
i
be one of the n embeddings of k into C which is not the identity.

Then for all γ `Γ#

φ
i
(rtr(γ)r) ` [®2, 2].

R 2. If Γ is finitely generated, for example if Γ is cofinite, the subgroup

Γ# is normal and of finite index in Γ. By condition (b), Q(Tr(Γ#)) is totally real. In

view of this second definition of arithmetic Fuchsian groups the following

generalization is natural.

D 3. A cofinite Fuchsian group Γ is called semi-arithmetic if k¯
Q(Tr(Γ#)) is a totally real number field of finite degree n¯ [k :Q] and Tr(Γ#) is

contained in the ring of integers / of k. Γ is called strictly semi-arithmetic if Γ is not

an arithmetic Fuchsian group.

P 1. Let Γ be a cofinite Fuchsian group. Then the following two

conditions are equi�alent.

(i) Γ is semi-arithmetic.

(ii) Γ is commensurable to a subgroup S of an arithmetic group ∆ acting on Hr.

Proof. (ii)3 (i). By assumption (ii), the group Γ is commensurable with S where

SZ∆ZPSL(2,R) and the preimage ∆- of ∆ in SL(2,R) is commensurable with some

Γ(B,O). Then by Borel [2], ∆# is contained in the image of Γ(B,O) in PSL(2,R) ; thus

Tr(S #) consists of integers in the totally real number field Q(Tr(S #)). This field does

not change if we replace S # by the commensurable group Γ# ; see Reid [11] or Hilden,

Lozano and Montesinos-Amilibia [7, Lemma 1.12]. Using the eigenvalues it is easy

to see that the integrality of the traces is also preserved under the passage to a

commensurable group.

(i)3 (ii). By [15], SBΓ# (more precisely its preimage in SL(2,R)) generates an

order

O¯ (3 a
i
γ
i
:a

i
`/, γ

i
`Γ#*

of a quaternion algebra

B¯ (3 a
i
γ
i
:a

i
`k, γ

i
`Γ#*

over k as an /-submodule of M(2,R) such that S is contained in the units of O of

reduced norm 1. We thus can take ∆BΓ(B,O)}²³1´. *

We call this group ∆ the arithmetic group generated by Γ#. Then we can distinguish

arithmetic Fuchsian groups from strictly semi-arithmetic ones as follows.

C 1. Let Γ be a semi-arithmetic Fuchsian group and ∆ be the arithmetic

group generated by Γ#. Then Γ is strictly semi-arithmetic if and only if Γ# has infinite

index in ∆.
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Proof. By the invariance of the trace field k under commensurability [7, 11], the

quaternion algebra B is also invariant (up to isomorphism) and hence so is the

number r of its unramified infinite places. Recall that Γ and ∆ act as cofinite

discontinuous groups on H and Hr, respectively. Therefore, Γ# has finite index in ∆

if r¯ 1; if r" 1 the Fuchsian group Γ# does not act as cofinite group on Hr whence

it cannot have finite index in ∆, and this alternative depends only on the

commensurability class of Γ. *

R 3. (i) Condition (ii) of Proposition 1 can therefore also be used as a

definition of semi-arithmetic Fuchsian groups, now given in the language of the

classical definition of arithmetic Fuchsian groups.

(ii) Not only Γ#, but also Γ itself, can be considered as a subgroup of a

finite extension of ∆ (thus all embeddings φ
i

of k into R may be extended

also to embeddings of Γ into PSL(2,R) or the Hamiltonians) for the following

reason. Since Γ# is normal in Γ, every γ `Γ (more precisely its preimage in

SL(2,R)) defines an automorphism

αγ :BMNB :3 a
i
γ
i
PN3 a

i
γγ

i
γ−"

of the quaternion algebra B defined in the proof of Proposition 1. By the

Skolem–Noether theorem αγ is an inner automorphism of B, meaning that αγ(x)¯
axa−" for every x `B and a fixed a `B. Now BZM(2,R), so γ−"a lies in the centre of

M(2,R). Thus, up to a scalar, γ lies in B, and Γ is the PSL(2,R)-image of a subgroup

of the normalizer N(O) of O in B. By [2] again, Γ is therefore contained in a finite

extension of ∆. We thank the referee for providing us with this argument.

We now define a particularly interesting subclass of semi-arithmetic Fuchsian

groups.

D 4. Let Γ be a cofinite Fuchsian group such that there exists a natural

group inclusion
f :ΓMN∆

into an arithmetic group ∆ acting on Hr, r& 1, and a compatible holomorphic

embedding
F :HMNHr,

that is with
F(γz)¯ f(γ)F(z)

for all γ `Γ and all z `H. Then ( f,F ) is called a modular embedding and we say that

Γ admits a modular embedding.

L 1. Let Γ be a cofinite Fuchsian group which admits a modular embedding.

Then Γ is semi-arithmetic.

Proof. Otherwise Γ cannot be included into an arithmetic group ∆ acting

on Hr. *

R 4. Let Γ be a semi-arithmetic group, let k¯Q(Tr(Γ#)) be the

corresponding number field and let φ be one of the embeddings of k into R. The

elements of Γ are matrices in PSL(2,R) ; more precisely they may be taken in

PSL(2,k«) for some field extension k« of k of finite degree (for the possibilities for

choosing k« see Waterman and Maclachlan [17]). Applying an extension of φ to these
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matrix entries we obtain another way to define φ(γ) for all γ `Γ which turns out to be

independent of the choice of k« and of the extension of φ to k« (up to a common

conjugation in PSL(2,R) which is sufficient here).

P 2. Let Γ be a cofinite Fuchsian group. Let k¯Q(Tr(Γ#)). Then the

following two conditions are equi�alent.

(i) Γ admits a modular embedding.

(ii) Γ is semi-arithmetic, and for all embeddings

φ
j
:kMNR

for which φ
j
(Tr(Γ#)) is not contained in the inter�al [®2, 2], the functional equation

F
j
(γz)¯φ

j
(γ)F

j
(z), γ `Γ,

is sol�able by a holomorphic function

F
j
:HMNH.

Proof. (i)3 (ii). The F
j

are the components of F in the modular embedding

( f,F ).

(ii)3 (i). Let φ
j
"

,… ,φ
jr

be all the embeddings for which φ
ji

(Tr(Γ#)) is not

contained in the interval [®2, 2]. Since φ
"

is the identity, we have r& 1. We may

suppose that φ
j
"

¯φ
"

and extend it by the identity to Γ:NPSL(2,R). Put

f(γ)¯ (φ
j
"

(γ),…,φ
jr

(γ))

for all γ `Γ. Then f defines a group inclusion of Γ into an arithmetic group ∆ acting

on Hr, constructed as in the proof of Proposition 1 and Remark 3(ii).

Put FB (F
j
"

,… ,F
jr

). Then ( f,F ) is a modular embedding of Γ. *

R 5. We will see in Section 4 that not all semi-arithmetic Fuchsian groups

admit a modular embedding. On the other hand, by [5] all Fuchsian triangle groups

and their subgroups admit a modular embedding, but only a few of them are

arithmetic [16].

We conclude this section with a further characterization of arithmetic Fuchsian

groups.

Schmutz [13] has proved that if Γ is a cofinite Fuchsian group which is not

cocompact, then Γ is arithmetic if and only if there exists a constant C such that

g²a `Tr(Γ) :a!x´%Cx, c x.

The conjecture is that the theorem also holds in the compact case. An important open

question is whether semi-arithmetic Fuchsian groups can be characterized by the

growth of the trace set. This problem is related to questions in quantum chaos; see

for example Luo and Sarnak [9].

3. Examples of semi-arithmetic Fuchsian groups

All Fuchsian triangle groups are semi-arithmetic. We further construct

semi-arithmetic Fuchsian groups of signature [0; 2, 2, 2, t ; 0] and of signature

[0; 2, 2, 2, 2, 2 ; 0] and show that there are infinitely many non-conjugate semi-

arithmetic Fuchsian groups of the same signature.
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D 5. Let Γ be a cofinite Fuchsian group.

(i) The signature of Γ is, as usual, described by [g ; t
"
,… , t

n
; s] where g is the genus,

n is the number of non-conjugate elliptic elements, t
i
, i¯ 1,… , n, are the orders of these

elements and s is the number of non-conjugate cusps.

(ii) The signature of a Fuchsian triangle group is simply denoted by [p, q, r] ; the

signature of a Fuchsian quadrilateral group is simply denoted by [p, q, r, t]. (A Fuchsian

quadrilateral group has genus zero and signature [0; p, q, r, t ; 0] if p, q, r, t are finite ; if

some of them are infinite, then they correspond to cusps.)

L 2. Let Q be a hyperbolic quadrilateral such that three of the interior

angles are π}2 while the fourth is π}t for an integer t" 2 or t¯¢. Let E
i
, i¯ 1, 2, 3,

be the three �ertices of Q corresponding to angles π}2, in the natural order. Let Γ be a

Fuchsian quadrilateral group of signature [2, 2, 2, t] generated by elements e
i
of order 2

fixing E
i
, i¯ 1, 2, 3, and with a fundamental domain consisting of the quadrilateral Q

and a mirror image of Q obtained by reflection in one side. Then the elements

xB e
"
e
#
, yB e

#
e
$
, zB e

"
e
$

of Γ are hyperbolic and their respecti�e axes contain the sides of Q between E
"
and E

#
,

between E
#

and E
$

and the diagonal between E
"

and E
$
. They satisfy

(i) (tr#(x)®4) (tr#(y)®4)¯ 16 cos#(π}t) ;

(ii) tr#(x) tr#(y)¯ 4 tr#(z).

Proof. By construction, x fixes the geodesic containing E
"
and E

#
etc. Recall that

for all E `H and all hyperbolic γ `PSL(2,R) the hyperbolic distance d satisfies

cosh
1

2
d(E, γ(E ))&

1

2
rtr(γ)r

with equality if and only if E lies on the axis of γ. Using

cosh d(E
"
,E

#
)¯ cosh

1

2
d(E

"
,x(E

"
))¯

1

2
rtr(x)r

and analogous formulae for y and z the lemma follows from well-known formulae in

hyperbolic trigonometry; see for example Buser [3]. *

L 3. Let P be a hyperbolic right-angled pentagon. Let E
i
, i¯ 1,… , 5, be

the �ertices of P in the natural order. Let Γ be the Fuchsian group of signature

[0 ; 2, 2, 2, 2, 2 ; 0] generated by elements e
i
of order 2 fixing E

i
, i¯ 1,… , 5, and with a

fundamental domain consisting of P and a mirror image of P obtained by reflection in

one side. Then e�ery x
i
B e

i
e
i+"

(the index i¯ 1,… , 5, taken modulo 5) is a hyperbolic

element of Γ containing the side of P between E
i
and E

i+"
on its axis. E�ery z

i
B e

i
e
i+#

,

i¯ 1,… , 5, imod5, is hyperbolic as well and its axis contains the diagonal of P between

E
i
and E

i+#
. Then, for i¯ 1,… , 5 (taking the indices modulo 5),

(i) (tr#(x
i
)®4) (tr#(x

i+"
)®4)¯ 4 tr#(x

i+$
) ;

(ii) tr#(x
i
) tr#(x

i+"
)¯ 4 tr#(z

i
).

Proof. This follows in the same way by well-known formulae in hyperbolic

trigonometry, see again [3]. *
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A proof of the following proposition can be found in Takeuchi [16].

P 3. Let ²a
"
, a

#
,… , a

n
´ be a set of generators of a cofinite Fuchsian

group Γ. For any subset ²i
"
,… , i

m
´ of ²1, 2,… , n´ let t

i
"
…im

B rtr(a
i
"

…a
im

)r. Then Tr(Γ)

is contained in the ring

Z[t
i
"
…im

r ²i
"
,… , i

m
´Z ²1, 2,…, n´].

C 2. Let Γ be a Fuchsian quadrilateral group of signature [2, 2, 2, t] as

in Lemma 2. Let x, y, z, be defined as in Lemma 2. Then

Tr(Γ)ZZ 9rtr(x)r, rtr(y)r, rtr(z)r, 2 cos
π

t: .
C 3. Let Γ be a Fuchsian group of signature [0 ; 2, 2, 2, 2, 2 ; 0] as in

Lemma 3. Let x
i
, z

i
, i¯ 1,… , 5, be defined as in Lemma 3. Let T¯²rtr(x

i
)r, rtr(z

i
)r :

i¯ 1,… , 5´. Then

Tr(Γ)ZZ[T ].

Proof. Here, Γ is generated already by e
"
,… , e

%
, say. Using the relations between

all five generators it is easy to see that all traces of Proposition 3 can be expressed by

elements of T. *

We now introduce some terminology.

D 6. Let Γ be a cofinite Fuchsian group.

(i) Let Γ be semi-arithmetic and let φ
i
, i¯ 1,… , n, be the n embeddings of the

corresponding number field k¯Q(Tr(Γ#)) into R. Then Γ
i
¯φ

i
(Γ), i¯ 1,… , n, is

called an associated group.

(ii) A semi-arithmetic group Γ is called stable if for all associated groups Γ
i
one

of the two following statements hold:

(a) Γ
i
is conjugate in PSL(2,R) to Γ.

(b) The trace set of Γ#
i

is contained in the interval [®2, 2].

We give some important consequences of these definitions.

L 4. Let ΓZSL(2,R), k and φ
i
be as in Definition 6(i) and suppose that φ

i

changes at most the signs of the traces tr(γ), γ `Γ, and so extends to a conjugation

ΓMNΓ
i
in PSL(2,R). Then φ

i
¯ id on k.

Proof. The embedding φ
i
is the identity on all tr#(γ), γ `Γ, generating the trace

field k of Γ# according to [15, Proposition 4]. *

P 4. Arithmetic Fuchsian groups are stable.

Proof. By Takeuchi’s definition of arithmetic Fuchsian groups (see Section 2) we

have either Tr(φ
i
(Γ#))Z [®2, 2] or φ

i
extends to the identity on Γ. *

P 5. Let Γ be a Fuchsian triangle group. Then Γ is semi-arithmetic.

Moreo�er, Γ is an arithmetic Fuchsian group if and only if Γ is stable.
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Proof. Let Γ have signature [p, q, r]. By Proposition 3, Tr(Γ) is contained in

Z[2 cos(π}p), 2 cos(π}q), 2 cos(π}r)]. It follows that Γ is semi-arithmetic. The second

part will follow from Proposition 6 in Section 4 and the fact that triangle groups

admit modular embeddings. *

R 6. (i) The celebrated list of Takeuchi [16] of all arithmetic triangle

groups can be obtained by applying Proposition 5.

(ii) Proposition 5 is a particular case. We will show (and this is the main result of

this section) that most of the stable semi-arithmetic Fuchsian groups are not

arithmetic.

(iii) ‘Most ’ of the semi-arithmetic Fuchsian groups are not stable.

T 1. Let t ` ²3, 4, 6,¢´. Let n be a positi�e integer with n#& 16 cos#(π}t).

Let Γ(t, n) be a Fuchsian quadrilateral group of signature [2, 2, 2, t] as in Lemma 2. Let

x¯x
n
, y¯ y

n
, z¯ z

n
be defined as in Lemma 2. Let

tr#(x
n
)¯ 4­n®on#®16 cos#(π}t).

Then

(i) tr#(y
n
)¯ 4­n­on#®16 cos#(π}t) ;

(ii) tr#(z
n
)¯ 2n­4­4 cos#(π}t) ;

(iii) Γ(t, n) is semi-arithmetic and stable;

(iv) Γ(t, n) is strictly semi-arithmetic, except in the cases

(t, n) ` ²(3, 2), (4, 3), (6, 4), (¢, 4), (¢, 5)´.

Proof. (i) and (ii) follow by Lemma 2. By construction and by Corollary 2,

Tr(Γ(t, n)) consists of integers of a totally real number field, and hence a fortiori also

Tr(Γ#(t, n)) ; therefore Γ(t, n) is semi-arithmetic. Let φ be an embedding of k¯
Q(Tr(Γ#(t, n))) into R which is not the identity. The traces of the elliptic elements of

order 2 remain invariant with respect to φ since φ maps an elliptic element to an

elliptic element of the same order. In the case t ` ²3, 4, 6,¢´ it follows also that the

absolute value of the trace of the elements of order t cannot change. Under the action

of φ the traces rtr(x
n
)r and rtr(y

n
)r are either fixed or exchanged. The first case would

imply that φ1 id extends to a conjugation of Γ in PSL(2,R) which is impossible

according to Lemma 4. In the second case, the Fuchsian group φ(Γ(t, n)) has a

fundamental domain of the same geometry (the quadrilateral Q may be replaced by

a mirror image in one side) and hence is conjugate in PSL(2,R) to Γ(t, n). Therefore,

Γ(t, n) is stable.

(iv) By the trace identity

tr(x#)¯ tr#(x)®2

we have tr(x#
n
)¯ 2­n®on#®16 cos#(π}t). If Γ is an arithmetic Fuchsian group, then

by the arguments used in the proof of Proposition 4 there cannot exist a non-trivial

embedding φ of k whose extension sends Γ to a Fuchsian group; therefore
on#®16 cos#(π}t) must be a rational integer. This is only true in the cases

mentioned. Moreover, it is easy to see that in these cases Γ(t, n) is an arithmetic

Fuchsian group. *

R 7. There exists only a finite number of mutually non-conjugate

arithmetic Fuchsian groups of a fixed signature. Theorem 1 shows that an infinite
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number of different stable semi-arithmetic Fuchsian groups can exist for a given

signature. This shows that most of the semi-arithmetic Fuchsian groups are strictly

semi-arithmetic. It is important to emphasize that in the strictly semi-arithmetic cases

the embedding φ with

φ(on#®16 cos#(π}t))¯®on#®16 cos#(π}t)

changes not only the signs of the traces. Thus its extension maps the group Γ(t, n)

to the conjugated Fuchsian group φ(Γ(t, n)) but without φ being a conjugation in

PSL(2,R). The same remark applies to the following theorem.

T 2. Let n& 6 be an integer. Let Γ(n) be a Fuchsian group of signature

[0 ; 2, 2, 2, 2, 2 ; 0] as in Lemma 3. Let x
i
¯x

i
(n), z

i
¯ z

i
(n), i¯ 1,… , 5, be defined as in

Lemma 3. For all n let tr#(x
%
)¯ 8. Let

tr#(x
"
(n))¯ 4­n®on#®32.

Then

(i) tr#(x
#
(n))¯ 4­n­on#®32,

tr#(x
$
(n))¯ 8­n®on#®32,

tr#(x
&
(n))¯ 8­n­on#®32,

tr#(z
"
(n))¯ 12­2n,

tr#(z
#
(n))¯ 16­3n­on#®32,

tr#(z
$
(n))¯ 2 tr#(x

$
(n)),

tr#(z
%
(n))¯ 2 tr#(x

&
(n)),

tr#(z
&
(n))¯ 16­3n®on#®32 ;

(ii) Γ(n) is semi-arithmetic and stable;

(iii) Γ(n) is strictly semi-arithmetic except in the cases n¯ 6 and n¯ 9.

Proof. Part (i) follows by a calculation applying Lemma 3. In analogy to

Theorem 1, part (ii) is a consequence of (i), Lemma 4 and Corollary 3. Concerning (iii)

we have tr#(x
"
(n))®2¯ 2­n®on#®32. If Γ(n) is an arithmetic Fuchsian group,

then on#®32 must be rational which is only the case if n¯ 6 or n¯ 9. Moreover, it

is easy to see that in these cases Γ(n) is an arithmetic group. *

R 8. The Fuchsian groups of signature [0; 2, 2, 2, 2, 2 ; 0] in Theorem 2 and

the quadrilateral groups of signature [2, 2, 2, t], t ` ²3, 4, 6´, in Theorem 1 both have

torsion-free cocompact subgroups which give closed Riemann surfaces ; see the next

lemma. Some of these subgroups are stable too. As in the above-treated cases there

then exists an infinite family of stable semi-arithmetic groups of the same signature

which shows that this phenomenon also exists for universal covering groups of closed

surfaces.

4. Modular embeddings

L 5. Let Γ be a semi-arithmetic group.

(i) There is a torsion-free subgroup Γ« of finite index in Γ.

(ii) Suppose that Γ« is a torsion-free subgroup of Γ of finite index and that the

embedding

φ :Q(Tr(Γ#))MNR

extends to a conjugation φ rΓ« in PSL(2,R). Then φ extends also to a conjugation of Γ

in PSL(2,R).
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Proof. (i) is a special case of a result of Fox [6] and Mennicke [10].

(ii) Assume that φ rΓ« is a conjugation in PSL(2,R). Since for every hyperbolic

element γ `Γ some power γm is contained in Γ« and since the hyperbolic elements

generate Γ, it follows that the conjugation φ rΓ« extends to a conjugation φ rΓ. *

P 6. A stable semi-arithmetic Fuchsian group Γ admits a modular

embedding if and only if Γ is an arithmetic Fuchsian group.

Proof. It is clear that every arithmetic Fuchsian group admits a modular

embedding. Assume now that Γ is stable semi-arithmetic, but not arithmetic. Then

there exists an embedding φ
i
of k¯Q(Tr(Γ#)) into R such that the associated group

Γ
i
is conjugate in PSL(2,R) to Γ and such that φ

i
rΓ is still not a conjugation in

PSL(2,R). By Lemma 5, φ
i
is not a conjugation if restricted to the hyperbolic elements

of Γ. Assume now that Γ admits a modular embedding ( f,F ). Then by Proposition

2 the functional equation
F
i
(γz)¯φ

i
(γ)F

i
(z)

for every z `H and every γ `Γ is solvable by a holomorphic function F
i
:HMNH

which cannot be given by a fractional linear transformation. Choose a z on the axis

of a hyperbolic γ `Γ and compare the hyperbolic distances between z and γ(z) and

between their F
i
-images; it follows by the Schwarz–Pick lemma that rtr(φ

i
(γ))r is

strictly smaller than rtr(γ)r for every hyperbolic element γ `Γ, which contradicts

the facts that Γ
i
is conjugate to Γ and that Γ has a hyperbolic element with minimal

rtr(γ)r. *

C 4. The strictly semi-arithmetic Fuchsian groups constructed in

Theorems 1 and 2 do not admit a modular embedding.

Proposition 6 can be generalized in the following way.

T 3. Let Γ be a semi-arithmetic group admitting a modular embedding.

Then for any embedding
φ :Q(Tr(Γ#))MNR

we ha�e the following alternati�es :

(i) φ¯ id ;

(ii) φ(Γ) is not a Fuchsian group.

Proof. Suppose Γ to be semi-arithmetic and

φ :Q(Tr(Γ))MNR

to be a non-trivial embedding, which is by Lemma 4 equivalent to the hypothesis that

the extension of φ to Γ does not induce a conjugation in PSL(2,R). Now assume that

φ(Γ) is a Fuchsian group; this assumption will lead to a contradiction.

(i) By Lemma 5, we may assume that Γ is torsion-free. Now φ(Γ) cannot be

conjugate to Γ by the argument used in the proof of Proposition 6 for stable semi-

arithmetic groups admitting a modular embedding. Assume first that Γ is cocompact.

Let ( f,F ) be a modular embedding of Γ. By Proposition 2, the component F
j
of F

corresponding to φ induces then a holomorphic map

FW
j
:H}ΓMNH}φ(Γ)

of the corresponding Riemann surfaces which are non-isomorphic since Γ and

φ(Γ) are not conjugate. Generators and relations show that φ(Γ) is cocompact
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also, and that H}Γ and H}φ(Γ) have the same genus (" 1) which implies that FW
j

is constant. Then F
j
also would be constant, contradicting the functional equation

of Proposition 2.

(ii) The same argument extends to the case where Γ is non-cocompact. Passing to

a subgroup of finite index if necessary we may still suppose that the genus of Γ and

φ(Γ) is " 1. Then FW
j
extends to the compactified quotient space for the following

reason. If γ `Γ generates a parabolic subgroup of Γ, the same is true for φ(γ) in φ(Γ).

We can suppose that both γ and φ(γ) act on H as zPN z­1. Using the local

coordinate qB e#πiz, the functional equation shows that F
j
induces a holomorphic

mapping of the pointed unit disk

²q :0! rqr! 1´

into itself, which is extendable by Riemann’s theorem on removable singularities to

the unit disk; FW
j
is hence extended to the cusps. *

We can give a reformulation of Theorem 3 and of the arguments used in the proof

of Proposition 6 in a more geometric language.

C 5. Assume that a cofinite Fuchsian group Γ admits a modular

embedding. Then for all non-tri�ial embeddings

id1φ :Q(Tr(Γ#))MNR

the point set φ(Tr(Γ)) is non-discrete and

rtr(φ(γ))r! rtr(γ)r

for e�ery hyperbolic element γ `Γ.

We can also give a reformulation in the language of lattices.

C 6. Assume that a Fuchsian group Γ admits a modular embedding. Let

k¯Q(Tr(Γ#)) be of degree n o�er Q and let / be the ring of integers of k. Represent

/ as usual by a lattice in Rn. Let Tr(Γ#) be represented as a subset of this lattice. Then

among the projections of Tr(Γ#) to the coordinate axes, there is exactly one with a

discrete image. Moreo�er, Tr(Γ#) is contained in the cone

²(x
"
,… ,x

n
) `Rn : rx

i
r% rx

"
r for all i¯ 2,… , n´.

The results of this paper raise the following problem.

P 1. Assume that a Fuchsian group Γ admits a modular embedding. Is

Γ arithmetic or a subgroup of a Fuchsian triangle group?

R 9. (i) In order to treat this problem it seems that much more should be

known on behalf of the non-discrete subgroups of PSL(2,R) ; for a recent reference

concerning this subject see Beardon [1].

(ii) Using rigidity arguments and the fact that Hr}∆ (compactified if necessary)

can be considered as an algebraic variety defined over some number field, one can

even prove a further restriction for Fuchsian groups Γ admitting modular

embeddings : their Riemann surfaces H}Γ (compactified if necessary) can also be

considered as algebraic curves defined o�er a number field. Therefore a positive answer
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to the question above would follow from a much more general conjecture of

Chudnovsky and Chudnovsky [4, Section 7] about arithmetic aspects of the

uniformization of algebraic curves and their relations to Fuchsian differential

equations. In particular, according to [4], curves defined over number fields should

have universal covering groups ΓZPSL(2,k), k a number field, only if Γ is an

arithmetic Fuchsian group or a subgroup of a Fuchsian triangle group.
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