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Abstract

Like all microorganisms, yeast cells spend most of their natural lifetime in a reversible,

quiescent state that is primarily induced by limitation for essential nutrients.

Substantial progress has been made in defining the features of quiescent cells and

the nutrient-signaling pathways that shape these features. A view that emerges from

the wealth of new data is that yeast cells dynamically configure the quiescent state in

response to nutritional challenges by using a set of key nutrient-signaling pathways,

which (1) regulate pathway-specific effectors, (2) converge on a few regulatory nodes

that bundle multiple inputs to communicate unified, graded responses, and (3)

mutually modulate their competences to transmit signals. Here, I present an overview

of our current understanding of the architecture of these pathways, focusing on how

the corresponding core signaling protein kinases (i.e. PKA, TORC1, Snf1, and Pho85)

are wired to ensure an adequate response to nutrient starvation, which enables cells to

tide over decades, if not centuries, of famine.

Introduction

Around 1800, a sailing barge carrying a consignment of

bottled champagne and beer, possibly sent by France’s King

Louis XVI to the Russian Imperial Court, sunk in the Baltic

Sea. This marked the beginning of a 200-year-long period

during which the ‘sleeping beauty’, a member of the Sacchar-

omyces cerevisiae family, rested quiescently in a beer bottle in

a dark and gloomy spot of the seabed. In 2010, a diving

expedition brought this ‘beauty’ back to daylight, where, after

gentle awakening, she may unveil some of the most treasured

secrets of 18th-century beer brewing (Neuhaus, 2010).

As this modern fairy tale exemplifies, quiescent yeast cells,

which, by (a controversial) analogy to terminally differentiated

mammalian cells, are often referred to as G0 cells, can survive

for very long time periods under certain environmental

conditions. Like all microorganisms, yeasts spend most of

their natural lifetime in a reversible, quiescent/G0 state that is

primarily induced by limitation for essential nutrients. Ac-

cordingly, when starved for carbon, nitrogen, phosphate, or

sulfur, S. cerevisiae cells cease growing, arrest cell division in

the G1 phase of the cell cycle, and acquire a distinct array of

physiological, biochemical, and morphological traits that

collectively confer on cells both the ability to survive extended

periods of starvation and to transit back to the proliferating

state upon refeeding (Lillie & Pringle, 1980). While some

aspects of the quiescence program are clearly nutrient specific

(Gasch et al., 2000; Carroll & O’Shea, 2002), it is generally

assumed that yeast cells establish a core quiescence program

regardless of which nutrient is limiting.

Our current knowledge on quiescent yeast cells is pre-

dominantly based on analyses of cells harvested from liquid

cultures grown to saturation (i.e. stationary phase) in rich

glucose-containing media. Under such conditions, cells

enter into quiescence following progression through distinct

adaptive phases, which critically affect the cells’ life span and

their ability to withstand environmental stresses (Werner-

Washburne et al., 1993; Herman, 2002). The earliest of these

phases begins when nearly half of the initial glucose has been

consumed and is characterized by the onset of glycogen

synthesis (Lillie & Pringle, 1980). Subsequent phases, which

are also critical for the development of stress resistance,

include specific transcriptional changes and the synthesis of

trehalose before and following glucose exhaustion, respec-

tively (Lillie & Pringle, 1980; Mager & De Kruijff, 1995; Ruis

& Schüller, 1995; Boy-Marcotte et al., 1998; Thevelein & de

Winde, 1999; Estruch, 2000). In the diauxic shift phase

(following glucose depletion), cells transiently reduce

their growth rate to readjust their metabolism for the

subsequent postdiauxic phase of slow, respiratory growth
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on nonfermentable carbon sources, such as ethanol and

acetate. The cellular responses initiated at the diauxic

transition include the transcriptional induction of genes

whose products are involved in respiration, fatty acid

metabolism, and glyoxylate cycle reactions, and, likely as a

consequence of the on-setting respiratory activity, of genes

encoding antioxidant defenses that allow scavenging and/or

the destruction of reactive oxygen species (ROS) (Jamieson,

1998; Costa & Moradas-Ferreira, 2001). The final character-

istics of quiescent cells reflect their integrated responses and

adaptations triggered by progression through distinct, se-

quential physiological phases (Werner-Washburne et al.,

1993, 1996; Braun et al., 1996; Padilla et al., 1998).

It is worth noting that stationary-phase cultures (defined

as 4 7 days old) exhibit a complex, heterogeneous commu-

nity structure, composed of a large fraction of quiescent,

long-lived (almost exclusively daughter and young mother)

cells and a nonquiescent fraction of cells, which rapidly lose

their ability to reproduce and gradually accumulate ROS,

exhibit genomic instability, and become senescent or apop-

totic (Allen et al., 2006; Aragon et al., 2008; Davidson et al.,

2011). This diverse array of physiologically different cell

populations with both different reproductive histories and

distinct survival rates [and hence different chronological life

spans (CLS)] contributes to the temporal plasticity of the

mortality rate (generally determined as the relative loss of

CFUs) within an aging stationary-phase culture (Minois

et al., 2009). Notably, both the heterogeneity within sta-

tionary-phase cultures and the fact that some of the repro-

ductively incompetent, living cells remain unaccounted for

by CFU measurements (Minois et al., 2009) were hitherto

largely overlooked in various CLS studies. Nevertheless,

genetic and physiological studies of aging factors that affect

CLS in yeast, a potentially valuable model for aging in

postmitotic mammalian cells (Fabrizio & Longo, 2003;

Kaeberlein, 2010), have identified distinct properties of

quiescent cells that collectively define the essence of the

quiescence program in yeast.

The quiescence program of stationary-
phase cells

Cell cycle

Starvation for various nutrients such as carbon, ammonia,

sulfate, phosphate, or biotin causes prototrophic yeast

strains to arrest at START A within the G1 phase of the cell

cycle that, as mapped by classical reciprocal shift experi-

ments, just precedes START B [defined operationally as the

pheromone-repressible cell cycle event mediated by the

cyclin-dependent protein kinase (CDK) p34CDC28] (Hart-

well, 1974; Pringle & Hartwell, 1981; Iida & Yahara, 1984;

Sherlock & Rosamond, 1993). These findings have led to the

commonly accepted conclusion that essential nutrients im-

pinge on the cell’s decision during late G1 to commit to the

initiation and completion of a new cell cycle, even when

suddenly starved for nutrients. Interestingly, auxotrophic

mutants that are starved for essential compounds (e.g.

leucine, uracil, inositol, or fatty acids) are impaired for

proper G1/0 arrest and, likely as a consequence, exhibit a

rather short life span (Henry, 1973; Hartwell et al., 1974;

Keith et al., 1977; Saldanha et al., 2004; Boer et al., 2008).

Cell cycle arrest at START A and entry into quiescence

therefore appear to be tightly programmed responses to

starvation for a distinct set of essential nutrients and are not

just simple consequences of growth arrest. Whether cells

have access to the quiescent state via G1 arrest only at START

A is of conceptual importance as it may indicate the

existence of a distinct restriction point in G1 that is similar

to the one in mammalian cells (Pardee, 1989). This remains

a matter of debate. Accordingly, while cells are able to induce

specific responses to nutrient starvation (e.g. acquire an

increased level of stress resistance) at any point in the cell

cycle (Wei et al., 1993; Laporte et al., 2011), it is not known

whether impeding G1 arrest (e.g. by expressing hyperstable

G1 cyclins; Hadwiger et al., 1989) may compromise the

proper setup of the quiescence program. Furthermore, the

ArfGAP Gcs1 has been claimed to be specifically required for

cells to pass START B when exiting from quiescence at 15 1C,

even though it is apparently dispensable under these condi-

tions for both the initial physiological responses of quiescent

cells to the readdition of nutrients and cell proliferation in

general (Drebot et al., 1987; Ireland et al., 1994). This claim

may support the existence of a nutrient-controlled restric-

tion point in G1. However, more recent studies have shown

that Gcs1 performs an essential function in proliferating

cells by facilitating post-Golgi transport redundantly with

Age2 (Poon et al., 2001). It is therefore possible that the

observed defect of gcs1D cells in START B passage may

simply reflect a synthetic effect uncovered by the loss of Gcs1

combined with nutrient starvation-induced reduction in

Age2 function. In conclusion, whether stationary-phase cells

arrest at a unique off-cycle point in G1 remains a challenging

issue to be addressed in future studies.

Metabolism

Glycogen

Limitation for nitrogen, sulfur, phosphate, and carbon

sources triggers the cells to accumulate the reserve carbohy-

drate glycogen within both the cytoplasm and, as a result of

on-setting macroautophagy, the vacuolar compartment

(Lillie & Pringle, 1980; Wang et al., 2001; Wilson et al.,

2002). In batch cultures, glycogen synthesis begins before

glucose exhaustion and peaks at the beginning of the diauxic
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shift phase. Glycogen stores are then partially utilized to fuel

the metabolic adaptations to respirative growth and the

synthesis of the nonreducing disaccharide trehalose (Fran-

çois & Parrou, 2001). During the subsequent growth phase

on glucose-derived fermentation products such as ethanol,

glycogen stores are refilled to ultimately serve as an energy

depot during extended periods of starvation. The synthesis

of glycogen requires the glycogenins Glg1/2, a pair of

functionally redundant self-glucosylating initiator proteins

that provide initial oligosaccharide primers, the glycogen

synthases Gsy1/2 that use UDP-glucose (UDPG) to catalyze

the successive addition of a-1,4-linked glucose residues to

the nonreducing ends of these primers and/or glycogen

molecules, and the branching enzyme Glc3, which intro-

duces a-1,6-glucosidic bonds to form the highly branched

form of mature glycogen (see Wilson et al., 2010, for a recent

review). Mobilization of cytoplasmic or vacuolar glycogen

pools is catalyzed by the combined action of the glycogen

debranching enzyme Gdb1 and the glycogen phosphorylase

Gph1 or the vacuolar glucoamylase Sga1, respectively (Teste

et al., 2000; Wang et al., 2001). Glycogen levels are fine-tuned

in response to external nutrients mainly by the transcrip-

tional control of glycogen anabolic (GLG1/2, GSY1/2, and

GLC3) and catabolic (GDB1, GPH1, and SGA1) genes and by

post-translational control of their corresponding gene pro-

ducts. The latter includes allosteric control of enzyme

activities [e.g. activation and inactivation of Gsy2 and

Gph1, respectively, by glucose-6-phosphate (Glu-6P)], and

phosphorylation/dephosphorylation events that modulate

for instance the activities of Gsy2 and Gph1 (for reviews, see

François & Parrou, 2001; Wilson et al., 2010).

Trehalose

Various environmental stresses including desiccation, heat

shock, or starvation for nitrogen, sulfur, phosphate, or

carbon induce cells to accumulate high levels (up to 0.5 M)

of the nonreducing disaccharide trehalose (Lillie & Pringle,

1980; De Virgilio et al., 1990, 1994; Crowe et al., 1992;

Hottiger et al., 1994). Because of its particular biophysical

properties, trehalose is thought to contribute to the stress

tolerance of cells by preserving membranes in a liquid

crystalline phase during desiccation or freezing and by

stabilizing proteins and suppressing the aggregation of

denatured proteins during heat shock (Singer & Lindquist,

1998; Crowe, 2007; Jain & Roy, 2009). During the diauxic

shift and the subsequent growth phase on ethanol, yeast cells

accumulate trehalose, which is then degraded steadily as

starvation proceeds (4 7 days), notably at a higher pace

once glycogen stores are depleted (Lillie & Pringle, 1980).

Thus, in addition to its general protective role, trehalose

may also contribute to energy homeostasis in quiescent cells.

The enzymes that catalyze the two key reactions of trehalose

biosynthesis, Tps1 [which transfers the glucosyl residue of

UDPG to Glu-6P to yield trehalose-6-phosphate (Tre-6P)]

and Tps2 (which hydrolyzes Tre-6P to trehalose and phos-

phate), are part of a protein complex that also harbors the

regulatory Tsl1 and Tps3 proteins (Bell et al., 1992, 1998; De

Virgilio et al., 1993; Vuorio et al., 1993; Reinders et al.,

1997). While trehalose synthesis is partially regulated at the

transcriptional level (i.e. transcription of all four genes

TPS1, TPS2, TPS3, and TSL1 is activated before or during

the diauxic shift; DeRisi et al., 1997), both the allosteric

activation and inactivation of Tps1 by fructose-6-phosphate

and phosphate, respectively, and the metabolic supply of

substrates (i.e. UDPG and Glu-6P) appear to be major

determinants of net trehalose synthesis (Vandercammen

et al., 1989; Londesborough & Vuorio, 1993). Although

Tps1, Tps2, Tps3, and Tsl1 are all phosphorylated proteins

in vivo (Albuquerque et al., 2008), it is not known whether

their functions are regulated by phosphorylation. Upon

refeeding of stationary-phase cells with carbohydrates, tre-

halose is rapidly mobilized by hydrolysis, which may at least

in part serve to fuel cell cycle progression upon return to

growth (Shi et al., 2010). Key for this event is the cytoplas-

mic, neutral trehalase Nth1 that is thought to be activated

following refeeding by one or several phosphorylation

events (Thevelein, 1984). The identity of the functionally

critical residues within Nth1 remains a matter of debate

because unequivocal evidence regarding the nature of the

implicated protein kinases, which likely include the protein

kinase A (PKA) and/or Sch9, is still lacking (Uno et al., 1983;

Thevelein, 1984; Zähringer et al., 1998; Wera et al., 1999;

Roosen et al., 2005; Panni et al., 2008). Both the Nth1-

homolog Nth2 and the acidic, vacuolar trehalase Ath1

apparently play a minor role, if any, in trehalose mobiliza-

tion upon exit from quiescence (Jules et al., 2004, 2008;

Parrou et al., 2005).

Cell wall

The macromolecular composition, molecular organization,

and thickness of yeast cell walls vary considerably depending

on environmental conditions and are tightly controlled in

space and time. The backbone of the cell wall consists mainly

of b-glucans (formed by b-1,3- and b-1,6-b-bonds), with a

minor amount (about 3%) of chitin that is attached to it via

b-1,4-bonds. Highly N- or O-glycosylated mannoproteins,

which are either noncovalently or covalently bound to the b-

glucan backbone, form an outer layer that shields the glucan

polysaccharide matrix from b-glucanase-containing enzyme

preparations such as zymolyase and glusulase (for a review,

see Lesage & Bussey, 2006). Stationary-phase cells express

high levels of mannoproteins such as Sed1 and exhibit

specific changes in N-glycosylation and disulfide bridge

formation within the mannoprotein layer, both of which
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contribute significantly to the effectiveness of this layer’s

protective function and render cells highly resistant to different

lytic enzyme mixtures (Zlotnik et al., 1984; Valentin et al.,

1987; de Nobel et al., 1990; Shimoi et al., 1998). Stationary-

phase cells also have characteristically thick cell walls, which

partially result from the increased expression of the cell wall-

synthesizing enzyme b-1,3-glucan synthase Gsc2 and the

localized synthesis of its substrate UDPG during the post-

diauxic growth phase (Lesage & Bussey, 2006). The latter

process is controlled by the activity of Per-Arnt-Sim (PAS)

kinases (particularly Psk1) that directly phosphorylate and

regulate the enrichment of the UDPG pyrophosphorylase

Ugp1 at the plasma membrane (Grose et al., 2007, 2009).

Polyphosphate (polyP)

As yeast cultures approach stationary phase, the uptake of

phosphate likely exceeds its metabolic demand. As a result,

excess phosphate accumulates mainly in the vacuole in the

form of polyP, a linear-chain phosphate polymer that buffers

the intracellular phosphate concentration in yeast (Kornberg

et al., 1999; Thomas & O’Shea, 2005). In the absence of

both the endopolyphosphatase Ppn1 and the exopolypho-

sphatase Ppx1, cells rapidly lose viability in stationary phase

(Sethuraman et al., 2001), suggesting that polyP degradation

represents an important aspect of phosphate homeostasis in

quiescent cells.

Triglycerides (TGs) and steryl esters (SEs)

Storage and degradation of TGs and SEs are nutrient-

regulated processes that play important roles in homeostasis

of cellular energy and membrane biosynthesis. During the

diauxic shift, yeast cells build up large amounts of TG and

SE depots in specific subcellular organelles termed lipid

droplets (LDs). Following nutrient depletion (in stationary

phase), these fat depots are then slowly degraded by the

release and subsequent b-oxidation of fatty acids, which

yield metabolic energy for long-term survival in the absence

of external nutrients (Hiltunen et al., 2003). In contrast,

upon refeeding with carbohydrates, stationary-phase cells

rapidly degrade their entire fat depots and resume growth

(Kurat et al., 2006). The fatty acids that are released from

TGs and SEs under these conditions are not metabolized via

peroxisomes, but serve as precursors for the rapid reinitia-

tion of membrane lipid synthesis (Trotter, 2001; van Roer-

mund et al., 2003; Gray et al., 2004). Yeast LDs are thought

to form by budding from the endoplasmic reticulum, which

harbors the key enzymes required for TG and SE synthesis,

such as the conserved Dga1 (acyl-CoA:diacylglycerol acyl-

transferase), Lro1 (phospholipid:diacylglycerol acyltransfer-

ase), and Are1/2 (acyl-CoA:cholesterol acyltranferase)

proteins (Dahlqvist et al., 2000; Oelkers et al., 2000, 2002;

Zweytick et al., 2000; Sandager et al., 2002; Sorger & Daum,

2002). The simultaneous loss of all four proteins renders yeast

cells virtually incapable of TG/SE synthesis and reduces their

ability to survive under long-term starvation conditions

(Sandager et al., 2002). Mobilization of neutral lipids is

catalyzed by TG lipases (i.e. Tgl3, Tgl4, and Tgl5) and SE

hydrolases (i.e. Tgl1, Yeh1, and Yeh2), which – with the

exception of Yeh2 – all localize to LDs (Athenstaedt & Daum,

2003, 2005; Jandrositz et al., 2005; Köffel et al., 2005; Köffel &

Schneiter, 2006; Kurat et al., 2006). While the simultaneous

loss of all TG and SE lipases has not yet been examined, studies

of double tgl3D tgl4D mutant cells indicate that mobilization

of neutral lipids from LDs is required for the rapid resumption

of growth following refeeding of stationary-phase cells with

carbohydrates (Kurat et al., 2009). Given both the dynamic

regulation of LD appearance and disappearance and the

reported colocalization of TG synthesis (i.e. Dga1) and TG/

SE degradation enzymes on LDs, it appears likely that some of

these enzymes are regulated via transcriptional, translational,

or post-translational mechanisms in response to nutrient

availability.

In stationary-phase cells, the acyl-CoA forming fatty acid

activator Faa4, which synthesizes the cosubstrate for the

acylation of diacylglycerol through Dga1, is localized exclu-

sively to LDs (Natter et al., 2005; Kurat et al., 2006). Faa4

may therefore be metabolically coupled to TG storage or

may serve to channel free fatty acids released from the

breakdown of TGs (or SEs) towards activation and further

metabolic utilization when cells are starved for longer

periods. In this context, it is interesting to note that the loss

of Faa4 causes a strong synthetic defect in stationary-phase

survival when combined with impaired activity of the

myristoyl-CoA:protein N-myristoyltransferase Nmt1, which

requires the cosubstrate myristoyl-CoA provided by Faa4

(or Faa1) (Ashrafi et al., 1998). Thus, proper N-myristoyla-

tion of a set of proteins, which may include Arf1/2, Sip2,

Van1, Ptc2, Ego1/Meh1, Moh1, and Vps20, is critical for

stationary-phase survival (Ashrafi et al., 1998).

Respiration and redox balance

Mitochondrial respiration results in the generation of a

variety of ROS within cells that can damage cellular con-

stituents such as DNA, lipids, and proteins. Proliferating

yeast cells can sense and respond to oxidizing agents by

inducing a specific series of antioxidant mechanisms includ-

ing the synthesis of glutathione and the production of

enzymes [e.g. superoxide dismutases (Sod1/2), catalases

(Ctt1 and Cta1), glutathione peroxidases (Gpx1/2), glu-

tathione reductase (Glr1), glutaredoxins (Grx1/2), thiore-

doxins (Trx1/2), and a thioredoxin reductase (Trr1)], which

detoxify oxidants or repair the damage caused by them

(Jamieson, 1998). Quiescent cells retain some capacity to
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respond to oxidative stress (Cyrne et al., 2003) and exhibit

an intrinsically high level of resistance towards oxidants,

which may result from their adaptive response to mitochon-

drial respiratory metabolism-derived ROS production (in-

cluding the synthesis of glutathione and the induction of

Sod1/2, Ctt1/Cta1, Gpx1, Glr1, and Grx1/2; Costa & Mor-

adas-Ferreira, 2001; Greetham et al., 2010). In line with this

interpretation, respiratory-deficient, stationary-phase yeast

cells are hypersensitive to oxidants (Jamieson, 1992). Thus,

oxidative stress may be a major factor that limits survival in

stationary phase. Accordingly, enhanced expression of the

cytosolic copper, zinc-superoxide dismutase (Cu,Zn-SOD)

Sod1, and the mitochondrial manganese-superoxide dismu-

tase (Mn-SOD) Sod2 during adaptation to efficient respira-

tory metabolism (for instance during the diauxic shift

phase) is critical for maximal stationary-phase survival (or

CLS) (Longo et al., 1996; Flattery-O’Brien et al., 1997;

Harris et al., 2003, 2005; Fabrizio et al., 2004; Weinberger

et al., 2010). Despite the apparent negative effects of

mitochondrial respiration-derived ROS, efficient respiration

per se appears to play a positive role in life span extension in

certain mutant backgrounds (Bonawitz et al., 2007; Lavoie &

Whiteway, 2008; Aerts et al., 2009) and may be critical for the

survival of quiescent cells, possibly by maintaining the redox

balance and/or NAD1/NADP1 pools (Martinez et al., 2004;

Aragon et al., 2008; Davidson et al., 2011). Finally, carbon or

nitrogen starvation, independent of ROS production, induces

protein glutathionylation, a reversible post-translational mod-

ification that protects cysteine residues from irreversible

oxidation. Because efficient exit from quiescence requires

thioredoxin Trx1/2-mediated protein deglutathionylation,

some of the corresponding modifications may have protein-

regulatory functions (Greetham et al., 2010).

Transcription

Transcriptional reprogramming during the diauxic shift,

postdiauxic shift (PDS), and stationary phases involves at

least one quarter of the yeast genome and is controlled by

various signaling pathways (DeRisi et al., 1997; Gasch et al.,

2000; Radonjic et al., 2005). Many of the corresponding

transcriptional changes are brought about by the control of

promoter-specific activator proteins that recruit the RNA

polymerase (RNA Pol) II in a holoenzyme form consisting

of general transcription factors (GTFs), coactivators such as

the Mediator, and chromatin-modifying complexes. In con-

trast, promoter-specific repressor proteins inhibit transcrip-

tion by interfering with activator binding, preventing

recruitment of the transcription apparatus by activator

proteins, and modifying chromatin structure (Lee & Young,

2000). In addition to these rather specific regulatory me-

chanisms, transcriptional control in response to nutrient

starvation is also exerted at a more general level and

implicates GTFs and auxiliary proteins of RNA Pol I, II,

and III (Lempiäinen & Shore, 2009). For instance, the

general shutdown of transcription by RNA Pol II has been

attributed partially to changes in DNA topology (Choder,

1991) or a drastic reduction in the levels of GTFs, including

the TATA box-binding protein, TAFII145, and several addi-

tional TFIID subunits (Walker et al., 1997). Global tran-

scription during the postdiauxic growth phase and survival

in stationary phase also requires Rpb4, which increases its

association with RNA Pol II as cells enter quiescence

(Choder, 1993; Choder & Young, 1993). Similarly, the

conserved carboxy-terminal domain (CTD) of the largest

Pol II subunit, which comprises tandem (YSPTSPS) heptad

repeats, is implicated in global transcription during the

transition into stationary phase by serving as a dynamic

landing pad for proteins that interact with the transcription

elongation complex, carry out cotranscriptional pre-mRNA

processing, and modify histones (Carlson, 1997; Phatnani &

Greenleaf, 2006). Specifically, phosphorylation of Ser2 with-

in the CTD heptapeptide sequence increases during the

diauxic shift and impairment of this phosphorylation (e.g.

in cells harboring a mutation in the Ser2-targeting Ctk1

kinase) or CTD truncation causes extensive defects in gene

expression when cells enter stationary phase (Howard et al.,

2002; Ostapenko & Solomon, 2005). In addition, a four-

protein regulatory module of the Mediator, composed of

Med12 (Srb8) and Med13 (Srb9) plus the cyclin-dependent

kinase Cdk8 (Srb10) and its cyclin partner CycC (Srb11)

(Borggrefe et al., 2002), functions as a negative regulator of a

substantial fraction of genes that are repressed when cells

grow on rich media and are induced as cells experience

nutrient deprivation (Holstege et al., 1998; van de Peppel

et al., 2005). While induction of this set of genes likely results

from the depletion of Cdk8 (Srb10) and CycC (Srb11) when

cells enter the diauxic shift, unscheduled transcriptional

activation in cells carrying mutations in this particular Med-

iator regulatory module results in poor stationary-phase

viability (Cooper et al., 1997; Holstege et al., 1998; Chang

et al., 2001). Interestingly, in quiescent cells, Mediator may

serve as a platform for sequestering Pol II upstream of specific

inactive genes that are rapidly induced when cells exit

quiescence (Radonjic et al., 2005). Lastly, the general down-

regulation of transcription in quiescent cells appears to allow

the dynamically exchanging linker histone H1 (Hho1) to bind

DNA. This process is essential for chromatin compaction in

quiescent cells and may contribute to the genome integrity in

these cells (Piñon, 1978; Schäfer et al., 2008).

Translation

During transition into the quiescent state, the coordinated

downregulation of ribosomal protein (RP) and translation

factor gene expression and the inhibition of translation
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initiation contribute to the dramatic (�300-fold) reduction

in protein synthesis rates (Boucherie, 1985; Fuge et al., 1994;

Ju & Warner, 1994; DeRisi et al., 1997). The remaining

translational capacity is both sufficient to translate a num-

ber of mRNAs – including HSP26 mRNAs or mRNAs of the

SNO and SNZ families, which are involved in the synthesis

of pyridoxine/vitamin B6 that may become limiting during

prolonged starvation (Dickson & Brown, 1998; Padilla et al.,

1998; Bean et al., 2001; Radonjic et al., 2005) – and necessary

for maintaining the viability of cells in stationary phase (Paz

& Choder, 2001).

Some of the molecular pathways that couple nutrient

availability to translation initiation in yeast converge on

Ser51 of the a-subunit of the eukaryotic translation initia-

tion factor 2 (eIF2a). eIF2a delivers methionyl-tRNAMet in

a ternary complex (TC) with GTP to the 40S ribosomal

subunit. Phosphorylation of eIF2a-Ser51 inhibits TC for-

mation and consequently all subsequent steps in the

translation initiation pathway (Hinnebusch, 2005). The

levels of eIF2a-Ser51 phosphorylation are tightly controlled

by the eIF2a-kinase Gcn2 and eIF2a-phosphatases (eIF2a-

PPs) that include the type I protein phosphatase (PP1)

Glc7 and the type 2A protein phosphatase (PP2A)-related

Sit4 (Wek et al., 1992; Cherkasova et al., 2010). Gcn2 is

activated by (1) uncharged tRNAs that accumulate during

amino acid starvation and that bind to its carboxy-term-

inal, histidyl-tRNA synthetase-related domain, (2) Sit4-

mediated dephosphorylation of its negative regulatory

Ser577 residue, and (3) autophosphorylation of Thr882

within its activation loop, which relies to some extent on

the activity of Snf1, an ortholog of mammalian AMP-

activated kinase that is responsible for the activation of

glucose-repressed genes at low glucose levels (Cherkasova

& Hinnebusch, 2003; Hinnebusch, 2005; Cherkasova et al.,

2010). The regulatory mechanisms that impinge on

eIF2a-PPs are less well understood, but include Snf1-

mediated (direct or indirect) inhibition of Glc7 and Sit4

when cells are grown on galactose (Cherkasova et al.,

2010). Notably, Sit4 can be found in distinct complexes

containing Tap42 and either Rrd1 or Rrd2, which are

regulated by the target of rapamycin complex 1 (TORC1)

(Di Como & Arndt, 1996; Jiang & Broach, 1999; Zheng

& Jiang, 2005). Thus, several major nutrient-signaling

kinases including Gcn2, Snf1, and TORC1 contribute to

the fine-tuning of translation initiation by regulating the

levels of eIF2a phosphorylation. Nevertheless, yeast cells

harboring a nonphosphorylatable eIF2aS51A allele are still

able to inhibit translation initiation in response to glucose

withdrawal. This suggests the existence of additional trans-

lation initiation control mechanisms, which may target the

formation of 48S preinitiation complexes (Hoyle et al.,

2007). Intriguingly, Snf1 also appears to play a role in this

latter process (Ashe et al., 2000).

While the decrease in TC levels following nutrient starva-

tion reduces protein synthesis globally, the 50- and 30-

untranslated regions (UTRs) of mRNAs also direct indivi-

dual control of mRNA translation. For instance, a specialized

reinitiation mechanism involving four short upstream ORFs

(uORFs) in the 50-UTR of the GCN4 mRNA serves to repress

GCN4 translation under nonstarvation conditions and to

derepress it in response to eIF2a phosphorylation in amino

acid-starved cells (Hinnebusch, 2005). In contrast, the 50-

UTR of the CLN3 mRNA, which codes for the CDK

p34CDC28-activatory G1 cyclin Cln3, contains a short uORF

that renders its translation, and consequently passage of cells

through START, specifically sensitive to the inhibition of

translation initiation (Polymenis & Schmidt, 1997). Another

functionally important structural aspect of mRNAs is the

length of their 50-UTR, which is critical both for loading

sufficient 40S subunits and for the scanning ribosome to gain

initiation competence (Kozak, 1991). Accordingly, mRNAs

with very short 50-UTRs (e.g. SSA3) are poorly translated

when ribosome assembly becomes less efficient as TC levels

decline in cells entering stationary phase (Paz et al., 1999b).

Alternatively, some mRNAs have been proposed to escape

cap-dependent translation particularly under starvation con-

ditions by directing ribosomes towards an internal AUG via

an internal ribosome entry sequence (Paz et al., 1999a;

Gilbert et al., 2007). Finally, it is becoming increasingly clear

that the 30-UTRs of mRNAs also play important roles in

post-transcriptional gene expression by regulating transla-

tional efficiency and/or mRNA stability. The Puf proteins, for

instance, each of which has its own set of functionally related

target transcripts to coordinately regulate certain cellular

processes, recognize UG-rich sequences within 30-UTRs and

direct the accelerated decay of their target mRNAs by

recruiting the Ccr4–Pop2–Not1-5 deadenylase complex

(Gerber et al., 2004; Goldstrohm et al., 2006). For illustra-

tion, Puf4 specifically destabilizes transcripts encoding RPs

and ribosome biogenesis factors in response to nutrient

starvation when cells enter stationary phase, thereby con-

tributing to the general downregulation of protein synthesis

under these conditions (Foat et al., 2005).

Another consequence of glucose withdrawal is that,

following the inhibition of translation, mRNAs broadly

dissociate from specific translation factors, associate with

translational repressors, and accumulate as repressed mes-

senger ribonucleoprotein complexes within cytoplasmic

granules, also termed processing bodies (P-bodies or PBs)

(Sheth & Parker, 2003; Brengues et al., 2005). These mRNAs

are then either degraded, repressed and stored, or diverted

back to translation following a passage through stress

granule-like eIF4E-, eIF4G-, and Pab1-containing bodies

(EGPBs) (Hoyle et al., 2007; Parker & Sheth, 2007; Buchan

et al., 2008). PBs contain a conserved core of proteins

consisting of the mRNA decapping machinery, including
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the decapping enzymes Dcp1/2, the activators of decapping

(i.e. Dhh1, Pat1, Scd6, Edc3, and the heptameric Lsm1-7

complex), and the 50–30-exonuclease Xrn1 (Eulalio et al.,

2007; Parker & Sheth, 2007). PBs also contain the conserved

Ccr4–Pop2–Not1-5 complex that initiates deadenylation of

the 30-poly(A) tail of mRNAs, which, besides allowing 30 to

50 degradation of mRNAs by the exosome complex, primar-

ily induces Dcp1/2-mediated removal of the 50 end cap

structure, followed by 50 to 30 transcript degradation (An-

derson & Kedersha, 2006; Parker & Sheth, 2007). Mainte-

nance of normal 50 to 30 mRNA decay rates further requires

Dcs1, which catalyzes the cleavage of m7GDP generated by

Dcp1/2-mediated decapping (and of 50 end m7G-oligoribo-

nucleotide fragments generated by the 30 to 50 exonucleoly-

tic decay), a process that is important for the survival

of cells in stationary phase possibly because uncleaved

m7GDP may compete with capped mRNAs for eIF4F

binding and thereby inhibit translation initiation (Malys

et al., 2004; Liu & Kiledjian, 2005; Malys & McCarthy, 2006).

Finally, the core of conserved PB components, also termed

the 50–30 mRNA decay machinery, functions in both trans-

lation repression and mRNA degradation and competes

with the assembly of translational factors (Eulalio et al.,

2007; Parker & Sheth, 2007). How nutrient limitation

impinges on and regulates this competition remains elusive.

Autophagy and protein degradation

Macroautophagy (referred to as autophagy for the rest of

this review) is a vacuolar degradative pathway for bulk

proteins and damaged and/or unnecessary organelles (He &

Klionsky, 2009). Autophagy is most potently stimulated by

nitrogen starvation and, to a somewhat lesser extent, by

starvation for other essential nutrients including carbon

(Takeshige et al., 1992). Autophagy begins with the forma-

tion of double-membrane vesicles, termed autophagosomes,

which sequester cytoplasmic material and ultimately fuse

with the vacuole. The inner vesicle (autophagic body) that is

released into the vacuolar lumen is then degraded by a series

of vacuolar hydrolases such as the lipase Atg15 and

the stationary-phase-induced proteinases A (Pep4) and

B (Prb1) (Van Den Hazel et al., 1996; Teter et al., 2001).

Following efflux from the vacuole, the corresponding de-

gradation products can then be metabolically recycled, a

process that contributes significantly to the survival of cells

during starvation (Tsukada & Ohsumi, 1993; Yang et al.,

2006; He & Klionsky, 2009; Gresham et al., 2011). Interest-

ingly, while 40S and 60S ribosomal subunits are engulfed

and delivered to the vacuole via nonselective autophagy

when cells are starved for nutrients, their degradation also

relies on a second, specific Ubp3/Bre5 ubiquitin protease-

requiring ribophagy pathway, which also contributes to cell

survival during starvation (Kraft et al., 2008).

Ubiquitin-dependent protein degradation probably does

not contribute significantly to bulk proteolysis in cells

entering stationary phase. However, it appears that proper

regulation of this process is critical for the maintenance of

viability in quiescent cells. Accordingly, loss of (1) Ubi4, the

polyubiquitin precursor comprised of five head-to-tail ubi-

quitin repeats, (2) the ubiquitin-conjugating enzymes Ubc5

and Ubc1, (3) the E3 ubiquitin ligase Rsp5, or (4) the

deubiquitinating enzyme Doa4 all reduce the viability of

cells as they approach stationary phase (Finley et al., 1987;

Seufert & Jentsch, 1990; Swaminathan et al., 1999; Cardona

et al., 2009). Proteasome-dependent proteolysis is generally

enhanced during early, but then reduced in late stationary-

phase cells. This reduction is likely due to the disassembly of

26S holoenzymes into their 20S core particle (CP) and 19S

regulatory particle components and/or the massive relocali-

zation of proteasome subunits from the nucleus to cytoplas-

mic proteasome storage granules that serve as proteasome

reservoirs for cells exiting quiescence (Finley et al., 1987;

Fujimuro et al., 1998; Bajorek et al., 2003; Laporte et al.,

2008). Uncontrolled, accelerated proteasome activity causes

a precipitous decline in cell viability in 10-day-old station-

ary-phase cultures (Bajorek et al., 2003). Conversely, sig-

nificant remodeling of the 20S CP composition in cells

approaching stationary phase may also be important to

ensure a basal level of proteasome-mediated protein degra-

dation to help eliminate oxidatively damaged proteins

(Chen et al., 2004). In line with this idea, loss or over-

production of a specific 20S CP maturation factor (i.e.

Ump1) decreases or enhances, respectively, the cell’s capacity

to survive in stationary phase (Chen et al., 2006).

While quiescent cells historically have attracted much less

attention than proliferating cells, our appreciation of their

properties and life style, as illustrated above, has grown

tremendously during the last couple of years. The currently

available depiction of the quiescent state therefore provides

a sufficiently elaborated basis for studies addressing the

challenging question of how nutrient-signaling pathways

are wired to warrant optimal setup of the quiescence

program in response to specific environmental challenges.

Signaling networks regulating quiescence

Both PKA and TORC1 are positive key regulators of cell

growth that critically participate in the cell’s decision

whether or not to enter into quiescence. For instance, cells

with uncontrolled, elevated PKA activity typically fail to

acquire many (if not most) physiological characteristics

of the quiescence program as they approach stationary

phase. Conversely, PKA deficiency, similar to TORC1

inhibition, causes growth arrest and locks cells in a G0-like

state (Tatchell, 1986; Thevelein & de Winde, 1999; Gray

et al., 2004; De Virgilio & Loewith, 2006b; Wullschleger
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et al., 2006; and references therein). An additional signaling

network with the Snf1 protein kinase at its core is dispen-

sable for growth on glucose, but – unlike PKA and TORC1 –

positively regulates the transition into quiescence (Gray

et al., 2004). Lastly, recent evidence suggests that the

Pho85-signaling pathway significantly modulates the setup

of the quiescence program. The structure of these signaling

networks and their corresponding cellular targets will be

discussed in the following paragraphs.

The PKA-signaling network

The heterotetrameric PKA complex is composed of a

combination of two out of three closely related Tpk1, Tpk2,

and Tpk3 catalytic subunits and two regulatory Bcy1

subunits, which restrict the activity of the catalytic subunits

by acting as pseudosubstrates. Binding of cyclic AMP

(cAMP) to Bcy1 subunits alleviates their inhibitory activity

and releases the catalytic subunits, each of which phosphor-

ylates distinct, but partially overlapping sets of target

proteins (Robertson & Fink, 1998; Ptacek et al., 2005).

What regulates PKA?

The intracellular cAMP level is balanced by Cdc35 adenylate

cyclase-mediated synthesis and Pde1/2 phosphodiesterase-

mediated breakdown of cAMP. Two parallel molecular

pathways that likely couple intracellular and extracellular

nutrient signals, respectively, to PKA regulation converge on

adenylate cyclase (Fig. 1). Firstly, the partially redundant

GTP-binding proteins Ras1 and Ras2 directly activate ade-

nylate cyclase when present in their GTP-bound state. The

GTP-loading status of Ras proteins is regulated by both a

pair of GTPase-activating proteins (GAPs), Ira1 and Ira2,

which stimulate the intrinsic GTPase activity of Ras pro-

teins, and by the guanine nucleotide exchange factors (GEF)

Cdc25 and Sdc25 (for reviews, see Thevelein & de Winde,

1999; Schneper et al., 2004). While Ras proteins are required

to maintain basal cAMP/PKA levels, glucose addition to

starved cells strongly increases the relative amount of Ras-

GTP and consequently the intracellular cAMP concentra-

tions. This increase, however, is only transient because

activated PKA inhibits cAMP synthesis and activates cAMP

hydrolysis (via Pde1/2) as part of a regulatory feedback loop

(Tanaka et al., 1989, 1990; Gross et al., 1992; Ma et al., 1999;

Colombo et al., 2004; Jian et al., 2009; Hu et al., 2010). In

batch cultures, basal cAMP levels are rather high when cells

are growing exponentially, but decline sharply as cells reach

the diauxic shift phase (Russell et al., 1993). Although the

molecular mechanisms by which glucose affects Ras-GTP

levels remain largely unknown, they appear to be dependent

on intracellular phosphorylation of glucose and proper

regulation of both Cdc25 and Ira proteins (Colombo et al.,

1998, 2004; Gross et al., 1999; Rolland et al., 2001; Paiardi

Fig. 1. Diagram of the Saccharomyces cerevisiae PKA-signaling net-

work. PKA regulates growth by promoting ribosome biogenesis via

controlling the expression of ribosomal protein genes (RPGs), rDNA

genes, and ribosome biogenesis (Ribi) genes, and by inhibiting transcrip-

tion factors that function in growth repression. PKA further inhibits

stress responses, regulates G1–S progression, and controls key metabolic

events in response to glucose availability. Upstream of PKA, the small

G-proteins Ras1/2 and Gpa2 mediate glucose signaling through

the activation of adenylate cyclase Cdc35. Solid arrows and bars

refer to direct interactions; dashed arrows and bars refer to indirect

and/or potential interactions. Red circles containing the letter P denote

phosphorylated amino acid residues; the corresponding gray

circles denote potentially phosphorylated amino acid residues. CDRE,

calcineurin-dependent response element; HSF, heat shock factor; HXT,

hexose transporter; STRE, stress-responsive element. See text for further

details.
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et al., 2007). Secondly, adenylate cyclase integrates extra-

cellular (likely glucose and sucrose) nutrient signals via a G-

protein-coupled receptor (GPCR) system that consists of

the receptor Gpr1, the Ga protein Gpa2 with its GAP Rgs2

(for a review, see Santangelo, 2006), and the Gb-subunit

Asc1 (Zeller et al., 2007). This GPCR system, probably in

conjunction with Ras proteins that may properly position

and/or prime adenylate cyclase at the plasma membrane

(Colombo et al., 2004), is also important for the transient

glucose activation of cAMP synthesis (Thevelein & de

Winde, 1999). However, unlike the Cdc25-Ras-Cdc35

branch, the GPCR module is not required for growth and

its absence does not drive cells into quiescence (at START A)

when grown on rich media (Iida & Yahara, 1984; Toda et al.,

1985; Plesset et al., 1987; Sherlock & Rosamond, 1993).

Thus, the Gpr1-Gpa2 branch plays a minor auxiliary role in

controlling entry or exit from quiescence (Colombo et al.,

1998; Harashima & Heitman, 2002; Wang et al., 2004).

In addition to its regulation by cAMP, PKA may be subject

to several less well-established control mechanisms. For

instance, as part of an autoactivation process, PKA phos-

phorylates Bcy1 at Ser145, thereby destabilizing Bcy1 via an

unknown mechanism (Kuret et al., 1988; Werner-Washburne

et al., 1991; Budhwar et al., 2010). In addition, Bcy1

dynamically relocalizes from the nucleus to the cytoplasm as

cells approach stationary phase (Griffioen et al., 2000),

suggesting that PKA activity is subject to both temporal and

spatial control. Moreover, recent evidence indicates that the

kelch repeat proteins Gpb1/2, rather than functioning as Gb-

subunit mimics for Gpa2 as initially suggested (Harashima &

Heitman, 2002), and in addition to their controversial role in

controlling the stability of Ira proteins (Harashima & Heit-

man, 2005; Phan et al., 2010), may reinforce stable Bcy1–Tpk

interactions downstream of Gpa2 (Peeters et al., 2006, 2007;

Budhwar et al., 2010). Although the simultaneous loss of

Gpb1/2 appears to preclude cells from accessing a proper

quiescent state in stationary phase (Harashima & Heitman,

2002), it is not known whether (or how) nutrients regulate

Gpb1/2. Furthermore, it has also been proposed that autop-

hosphorylated Mck1 binds to and directly inhibits, but does

not phosphorylate, PKA catalytic subunits (Rayner et al.,

2002). Lastly, nutrient permeases such as the general amino

acid permease Gap1, the ammonium permease Mep2, and

the phosphate carrier Pho84 (for a review, see Rubio-Texeira

et al., 2010), as well as the vacuolar ATPase (Dechant et al.,

2010) have all been implicated in PKA activation, but their

precise role in entry and/or exit from quiescence remains to

be elucidated.

What does PKA regulate?

PKA regulates growth in part by promoting ribosome

biogenesis, via control of the expression of RP genes, rDNA

genes, and ribosome biogenesis (Ribi) genes, which encode

rRNA processing, ribosome assembly, and translation fac-

tors (Jorgensen et al., 2004; Chen & Powers, 2006). PKA

further inhibits stress responses, some of which are incom-

patible with growth, and regulates key metabolic events as

cells approach and/or enter the diauxic shift phase (Fig. 1).

Ribosome biogenesis

PKA controls growth by favoring the expression of the

translation machinery via a number of yet poorly defined

processes. For instance, PKA activates Rap1 (Klein & Struhl,

1994; Neuman-Silberberg et al., 1995), which, together with

the high-mobility group protein Hmo1 (Wade et al., 2004;

Hall et al., 2006), recruits the nutrient-controlled Fhl1–Ifh1

complex exclusively to RP gene promoters to activate the

expression of the corresponding genes (Martin et al., 2004;

Schawalder et al., 2004; Wade et al., 2004; Rudra et al., 2005;

Kasahara et al., 2007). PKA further prevents Yak1-mediated

activation of the transcriptional corepressor Crf1, which,

following its phosphorylation by Yak1, replaces (in some

strains) the coactivator Ifh1 of the fork head transcription

factor Fhl1 to repress RP gene expression (Martin et al.,

2004; Zhao et al., 2006). PKA also favors nuclear localization

of the transcription factor Sfp1, which positively influences

RP and Ribi gene expression (Jorgensen et al., 2004; Marion

et al., 2004; Budovskaya et al., 2005; Cipollina et al.,

2008a, b; Lempiäinen & Shore, 2009), and may (Moir et al.,

2006) or may not (Huber et al., 2009) phosphorylate and

thereby inhibit the RNA Pol III repressor Maf1 to ensure 5S

rDNA and tRNA transcription. In addition to regulating

ribosome biogenesis, PKA also controls growth in part by

(1) regulating the elongation step of RNA Pol II-mediated

transcription (Howard et al., 2003), (2) controlling directly

the Mediator subunit Srb9 (Chang et al., 2004), (3) inhibit-

ing the transcriptional repressor activity of Sok2 (Ward

et al., 1995; Shenhar & Kassir, 2001), (4) altering the

function of Rgt1 and relieving its repressive effects on the

expression of hexose transporter genes (Özcan & Johnston,

1999; Kim & Johnston, 2006), and (5) specifically regulating

the translation of Cln3 (presumably via control of transla-

tion initiation), thereby coupling growth cues with cell cycle

decisions (Hall et al., 1998) (Fig. 1).

Stress responses

In addition to stimulating growth, PKA suppresses several

stress responses by different means. For instance, PKA

inhibits the dual-specificity tyrosine phosphorylation-regu-

lated protein kinase Yak1, which was originally isolated as a

growth antagonist as its loss renders cells largely indepen-

dent of PKA activity (Garrett & Broach, 1989). PKA

sequesters Yak1 in the cytoplasm by phosphorylating it at
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Ser295 (and two additional minor sites) (Garrett et al., 1991;

Zappacosta et al., 2002; Budovskaya et al., 2005; Lee et al.,

2011; Malcher et al., 2011). Downregulation of PKA as cells

enter the diauxic shift phase enables Yak1 to gain access to

some of its targets in the nucleus. These include (1) Bcy1,

which is phosphorylated and subsequently partitioned into

the cytoplasm in a Yak1-dependent manner (Werner-Wash-

burne et al., 1991; Griffioen et al., 2001), (2) Pop2 of the

Ccr4–Pop2–Not1-5 complex, whose phosphorylation by

Yak1 is required for proper G1 arrest as cells approach

stationary phase (Moriya et al., 2001), (3) the ‘decapping’

scavenger Dcs1 (Malys et al., 2004), (4) Crf1, which acts as a

corepressor of RP gene expression (Martin et al., 2004; Zhao

et al., 2006), (5) the heat shock transcription factor Hsf1,

which binds more strongly to DNA following Yak1-

mediated phosphorylation (Lee et al., 2008), and (6) the

Zn21-finger transcription factor Msn2 (Lee et al., 2008),

which, together with its partially redundant paralog Msn4,

drives the expression of about 200 stress response element-

containing genes in response to multiple environmental

stress conditions including glucose limitation at the diauxic

shift (Boy-Marcotte et al., 1998; Moskvina et al., 1998;

Garreau et al., 2000; Gasch et al., 2000; Cameroni et al.,

2004; for reviews, see also Ruis & Schüller, 1995; Estruch,

2000; Smets et al., 2010) (Fig. 1). Yak1-dependent phos-

phorylation activates Msn2, yet the underlying mechanism

remains elusive.

PKA also phosphorylates Msn2 directly at critical residues

within a nuclear localization signal (NLS) domain and

presumably within a nuclear export signal (NES) domain

to inhibit its nuclear import and possibly favor its nuclear

export, respectively (Görner et al., 1998, 2002; Garreau et al.,

2000). Moreover, because the expression of Yak1 strongly

depends on Msn2/4, this PKA-controlled mechanism serves

to downregulate Yak1 and may explain why loss of Msn2/4,

like loss of Yak1, renders cells largely independent of PKA

activity (Garrett & Broach, 1989; Smith et al., 1998).

Furthermore, the protein kinase Rim15 appears to play an

equally important role in mediating growth inhibition in the

absence of PKA as Msn2/4 and Yak1. Rim15 represents a

distinct member of the PAS protein kinase family that

broadly and positively controls the proper setup of the

quiescence program and its kinase activity is directly in-

hibited by PKA-mediated phosphorylation (Reinders et al.,

1998). The molecular elements linking Rim15 to its distal

readouts, including the expression of specific nutrient-

regulated and oxidative stress genes, trehalose and glycogen

accumulation, proper cell cycle arrest (likely at START A),

stationary-phase survival, and induction of autophagy, are

only partially characterized, but also involve Msn2/4 and the

closely related transcription factor Gis1, which drives the

expression of PDS element-controlled genes (Pedruzzi et al.,

2000; Fabrizio et al., 2001; Cameroni et al., 2004; Roosen

et al., 2005; Yorimitsu et al., 2007; Wei et al., 2008; Zhang

et al., 2009; Weinberger et al., 2010). Rim15 may coordinate

the transcription of Msn2/4- and Gis1-dependent genes

(Lenssen et al., 2002; Lenssen et al., 2005) with post-

transcriptional mRNA protection by phosphorylating the

paralogous Igo1 and Igo2 proteins (Talarek et al., 2010).

This event stimulates Igo proteins to associate with the

mRNA decapping activator Dhh1 and shelters specific

mRNAs, which are newly expressed as cells approach

stationary phase, from degradation via the 5 0–30 mRNA

decay pathway, thereby ensuring their translation during the

initiation of the quiescence program (Luo et al., 2011).

PKA further inhibits stress responses by phosphorylating

and thereby inhibiting the nuclear import of the Zn21-

finger transcription factor Crz1, which is necessary for the

expression of calcineurin-dependent response element-con-

taining genes whose products (e.g. the b-1,3-glucan

synthase Gsc2) promote adaptation to stress (Mazur et al.,

1995; Yoshimoto et al., 2002; Kafadar & Cyert, 2004). Lastly,

PKA inhibits autophagy by phosphorylating the protein

kinase Atg1 as well as its regulator Atg13. This prevents the

recruitment of the Atg1–Atg13 complex to the preautopha-

gosomal structure, the nucleation site from which autop-

hagy pathway intermediates are formed (Budovskaya et al.,

2004, 2005; Stephan et al., 2009).

Metabolism

Some of the physiological changes that occur as cells

approach and/or enter the diauxic shift phase are also

subject to post-transcriptional control by PKA. Accordingly,

PKA antagonizes both the metabolic transition from glyco-

lysis to gluconeogenesis and the induction of trehalose and

glycogen synthesis by different means, including (1) the

stimulation of the glycolytic 6-phosphofructo-2-kinase Pfk2

and pyruvate kinases Pyk1/2 (Cytryńska et al., 2001; Vaseghi

et al., 2001; Portela et al., 2002, 2006; Rayner et al., 2002;

Dihazi et al., 2003; Galello et al., 2010), (2) the inhibition of

the gluconeogenic fructose 1,6-bisphosphatase Fpb1 (Gan-

cedo et al., 1983; Rittenhouse et al., 1987), (3) the activation

of the neutral trehalase Nth1 (Ortiz et al., 1983; Uno et al.,

1983; Wera et al., 1999; Panni et al., 2008), (4) the activation

of the glycogen phosphorylase Gph1 (Wingender-Drissen &

Becker, 1983; Lin et al., 1996), and (5) the inhibition of the

glycogen synthase Gsy2 (Hardy & Roach, 1993) (Fig. 1).

Particularly for Gph1 and Gsy2 (and to some extent for

Nth1), it is still a matter of debate as to whether these

proteins are directly or indirectly controlled by PKA.

The TORC1-signaling network

The highly conserved TOR proteins are central components

of another key signaling pathway that controls the growth of
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proliferating yeast in response to nutrients (Fig. 2). Sacchar-

omyces cerevisiae cells express two TOR homologs, Tor1 and

Tor2, both of which – when associated with Lst8, Kog1, and

Tco89 in TORC1 – are targets of the therapeutically impor-

tant, immune-suppressive macrolide rapamycin in complex

with the peptidyl-prolyl isomerase Fpr1 [also known as

FK506-binding protein 12 (FKBP12) in mammals] (Loewith

et al., 2002; Jacinto & Hall, 2003). Binding of the rapamy-

cin–FKBP12 complex to TORC1, a mode of action that is

conserved from yeasts to humans (Hara et al., 2002; Kim

et al., 2002; De Virgilio & Loewith, 2006a), inhibits the

activity of the TOR kinases and elicits a number of responses

that mimic nutrient starvation, including a decrease in

protein synthesis and ribosome biogenesis, specific changes

in gene transcription, sorting and turnover of nutrient

permeases, induction of autophagy, G1 cell cycle arrest, and

entry into quiescence (for reviews, see Rohde et al., 2001;

Jacinto & Hall, 2003; De Virgilio & Loewith, 2006b).

What regulates TORC1?

Transfer from preferred to poor-quality carbon or nitrogen

sources, starvation for carbon or nitrogen, or exposure to

noxious stress elicit responses in yeast analogous to those

observed following rapamycin treatment (for a review, see

De Virgilio & Loewith, 2006b). It is therefore assumed that

TORC1 is regulated by the abundance and/or the quality of

the available carbon and nitrogen sources, as well as by the

presence or absence of different forms of stresses. In line

with this assumption, starvation of cells for carbon or

Fig. 2. Diagram of the Saccharomyces cerevisiae TORC1-signaling network. TORC1 (including Tor1 and/or Tor2 and its subunits Kog1, Tco89, and Lst8)

is pictured as a dimer. TORC1 promotes cell growth by stimulating anabolic processes such as translation initiation and permease activity (green

proteins), and by stimulating expression of the translation machinery (turquoise proteins). TORC1 propagates signals mainly via the protein kinase Sch9

and the catalytic subunits of the type 2A protein phosphatases (PP2Ac) Pph21 and Pph22 or the related Sit4 protein phosphatase when associated with

Tap42 and Rrd2 or Rrd1, respectively. Proximal TORC1 effectors include Sch9, Tip41, Tap42, Sfp1, and Atg13 (orange). TORC1 inhibits catabolic

processes such as autophagy and blocks transcriptional stress responses mediated by Rtg1/3, Gln3, Gis1, Msn2/4, Rim15, Igo1/2, and Mpk1 (violet

proteins). Upstream of TORC1, cytoplasmic and/or intravacuolar amino acids may influence the activity of Vam6, which regulates the nucleotide-

binding status of the small GTPase Gtr1. As part of the EGO complex (EGOC; dark blue), Gtr1-GTP binds to and somehow activates TORC1. Rapamycin

specifically inhibits TORC1 when in complex with the peptidyl-prolyl isomerase Fpr1. Arrows and bars denote positive and negative interactions,

respectively. Solid arrows and bars refer to direct interactions; dashed arrows and bars refer to indirect and/or potential interactions. Red circles

containing the letter P denote phosphorylated amino acid residues. STRE, stress-responsive element; PDS, postdiauxic shift; DAL, degradation of urea

and allantoin; NDP, nitrogen discrimination pathway; RTG, retrograde regulation; TCA, tricarboxylic acid cycle. See text for further details.
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nitrogen, induction of oxidative or osmotic stress, and

caffeine treatment result in TORC1 inhibition, as measured

by its proficiency to phosphorylate the bona fide substrate

Sch9 (Urban et al., 2007; Wanke et al., 2008). Caffeine

directly inhibits the TORC1 kinase (Kuranda et al., 2006;

Reinke et al., 2006; Wanke et al., 2008), but it is not known

how other stress signals impinge on TORC1. Moreover,

intracellular metabolites such as amino acids may play a

particular role in regulating TORC1 activity. For instance,

the treatment of cells with the translation elongation in-

hibitor cycloheximide strongly activates TORC1, possibly by

increasing the intracellular pool of free amino acids

(Beugnet et al., 2003; Urban et al., 2007; Binda et al., 2009).

Based on the observation that glutamine starvation pheno-

copies the effects of rapamycin-mediated TORC1 inactiva-

tion inasmuch as it causes nuclear localization and

activation of the transcription factors Gln3 and Rtg1/3, the

amino acid glutamine has been proposed to act upstream of

TORC1 (Crespo et al., 2002; Butow & Avadhani, 2004).

However, because other TORC1 readouts (such as the

subcellular distribution of Msn2) remain unaffected by

glutamine starvation, TORC1 may also respond to addi-

tional nutrients (and elicit to some extent nutrient-specific

responses).

The EGO (exit from rapamycin-induced growth arrest)

protein complex (EGOC) (Dubouloz et al., 2005), which

consists of Ego1, Ego3, Gtr1, and Gtr2, has recently been

proposed to function as a critical hub that directly relays an

amino acid signal to TORC1 (Binda et al., 2009) (Fig. 2).

EGOC is evolutionarily conserved (Kogan et al., 2010) and

colocalizes with TORC1 mainly at the limiting membrane of

the vacuole (Reinke et al., 2004; Araki et al., 2005; Gao &

Kaiser, 2006; Urban et al., 2007; Sturgill et al., 2008;

Berchtold & Walther, 2009; Binda et al., 2009). More

importantly, its subunit Gtr1, which is homologous to

mammalian Rag GTPases (Binda et al., 2010; and references

therein), directly interacts with and activates TORC1 in an

amino acid-sensitive and nucleotide-dependent manner

(Binda et al., 2009). Accordingly, expression of a constitu-

tively active (GTP bound) Gtr1GTP interacts with TORC1

and renders TORC1 partially resistant to leucine depriva-

tion, while expression of a growth-inhibitory Gtr1GDP

causes constitutively low TORC1 activity. Complementary

studies in Drosophila and mammalian cells have also

reported that the conserved Rag GTPases act as upstream

regulators of TORC1 and play important roles in coupling

amino acid-derived signals to TORC1 (Kim et al., 2008;

Sancak et al., 2008). The mechanisms by which amino acids

impinge on EGOC are still unknown, but may involve the

Vam6 GEF, a conserved vacuolar membrane protein that

binds to and regulates the nucleotide-binding status of Gtr1

(Binda et al., 2009). Interestingly, a genome-wide screen for

TORC1 regulators further identified Npr2 and Npr3 (Nek-

lesa & Davis, 2009), which, possibly as part of the conserved,

vacuolar membrane-localized SEA complex (Dokudovskaya

et al., 2011), also mediate amino acid signals to TORC1.

What does TORC1 regulate?

TORC1 propagates signals mainly via two key effector

branches (Huber et al., 2009), which include (1) the

presumed mammalian S6 kinase (S6K) ortholog Sch9

(Powers, 2007), whose activity depends on TORC1-

mediated phosphorylation of five to six C-terminal serine

and threonine residues (Urban et al., 2007), and (2) the

PP2A catalytic subunits (PP2Ac) Pph21/22 or the related

Sit4 protein phosphatase when associated with Tap42 and

the peptidyl-prolyl cis/trans-isomerases Rrd2 or Rrd1, re-

spectively (Di Como & Arndt, 1996; Jiang & Broach, 1999;

Zheng & Jiang, 2005) (Fig. 2). TORC1 is thought to stabilize

Tap42–PP2Ac–Rrd2 and Tap42–Sit4–Rrd1 complexes under

nutrient-rich conditions, either by directly phosphorylating

Tap42 (Jiang & Broach, 1999) or by preventing Tap42

dissociation via the phosphoprotein Tip41 (Jacinto et al.,

2001). Thus, TORC1 inactivation results in dephosphoryla-

tion of and increased association between Tap42 and Tip41,

and consequently, the release of the PP2Ac–Rrd2 and

Sit4–Rrd1 dimers. These released dimers then presumably

become active and/or have altered substrate specificities

(Düvel et al., 2003; Düvel & Broach, 2004; Van Hoof et al.,

2005; Zheng & Jiang, 2005; Yan et al., 2006). In line with

genome-wide transcription analyses, which suggest that

TORC1 is downregulated as cells transit through the diauxic

shift (Hardwick et al., 1999), PP2Ac–Rrd2 and Sit4–Rrd1

dimers are also released from Tap42 when cells approach

stationary phase (Di Como & Arndt, 1996). TORC1 signals,

mainly via its proximal effectors Sch9 and the phosphata-

se �Rrd1/2 modules, to distal readouts to positively regulate

ribosome biogenesis and translation and to inhibit stress

responses that are incompatible with growth and typically

induced in quiescent cells.

Ribosome biogenesis

TORC1 controls growth by favoring the expression and

assembly of the translational machinery, which requires the

coordinated regulation of RNA Pol I-, II-, and III-mediated

transcription of 35S rDNA repeats, RP/Ribi genes, and

tRNA genes, respectively (Zaragoza et al., 1998; Cardenas

et al., 1999; Hardwick et al., 1999; Powers & Walter, 1999;

Jorgensen & Tyers, 2004; Lempiäinen & Shore, 2009). To this

end, TORC1 regulates the function of several transcription

factors by different means (Fig. 2). These include (1)

stabilization of the initiation-competent Rrn3–RNA Pol I

complex and Sch9-controlled recruitment of RNA Pol I to

rDNA loci, which may also require direct binding of TORC1
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to rDNA promoters (Claypool et al., 2004; Li et al., 2006;

Huber et al., 2009; Singh & Tyers, 2009), (2) stabilization of

Hmo1 at 35S rDNA loci to endorse RNA Pol I-mediated

transcription (Berger et al., 2007), (3) promotion of

Ifh1–Fhl1 complex formation to favor RNA Pol II-depen-

dent RP gene expression [possibly in part via casein kinase 2

(CK2)-mediated phosphorylation of Ifh1] (Martin et al.,

2004; Schawalder et al., 2004; Wade et al., 2004; Rudra et al.,

2005, 2007), (4) reciprocal recruitment of the NuA4 histone

acetyltransferases and Rpd3 histone deacetylases to RP gene

promoters when TORC1 is active and inactive, respectively

(Reid et al., 2000; Rohde & Cardenas, 2003; Humphrey et al.,

2004), (5) promotion, apparently as a result of direct

TORC1-mediated phosphorylation (Lempiäinen et al.,

2009), of Sfp1 nuclear localization and consequently activa-

tion of Ribi and – following extraction of Ifh1–Flh1-bound

RP gene promoters from repressive domains within the

nucleolus – RP gene expression (Jorgensen et al., 2004;

Marion et al., 2004), (6) inhibition, likely in part via Sch9

(Huber et al., 2009), of Stb3 and Dot6/Tod6, which repress

Ribi gene transcription, presumably by recruiting histone

deacetylase complexes to rRNA-processing elements

(RRPEs) and RNA Pol A and C (PAC) motifs, respectively

(Kasten & Stillman, 1997; Humphrey et al., 2004; Liko et al.,

2007; Badis et al., 2008; Freckleton et al., 2009; Lippman &

Broach, 2009; Zhu et al., 2009; Liko et al., 2010), (7)

stimulation of RNA Pol III-dependent 5S rRNA and tRNA

expression as a result of direct or indirect (via Sch9)

TORC1-mediated inhibition of the conserved RNA Pol III

repressor Maf1 (Oficjalska-Pham et al., 2006; Roberts et al.,

2006; Huber et al., 2009; Wei & Zheng, 2009; Wei et al.,

2009b), and (8) promotion of ribosome assembly by pre-

venting entrapment of the 40S ribosome synthesis factors

Dim2 and Rrp12 within the nucleolus (Vanrobays et al.,

2008).

Translation

TORC1 positively controls growth at the level of translation

initiation by inhibiting Sit4-mediated dephosphorylation of

the negative regulatory p-Ser577 residue within the eIF2a
kinase Gcn2 and a parallel Sch9-mediated mechanism that

antagonizes eIF2a phosphorylation (Cherkasova & Hinne-

busch, 2003; Urban et al., 2007) (Fig. 2), as well as by still

poorly understood mechanisms that implicate the adaptor

protein eIF4G and the eIF4E-binding protein Eap1 (Barbet

et al., 1996; Berset et al., 1998; Danaie et al., 1999; Cosentino

et al., 2000; Kuruvilla et al., 2001). By activating translation

initiation, TORC1 impinges indirectly on cell cycle deci-

sions, because, as noted above, CLN3 mRNA translation and

consequently passage of cells through START is specifically

sensitive to the inhibition of translation initiation (Barbet

et al., 1996). TORC1 also regulates the decision to pass

START by destabilizing the CDK inhibitor Sic1 via a

mechanism that is still under study and that appears to

involve Cdc34-dependent ubiquitination (Verma et al.,

1997; Zinzalla et al., 2007).

Stress responses

In addition to stimulating growth, TORC1 plays an equally

important role in suppressing a number of (nutrient) stress

responses (Fig. 2). Firstly, TORC1 inhibits the transcription

of nitrogen-catabolite repression-sensitive genes by favoring

cytoplasmic anchorage of the GATA transcription factors

Gln3 (via its association with Ure2) and Gat1 (presumably

via another yet unidentified anchor protein) (Beck & Hall,

1999; Cardenas et al., 1999; Hardwick et al., 1999; Bertram

et al., 2000; Shamji et al., 2000; Carvalho et al., 2001;

Carvalho & Zheng, 2003; Georis et al., 2011). Cytoplasmic

retention of Gln3/Gat1 appears to be partially controlled by

Tap42–phosphatases (Tap42–PPases). Recent evidence indi-

cates that the regulation of Gln3/Gat1 function is complex,

varies among different yeast strains, and involves TORC1-

independent nutrient-sensing mechanisms (Georis et al.,

2009; Tate et al., 2009, 2010). Secondly, TORC1 antagonizes

nuclear accumulation of and consequently transcription

mediated by the heterodimeric Rtg1–Rtg3 transcription

factor complex, a central element of the mitochondria-to-

nucleus signaling (or retrograde response) pathway that

activates genes whose products (including mitochondrial

and peroxisomal enzymes) are required for glutamate and

glutamine homeostasis (for a review, see Liu & Butow,

2006). TORC1 exerts this control by favoring, presumably

via the regulation of Tap42–PPases (Düvel et al., 2003), the

association of Rtg1–Rtg3 with a cytoplasmic Mks1- and 14-

3-3 protein Bmh1/2-containing complex and by precluding

the disruption of this complex by Rtg2 (Liao & Butow, 1993;

Komeili et al., 2000; Sekito et al., 2000, 2002; Dilova et al.,

2002, 2004; Tate et al., 2002; Liu et al., 2003). Thirdly,

TORC1 promotes cytoplasmic accumulation of Msn2,

which may (Beck & Hall, 1999) or may not (Santhanam

et al., 2004) require Bmh1/2, via the Tap42–PPase branch

that likely impinges in parallel to PKA on the NES of Msn2

(Görner et al., 2002; Düvel et al., 2003). Fourthly, TORC1

acts through Sch9 and possibly a PPase to anchor Rim15 via

Bmh1/2 in the cytoplasm (Reinders et al., 1998; Pedruzzi

et al., 2003; Wanke et al., 2005). Fifthly, TORC1 inhibits

autophagy by directly phosphorylating Atg13, thereby pre-

venting the assembly of the Atg1–Atg13 complex, and

possibly by an additional mechanism that implicates

Tap42–PPases (Funakoshi et al., 1997; Kamada et al., 2000,

2010; Yorimitsu et al., 2009). Lastly, TORC1 regulates the

sorting of diverse nutrient permeases to and from the

plasma membrane via the Tap42–PPase target Npr1 (Van-

denbol et al., 1990; Schmidt et al., 1998; Beck et al., 1999; De
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Craene et al., 2001). How Npr1 regulates these sorting

events is currently not well understood, but recent evidence

suggests that Npr1 targets arrestins (e.g. Aly2) to control

intracellular trafficking of permeases (such as the general

amino acid permease Gap1) (O’Donnell et al., 2010).

Induction of stress responses is an important determinant

for the survival of yeast cells during stationary phase. In this

context, well-designed genome-wide analyses of chronolo-

gical longevity factors (Powers et al., 2006; Burtner et al.,

2011) have significantly contributed to the current view that

partial inhibition of TORC1 or loss of Sch9 increases

stationary-phase survival (or CLS) in a Rim15- and Msn2/

4-dependent manner (Wanke et al., 2008; Wei et al., 2008,

2009a; Talarek et al., 2010).

The cell wall integrity (CWI) pathway

The CWI pathway is comprised of a family of cell surface

sensors (belonging to the CWI and stress response compo-

nent WSC family of proteins) that are coupled via the

Rom1/2 GEFs to the small GTPase Rho1, which activates a

set of effectors including the b-1,3-glucan synthase and

protein kinase C (Pkc1; reviewed in Levin, 2005). Pkc1 has

multiple effectors, the best characterized being a mitogen-

activated protein kinase (MAPK) cascade, composed of the

MAPKKK Bck1, the redundant MAPKKs Mkk1/2, and the

MAPK Slt2/Mpk1, which regulates (in part by activating the

transcription factor Rml1 and by inactivating Sir3-mediated

subtelomeric gene silencing; Ai et al., 2002; Levin, 2005) the

expression of cell wall biosynthetic enzymes implicated in

remodeling the cell wall during normal growth and in

response to stress. Loss of Pkc1, Bck1, or Mpk1 causes

zymolyase sensitivity and drastically reduces cell viability

following carbon or nitrogen starvation, suggesting that

CWI pathway-controlled cell wall remodeling is an impor-

tant aspect of the quiescence program (Krause & Gray, 2002;

Torres et al., 2002). Intriguingly, both cells entering station-

ary phase and cells treated with rapamycin exhibit enhanced

phosphorylation of Mpk1 at sites required for its activation

(Ai et al., 2002; Krause & Gray, 2002; Torres et al., 2002).

Consequently, TORC1 may, possibly via Sch9 and/or

Tap42–Sit4 (Fig. 2), impinge upon the CWI pathway, but

whether this occurs at the level of the WSC family members,

Rom2, or the Pkc1–Bck1–Mpk1 cascade is currently un-

known (Ai et al., 2002; Torres et al., 2002; Reinke et al., 2004;

Araki et al., 2005; Kuranda et al., 2006; Soulard et al., 2010).

The Snf1-signaling network

The Snf1 protein kinase, like its mammalian ortholog the

AMP-activated protein kinase (AMPK), functions within a

heterotrimeric complex, which, in yeast, is composed of the

Snf1 (a) catalytic subunit, one of three b-subunit isoforms

(Gal83, Sip1, or Sip2), and the Snf4 (g) subunit (reviewed in

Hardie et al., 1998; Sanz, 2003; Hedbacker & Carlson, 2008).

This heterotrimeric complex is a central controller of energy

homeostasis that is primarily required for the adaptation of

cells to glucose limitation and for growth both on less

preferred fermentable carbon sources (e.g. sucrose, galac-

tose, or maltose) and on nonfermentable carbon sources

(e.g. ethanol and glycerol). Accordingly, Snf1 plays a parti-

cularly prominent role when cells enter the diauxic shift

phase in part by controlling the expression of a large set of

genes that are involved in the metabolism of alternative

carbon sources, in gluconeogenesis, and in respiration.

Consequently, in the absence of Snf1, cells fail to properly

acquire many of the key traits of quiescent cells and rapidly

lose viability as they approach stationary phase (Thompson-

Jaeger et al., 1991), underlining the importance of the

metabolic reprogramming at the diauxic shift in priming

the cells for proper entry into quiescence at later stages when

nutrients become exhausted (Gray et al., 2004; Martinez

et al., 2004).

What regulates Snf1?

In mammalian cells, energy stress results in increased levels

of AMP, which allosterically activates AMPK and protects it

from dephosphorylation of a critical p-Thr within the

activation loop of the catalytic a-subunit (Sanders et al.,

2007). In yeast, the role of AMP in the activation of Snf1 is

uncertain (Mitchelhill et al., 1994; Woods et al., 1994;

Wilson et al., 1996; Momcilovic et al., 2008), and the

molecular details of how nutrients impinge on Snf1 activa-

tion remain poorly understood. Nonetheless, glucose deple-

tion is known to activate Snf1 by alleviating (via Snf4) its

intramolecular autoinhibition and by promoting phosphor-

ylation of Thr210 within its protein kinase activation loop by

any of three Snf1 kinases (Sak1, Tos3, or Elm1) (Jiang &

Carlson, 1996; Hong et al., 2003; Nath et al., 2003; Suther-

land et al., 2003; Momcilovic et al., 2008; Liu et al., 2011).

However, the Snf1 kinases are not regulated by glucose and

nutrient control of Thr210 phosphorylation appears to be

mainly exerted via Reg1, which, in conjunction with Snf1,

controls the access of the PP1 Glc7 to the Thr210 residue

within Snf1 (Tu & Carlson, 1995; Ludin et al., 1998;

McCartney & Schmidt, 2001; Rubenstein et al., 2008; Tabba

et al., 2010). Glucose also regulates Snf1 complexes at the

level of substrate accessibility by controlling the subcellular

localization of the b-subunits Gal83 and Sip1, which relo-

cate from the cytoplasm to the nucleus (Gal83) or to the

vacuolar membrane (Sip1) upon glucose depletion (Vincent

et al., 2001; Hedbacker & Carlson, 2006). Interestingly, PKA

appears to inhibit Sip1 vacuolar localization (Hedbacker

et al., 2004), but the significance of this regulatory step is

unknown. In summary, glucose modulates both the
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phosphorylation of Snf1 to control its activity and its

subcellular localization to control its access to specific sub-

strates, but the underlying mechanism(s) remains elusive.

What does Snf1 regulate?

Snf1 regulates the transcription of approximately 400 genes

(Young et al., 2003), either by inhibiting transcriptional

repressors (e.g. Mig1), stimulating transcriptional activators

(e.g. Adr1, Cat8, and Sip4), or controlling the transcrip-

tional machinery directly. Snf1 also plays a role in various

other processes including chromatin modification, transla-

tion, autophagy, and control of metabolic enzyme activities

as briefly summarized below.

Transcriptional activators, repressors, and RNA Pol
II holoenzyme

As a central regulator of the adaptive transcriptional pro-

gram that serves the cells to cope with reduced glucose

availability, Snf1 exerts its control by various means. Firstly,

Snf1 induces many glucose-repressed genes by phosphoryla-

tion of the transcriptional repressor Mig1, which alters the

Mig1–Ssn6–Tup1 repressor–corepressor interaction and

promotes Mig1 nuclear export. This alleviates repression of

certain high-affinity hexose carrier genes and repression of

genes that are required for the metabolism of alternative

carbon sources (Treitel & Carlson, 1995; Tzamarias & Struhl,

1995; Östling et al., 1996; Özcan & Johnston, 1996; Treitel

et al., 1998; DeVit & Johnston, 1999; Smith et al., 1999;

Papamichos-Chronakis et al., 2004). Secondly, Snf1 plays a

dual role in the activation of gluconeogenic genes by the

carbon source-responsive element-binding transcription

factors Cat8 and Sip4. Accordingly, Snf1-mediated inactiva-

tion of Mig1 allows biosynthesis of Cat8. Phosphorylation

(directly or indirectly mediated by Snf1) converts Cat8 into

a transcriptional activator, which subsequently stimulates

the expression of Sip4 (Hedges et al., 1995; Lesage et al.,

1996; Rahner et al., 1996; Randez-Gil et al., 1997). Cat8 and

Sip4, which is likely activated through a Gal83-mediated

interaction with and phosphorylation by Snf1, contribute to

the transcriptional activation of gluconeogenic genes, with

Cat8 being the more important activator (Lesage et al., 1996;

Vincent & Carlson, 1998). Thirdly, Snf1 is required for

promoter binding, coactivator recruitment, and (indirect)

control of the Ser230 phosphorylation level of the transcrip-

tion factor Adr1, which activates the expression of genes

involved in the catabolism of nonfermentable carbon

sources and b-oxidation of fatty acids (Young et al., 2002,

2003; Tachibana et al., 2005; Biddick et al., 2008; Ratnaku-

mar et al., 2009). Fourthly, Snf1 phosphorylates the Hsf1

transcription factor to promote its binding to and

subsequent transcription from specific promoters of stress-

inducible genes in response to glucose starvation (Tamai

et al., 1994; Hahn & Thiele, 2004). Notably, Hsf1 may, in

some cases, cooperate with Mns2/4 to induce transcription

of stress genes (Amorós & Estruch, 2001; Grably et al.,

2002). Fifthly, Snf1 phosphorylates Msn2 to inhibit its

nuclear accumulation as part of an adaptation process to

long-term carbon starvation (Mayordomo et al., 2002; De

Wever et al., 2005). Sixthly, Snf1 favors (possibly by direct

phosphorylation) nuclear accumulation of Gln3 in response

to glucose starvation (Bertram et al., 2002). Seventhly, Snf1

(directly or indirectly) phosphorylates Rgt1 to promote its

binding to and repress transcription from the HXK2 pro-

moter under low-glucose conditions (Palomino et al., 2006).

This regulation may be relevant because hexokinase 2

(Hxk2) plays a role in antagonizing Snf1 function, possibly

through direct binding to and preventing inactivation of Mig1

by Snf1-mediated phosphorylation (Sanz et al., 2000; Ahuatzi

et al., 2004, 2007). Lastly, Snf1 may, besides impinging on

transcriptional activators and repressors, also directly control

the function of the RNA Pol II holoenzyme, but the corre-

sponding mechanism(s) remains unknown (Kuchin et al.,

2000; Shirra et al., 2005; Tachibana et al., 2007).

Chromatin modification

Upon glucose depletion, Snf1 phosphorylates at certain

promoters Ser10 within histone H3 (Lo et al., 2001), which

may (Lo et al., 2001, 2005) or may not (Geng & Laurent,

2004; Liu et al., 2005; Shirra et al., 2005) be relevant for

activation of the corresponding genes. In some cases, Snf1

influences the recruitment of the Spt-Ada-Gcn5-acetyltrans-

ferase (SAGA) complex to specific promoters by processes

that depend on either Snf1-mediated H3 Ser10 phosphoryla-

tion, Snf1-dependent relief of Ssn6–Tup1-mediated repres-

sion, or a more direct role of Snf1 in SAGA complex

regulation, as it physically interacts with and likely phos-

phorylates a number of residues within the catalytic domain

of the histone acetyltransferase Gcn5 (Lo et al., 2001; Liu

et al., 2005, 2010; van Oevelen et al., 2006).

Metabolism and translation

Snf1 controls cellular energy homeostasis by regulating

carbohydrate and fatty acid metabolism at a post-transcrip-

tional level. For instance, Snf1 favors the induction of

glycogen synthesis upon glucose limitation in part because

it antagonizes Pcl8/10–Pho85 cyclin–CDK-mediated phos-

phorylation and inhibition of glycogen synthase Gsy2

(Thompson-Jaeger et al., 1991; Hardy et al., 1994; Huang

et al., 1996; Wilson et al., 1999). Snf1 appears to positively

act (via poorly understood mechanisms) on autophagy,

thereby contributing to the partial sequestration of glycogen

within the vacuole where glycogen is protected from
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degradation during the early stages of stationary phase as

long as the activity of the vacuolar glucoamylase Sga1

remains low (Wang et al., 2001). During growth on non-

fermentable carbon sources, Snf1 is required for the activa-

tion of the PAS kinase Psk1 (and hence for Ugp1

phosphorylation) (Grose et al., 2007, 2009), which likely

favors cell wall biosynthesis at the expense of glycogen

synthesis when cells grow in the postdiauxic shift phase.

Activated Snf1 kinase represses anabolic processes, such as

the biosynthesis of fatty acids, likely by direct phosphoryla-

tion and inactivation of acetyl-CoA carboxylase (Acc1),

which is the key regulatory step in the biosynthesis of fatty

acids (Mitchelhill et al., 1994; Woods et al., 1994). As noted

above, Snf1 is further thought to inhibit translation initia-

tion by at least two different mechanisms. On the one hand,

Snf1 may be involved in preventing, by still unknown

means, the formation of 48S preinitiation complex forma-

tion when cells are deprived of glucose (Ashe et al., 2000;

Hoyle et al., 2007). On the other hand, Snf1 favors eIF2a
phosphorylation by promoting the autophosphorylation of

Thr882 within the activation loop of the eIF2a kinase Gcn2

and inhibiting (directly or indirectly) the proposed eIF2a-

PPs Glc7 and Sit4 under defined nutrient conditions (Cher-

kasova et al., 2010). Finally, because Gcn2 has been found to

be required for specific aspects of nitrogen-starvation-in-

duced autophagy (Tallóczy et al., 2002; Ecker et al., 2010), it

may be informative to address the question of whether Snf1

modulates autophagy via Gcn2.

The Pho85-signaling network

As stated above, entry into quiescence can be triggered by

phosphate starvation (Lillie & Pringle, 1980), albeit the

corresponding regulatory mechanisms are largely unknown.

The key nutrient-signaling kinase that orchestrates the

phosphate starvation response in yeast is the CDK Pho85,

which associates with a family of 10 cyclins, each of which

can potentially direct Pho85 to different target substrates

(Carroll & O’Shea, 2002). The best-studied partner of Pho85

is the cyclin Pho80. Accordingly, in the presence of sufficient

phosphate, the Pho80–Pho85 cyclin–CDK complex inhibits

the phosphate starvation response by controlling the locali-

zation and activity of the transcription factor Pho4, which

activates the transcription of genes involved in both phos-

phate scavenging and metabolism (Carroll & O’Shea, 2002).

Pho85 also negatively controls the expression of an addi-

tional set of genes (including glycogen and trehalose synth-

esis, oxidoreductive stress, and protein-folding genes) that

are typically induced under glucose-limiting conditions

before entry into quiescence (DeRisi et al., 1997; Timblin &

Bergman, 1997; Ogawa et al., 2000; Carroll et al., 2001;

Nishizawa et al., 2004; Swinnen et al., 2005). Some of these

effects may be explained by Pho80–Pho85 cyclin–CDK

complex-mediated phosphorylation and consequently en-

hanced nuclear exclusion of Rim15 and Crz1 (Wanke et al.,

2005; Sopko et al., 2006). Moreover, as mentioned

above, Pcl8/10–Pho85 cyclin–CDK also controls glycogen

synthesis by inhibiting Gsy2 (Huang et al., 1996). Thus,

proper execution of the quiescence program includes, to

some extent, integration of Pho85-mediated signals.

Network integration

A major challenge in the field is to understand how the

different signals transmitted by the TORC1, PKA, Snf1, and

Pho85 pathways are integrated to ensure the induction of a

quiescence program that allows the cells to survive starva-

tion for any of the key nutrients. Relevant to this discussion

is the view, emerging from recent systems biology studies,

that quiescent states are likely built on a common core

program, but may also be individually structured in re-

sponse to the nature of the encountered nutrient stress

(Gasch et al., 2000; Wu et al., 2004; Gutteridge et al., 2010;

Klosinska et al., 2011). Conceptually, this may be achieved

by shaping signaling pathways that, in addition to regulating

pathway-specific readouts, converge on a set of key effectors

and mutually modulate responsiveness to and/or transmis-

sion of signals. Recent evidence suggests that yeast cells in

fact utilize both of these strategies to dynamically configure

the quiescent state according to the environmental chal-

lenges encountered.

Convergence of pathways on key nodes

A recurrent theme that emerges from the above outline is

that the PKA, TORC1, Snf1, and Pho85 pathways impinge,

in various combinations, on common target proteins that

often serve as regulatory nodes, which in turn critically

determine the proper establishment of the quiescence pro-

gram. The increasing list of such regulatory focal points

includes two classes of proteins that are oppositely regu-

lated, i.e. proteins that are required for the proper setup of

the quiescence program (e.g. Rim15, Msn2, Atg1–Atg13,

Gln3, Hsf1, Crz1, and Gsy2) and proteins that are indis-

pensable for robust growth (e.g. eIF2a and Sfp1). Some of

these critical nodes and their control by nutrient-signaling

pathways shall be briefly recalled here (Fig. 3a). For instance,

TORC1 and the Pho80–Pho85 cyclin–CDK promote cyto-

plasmic sequestration, while PKA inhibits the kinase activity

of Rim15 (Fig. 3b) (Reinders et al., 1998; Pedruzzi et al.,

2003; Wanke et al., 2005). In a similar vein, TORC1 and PKA

independently antagonize nuclear accumulation of Msn2 to

prevent the induction of stress-responsive genes (Görner

et al., 1998, 2002; Santhanam et al., 2004; De Wever et al.,

2005), target the Atg1–Atg13 complex to inhibit autophagy

(Stephan et al., 2009), and promote nuclear localization of

the transcription factor Sfp1 to favor the transcription of
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Ribi/RP genes (Jorgensen et al., 2004; Marion et al., 2004;

Oficjalska-Pham et al., 2006; Roberts et al., 2006; Huber

et al., 2009; Wei & Zheng, 2009; Wei et al., 2009b). In line

with these observations, TORC1 and PKA have also been

suggested, on the basis of transcriptional profile studies, to

provide separate inputs to control various (e.g. Ribi/RP)

gene clusters (Zurita-Martinez & Cardenas, 2005; Chen &

Powers, 2006; Lippman & Broach, 2009). Other examples

include Gln3 and eIF2a, both of which are independently

and oppositely regulated by TORC1 and Snf1 (Beck & Hall,

1999; Bertram et al., 2002; Cherkasova & Hinnebusch, 2003;

Cherkasova et al., 2010). PKA, Snf1, and Pho85 all appear to

converge on Gsy2, although the molecular details of the

individual regulatory steps remain to be elucidated

Fig. 3. Convergence of pathways on key nodes. (a) The TORC1, PKA, Pho85, and Snf1 pathways impinge, in various combinations, on common target

proteins that serve as regulatory nodes, which critically determine the proper establishment of the quiescence program. Arrows and bars denote positive

and negative interactions, respectively, which can either be direct or indirect. Dashed arrows and bars refer to potential cross-talk mechanisms between

TORC1, PKA, and/or Snf1. See text for further details. (b) Nutrient signal integration by Rim15. The schematic diagram illustrates the domain

architecture of Rim15, which is drawn approximately to scale. Rim15 belongs to a small group of conserved fungal proteins, which exhibit the same

domain organization. These include the N-terminal PAS and C2HC-type zinc finger domains, the central protein kinase domain, and a C-terminal

receiver domain. Notably, Rim15 is a distant member of the conserved nuclear Dbf2-related and large tumor suppressor serine/threonine kinase subclass

of the protein kinase A, G, and C class of kinases, which share the unique feature of harboring an insert of at least 30 amino acids between the protein

kinase subdomains VII and VIII (Tamaskovic et al., 2003). Rim15 function is regulated by at least four nutrient-regulated protein kinases. Accordingly,

cytoplasmic Rim15, anchored through its binding to the 14-3-3 proteins Bmh1/2, is maintained inactive through PKA-mediated phosphorylation of at

least five of its amino acid residues (i.e. Ser709, Ser1094, Ser1416, Ser1463, and Ser1661; orange circles containing the letter P; Reinders et al., 1998).

Moreover, phosphorylation of Thr1075 and Ser1061 (green circles containing the letter P) engages Rim15 in binding the two monomeric subunits within a

single 14-3-3 protein dimer in the cytoplasm. Ser1061 is directly phosphorylated by the TORC1 target Sch9 and Thr1075 phosphorylation is independently

regulated by the Pho80-Pho85 cyclin-CDK (by direct phosphorylation) and by TORC1 (presumably via inhibition of a protein phosphatase; PPase)

(Pedruzzi et al., 2003; Wanke et al., 2005, 2008). Solid arrows and bars refer to direct interactions; dashed bars refer to indirect and/or potential

interactions. Stars refer to direct phosphorylation events mediated by TORC1, PKA, Pho85, or Sch9. See text for further details.
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(Thompson-Jaeger et al., 1991; Hardy & Roach, 1993; Hardy

et al., 1994; Huang et al., 1996; Wilson et al., 1999). Lastly,

PKA and Pho85 favor the nuclear exclusion of Crz1 (Kafadar

& Cyert, 2004; Sopko et al., 2006). In summary, a wealth of

data supports the idea that key nutrient-signaling pathways

regulate both pathway specific as well as common effectors

that communicate unified, but differentiated responses.

Mutual control of signaling pathways

Whether and how the various nutrient-signaling pathways

cross-talk to each other is currently very poorly studied,

although recent data are beginning to shed light on this

important aspect of the quiescence program. For instance,

PKA and TORC1 pathways have been suggested to antag-

onize each other within a certain physiological range, there-

by buffering relatively minor environmental changes to

ensure rather constant growth rates (Ramachandran & Her-

man, 2011). In support of this model, PKA downregulation

was found to rescue the temperature-sensitive growth defect

of a las24-1/kog1ts strain, indicating that PKA negatively

regulates TORC1 function (Araki et al., 2005). The molecu-

lar details of the antagonism between PKA and TORC1 are

currently unknown, but it is possible that downregulation of

either pathway causes a short-term overflow of critical

nutrient signals that spill over into neighboring nutrient-

signaling pathways. In support of this assumption, meta-

bolic profile analyses have shown that glutamate tends to

accumulate during carbon starvation (i.e. when PKA activ-

ity is expected to be low), while various glycolytic and

tricarboxylic acid cycle intermediates accumulate during

nitrogen starvation (i.e. when TORC1 activity is expected

to be low) (Brauer et al., 2006; Boer et al., 2010). Based on

these considerations, a profound appreciation of the cross-

talk between different nutrient-signaling pathways will re-

quire integrative analyses of the changes in metabolic fluxes

that are triggered by the modulation of individual nutrient-

signaling pathways.

Recent data further suggest the existence of direct control

mechanisms between nutrient-signaling pathways (Fig. 3a).

Firstly, TORC1 prevents, via an unknown mechanism,

phosphorylation (at Thr210) and thus activation of Snf1

(Orlova et al., 2006). Secondly, TORC1 also impedes, by a

largely unknown mechanism, the nuclear accumulation of

both PKA (i.e. Tpk1) and Yak1 (Schmelzle et al., 2004).

Because Bcy1 resides predominantly in the nucleus, TORC1

inactivation might consequently favor the engagement of

Tpk1 subunits into the formation of inactive Tpk1-Bcy1

holoenzymes within the nucleus (Griffioen et al., 2000;

Martin et al., 2004; Schmelzle et al., 2004). Thirdly, in line

with several genetic studies suggesting that TORC1 nega-

tively regulates the CWI pathway and that the CWI pathway

antagonizes PKA (Verna et al., 1997; Park et al., 2005;

Kuranda et al., 2006), TORC1 was recently found to prevent

(indirectly via a circuit that implicates Sch9) Mpk1 activa-

tion and consequently Mpk1-mediated phosphorylation of

Bcy1, which is thought to inhibit PKA towards specific

substrates (Soulard et al., 2010). A model that unifies the

latter observations is that TORC1, via its effects on Tpk1

localization and Bcy1 phosphorylation, controls the spatial

distribution of PKA activity. Accordingly, TORC1 inactiva-

tion may convert the nucleus into a low PKA environment

that should, nonetheless, retain cAMP responsiveness (Grif-

fioen et al., 2000, 2001; Soulard et al., 2010). Such a scenario

also provides an elegant explanation for why Rim15, which

is anchored in the cytoplasm due to TORC1 function and

maintained inactive by PKA-mediated phosphorylation

(Reinders et al., 1998; Pedruzzi et al., 2003; Fig. 3b), can be

activated by TORC1 inactivation, i.e., once released from its

cytoplasmic anchors and transferred into the nucleus,

Rim15 may encounter a low PKA environment and hence

be released from PKA inhibition (Pedruzzi et al., 2003;

Wanke et al., 2005). Conversely, it remains unknown why

inactivation of only PKA (which does not cause nuclear

accumulation of Rim15) also suffices to induce Rim15-

dependent aspects of the quiescence program. Among con-

ceivable models to be tested in the future are the possibilities

that critical Rim15 target proteins (e.g. Igo1/2) may be

activated in the cytoplasm and subsequently imported into

the nucleus to carry out their functions, or that a small

nuclear fraction of the pool of (GFP)-Rim15 molecules,

which may escape detection by conventional fluorescence

microscopy, is sufficient to ascertain a significant response

upon PKA inactivation. All of the recent evidence, taken

together, suggests that the PKA, TORC1, and Snf1 pathways

perform their functions within a complex wired network to

adequately shape the cellular response to nutrient starva-

tion.

Concluding remarks and future issues

Substantial progress has been made in defining the physio-

logical state of quiescent cells and the nutrient-signaling

pathways that shape this state, particularly when cells are

grown in liquid cultures to saturation on a rich medium. An

emerging view is that cells, rather than relying on a binary

‘on-off ’ decision, dynamically configure the quiescent pro-

gram according to the various environmental challenges by

using a set of different key nutrient-signaling pathways that,

in addition to regulating pathway-specific effectors, con-

verge on a set of integrative nodes (e.g. Rim15, Msn2, and

Atg1–Atg13) and mutually modulate their competence to

transmit signals. This model implies that, even though

quiescent cells share a distinguished set of common traits,

all quiescent programs, whether they are induced by nitro-

gen, phosphate, sulfur, or carbon starvation, are not the
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same. While most recent studies indeed support this idea,

the tremendous progress in the development of analytical

tools such as transcript, metabolic, and proteomic profiling,

is likely to shed more light on the presumed diversity of

quiescent states. In this context, it is useful to emphasize that

stationary-phase cultures exhibit a complex, heterogeneous

community structure and that available studies on stationary-

phase cells generally represent data on the average behavior of

a cell within a population. Thus, it is possible that even within

a stationary-phase culture, individual cells may differ with

respect to their interpretation of and response to the environ-

mental signals. The existence of heterogeneity at this level (be

it of genetic, epigenetic, or physiological nature) is at present

speculative, but may be conceptually important for the overall

fitness of the population.

Despite the wealth of existing data on quiescence, there

are still a number of important gaps in our understanding

on how cells decide and subsequently proceed to enter into

quiescence. Among the most pertinent questions are the

following: Do quiescent cells arrest at a unique off-cycle

point in G1? How do nutrient-signaling pathways impinge

on the cell cycle machinery? What is the precise nature of the

nutrient cues that control TORC1? How is glucose or its

absence sensed by the Ras/PKA or Snf1 pathway, respec-

tively? How are the different nutrient-signaling pathways

wired to each other to coordinate, to some extent, a unified

developmental program? And last, but not least, what are

the essential attributes of quiescent cells that ensure survival

over a 200-year-long period in the dark and gloomy seabed

of the Baltic Sea? Together with the numerous additional

questions elaborated throughout this review, these questions

illustrate that the ‘sleeping beauty’ is not yet ready to unveil

the most treasured secrets of the essence of quiescence.
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