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Background: Deletions at 13q14.3 are common in chronic lymphocytic leukemia and are also present in diffuse

large B-cell lymphomas (DLBCL) but never in immunodeficiency-related DLBCL. To characterize DLBCL with 13q14.3

deletions, we combined genome-wide DNA profiling, gene expression and clinical data in a large DLBCL series treated

with rituximab, cyclophosphamide, doxorubicine, vincristine and prednisone repeated every 21 days (R-CHOP21).

Patients and methods: Affymetrix GeneChip Human Mapping 250K NspI and U133 plus 2.0 gene were used.

MicroRNA (miRNA) expression was studied were by real-time PCR. Median follow-up of patients was 4.9 years.

Results: Deletions at 13q14.3, comprising DLEU2/MIR15A/MIR16, occurred in 22/166 (13%) cases. The deletion

was wider, including also RB1, in 19/22 cases. Samples with del(13q14.3) had concomitant specific aberrations. No

reduced MIR15A/MIR16 expression was observed, but 172 transcripts were significantly differential expressed.

Among the deregulated genes, there were RB1 and FAS, both commonly deleted at genomic level. No differences in

outcome were observed in patients treated with R-CHOP21.

Conclusions: Cases with 13q14.3 deletions appear as group of DLBCL characterized by common genetic and

biologic features. Deletions at 13q14.3 might contribute to DLBCL pathogenesis by two mechanisms: deregulating the

cell cycle control mainly due RB1 loss and contributing to immune escape, due to FAS down-regulation.
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introduction

Deletions at 13q14.3 are common in chronic lymphocytic leukemia
(CLL) [1] and are also present in other B-cell malignancies [2–6],
including de novo and transformed diffuse large B-cell lymphomas
(DLBCL) [6–10]. We have recently shown that 13q14.3 deletions
are absent in immunodeficiency-related DLBCL [11, 12],
suggesting that the lesion might contribute to the immune escape of
lymphoma cells. In CLL, the minimal deleted region (MDR)
includes the two microRNAs (miRNAs), MIR15A and MIR16 [13,
14]. Very recently, Klein et al. [15] showed that MDR- or miR-15a/
16-1-deficient mice develop CLL and CD5 negative non-Hodgkin’s
lymphomas resembling DLBCL. In the mouse model, the loss of
two miRNAs determines an increased cell proliferation due to a lack
of down-regulation of cell cycle-related genes [15]. While the role of
deletions at 13q14.3 has been extensively studied in CLL [1, 13, 14],
its presence in DLBCL has not been analyzed in detail. Therefore,
we analyzed the biological and clinical characteristics of DLBCL
patients with 13q14.3 deletions as detected by genome-wide DNA
profiling in a large series of cases.

patients and methods

tumor panel
DNA was extracted from 166 frozen tumor biopsies of DLBCL, taken at

diagnosis as previously described [9, 16]. Consecutive cases were selected based

upon the availability of frozen material and for having a fraction of malignant

cells in the pathologic specimen representing >70% of overall cellularity as

determined by morphologic and immunophenotypic studies. Cases of primary

mediastinal large B-cell lymphoma, human immunodeficiency virus-related

DLBCL and posttransplant DLBCL were excluded. Seventy-five percent (124/

166) of the patients were treated with rituximab, cyclophosphamide,

doxorubicine, vincristine and prednisone repeated every 21 days (R-CHOP21)

and had follow-up data. The cell of origin was determined in 109/166 cases: in

49/109 (45%) with gene expression (GEP) [17] and in 60/109 (55%) with

immunohistochemistry (IHC) according to the algorithm by Hans et al. [18].

The study was approved by the Bellinzona ethical committee.

DNA extraction, array comparative genomic
hybridization analysis and data mining
DNA samples were analyzed using the GeneChip Human Mapping 250K

NspI (Affymetrix, Santa Clara, CA), as previously described [5, 9, 12, 16].

Data mining was carried out as previously reported [5, 9, 12, 16]. Briefly,

the modified Bayesian Piecewise Regression method [19] was used to

estimate the copy number (CN) starting from raw CN values obtained with

Affymetrix CNAT 4.01. After normalization of each profile to a median log2

ratio of zero, thresholds for loss and gain defined as six times the median

absolute deviation symmetrically �0 with an associated P value <0.001 after

Bonferroni multiple test correction. The recurrent minimal common regions

(MCR) were defined using the algorithm by Lenz et al. [20]. Differences in

frequencies between subgroups were evaluated using a Fisher’s exact test

followed by multiple test correction.

gene expression
GEP data, obtained using the Affymetrix GeneChip U133 plus 2.0, were

available in 54/166 cases [17]. Data were analyzed using Partek Genomics Suite

6.4 (Partek, St. Louis, MO). Signal intensities were normalized by Partek RMA.

Statistical differences were calculated by analysis of variance analysis and a false

discovery rate of 0.2 was applied. The Gene Set Enrichment Analysis [21]

was used to identify pathways and regulating mechanisms possibly explaining

the observed GEP profile differences (http://www.broadinstitute.org/gsea).

Criteria for statistical significance were: at least three genes of overlap, P value

<0.05.

miRNA arrays
In 32/166 cases, miRNA expression levels were analyzed, as previously reported

[16]. Total RNA including miRNA was extracted from cryopreserved tissues

with mirVana miRNA isolation Kit (Ambion, Austin, TX). The reverse

transcription was carried with 300 ng of total RNA with Megaplex RT Primers

and enzyme kit as suggested by manufacturer (Applied Biosystems, Foster City,

CA). The quantitative real-time PCR was carried out on 7900HT Fast Real-

Time PCR System (Applied Biosystems, CA). To enhance assay sensitivity,

a preamplification step of 12 cycles was introduced using Megaplex PreAmp

Primers. The preamplified complementary DNA (cDNA) loaded onto the 384-

well format TaqMan microRNA assays plates (Taqman human microRNA A

array V2.0, AB1, CA). The threshold cycle (Ct) was defined as the fractional

cycle number at which the fluorescence exceeds the fixed threshold of 0.1 with

automatic baseline using the RQ Manager 1.2 software (Applied Biosystems,

CA). Data were normalized with the average expression U6 small nuclear RNA

(quadruplicate in each 384-well plate). The DCt values of all the miRNAs

measured were calculated and exported from RQ Manager 1.2 directly. The

differential miRNA expression between cases with and without del(13q14.3)

was carried out using random variance Student’s t-test.

validation of genome-wide DNA profiling
Real-time PCR on genomic DNA was done using the TaqMan Copy

Number Assays Hs03857853_cn (Applied Biosystems, Rotkreuz,

Switzerland) targeting the DLEU2 locus normalizing using the TaqMan

Copy Number Reference Assay RNase P (Applied Biosystems, Switzerland)

and a DNA sample known to be diploid for the DLEU2 locus. Reactions

were run in quadruplicate in 96-well plates with 5 ng of DNA per reaction

on a StepOnePlus instrument and analyzed with CopyCaller software v.1.0

(Applied Biosystems, Switzerland).

immunohistochemistry
RB1 expression was evaluated using specific antibody (MK-15-1S; Medical and

Biological Laboratories Co., Nagoya, Japan). Immunohistochemical stainings

were carried out on formalin-fixed paraffin-embedded tissues using the avidin-

biotin-peroxidase complex method and a semiautomated immunostainer

(Ventana System and/or Lieca Bond) as described [22]. Nuclear (RB1) stains

were scored as neg, + (<50) and ++ (>50%) of tumor cells.

analysis of clinical data
The median follow-up was computed by the reverse Kaplan–Meier method

[23]. Overall survival (OS), progression-free survival, disease-free survival

and response criteria were defined according to Cheson et al. [24]. Actuarial

survival probabilities were computed by the life-table method. Survival

curves were estimated by the Kaplan–Meier method, and differences

between curves were evaluated by the log-rank test. Binomial exact 95%

confidence intervals (95% CI) were calculated for percentages.

Associations in two-way tables were tested for statistical significance using

either the v2 test or Fisher’s exact test (two-tailed test), as appropriate [25].

All tests were two-sided, and the P value for significance was £0.05.

Statistical analysis was conducted using the Stata11 (StataCorp, College

Station, TX).
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results

A MCR comprising the 13q14.3 locus was identified in 22/166
(13%) DLBCL. The lesion extended for �560 000 bp and
contained seven transcripts: DLEU2, TRIM13, KCNRG, MIR15A
and MIR16, DLEU1 and ST13P4. The deletion detected by
genome-wide DNA profiling was validated by real-time PCR on
genomic DNA in 4/4 cases. The deleted region was often
wider, including also the RB1 gene in 19/22 (86%) and DLEU7 in
21/22 (95%) cases (Figure 1). Two patients, not bearing the
del(13q14.3), were affected by copy neutral loss of heterozygosity
(LOH), i.e. LOH without changes in DNA CN. Due to the low
patient number affected by this event, we did not perform any
further analyses for these cases.

Analysis of the clinical parameters at diagnosis of the whole
cohort was comparable to previously published DLBCL
populations [26]. To characterize patients affected by
del(13q14), we compared their clinical parameters to those
without the aberration (Table 1). Patients bearing the
aberration had more favorable prognostic features at time of
diagnosis with an international prognostic index (IPI) ‡2 in
54% versus 80% (7/13 versus 83/104; P = 0.036). Among 124
patients treated with R-CHOP21, no remarkable differences
were observed regarding response to treatment and relapse rate.
With a median follow-up of 4.9 years (25th–75th percentiles
ranging from 4 to 7 years), the 5-year OS was 64% (95% CI
34% to 83%) for patients with del(13q14.3) and 76.5% (95% CI
67% to 84%) for cases without the loss (P = 0.2821) (Figure 2).
Survival was not influenced by the length of the deleted regions.

We evaluated by real-time PCR the level of expression of the
two miRNAs, MIR15A and MIR16, between 6 cases with and 26
without del(13q14.3). No statistical difference was observed.

GEP analysis comparing 7 cases with del(13q14) versus 47
without, revealed 172 transcripts with a significantly differential

expression and 44 with more than twofold change

(supplemental Table S1, available at Annals of Oncology online).

Only four transcripts were significantly underexpressed: RB1

(3.5-fold) and FAS (3.2-fold), calponin 2 (CNN2; 1.9-fold) and

cDNA DKFZp686F2044 (1.2-fold). The search for groups of

functionally related transcripts revealed an overrepresentation

of genes involved in the cell cycle (Table 2). Also, the most

significant overlap with the chemical and genetic perturbations

gene sets was with the ‘BRCA2–Pearson Correlation Coefficient

network’, representing genes whose expression positively

correlate with that of BRCA2 across a compendium of normal

tissues (P = 5.16E-10). In accordance with the real-time data,

no statistical overlap was identified with genes possibly

regulated by miRNAs. BCL2, previously reported up-regulated

in CLL with del(13q14.3) [27], was not up-regulated in DLBCL

cases bearing the aberration. Reduced expression of RB1

expression in cases with 13q14.3 loss was validated by IHC

(Figure 3) on 26/166 cases, including 4 cases bearing the

deletion.
In order to identify lesions associated with del(13q14.3), we

compared the genomic profiles of samples diploid for 13q14.3

(further designated as wild type) with those affected by

del(13q14.3) (Figure 4). Del(13q14.3) was never observed as

single aberration. We observed that the profile of samples with

del(13q14.3) had more commonly concomitant aberrations on

different chromosomes (Fisher’s exact test P < 0.05; q < 0.2):

del(5q33.3), del(17p) (including TP53), del(18p11.32),

del(18p) and del(19p13.3-p13.2) (Table 3). Since a trend for

a higher frequency of 18q gain was observed among patients

Figure 1. High-resolution analysis of the del(13q14.3). Ideogram of chromosome 13 with a zoom on 4 Mb encompassing RB1, MIR15A/MIR16 and DLEU7.

The red line and the triangles on the top indicate the minimal common region; the red triangles below indicate the mapping localization of RB1, MIR15A/

MIR16 and DLEU7. Each line represents one of the 22 diffuse large B-cell lymphomas cases with del(13q14.3); black, deletion, gray, diploid status.
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with del(13q14) (8/23, 35%, versus 25/143, 17%; P = 0.08), we
evaluated the concomitant presence of del(18p) and gain of
18q, suggestive for an i(18q): this event occurred statistically
more frequent among cases with del(13q14) than cases
without the lesion (5/23, 21% versus 2/144, 1%; P < 0.001).
Moreover, 18q gains with a CN > 4 were also mainly
observed in patients with del(13q): 3/23 (13%) versus 1/143
(0.07%). Since RB1 was both down-regulated and target of
genomic losses, we evaluated also the genomic status of
the remaining gene, FAS, showing over twofold
down-regulations: a deletion was observed in 6/22 (27%)
cases with del(13q14.3) versus 8/144 (5%) without
del(13q14.3) (P = 0.001).

discussion

We have analyzed the genomic profiles of DLBCL samples
bearing or not the del(13q14.3), showing that cases carrying the
deletion were characterized by distinct genetic features, which
might affect cell cycle regulation and contribute to immune
escape of the lymphoma cells.

The 13q14.3-deleted region was large and comprised not
only the MIR15A, MIR16, DLEU2 but almost always also RB1
and DLEU7. Similarly to what reported by Li et al. [28],

Table 1. Clinical characteristics according to the presence of del(13q143)

Parameter 13q14 wild type (n = 143) del(13q14) (n = 22)

Value Percent Value Percent

Clinical characteristics

Median age (range), years 64 (18–87) 66 (38–83)

Age > 60 85/134 63 13/19 68

Gender (m : f) 62 : 69 47 : 53 9 : 10 47 : 53

ECOG PS >1 30/124 24 4/19 21

LDH > UNL 68/115 59 8/15 53

Stage III/IV 84/127 66 10/18 56

>1 Extranodal sites involved 35/119 29 3/17 18

IPI > 1 83/104 80 7/13 54

Bulky disease 26/113 23 4/15 27

B symptoms 42/124 35 4/18 22

BM involvement 24/117 20 3/16 19

GCB 45/92 48 10/17 62

Consensus cluster

B-cell receptor/proliferation cluster 29/45 64 6/7 86

Oxidative phosphorylation cluster 1/45 2 0/7 0

Host response cluster 15/45 33 1/7 14

HCV infection 11/78 14 1/10 10

Outcome

CR 95/120 79 13/17 76

PR 16/120 13 3/17 18

SD or PD 9/120 8 1/17 6

Median follow-up (range), months 21 (1–123) 25 (8–73)

Relapses 32/127 25 5/18 28

Deaths 33/131 25 2/18 11

Except for IPI ‡ 2 (P = 0.036), no statistical differences have been observed between the two groups.

m, male; f, female; ECOG PS, Eastern Cooperative Oncology Group performance status; LDH, lactate dehydrogenase; UNL, upper normal limit; IPI,

international prognostic index; BM, bone marrow; HCV, hepatitis C virus; GCB, germinal center like diffuse large B-cell lymphomas; CR, complete response;

PR, partial response; SD, stable disease; PD, progressive disease.

Figure 2. Overall survival of diffuse large B-cell lymphomas patients treated

with rituximab, cyclophosphamide, doxorubicine, vincristine and prednisone

repeated every 21 days according to 13q14 loss (14 versus. 108 cases; P = 0.28).
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a reduced expression of MIR15A and MIR16 was not
demonstrated in DLBCL cases bearing the del(13q14.3). At least
two types of deletions affecting 13q14.3 have been described in
CLL [29–32]: one smaller, encompassing the DLEU2/MIR15A/
MIR16 locus, more often biallelic and associated with lower
expression of MIR15A and MIR16; a second type, larger,
comprising also RB1, and usually monoallelic. Here, in DLBCL,
deletions appeared similar to the second type of lesion observed
in CLL, monoallelic, affecting RB1 and with apparently no
changes in MIR15A and MIR16 expression levels. Genes such as
RB1 or SETDB2, PHF11 and RCBTB1, as recently proposed
[30], could be the transcripts targeted by del(13q14.3) in
a subgroup of CLL as well in DLBCL.

The comparison of the clinical parameters between patients
with and without del(13q14.3) revealed a lower incidence of

unfavorable IPI but without differences in outcome for patients
treated with R-CHOP21. On the converse, in Burkitt
lymphoma, del(13q14.3), present in �35% of the cases, has
been reported to be associated with poorer survival [10].

In CLL, the size of the deletion affecting the 13q14 region has
been suggested to determine differences in prognostic features
at the time of diagnosis and in treatment outcome [29–31].
Here, the vast majority of patients had the large type of
deletions; thus, we could not compare their clinical
parameters to those of the cases bearing the larger deletion.
We only evaluated the impact in survival of the length of the
aberration and no statistically significant differences were
found, but, again, the number of cases with small deletions was
very small.

GEP analysis revealed mostly up-regulated genes in DLBCL
with del(13q) when compared with the remaining cases. The
reason remains unknown. As already discussed, this was
unlikely due to a direct increase of expression of MIR15A and
MIR16 target genes since neither reduced expression of the two
miRNAs was observed nor a statistical enrichment of their
target genes was demonstrated. However, intriguingly, in
accordance to what recently reported in the mouse model [15],
the differentially expressed genes were enriched of factors
involved in cell cycle regulation, which could play a role in
lymphomagenesis. Among the 13q2 DLBCL, RB1 was the most
significant down-regulated transcript, which can largely be
explained by the loss of its locus, similarly to what reported in
CLL [33]. The 3.5-fold reduction of its transcript in patients
bearing the lesion might have an important pathogenetic effect.
It is also worth of mentioning that the deletions always
comprised DLEU7. Recently, Palamarchuk et al. [34] have
identified this gene as a tumor suppressor gene in CLL since it
represents a potent inhibitor of the nuclear factor jB signaling.
Thus, its loss could play an important role in DLBCL too since
a constitutive activation of this pathway is relevant in a subset
of DLBCL patients [35].

The other down-regulated gene in DLBCL with del(13q14.3)
was FAS. This gene codes for the tumour necrosis factor
receptor superfamily, member 6 (TNFRSF6/CD95).
Interestingly, down-regulation of FAS can protect the cell from
apoptosis, contributing to immune escape [36]. This would
partially explain the notion that del(13q14.3) is

Table 2. Deregulated pathways in diffuse large B-cell lymphomas with del(13q14.3) based upon Gene Set Enrichment Analysis

Pathway Collection Number of genes in overlap P value

Interphase GO biologic process 4 0.0220 CDC7, TIMELESS, POLE

Tubulin binding GO molecular function 3 0.0353 TUBGCP5, CEP290, CENPJ

Cell cycle phase GO biologic process 6 0.0491 CDC7, TIMELESS, POLE,

RB1, NUMA1, MSH5

Genes involved in

centrosome maturation

Reactome 5 0.0112 NUMA1, TUBGCP5, PCNT,

CENPJ, CEP290

Genes involved in activation

of the prereplicative

complex

Reactome 3 0.0183 MCM6, POLE, CDC7

Genes involved in G2/M

transition

Reactome 5 0.0207 NUMA1, TUBGCP5, PCNT,

CENPJ, CEP290

GO, Gene Ontology.

Figure 3. RB1 staining in diffuse large B-cell lymphomas with and

without RB1 genomic loss at 13q14.3.
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underrepresented in immunodeficiency-related DLBCL [11,
12], in which the need to escape immunity is reduced. Similarly
to RB1, the significant deregulation of FAS appeared, at least
partially, due to DNA losses since its genomic locus was
significantly more commonly deleted in 13q2 DLBCL than in
the remaining cases. Other features specific of
immunodeficiency-related DLBCL cells or of the particular
microenvironment might determine GEP changes similar to
those observed here in these series of DLBCL from
immunocompetent hosts.

In DLBCL, del(13q) was never the sole lesion, differently from
CLL, in which the lesion is often isolated [31, 32, 37]. A series of
genomic lesions appeared associated with the occurrence of
del(13q14.3), including gains of the long arm of chromosome 18
with losses of the corresponding short arm suggestive of the
presence of i(18q) and losses of the short arm of chromosome
17. Interestingly, we have observed a similar pattern of
concomitant lesions (13q2/18q+/17p2) in splenic marginal
zone lymphomas [5], indicating that a series of genes mapping on
these chromosomes might be required for lymphoma
pathogenesis. The observed pattern of concomitant genomic
lesions could also be linked with an increased genomic instability
in these patients, in accordance with cell cycle deregulation. In
DLBCL, gain of 18q is more common among activated B-cell-like
DLBCL than in germinal center B-cell-like DLBCL, and the BCL2
and NFATC1 genes have been suggested as the involved genes
[20]. Here, the presence of del(13q.14.3) was not associated with

a specific DLBCL subtype. None of the genes mapping on 18q,
including BCL2 orNFATC1, appeared to be overexpressed in our
series of DLBCL cases with del(13q14.3): although this might be
due to sample size, we cannot rule out that other transcripts not
investigated by the Affymetrix U133 plus 2.0 array could be
altered. Del(17p11.2-p13.3), which includes theTP53 gene, is one
of the most common lesions in cancers. In DLBCL, only the
presence of somatic mutations and not the simple loss of 17p is
associated with a poor outcome [37], maybe explaining the
presence of this lesion in association with del(13q14.3) and an
apparently good outcome.

In conclusion, we have described that DLBCL cases bearing
del(13q14.3) present distinct genetic features that might affect
cell cycle regulation and might contribute to immune escape of
the lymphoma cells.
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