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Abstract
Motivation: The construction of evolutionary trees is one
of the major problems in computational biology, mainly
due to its complexity.
Results: We present a new tree construction method that
constructs a tree with minimum score for a given set of
sequences, where the score is the amount of evolution
measured in PAM distances. To do this, the problem of
tree construction is reduced to the Traveling Salesman
Problem (TSP). The input for the TSP algorithm are the
pairwise distances of the sequences and the output is
a circular tour through the optimal, unknown tree plus
the minimum score of the tree. The circular order and
the score can be used to construct the topology of the
optimal tree. Our method can be used for any scoring
function that correlates to the amount of changes along
the branches of an evolutionary tree, for instance it could
also be used for parsimony scores, but it cannot be used
for least squares fit of distances. A TSP solution reduces
the space of all possible trees to 2n. Using this order, we
can guarantee that we reconstruct a correct evolutionary
tree if the absolute value of the error for each distance
measurement is smaller than x

2 , where x is the length of the
shortest edge in the tree. For data sets with large errors, a
dynamic programming approach is used to reconstruct the
tree. Finally simulations and experiments with real data
are shown.
Availability: The software may be used via our cbrg server
at http://cbrg.inf.ethz.ch/MultAlign.
Contact: chantal.roth@nobilitas.com
Supplementary information: An html and postscript ver-
sion of this paper is available at http://chantal.nobilitas.
com/ (Papers section).

Introduction
The construction of optimal evolutionary trees is a very
challenging problem, since most versions of the problem
are NP complete (Agarwala et al., 1996). Even though the

∗To whom correspondence should be addressed.

problem has been studied extensively, evolutionary tree
construction still remains an open problem.

DEFINITION 1. A phylogenetic tree T = (V, E) is a
binary connected acyclic graph, where V are the vertices
(nodes) and E denotes the edges of the graph. A leaf in T
has degree 1 and L is used to denote the subset of V which
contain the leaves of T . We use T (S) to denote a tree with
leafset S.

In our context, a tree T (S) associated with a set of
sequences S = {s1, . . . , sn} is the tree that corresponds
to the evolutionary history of the sequences of S. The root
of the tree has no relevance in our context. The internal
nodes V represent (usually unknown) ancestor sequences.
There are three major families of methods for inferring
phylogenies that basically use three different classes of
scoring functions: parsimony and compatibility methods
(Estabrook et al., 1975, 1976; Sankoff, 1975; Dress and
Steel, 1993), distance based methods (Cavalli-Sforza and
Edwards, 1967; Fitch and Margoliash, 1967; Hogeweg
and Hesper, 1988; Hein, 1989; Gonnet and Benner, 1996),
and maximum likelihood methods (Felsenstein, 1973,
1981; Thorne et al., 1993).

DEFINITION 2. A Tree scoring function is a function
F : T → R.

DEFINITION 3. Let T be the set of all possible trees
that can be generated for a given set of sequences S =
{s1, s2, . . . , sn}. The optimal tree T̄ ∈ T is a tree such that
F(T̄ ) = min

T ∈T F(T ).†

Parsimony. The parsimony methods usually count the
number of amino acid or nucleotide substitutions in a
weighted or unweighted manner. They take a multiple
sequence alignment (MSA) as input and minimize the
number of changes to explain the corresponding evolu-
tionary tree. The construction of an optimal MSA, which

† For scoring functions where a larger value corresponds to a better alignment
multiply the function by −1.
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is needed as input, is also NP complete (Jiang and Wang,
1994). In addition, many algorithms for calculating MSAs
need an evolutionary tree as input, which makes the
problem circular.

Distance matrix methods. Distance matrix methods
fit a tree to a matrix of pairwise distances between the
sequences. Most distance methods use some form of
weighted or unweighted least squares measure. The
distances di j are given. The problem is to find distances
δi, j such that the score of the tree is minimized. The score
of a tree is often defined as:

F(T ) =
∑

i< j

(di j − δi, j )
2

d p
i j

(1)

where where p can be set to 0, 1 or 2. The only rigorous
way to get an optimal solution is by trying out all
tree topologies. However, finding the optimal topology is
generally an intractable problem, since the number of tree
topologies grows exponentially with the number of nodes.

Maximum likelihood. The maximum likelihood (ML)
approach chooses the tree which maximizes the proba-
bility that the observed data would have occurred. One
candidate for the best tree is the tree that maximizes the
likelihood. The strategy is to search over all trees, and
for each topology T to find the lengths of the edges that
maximize the likelihood P(D|T, M).

In this paper, we present an algorithm called CircTree
that takes unaligned amino acid sequences as input and
produces the evolutionary tree with minimum score. It
creates the correct evolutionary tree, if the error of each
distance is not greater than x

2 , where x is the length of
the shortest edge in the tree. In the following sections we
explain our tree scoring function. We then introduce the
main ideas and algorithm. Our method can be used for any
scoring function that correlates to the amount of changes
along the branches of an evolutionary tree, for instance it
could also be used for parsimony scores, but it cannot be
used for least squares fit of distances. Finally we show the
results of a simulation and some real examples.

Definitions
DEFINITION 4. The optimal pairwise alignment

OPA(s1, s2) of two sequences s1, s2 is an alignment with
the maximum score where a probabilistic scoring method
(Dayhoff et al., 1978; Gonnet et al., 1992) is used. We
refer to a pairwise alignment of two sequences s1, s2 with
〈s1, s2〉.

The optimal score and the P AM distance (see Defini-
tion 5) is determined via standard dynamic programming
(Smith and Waterman, 1981; Gotoh, 1982), where many
Dayhoff matrices are used (for each PAM distance there

Fig. 1. Traversal of a tree using the SP measure. Some edges are
traversed more often than others. The numbers indicate how often
an edge was traversed.

is a different Dayhoff matrix). An affine gap cost is used
according to the formula a + lb, where a is a fixed gap
cost, l is the length of the gap and b is the incremental cost
(Benner et al., 1993).

DEFINITION 5. An ε-PAM unit is the amount of evolu-
tion which will change, on average, ε% of the amino acids,
when ε is infinitely small. The function PAM (s1, s2) is the
PAM distance of two sequences s1, s2 that maximizes the
OPA score.

Methods
Our CircTree method is based on a probabilistic scoring
function for MSAs that takes into account an associated
evolutionary tree. A variant of this scoring function can
be used to evaluate evolutionary trees as well. From this
scoring function, which we call CS measure, we derived
an algorithm for reconstructing an optimal evolutionary
tree. We will first introduce the scoring function and then
describe the algorithm.

Sum of pairs versus circular sum measure
The sum of pairs (SP) measure is a well known scoring
function for MSAs (Carillo and Lipman, 1988; Kece-
cioglu, 1993; Gupta et al., 1995, 1996). To calculate the
score of an MSA with the SP measure (Carillo and Lip-
man, 1988), all

(n
2

)
scores of the pairwise alignments are

added up. Sum of pairs methods are obviously deficient
from an evolutionary perspective. Consider a tree (Fig-
ure 1) constructed for a family containing five proteins.
The score of a pairwise alignment 〈A, B〉 evaluates the
probability of evolutionary events on edges (u, A) and
(u, B) of the tree; that is, the edges that represent the
evolutionary distance between sequence A and sequence
B. Likewise, the score of a pairwise alignment 〈C, D〉
evaluates the probability of evolutionary events on edges
(C, w), (w, v) and (v, D) of the tree. The edge lengths
correspond to the PAM distances.

By adding ‘ticks’ to the evolutionary tree that are drawn
each time an edge is evaluated when calculating the SP
score (Figure 1), it is readily seen that with the SP method
different edges of the evolutionary tree of the protein
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Fig. 2. Traversal of a tree in circular order.

family are counted a different numbers of times. There is
no theoretical justification to weight some branches more
than others. In addition, it is not simply the root that is
weighted more than others, as can be shown with larger
examples. Thus, SP methods are intrinsically problematic
from an evolutionary perspective for scoring MSAs.

Traveling salesman
DEFINITION 6. A circular order C(T ) of a set of

sequences S = {s1, . . . , sn} is any tour through a tree T (S)

where each edge is traversed exactly twice, and each leaf
is visited once.

This problem can be resolved by traversing the tree in
a circular order, that is, from leaf A to B, from B to C,
from C to D, from D to E and then back from E to leaf A
(Figure 2). All edges are counted exactly twice. A circular
order is the shortest possible tour through a tree where
each leaf is visited once (shortest means smallest sum of
edge lengths) (see Figure 2) (Gonnet et al., 1999).

Scoring an evolutionary tree
Our scoring function is based on this circular order. If we
add the PAM distances of all the pairwise alignments in
a circular order C with respect to the evolutionary tree T
and divide this sum by two, we count each edge of the tree
once. Note that we force the tour to go through all leaves
in the tree. So the function for calculating the score or total
path length of a tree T (S) with a circular order C is:

F(T ) = 1
2

n∑
i=1

PAM(sCi , sCi+1) (2)

where Cn+1 = C1, n is the number of sequences, and PAM
is the PAM distance of the optimal pairwise alignment (see
Definition 4). We will use F(C) to denote the path length
when a circular order C is used as input instead of a tree:

F(T ) = F(C) = 1
2

n∑
i=1

PAM(sCi , sCi +1) (3)

when C is a circular order of T . Note that the scoring
function does not depend on the root of the tree or any
internal nodes.

Finding a circular order
The problem we consider is to find such an order without
having any information about the tree structure. But we
know that a circular order is the shortest tour through a
tree (Gonnet et al., 1999).

To solve this problem we reduce it to the symmetric
Traveling Salesman Problem (TSP): given is a matrix M
that contains the

(n
2

)
distances of n cities (Johnson, 1987,

1990). The problem is to find the shortest tour where
each city is visited once. We use a modified version of
the problem: in our case, the cities correspond to the
sequences and the distances are the PAM distances of the
pairwise alignments.

In practice, the TSP is very well studied and optimal
solutions can be calculated within a few hours for up to
1000 cities and in a few seconds for up to 100 cities.‡

For real applications we have seldom more than 100
sequences to compare simultaneously. Furthermore, the
calculation of the optimal TSP solution usually takes only
a small fraction of the time it takes to compute all pairwise
alignments to derive the PAM distances.

DEFINITION 7. The TSP order TSP(S) of a set of
sequences S = {s1, .., sn} is the order of the sequences
that is derived from the optimal solution of a TSP, where
the distances between the sequences are the pairwise PAM
distances.

DEFINITION 8. A tour Ci is shorter than a tour C j

(Ci < C j ) if the path length of the tour Ci is smaller
than the path length of the tour C j .

Since we always talk about the same input sequences
S, we will use C instead of C(S) and T instead of T (S).
Let Cmin be the circular tour that is derived with a TSP
algorithm, where the input are the pairwise PAM distances
of the input sequences S. Since F(C) is the score of an
evolutionary tree with circular order C , F(Cmin) is the
minimum score, if Cmin is a circular order of Tmin.

LEMMA 1. There exists no tree with a lower score than
Tmin.

PROOF. Assume this statement is wrong and there
exists a tree T ′ with a smaller score than Tmin. Assume
further that we know this tree T ′. Hence we can derive a
circular order C ′ easily. The sum of the PAM distances in
this order (F(C ′)) is the score of the tree. If T ′ really has a
smaller score, then the score derived from C ′ would have
to be shorter than the score derived from Cmin, which is a
contradiction.

‡ There are heuristics for large scale problems that calculate near optimal
solutions that are within 1–2% of the optimum Groetschel and Holland
(1991); Padberg and Rinaldi (1991).
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Fig. 3. A non-circular order traverses at least one edge (x) at least
four times.

In summary, we can compute a circular order Cmin
without knowing Tmin. With Cmin we can compute the
minimum score F(Cmin) of the unknown tree Tmin.

Error bounds
In reality evolution is a random process and we are
estimating distances from a finite sample. So even if our
model of evolution was absolutely correct, there is always
some variance, which we perceive as an error ε ∈ R. In
addition, our model of evolution is not perfect, which adds
further error. Hence each distance measurement has some
error. We would like to determine how small the errors of
the distance measurement may be in order to get a correct
circular tour. We will first consider the error if an arbitrary
circular order is chosen and then discuss the error if a TSP
order is chosen, as in our algorithm.

DEFINITION 9. Let L be a set of n leaves of a tree T .
The distance between two leaves x, y ∈ L is δxy . It is the
unique path length from leaf x to leaf y. We assume that
distances are symmetric, hence δxy = δyx .

Error bound for any circular order
Given is a tree T (see Figure 3). We want to determine how
large the distance measurement error may be, such that we
still get a correct order. To determine this error, we do the
opposite and determine the smallest possible error such
that we get a wrong circular order C ′, which means that
at least one edge x is traversed more than twice. Since we
are interested in the worst case scenario, we only consider
the shortest edge x because the longer the edges are, the
larger the errors may be. A circular order C will pass edge
x exactly twice. Valid circular orders in Figure 3 are [A,
B, C, D] and [A, B, D, C]. Let δi j be the distance without
error and let εi j be the error of the distance measurement
(so the measured distance would be δi j + εi j ).

DEFINITION 10. A subtree Tu(V ′, E ′) of T (V, E) is a
tree Tu with V ′ ∈ V , E ′ ∈ E, where u is the root of Tu and

Fig. 4. δAB + δCD − δDB − δCA = −2x .

u ∈ V ′, and all the directed paths from u to the leaves in
T are also present in Tu .

In other words: if we remove the parent edge above u in
T , we get two graphs, one of which is Tu , a subtree of T .

An incorrect order C ′ (right side of Figure 3) will pass
edge x four times. Two non-circular orders are [A, C, B,
D] and [A, D, B, C]. In all cases, subtrees A, B, C and
D are all traversed in the same way, so we can represent
them with any leaf in the subtree. If the output of a
TSP algorithm is a wrong circular order C ′, the following
inequality must be satisfied:

δAB + δBC + δCD + δDA > (4)

δAD + δDB + δBC + δCA (5)

We now include the errors εi j and simplify the above
inequality (4):

δAB + εAB + δCD + εCD

−δDB − εDB − δCA − εCA > 0 (6)

But when our distance matrix would be additive, without
any error, then the following equation (7) holds (see
Figure 4):

δAB + δCD − δDB − δCA = −2x (7)

If we subtract equation (7) from inequality (6), we get:

εAB + εCD − εDB − εCA > 2x (8)

The conclusion is: as long as the absolute value of each
error εi j is smaller than x

2 , we get a correct circular order.

Error bound for a TSP circular order
The circular order we use is not just any circular order, but
it is the best (shortest) circular order,§ as it is the solution
of a TSP algorithm.

§ Since we assume errors in the distances, we assume that not all circular
orders have exactly the same length. A TSP algorithm will yield the shortest
circular order.
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Fig. 5. If the tour C ′ that was obtained from the optimal solution of a
TSP, then all |A|·(|A|−1)·|B|·)(|B|−1)·|C|·(|C|−1)·|D|·(|D|−1)

other circular orders have to be greater than the wrong TSP order C ′.

In order to get a wrong tour, all other circular tours that
involve the same distances to cross edge x must be larger
than some wrong order C ′ (otherwise, if just one of the
other correct circular orders Ci would yield a shorter tour
than C ′, then the TSP algorithm must return the correct
tour Ci ).

The number of different circular orders there are for
traversing x is depicted in Figure 5: for the subtree A there
are |A| possible ways to start and |A| − 1 end the cycle in
the subtree. The same accounts for subtrees B, C and D.
There are in total |A| · (|A| − 1) · |B| · (|B| − 1) · |C| ·
(|C| − 1) · |D| · (|D| − 1) circular orders that have to be
greater than the wrong order C ′. So for instance for a tree
with 16 leaves, the edge in the middle has (4 ∗ 3)4 orders
associated with it, which is more than 20 000. And all of
them have to be greater than the wrong order C ′.

The probability for getting a wrong order cannot be
determined in an easy way, as the distances are not all
independent in different orders. But we can see that the
probability to get a wrong order using a TSP algorithm is
extremely low.

Tree construction algorithm
We now present a tree construction algorithm called Circ-
Tree that is based on this circular order C . The input for
the algorithm is the PAM distances of the pairwise align-
ments plus the circular order C of the optimal tree Tmin.

Idea of the algorithm
DEFINITION 11. Two leaves/subtrees a, b are con-

nected in a tree T if the two leaves/subtrees have the same
parent node in T .

Fig. 6. δAB + δCD − δAC − δBD = 0.

First we reorder (and renumber) the leaves in order of
C . Since we consider binary trees only, we know that at
least two leaves are connected. When two leaves that are
connected are swapped, the result is a tree with the same
topology. If we traverse the tree with the swapped leaves
in the new order, we get the same path length.

But when two leaves are swapped that are not connected
(see Figure 3), the new ordering of the leaves is not
circular anymore. Hence, some edges of the tree are
traversed too often when the score is calculated using this
new order. This leads to a larger (worse) score.

Hence the first step is to swap each of the neighboring
pair of leaves and to calculate the resulting total score.
If the score stays the same, we know that the two leaves
are connected. If the score increases, the leaves are not
connected.

DEFINITION 12. Given is a tree T and a circular order
C and leaves L = S = {s1, . . . , sn}. Rename the leaves in
a way s.t. the order of the leaves is in circular order C . We
define d(si ) to be: d(si ) = δsi−1si + δsi+1si+2 − δsi−1si+1 −
δsi si+2

EXAMPLE 1. Assume leaves B and C were connected
(see Figure 6). In the tree the distance δAB plus δCD is
the same as the distance δAC plus δBD (when the leaves B
and C are interchanged), because the tree topologies are
identical. The difference between those two sums d(B) is:

d(B) = δAB + δCD − δAC − δBD = 0 (9)

whereas d(C) is 2x [if we try to swap the leaves (C, D)]
(see Figure 7), because the two leaves are not connected.
So with the function d(si ) we can determine whether
leaves si and si+1 are connected or not.

Note that d(si ) corresponds exactly to the equation we
used in the determination of the bound for the circular
order. This means that the same error bound holds for the
tree construction as for the circular order.

CircTree algorithm. Given is a set of sequences S =
{s1, . . . , sn}. First, the optimal circular order C is calcu-
lated with a TSP algorithm. The sequences are renamed
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Fig. 7. δBC + δDE − δBD − δCE = −2 · x.

with respect to that order. Starting with the optimal cir-
cular order C , each of the n pairs of neighboring leaves
are swapped and the path difference d(si ) is calculated for
i = 1 . . . n. To save computation time, we initially calcu-
late all n d(si ), sort them, and store them in a list D (see
Figure 9 in the Appendix).

The best connection is the one with the smallest d(si ):

ε = min
1≤i≤n

d(si ).

The leaves are connected, and one of the connected leaves
is chosen as a representative for the next steps. For the
next connection step only two path differences have to be
recalculated.

Since there are n − 2 internal nodes (without the root),
the total computation needs O(n log(n)) for the sorting
and linear time in n for the actual tree construction. Once
the tree structure is known the exact places of the nodes
can be obtained with any least squares method (Cavalli-
Sforza and Edwards, 1967; Fitch and Margoliash, 1967;
Hogeweg and Hesper, 1988), which takes in the order of
n2 time. So given a circular order C , the tree topology can
be determined in O(n log(n)) time. When only the input
sequences are given, then the overall computation time
when only input sequences are given is determined by the
TSP algorithm.

Note that the calculation of the TSP takes only a fraction of
computation time in real cases (up to about 100 sequences)
than the calculation of the

(n
2

)
pairwise scores.

Search space. For a tree with n different leaves, there
are in the order of N (n) = 3 × 5 × · · · × (2n − 5) =∏n−3

k=1 2k + 1 different tree topologies (Felsenstein, 1978).
The TSP solution reduces the search space to O(2n−3)

different trees that could be built with that order. So given
a correct TSP order, there are 2n−3 possible different trees.
So far we know that if the absolute value of the error of
each distance measurement is not larger then x

2 , where x
is the shortest edge length, we can guarantee that the tree
construction is correct.

Fig. 8. Percentage of correct constructions and time for eight and 16
leaves.

Dynamic programming approach
The dynamic programming version of our algorithm is
easy: instead of connecting the two leaves with the
smallest error, the best k connections are chosen (where
k is a user specified parameter). A second parameter, m,
limits the number of total trees in each step, because in the
worst case the number of trees may grow exponentially.
At the end, the tree with the overall smallest error is
chosen. This way the probability to get an edge x wrong
is much lower: in order to get a wrong connection, all k
connections have to be wrong in each step.

If we would simply keep all k trees at each step, in the
worst case we would get 2n−3 trees, as this is the number
of possible different trees that can be built given a circular
order. Note that this can only happen if the tree depth is
close to n, or if k is very large.

In real cases, many trees will end up being the same
during the construction process. For instance, whether we
first connect leaves 1, 2 and then 3, 4 or 3, 4 and then 1, 2
does not matter. The number of different trees at the end is
seldom more than 100 when performing experiments for
n ≤ 50.

In order to determine whether two trees are equal, we
use a tree signature function G(T ). For two trees T and
T ′, G(T ) = G(T ′) if and only if the trees have the same
topology.¶

Simulation
The simulation is done as follows: based on the amino
acid frequencies, a random amino acid sequence is
produced, which is the root of a tree. We let the sequence
mutate randomly into different directions, according to
a stochastic process, where the mutation probabilities
are acquired from a Dayhoff matrix according to the
estimated PAM distance. No molecular clock is assumed.
Insertion and deletion events happen corresponding to the
model (Baldi et al., 1994). This process is continued for a
certain time. At the end, some number of sequences are
collected. Since we keep track of all mutation events, we

¶ It is theoretically possible that two trees have the same signature even if they
are not the same, due to the limited range of integer values in real computer
systems, but this is extremely rare.
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Fig. 9. Construct a tree T from a set of sequences S = {s1, .., sn}
that has the minimum score.

know the correct tree for the collected set of sequences.
For each simulation, the data (sequences or distances)
were fed to different algorithms: ProbModel (Gonnet
and Benner, 1996), the FITCH algorithm of the PHYLIP
package (Fitch and Margoliash, 1967) and our new
CircTree method.

We did the simulation for many combinations of the
following parameters: (a) maximum PAM distances of
any two sequences; (b) sequence length; (c) number of
leaves. The results are summarized in Figure 8. In each
experiment we collected the number of exact construction
of trees in percentage, i.e. how often the constructed tree
was equal to the real tree, time in seconds (CPU) and
other data which is not shown here (i.e. tree fitting index,
total PAM distance etc). Note that the CircTree method is
implemented in Darwin, which is an interpreted language
and thus much slower than C.

In the first experiment for a tree with eight leaves and
maximum PAM distance of 100 (see Figure 7, top) the
CircTree method gave the best result with 93% exact
constructions, followed by FITCH (80%) and ProbModel
(73%). In general for trees with eight leaves (or less) the

CP11_MESAU
CP11_MOUSE CP11_RAT

CP11_RABBIT

CP11_ONCMY

CP12_RABBIT

CP12_CHICK

root

CP12_MOUSE
CP12_MESAU

Fig. 10. Cytochrome P450 tree constructed with new method.

CircTree methods gave the best results. For 16 leaves
(or more) sometimes the algorithms from the PHYLIP
package (see Figure 7, bottom) gave the best results,
sometimes the ProbModel and sometimes the Circular
method. More simulations need to be done on larger trees
to see if one particular method is suited best for a specific
tree size and type.

The conclusions we draw from this simulation is that our
method is useful and produces good results comparable
to other frequently used tree construction algorithms, and
in particular for small trees our algorithm produces better
results in the simulation. Real examples are shown in the
Appendix.

Discussion
In this paper we have introduced a new tree construction
method that uses the solution of a TSP problem. The input
to the TSP problem are the pairwise PAM distances which
are calculated using a dynamic programming algorithm
and the output is a circular order of the unknown
evolutionary tree. Using this order we can reconstruct the
corresponding evolutionary tree. We can guarantee that
the correct tree is constructed if the absolute value of the
errors of the distance measurement is less than x

2 , where
x is the length of the smallest branch. For larger errors
a dynamic programming approach is used. Simulation
studies show that the algorithm produces good results,
comparable to other algorithms (FITCH, ProbModel), and
produces better results for small trees. The algorithms are
implemented into the Darwin package (Gonnet, 1994),
and the algorithms are available on our server at http:
//cbrg.inf.ethz.ch.
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Fig. 11. Hemoglobin alpha-I constructed using the new method.

Appendix
Algorithm
Figure 9 is a rough overview of the algorithm. Only the
non-dynamic programming algorithm is shown. T is a list
of subtrees that is filled when leaves are connected. At the
beginning, T simply consists of the leaves. Some details
are left out, for instance, if the algorithm is implemented
it is faster to keep a list of pointers that points a leaf to the
corresponding T [i] instead of renumbering the leaves. But
too keep it simple enough we did not want to go too much
into details.

Examples
We tested the new tree construction method on several pro-
tein families, two of which are shown here. We constructed
the trees with two other methods, the FITCH algorithm
(Fitch and Margoliash, 1967) and the ProbModel (Gonnet
and Benner, 1996). In all cases all the three algorithms
agreed on the tree topology. We only took nine and 15
proteins for drawing reasons, but the algorithm allows any
number of sequences.

The first one is the IA1 and IA2 subunit of Cytochrome
P450 (see Figure 11). In this example you can clearly see
a gene duplication (symmetry). The upper half is the IA1
subunit, the lower half is the IA2 subunit.

The second example is the Hemoglobin alpha-I chain
from 15 species. The MSA below was calculated us-
ing the ProbModel and gap heuristics (Korostensky
and Gonnet, 1999). The score is the CS measure as
described in (Gonnet et al., 1999). This alignment
is the optimal alignment, as the maximum possi-
ble score is equal to the score. The TSP order is:
[2, 11, 3, 5, 1, 10, 4, 15, 14, 8, 12, 7, 6, 13, 9, 2].
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