
THE REVIEW OF SYMBOLIC LOGIC

Volume 3, Number 4, December 2010

UNFOLDING FINITIST ARITHMETIC

SOLOMON FEFERMAN

Stanford University

and

THOMAS STRAHM

University of Bern

Abstract. The concept of the (full) unfolding U(S) of a schematic system S is used to answer
the following question: Which operations and predicates, and which principles concerning them,
ought to be accepted if one has accepted S? The program to determine U(S) for various systems S
of foundational significance was previously carried out for a system of nonfinitist arithmetic, NFA; it
was shown that U(NFA) is proof-theoretically equivalent to predicative analysis. In the present paper
we work out the unfolding notions for a basic schematic system of finitist arithmetic, FA, and for an
extension of that by a form BR of the so-called Bar Rule. It is shown that U(FA) and U(FA+BR) are
proof-theoretically equivalent, respectively, to Primitive Recursive Arithmetic, PRA, and to Peano
Arithmetic, PA.

§1. Introduction. This is a continuation of the program introduced in Feferman (1996),
to determine the unfolding of the principal foundational schematic systems S, from arith-
metic through analysis up to set theory. Roughly speaking, the concept of the full unfolding
of S, U(S), is used to answer the following question:

Given a schematic system S, which operations and predicates, and which
principles concerning them, ought to be accepted if one has accepted
S?1

A quite general theory of operations and predicates serves as the framework in which
to formulate this notion. Then, for any specific S we expand that to include the basic
operations given on the universe of discourse of S together with the basic logical operations
used to construct the predicates of S.

The preceding article in this series, Feferman & Strahm (2000), provided the first ex-
ample of these notions worked out in detail, namely for a schematic system of classical
nonfinitist arithmetic, NFA. Its basic operations on individuals with the constant 0 are
successor, Sc, and predecessor, Pd; the basic logical operations are ¬, ∧, and ∀. It is given
by the following axioms, where we write as usual, x ′ for Sc(x):

(1) x ′ �= 0

Received: November 26, 2009
1 Actually, three levels of unfolding were proposed in Feferman (1996): they are, in increasing

order, U0(S), U1(S), and U(S). U0(S) is the operational unfolding of S, that is, it only concerns
the operational part of our basic question; the full unfolding of S, U(S), adds to U0(S) the
predicates that ought to be accepted if one has accepted S, including those generated by a kind of
join operation; the intermediate system U1(S) is like U(S) without use of that operation.
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666 SOLOMON FEFERMAN AND THOMAS STRAHM

(2) Pd(x ′) = x

(3) P(0) ∧ (∀x)[P(x) → P(x ′)] → (∀x)P(x).

Here P is a free predicate variable, and the intention is to use the induction scheme (3) in a
wider sense than is limited by the basic language of NFA or any language fixed in advance.
Namely, one applies the general rule of substitution

A[P] ⇒ A[B/P] (Subst)

to any formulas A and B that arise in the process of unfolding NFA. The means for carrying
out that process is provided by our background theory of operations, which includes a
general scheme of recursive definition of partial operations, to which induction may be
applied successively to verify that more and more operations are defined for all values, and
similarly for predicates. The main result of Feferman & Strahm (2000) is that U(NFA) is
proof-theoretically equivalent to predicative analysis.2 In Section 2 below we review the
work on U(NFA) in more detail both as a preliminary to the new work here on finitist
arithmetic, as well as to show how it may be simplified by use of a background theory of
operations in the partial combinatory calculus.

In the present paper we work out the unfolding notions first for a system of finitist
arithmetic, FA, and then for an extension of that by a form BR of the so-called Bar Rule.
These are both provided with the same basic operations on individuals as given for NFA.
But the logical operations now are restricted to ∧, ∨, and ∃. Provable propositions A(x)
are interpreted as verifying A(n) for each natural number n, but we do not have universal
quantification over the natural numbers as a logical operation. Nor do we have negation
(except of numerical equations) which when applied to formulas of the form (∃x)A(x)
could be interpreted as having the effect of universal quantification. It will be shown that
U(FA) contains the quantifier-free system of Primitive Recursive Arithmetic, PRA. In the
verification of this we reason about recursion equations of the form

F(x, y) = G(x) if y = 0, else H(x, Pd(y), F(Pd(y))).

If G, H have already been recognized to be total operations, then we prove that F is
total—that is, that F(x, y) is defined for each y—by induction on y. This makes use of our
framework notion of a term t being defined—in symbols, t↓—which is a special kind of
existential statement. In order to reason from such statements to new such statements given
the above restriction of the logical operations of FA, we make use of a sequent formulation
of our calculus, that is, the statements proved are sequents � of the form � → A, where �
is a finite sequence (possibly empty) of formulas, and A may also be the false proposition
⊥. Moreover, induction must now be given as a rule of inference involving such sequents.
In these terms, the basic axioms and rules of FA are as follows:

(1) x ′ = 0 → ⊥
(2) Pd(x ′) = x

(3)
� → P(0) �, P(x) → P(x ′)

� → P(x)
.

2 In more detail, the results of Feferman & Strahm (2000) are that U0(NFA) ≡ PA, U1(NFA) ≡
RA<ω, and U(NFA) ≡ RA<�0 , where, as usual, PA is the system of Peano Arithmetic, RA<α
denotes the system of ramified analysis in levels < α, �0 is the so-called Feferman–Schütte
ordinal that measures the limit of predicative reasoning, and the relation ≡ is that of proof-
theoretical equivalence, with conservation from left to right for suitable classes of formulas.
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UNFOLDING FINITIST ARITHMETIC 667

Now the appropriate substitution rule (Subst′) takes us from any inferred rule of inference
�1(P), . . . , �n(P) ⇒ �(P), to the result of substituting a formula B for P throughout.
The main result obtained for the unfolding of this system in Section 3 below is that
U(FA) ≡ PRA.3

The formulation of a version BR of the Bar Rule under the above formal restrictions
is introduced in Section 4, where it is shown how nested recursion on an ordering for
which the no descending sequences property NDS has been verified can be inferred from
a suitable form of induction on that ordering.4 It follows from the work of Tait (1961),
that the NDS property can be verified in U0(FA + BR) for the natural ordering associated
with each ordinal less than Cantor’s ordinal ε0. (A compact form of the argument for that,
communicated to us by Tait, is presented in the Appendix to this article.) This shows that
PA is a lower bound to the proof-theoretical strength of U0(FA + BR). The work on the
unfolding of this system is completed with the proof that the full unfolding U(FA + BR)
does not go beyond PA in strength.

Before going into the detailed work, something must be said in the remainder of this
introduction about how our formulation of FA and its possible extension by BR relates
to the extensive literature on finitism, both informal and formal, which has its source in
Hilbert’s consistency program. This must necessarily be comparatively brief and we shall
just cite a few references; the online encyclopedia article Zach (2003) provides an excellent
introduction and many further key references; see also Zach (2006) for an expanded version
of Zach (2003).

Hilbert viewed reasoning about the actual infinite as the source of possible inconsis-
tencies in mathematics. He thus proposed to establish the consistency of stronger and
stronger formal systems for mathematics, beginning with that for Peano Arithmetic, by
means entirely of finitist reasoning from which all references to the actual infinite, explicit
or implicit, would have to be excluded. Following some suggestions by Hilbert as to
how his program might be carried out, initial contributions to it were made by Bernays,
Ackermann, von Neumann, and Herbrand; however, none went beyond weak subsystems
of PA. Whether there is any limit to what could be accomplished by purely finitary means
would have to depend on a precise explanation of what are the allowed objects and methods
of proof of finitism. But Hilbert was rather vague about both of these, saying such things
as that it relies entirely on a “purely intuitive basis of concrete signs.” These signs are
finite sequences of symbols, for example, as given by the expressions of a formal system,
of which the most basic such signs are the tallies |, ||, |||, ... representing the positive
integers. 5 Given that idea of its subject matter, what are the allowed finitistic methods
of definition and proof? Even in the great collaboration with Bernays, Grundlagen der
Mathematik Hilbert & Bernays (1968, 1970), there is no detailed explanation of that. Given
Hilbert’s great optimism about the prospects for his program without limit it may be that
he thought people would recognize any piece of reasoning used to carry it out as finitist
on the face of it, without requiring any general explanation of what makes it so. At any
rate, one gleans from Hilbert & Bernays (1968), pp. 32ff that finitism at least includes

3 In this case, all three unfoldings of FA have the same strength; that result was announced in
Feferman & Strahm (2001).

4 NDS is formulated via the adjunction of a free (“anonymous”) function constant f for a possible
infinite descending sequence.

5 As Gödel showed by his arithmetization of syntax, the former can be reduced to the latter.
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668 SOLOMON FEFERMAN AND THOMAS STRAHM

PRA. 6 It is a matter of some historical discussion whether Hilbert accepted as finitist
certain operations and inferences going beyond PRA; the evidence according to Zach
(2006), p. 425, is that he did, at least implicitly, since he accepted the proof (by Ackermann,
among others) of consistency of a system corresponding to PRA necessarily making use
of stronger principles.

Gödel’s (1931) second incompleteness theorem led von Neumann to the conclusion that
Hilbert’s program could not succeed for PA; Gödel thought at first that it might, but within
a few years he came around to the same opinion. In order for that to be definitive, the crucial
question would depend on a precise explanation of how finitism ought to be characterized,
independently of the historical question of what Hilbert and his circle judged particular
arguments to be, or not be, finitistic. Gödel’s own thoughts on this will be described
below. The first proposed formal characterization was made by Kreisel (1960), then in
a revised form in his article Kreisel (1965), with further discussion in Kreisel (1970);
according to that, finitism is equivalent in strength to PA. The second proposed formal
characterization was made by Tait in Tait (1968) and Tait (1981), the latter reprinted in Tait
(2005); according to that, finitism is equivalent in strength to PRA. We shall take up these
formulations in reverse order. Both agree that it makes sense to characterize the objects
and methods of finitism only from a nonfinitist point of view.7

On Tait’s view, the essence of finitism lies in the rejection of all reference to infinite
totalities. In particular functions on the natural numbers qua sets of order pairs cannot
be part of the subject matter of finitism, not even finitist functions in general. To verify
that a particular function F on the natural numbers given by a certain rule is finitist one
must have a finitist proof that shows how to construct for each possible argument its value
under F . Suppose, for example, G and H are given finitist functions, and F is introduced
by the equations F(x, 0) = G(x), and F(x, y′) = H(x, y, F(x, y)). The argument that
F is finitist comes from the recognition that the construction of F(x, y) for y �= 0 is
reduced to that of F(x, Pd(y)) and that the sequence y, Pd(y), Pd(Pd(y)) terminates with
0. The finitist functions are evidently also closed under the other procedures generating
the primitive recursive functions, so by this argument each primitive recursive function is
finitist. This led Tait to state the following:

THESIS. The finitist functions are precisely the primitive recursive func-
tions (Tait, 2005, p. 29).

Concerning the upper bound here, Tait says that one can’t prove that the finitist functions
do not go beyond those that are primitive recursive, since the concept of finitist function
is not a rigorous one (the situation is analogous to that of Church’s Thesis). Rather, “[w]e
must argue that every plausible attempt to construct a finitist function that is not primitive
recursive either fails to be finitist according to our specifications or turns out to be primitive
recursive after all” (Tait, 2005). An ancillary argument is made for the thesis that the finitist
proofs are just those that can be formalized in PRA.

6 Parsons (1998) has argued that the ideas of concrete intuition expressed by Hilbert do not
allow one to go beyond what can be obtained by addition, multiplication, and bounded
quantification; if that is granted, not even exponentiation would be accepted as a finitist
operation.

7 This is of course analogous to the argument that a characterization of predicative definability and
provability can only be given from an impredicative standpoint.
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UNFOLDING FINITIST ARITHMETIC 669

As presented in Kreisel (1965), pp. 169–172, Kreisel’s characterization of finitist proof
is given in terms of an autonomous progression of quantifier free systems, Tα , employing
an auxiliary predicate O(ξ) interpreted as expressing that the (concrete) structure showing
how the ordinal ξ is built up can be finitistically visualized. It is assumed that if we
have derived O(α) then we can infer O(αω), that is, we can visualize an ω-sequence
of copies of α; furthermore, we can infer iteration of a previously recognized operation α
times. The essential autonomy condition is that one can proceed to stage Tα if one has a
proof in an earlier Tβ that all ξ < α can be visualized. The result that the autonomous
ordinals are exactly those less than ε0 is stated without proof in Kreisel (1965), p. 172;
it follows that the union of the autonomous systems Tα is proof-theoretically equivalent
to PA.

Let us return to Gödel’s views on the limits of finitism. This has been discussed at length
in Feferman (to appear), where much of the evidence rests on his posthumously published
notes for a 1933 lecture in Cambridge, Massachusetts Gödel (1995) and a 1938 lecture
to Zilsel’s seminar in Vienna Gödel (1995), as well as on extended correspondence with
Bernays, reproduced in Gödel (2003). In both the 1933 and 1938 lectures Gödel informally
describes several levels of constructivity, and equates finitist reasoning with the lowest
level, given by means of a system A that is to meet several conditions. The system A
has been interpreted by its commentators as a form of PRA. Among the conditions on A,
though, is one that suggests that existential quantification may be formally employed in
positive contexts:

Negatives of general propositions (i.e. existence propositions) are to have
a meaning in our system only in the sense that we have found an example
but, for the sake of brevity, do not wish to state it explicitly. I.e., they
serve merely as an abbreviation and could be entirely dispensed with if
we wished. (Gödel 1933, p. 51).

Thus, among these proposed characterizations, our own formulation of FA may be
considered to be closest to that of Gödel. On the other hand, that of FA + BR is closest
to a suggestion made by Kreisel “for a more attractive formulation” in Kreisel (1965), p.
173 directly following his proposed characterization in terms of autonomous progressions.
Namely, that is to add to PRA “free function variables and a constructive existential
numerical quantifier with the obvious rules” plus the inference rule from NDS on a given
ordering R to a suitable form of transfinite induction on R for existential formulas. He
states that it is sufficient to infer nested recursion on R and thence to use Tait (1961) to
justify induction on each ordinal less than ε0.8 Interestingly, though Gödel and Kreisel
were in close contact in the 1960s and Gödel was well aware of the latter’s proposed char-
acterization of finitism via an autonomous progression, he did not refer to this suggestion
in his letter of 25 July 1969 to Bernays in which he toyed with the idea that a suitable
formulation of BR that brings one up to ε0 comes close to finitism (cf., Gödel, 2003,
p. 271).

Our aim here is not to argue for any one principled view of how finitism ought to be
characterized. Rather, our purpose is to point out that there are natural formulations in
terms of schematic systems for which the unfolding process yields in one case a system

8 However, Kreisel’s particular statement in (1965), p. 173 of the form of transfinite induction on
R for existential formulas is prima facie logically defective and not at all adequate to its intended
purpose.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1755020310000183
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 14:41:29, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1755020310000183
https:/www.cambridge.org/core


670 SOLOMON FEFERMAN AND THOMAS STRAHM

equivalent to PRA and in the other case a system equivalent to PA. We hope that this
way of looking at finitism may be useful to provide grounds for further discussion on
which to bolster or reject one or the other characterizations previously on offer. Aside
from that, we believe the apparatus of FA and perhaps some or all of its extension by
BR comes closer to reflecting the actual practice of finitism than the systems previously
considered.

§2. The unfolding of NFA revisited. The aim of this section is twofold. First, we want
to set up a modified version of unfolding which leads to a simplification of the unfolding
systems presented in Feferman (1996) and Feferman & Strahm (2000). Moreover, using
this new unfolding notion, we will restate the results obtained in Feferman & Strahm (2000)
concerning the proof-theoretic strength of the unfolding of the basic schematic system NFA
of nonfinitist arithmetic.

To begin with we will describe the unfolding of a schematic system S informally by
stating some general methodological “pre-axioms.” Then we will spell out these axioms in
all detail for S being the schematic system NFA.

Underlying the idea of unfolding for arbitrary S are general notions of (partial) operation
and predicate, belonging to a universe V encompassing the universe of discourse of S.
Both are considered to be intensional entities, given by rules of computation and defining
properties, respectively. Operations are not bound to any specific mathematical domain,
but have to be considered as premathematical in nature. Operations can apply to other
operations as well as to predicates. Some operations are universal and are naturally self-
applicable as a result, like the identity operation or the pairing operation, while some are
partial and presented to us on specific mathematical domains only, like addition on the
natural numbers or the real numbers. Operations satisfy the laws of a partial combinatory
algebra with pairing, projections, and definition by cases. Predicates are equipped with
a membership relation ∈ to express that given elements satisfy the predicate’s defining
property.

For the formulation of the full unfolding U(S) of any given schematic axiom system S,
we have the following axioms.

1. The universe of discourse of S has associated with it an additional unary relation
symbol, US, and the axioms of S are relativized to US. (Similarly if S is many-
sorted).

2. Each n-ary operation symbol f of S determines an element f 	 of our partial com-
binatory algebra, with f (x1, . . . , xn) = f 	x1 . . . xn on Un

S (or the domain of f in
case f itself is given as a partial operation).

3. Each relation symbol R of S together with US determines a predicate R	 with
R(x1, . . . , xn) if and only if (x1, . . . , xn) ∈ R	.

4. Operations on predicates, such as , for example, conjunction, are just special kinds
of operations. Each logical operation l of S determines a corresponding operation
l	 on predicates.

5. Sequences of predicates given by an operation f form a new predicate Join( f ), the
disjoint union of the predicates from f .

Moreover, the free predicate variables P, Q, . . . used in the schematic formulation of S
give rise to the crucial rule of substitution (Subst), according to which we are allowed to
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UNFOLDING FINITIST ARITHMETIC 671

substitute any formula B for P in a previously recognized (i.e., derived) statement A[P]
depending on P .

The restriction U0(S) of U(S) is obtained by dropping the axioms concerning predicates;
U0(S) is called the operational unfolding of S. Moreover, there is a natural intermediate
predicate unfolding system U1(S), which is simply U(S) without the predicate forming
operation of Join.

The following spells out in detail the three unfolding systems U0(S), U1(S), and U(S)
for S = NFA, the schematic system of nonfinitist arithmetic. Recall that the specified basic
logical operations of NFA are ¬, ∧, and ∀. Its axioms simply include the usual ones for 0,
Sc and Pd, as well as induction stated in its standard schematic form using a free predicate
variable P ,

P(0) ∧ (∀x)(P(x) → P(x ′)) → (∀x)P(x).

We begin with the operational unfolding U0(NFA). Its language is first order, using vari-
ables a, b, c, f, g, h, u, v, w, x, y, z . . . (possibly with subscripts). It includes (i) the con-
stant 0 and the unary function symbols Sc and Pd of NFA, (ii) constants for operations as
individuals, namely sc, pd (successor, predecessor), k, s (combinators), p, p0, p1 (pairing
and unpairing), d, tt, ff (definition by cases, true, false), and e (equality), and (iii) a binary
function symbol · for (partial) term application. Further, we have (iv) a unary relation
symbol ↓ (defined) and a binary relation symbol = (equality), as well as (v) a unary relation
symbol N (natural numbers). In addition, we have a symbol ⊥ for the false proposition.
Finally, a stock of free predicate symbols P, Q, R, . . . of finite arities is assumed.9

The terms (r, s, t, . . .) of U0(NFA) are inductively generated from the variables and
constants by means of the function symbols Sc, Pd, as well as · for application. In the
following we often abbreviate (s · t) simply as (st), st or sometimes also s(t); the context
will always ensure that no confusion arises. We further adopt the convention of association
to the left so that s1s2 . . . sn stands for (. . . (s1s2) . . . sn). Further, we put t ′ := Sc(t) and
1 := 0′. We define general n-tupling by induction on n ≥ 2 as follows:

(s1, s2) := ps1s2, (s1, . . . , sn+1) := ((s1, . . . , sn), sn+1).

Moreover, we set (s) := s and () := 0.
The formulas (A, B, C, . . .) of U0(NFA) are inductively generated from the atomic

formulas ⊥, s↓, (s = t), N(s), and P(s1, . . . , sn) by means of negation ¬, conjunction
∧, and universal quantification ∀. The remaining logical connectives and quantifiers are
defined as usual by making use of classical logic.

The sequence notation ū and t̄ is used in order to denote finite sequences of variables
and terms, respectively. Moreover, we write t[ū] to indicate a sequence ū of free variables
possibly appearing in the term t ; however, t may contain other variables than those shown
by using this bracket notation. Further, t[s̄] is used to denote the result of simultaneous
substitution of the terms s̄ for the variables ū in the term t[ū]. The meaning of A[ū] and
A[s̄] is understood accordingly. Finally, we will also use the sequence notation Ā in order
to denote a finite sequence Ā = A1, . . . , An of formulas.
U0(NFA) is based on partial term application. Hence, it is not guaranteed that terms

have a value, and t↓ is read as “t is defined” or “t has a value”. Accordingly, the partial

9 The constants sc and pd as well as the relation symbol N are used instead of the symbols Sc	,
Pd	, and UNFA mentioned in the informal description above.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1755020310000183
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 14:41:29, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1755020310000183
https:/www.cambridge.org/core


672 SOLOMON FEFERMAN AND THOMAS STRAHM

equality relation � is introduced by

s � t := (s↓ ∨ t↓) → (s = t).

Further, we will use the following abbreviations concerning the predicate N for the natural
numbers (s̄ = s1, . . . , sn):

s̄ ∈ N := N(s1) ∧ · · · ∧ N(sn),

(∃x ∈ N)A := (∃x)(x ∈ N ∧ A),

(∀x ∈ N)A := (∀x)(x ∈ N → A).

The logic of U0(NFA) is the classical logic of partial terms LPT of Beeson (1985), cf., also
Feferman (1975). We recall that LPT embodies strictness axioms saying that all subterms
of a defined compound term are defined as well. Moreover, if (s = t) holds then both s and
t are defined, and s is defined provided N(s) holds, and similarly for P(s̄).

The axioms of U0(NFA) are divided into three groups as follows.

I. Embedding of NFA

(1) The relativization of the axioms of NFA to the predicate N,10

(2) (∀x ∈ N)[Sc(x) = sc(x) ∧ Pd(x) = pd(x)].

II. Partial combinatory algebra, pairing, definition by cases

(3) kab = a,

(4) sab↓ ∧ sabc � ac(bc),

(5) p0(a, b) = a ∧ p1(a, b) = b,

(6) dab tt = a ∧ dab ff = b.

III. Equality on the natural numbers N

(7) (∀x, y ∈ N)[exy = tt ∨ exy = ff],
(8) (∀x, y ∈ N)[exy = tt ↔ x = y].

The axioms in Group I describe the standard embedding of NFA into its operational
unfolding system U0(NFA). In particular, the unary functions Sc and Pd are represented
by corresponding operations sc and pd. The heart of the axioms in Group II are the laws
concerning the combinators k and s. As usual, the axioms of a partial combinatory algebra
allow one to define λ-abstraction and to prove a recursion or fixed point theorem for
applicative terms. For proofs of these standard results the reader is referred to Beeson
(1985); Feferman (1975).

Whereas the axioms in Group II are basic for the unfolding of any schematic system
S, the axioms in Group III about the decidability of equality on the natural numbers are
specific for the unfolding system of NFA. For other systems S, one may leave it open
which equality functions are accepted as basic.

Finally, crucial for the formulation of U0(S) is the predicate substitution rule:

A[P̄] ⇒ A[B̄/P̄]. (Subst)

10 Note that this relativization also includes axioms such as 0 ∈ N and (∀x ∈ N)(x ′ ∈ N).

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1755020310000183
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 14:41:29, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1755020310000183
https:/www.cambridge.org/core


UNFOLDING FINITIST ARITHMETIC 673

Here P̄ = P1, . . . , Pm is a sequence of free predicate symbols possibly appearing in the
formula A[P̄] and B̄ = B1, . . . , Bm is a sequence of formulas. In the conclusion of this
rule of inference, A[B̄/P̄] denotes the formula A[P̄] with each subformula Pi (t̄) replaced
by (∃x̄)(t̄ = x̄ ∧ Bi [x̄]), where the length of x̄ equals the arity of Pi .

We now turn to the full predicate unfolding U(NFA) and its restriction U1(NFA).
The language of U(NFA) extends the language of U0(NFA) by additional constants

nat (natural numbers), eq (equality), prP (free predicate P), inv (inverse image), neg
(negation), conj (conjunction), un (universal quantification), and join (disjoint unions).
In addition, we have a new unary relation symbol � for (codes of) predicates and a
binary relation symbol ∈ for expressing elementhood between individuals and predicates,
that is, satisfaction of those predicates by the given individuals. The terms of U(NFA)
are generated as before but now taking into account the new constants. The formulas of
U(NFA) extend the formulas of U0(NFA) by allowing new atomic formulas of the form
�(t) and s ∈ t .

The axioms of U(NFA) extend those of U0(NFA), as follows.

IV. Basic axioms about predicates

(9) �(nat) ∧ (∀x)(x ∈ nat ↔ N(x)),11

(10) �(eq) ∧ (∀x)(x ∈ eq ↔ (∃y)(x = (y, y))),

(11) �(prP ) ∧ (∀x̄)((x̄) ∈ prP ↔ P(x̄)),

(12) �(a) → �(inv(a, f )) ∧ (∀x)(x ∈ inv(a, f ) ↔ f x ∈ a),

(13) �(a) → �(neg(a)) ∧ (∀x)(x ∈ neg(a) ↔ x /∈ a),

(14) �(a) ∧ �(b) → �(conj(a, b)) ∧ (∀x)(x ∈ conj(a, b) ↔ x ∈ a ∧ x ∈ b),

(15) �(a) → �(un(a)) ∧ (∀x)(x ∈ un(a) ↔ (∀y ∈ N)((x, y) ∈ a)).

V. Join axiom

(16) (∀x ∈ N)�( f x) → �(join( f )) ∧ (∀x)(x ∈ join( f ) ↔ J [ f, x]),

where J [ f, u] expresses that u is an element of the disjoint union of f over N, that is,

J [ f, u] := (∃y ∈ N)(∃z)(u = (y, z) ∧ z ∈ f y).

In addition, U(NFA) contains the substitution rule (Subst), that is, the rule A[P̄] ⇒
A[B̄/P̄], where now B̄ denote arbitrary formulas in the language of U(NFA), but A[P̄]
is required to be a formula in the language of U0(NFA). This last restriction is due to the
fact that predicates in general depend on the predicate parameters P̄ . Finally, we obtain
an intermediate predicate unfolding system U1(NFA) by omitting Axiom (16), that is,
U1(NFA) is just U(NFA) without the Join predicate.

To state the proof-theoretic strength of the three unfolding systems U0(NFA),
U1(NFA), and U(NFA), as usual we let RA<α denote the system of ramified analysis
in levels less than α. In addition, �0 is the so-called Feferman–Schütte ordinal, which
was identified in the early sixties as the limiting number of predicative provability. As
in Feferman & Strahm (2000) we obtain the following proof-theoretic equivalences. In
particular, the full unfolding of nonfinitist arithmetic is equivalent to predicative
analysis.

11 Observe that nat is alternatively definable from the remaining predicate axioms by x ∈ nat ↔
(∃y ∈ N)(x = y).
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674 SOLOMON FEFERMAN AND THOMAS STRAHM

THEOREM 2.1. We have the following proof-theoretic equivalences:

1. U0(NFA) ≡ PA.

2. U1(NFA) ≡ RA<ω.

3. U(NFA) ≡ RA<�0 .

In each case we have conservation with respect to arithmetic statements of the system on
the left over the system on the right.

The proof of this theorem proceeds in a way that is very similar to the proof-theoretic
treatment of the unfolding systems presented in Feferman & Strahm (2000). However, the
argument for the present systems is even simpler since, in contrast to Feferman & Strahm
(2000), we no longer have to deal with least fixed point recursion.

Let us close this section by mentioning a possible generalization of the substitution
rule (Subst). Instead of substituting formulas B̄ for P̄ in derived assertions A[P̄], one
could consider the substitution of arbitrary formulas for free predicates in derived rules
A1[P̄], . . . , An[P̄] ⇒ A[P̄], yielding new rules of inference A1[B̄/P̄], . . . , An[B̄/P̄] ⇒
A[B̄/P̄]. Indeed, this generalization (Subst′) of (Subst) does not increase the proof-
theoretic strength of all three unfolding systems for NFA, as a rather straightforward adap-
tation of the upper bound arguments in Feferman & Strahm (2000) and Strahm (2000)
reveals. On the other hand, we need to take a form of (Subst′) as the basic substitution
rule in the formulation of the unfolding systems for finitist arithmetic in the following
sections.

§3. The unfolding of FA. We begin here by defining the operational unfolding U0(FA)
of finitist arithmetic FA. That system tells us which operations from and to natural numbers,
and which principles concerning them, ought to be accepted if we have accepted FA. It
will be shown that Skolem’s system PRA of Primitive Recursive Arithmetic is contained
in U0(FA). Later we will see that the operational and even the full unfolding of finitist
arithmetic do not go beyond PRA.

3.1. Defining U0(FA). Large parts of the unfolding systems for FA and NFA are iden-
tical. Therefore, we will confine ourselves in the sequel to mentioning the main differences
in the definition of the unfolding systems for FA, beginning with its operational unfolding.

The terms of U0(FA) are the same as the terms of U0(NFA). Recall that FA is based
on the logical operations ∧, ∨, and ∃. Accordingly, the formulas of U0(FA) are generated
from the atomic formulas ⊥, s↓, (s = t), N(s), and P(s̄) by means of ∧, ∨, and ∃; here P
denotes an arbitrary free predicate variable of appropriate arity.

The underlying calculus of U0(FA) is a Gentzen-type sequent system based on sequents
of the form � → A for � being a finite sequence of formulas in the language of U0(FA).
In case � is empty, we will write A for → A. The logical axioms and rules of inference are
the standard ones: apart from identity axioms, rules for ⊥, cut and structural rules, these
include the usual Gentzen-type rules for ∧ and ∨ as well as introduction of ∃ on the left
and on the right in the form

� → A[t] ∧ t↓
� → (∃x)A[x]

,
�, A[u] → B

�, (∃x)A[x] → B
(u fresh).

Note that quantifiers range over defined objects only. Moreover, defined terms can be
substituted for free variables according to the following rule of inference; here �[t] stands
for the sequence (B[t] : B[u] ∈ �).
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�[u] → A[u]

�[t], t↓ → A[t]
.

Finally, the equality and strictness axioms of our underlying logic of partial terms are given
a Gentzen-style formulation in the obvious way.

The nonlogical axioms and rules of U0(FA) include the relativization of the axioms and
rules of FA to the predicate N, namely

(1) u ∈ N, u′ = 0 → ⊥
(2) u ∈ N → Pd(u′) = u

(3)
� → P(0) �, u ∈ N, P(u) → P(u′)

�, v ∈ N → P(v)
,

as well as suitable formulations of the Axioms (2)–(8) of U0(NFA). We will not spell out
these axioms again, but instead give an example how to reformulate Axiom (4) about the s
combinator in our new setting. This now breaks into the following two axioms,

sab↓ and sabc↓ ∨ ac(bc)↓ → sabc = ac(bc).

What is still missing in U0(FA) is a suitable version of the substitution rule (Subst),
which is central to all unfolding systems. In order to fit this into our Gentzen-style setting,
(Subst) has to be formulated in a somewhat more general form. For that purpose, we let
�,�1, �2, . . . range over sequents in the language of U0(FA). A rule of inference for such
sequents has the general form

�1, �2, . . . , �n

�
,

which we simply abbreviate by �1, �2, . . . , �n ⇒ � in the sequel; we also allow n to
be 0, that is, rules with an empty list of premises are possible. As usual we call a rule of
inference �1, �2, . . . , �n ⇒ � derivable from a collection of axioms and rules T (all in
Gentzen-style), if the sequent � is derivable from T ∪ {�1, �2, . . . , �n}.

In the following P̄ = P1, . . . , Pm denotes a finite sequence of free predicate symbols
of finite arity and B̄ = B1, . . . , Bm a corresponding sequence of formulas in the language
of U0(FA). If �[P̄] is a sequent possibly containing the free predicates P̄ , then as above
�[B̄/P̄] denotes the sequent �[P̄] with each subformula of the form Pi (t̄) replaced by
(∃x̄)(t̄ = x̄ ∧ B[x̄]), where the length of x̄ is equal to the arity of Pi .

We are now ready to state our (meta) substitution rule (Subst′). Its meaning is as
follows: whenever the axioms and rules of inference at hand allow us to show that the rule
�1, �2, . . . , �n ⇒ � is derivable, then we can adjoin each of its substitution instances
�1[B̄/P̄], �2[B̄/P̄], . . . , �n[B̄/P̄] ⇒ �[B̄/P̄] as a new rule of inference to U0(FA),
for Bi [x̄] being formulas in the language of U0(FA).12 Symbolically,

�1, �2, . . . , �n ⇒ �

�1[B̄/P̄], �2[B̄/P̄], . . . , �n[B̄/P̄] ⇒ �[B̄/P̄]
. (Subst′)

Observe that derivability of rules is a dynamic process as we unfold FA. In particular, new
rules of inference obtained by (Subst′) allow us to establish new derivable rules, to which

12 In the sequel, when substituting formulas in rules of inference, we tacitly assume that
free variables in �1, �2, . . . , �n which are eigenvariables in the derivation of � from
�1, �2, . . . , �n do not occur in B̄. Such variables, by definition, are exactly the eigenvariables
of the new rule of inference �1[B̄/P̄], �2[B̄/P̄], . . . , �n[B̄/P̄] ⇒ �[B̄/P̄].
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676 SOLOMON FEFERMAN AND THOMAS STRAHM

in turn we can apply (Subst′). In particular, the usual rule of induction

� → A[0] �, u ∈ N, A[u] → A[u′]
�, v ∈ N → A[v]

is an immediate consequence of (Subst′) applied to Rule (3) of FA. Moreover, the substi-
tution rule in its usual form as stated in Section 2,

�[P̄]

�[B̄/P̄]
(Subst)

is readily seen to be an admissible rule of inference of U0(FA). Finally, note that we could
have also stated the logical rules of U0(FA) mentioned above using free predicate variables
and then derive substitution instances thereof using the rule (Subst′).

3.2. U0(FA) contains PRA.

LEMMA 3.1. All primitive recursive functions can be introduced in U0(FA).

Proof. We inductively assign terms to each (description of a) primitive recursive func-
tion and show that these terms provably define a total number-theoretic function in U0(FA).
The crucial step is to show closure under primitive recursion. Hence, let r and s be terms
taking number arguments (ū) and (ū, v, w), respectively, and assume that r and s have
been shown to be total in U0(FA). Then we can make use of the recursion or fixed point
theorem and definition by cases on N to define a term t so that provably in U0(FA),

t (ū, 0) � r(ū) and t (ū, v ′) � s(ū, v, t (ū, v)),

for all ū, v in N. Here the partial equality relation � is understood as before. We have noted
above that the usual rule of induction is available in U0(FA) as a consequence of (Subst′).
Hence, to show that t (ū, v) ∈ N in U0(FA) we just need to establish

ū ∈ N → t (ū, 0) ∈ N and ū ∈ N, v ∈ N, t (ū, v) ∈ N → t (ū, v ′) ∈ N.

But this is immediate from the recursion equations above and the fact that r and s are
already known to define total functions on N. �

The following is an immediate consequence.

THEOREM 3.2. Primitive Recursive Arithmetic PRA is contained in U0(FA).

In the next subsection, it will be shown that this lower bound for U0(FA) is indeed the
best possible one.

3.3. U0(FA) does not go beyond PRA. To obtain the upper bound result we turn
to a recursion-theoretic interpretation of U0(FA) into a version �+

1 -IA of PRA plus �1

induction. In �+
1 -IA we allow positive occurrences of the free relation symbols P̄ in �1

formulas for which complete induction is permitted. Special attention has to be given in
this setting to the translation of the substitution rule (Subst′) of U0(FA).

In the sequel we let L1 denote the usual language of arithmetic with number variables
a, b, c, u, w, v, x, y, z, . . . as well as function and relation symbols for all primitive recur-
sive functions and relations. Moreover, it is assumed that L1 contains free relation symbols
P̄ . Terms (r, s, t, . . .) and formulas (A, B, C, . . .) of L1 are defined as usual. A formula
of L1 is called �+

0 if (i) all its quantifiers are bounded and (ii) the relation symbols P̄
only have positive occurrences in it. Accordingly, the �+

1 formulas of L1 are obtained

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1755020310000183
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 14:41:29, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1755020310000183
https:/www.cambridge.org/core


UNFOLDING FINITIST ARITHMETIC 677

by prefixing existential quantifiers to �+
0 formulas. �+

1 and �+
2 formulas are defined

analogously.
The system �+

1 -IA is defined to be the first order L1 theory which includes the defining
axioms for the function and relation symbols of L1 as well as the schema of complete
induction,

A[0] ∧ (∀x)(A[x] → A[x ′]) → (∀x)A[x]

for all �+
1 formulas of the language L1. Observe that �+

1 -IA does not otherwise include
axioms for the free relations P̄ (apart from equality axioms, of course). Hence, if �1-IA
denotes the usual system of arithmetic with �1 induction in the language L1 without P̄ ,
then we immediately have that �+

1 -IA is a conservative extension of �1-IA. Moreover,
it is well known (cf., e.g., Mints, 1973, or Parsons, 1970) that �1-IA is a conservative
extension of Primitive Recursive Arithmetic PRA in the following sense: if �1-IA proves
(∀x̄)(∃y)A[x̄, y] for A a quantifier-free formula in the language L1, then there exists a
(symbol of a) primitive recursive function f such that PRA proves A[x̄, f (x̄)].

Let us now turn to the interpretation of U0(FA) in �+
1 -IA. The applicative part of U0(FA)

is simply modeled in terms of ordinary recursion theory so that (a · b) translates into
{a}(b) in L1, where {n} for n = 0, 1, 2, . . . is a standard enumeration of the partial
recursive functions. Then it is possible to assign pairwise different numerals to the con-
stants sc, pd, k, s, p, p0, p1, d, tt, ff, and e so that the corresponding applicative axioms
are satisfied.

More formally, for each term t in the language of U0(FA) there exists a formula Valt [a]
expressing that a is the value of t under the interpretation described above. It is easily seen
that Valt [a] is (equivalent to) a �1 formula of L1. Accordingly, the atomic formulas ⊥, t↓,
(s = t), N(t), and P(t̄) are given their obvious interpretations in L1 with the translation
of N ranging over all natural numbers. Thus, the translation of these atomic formulas is
(equivalent to) a �+

1 formula of L1.
We now have for each formula A in the language of U0(FA) its natural translation A∗ in

L1, containing the same parameters as A. It is readily seen that A∗ is provably equivalent
in �+

1 -IA to a �+
1 formula; in particular, the free relations P̄ only occur positively in A∗.

The translation ∗ is extended to sequents � → B in the obvious way, by taking (� → B)∗
to be (

∧
�)∗ → B∗. Finally, the ∗ translation of a rule of inference is understood

accordingly.

LEMMA 3.3.

1. The ∗ translation of the induction rule (3) of FA is a derivable rule of �+
1 -IA.

2. The ∗ translation of each axiom of U0(FA) is derivable in �+
1 -IA.

Proof. The first assertion is obvious since the formulas P(u) are �+
1 formulas of L1

and, hence, the induction axiom of �+
1 -IA can be used to show the derivability of the ∗

translation of the induction rule.
For 2, the translation of the applicative axioms of U0(FA) is immediate. �
The final step in our verification that U0(FA) is contained in �+

1 -IA via our translation ∗
consists in the treatment of the substitution rule (Subst′) of U0(FA). For that purpose we
have to consider derivable rules of �+

1 -IA, which have the general form

A1, A2, . . . , An

A
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678 SOLOMON FEFERMAN AND THOMAS STRAHM

for A1, A2, . . . , An, A being formulas in the language L1; as above we will use the more
compact notation A1, A2, . . . An ⇒ A. A first simple observation tacitly used in the
following is that if we are given rules R1,R2, . . . ,Rn which are derivable in �+

1 -IA
and, in addition, we know that the rule R is derivable in �+

1 -IA augmented by the rules
R1,R2, . . . ,Rn , then of courseR is already a derivable rule of �+

1 -IA alone.
The crucial fact in the treatment of (Subst′) is the following: if A[P̄] is a �+

1 formula
of L1 and if B̄ consists of �+

1 formulas, then A[B̄/P̄] is provably equivalent in �+
1 -IA to

a �+
1 formula. As an immediate consequence we obtain that derivable rules of �+

1 -IA are
closed under substitutions with respect to �+

1 formulas.

LEMMA 3.4.

1. If A and B̄ are �+
1 formulas of L1, then A[B̄/P̄] is provably equivalent in �+

1 -IA
to a �+

1 formula.

2. If A1, A2, . . . , An ⇒ A is a derivable rule of �+
1 -IA and B̄ are �+

1 formulas of
L1, then also A1[B̄/P̄], A2[B̄/P̄], . . . , An[B̄/P̄] ⇒ A[B̄/P̄] is a derivable rule of
�+

1 -IA.

Proof. The first assertion of our lemma is a simple consequence of �+
1 collection, which

is available in �+
1 -IA (cf., e.g., Sieg, 1985, p. 53).

For the second assertion let us assume that A1, A2, . . . , An ⇒ A is derivable in �+
1 -IA

and B̄ is in �+
1 . Then we have a proof of A in �+

1 -IA plus A1, A2, . . . , An . Replacing
P̄ by B̄ in this proof yields a proof of A[B̄/P̄] in �+

1 -IA augmented by the axioms
A1[B̄/P̄], A2[B̄/P̄], . . . , An[B̄/P̄]; here one uses the first assertion of this lemma to show
that possible instances of �+

1 induction in �+
1 -IA again carry over to instances of �+

1
induction if B̄ is substituted for P̄ . �

From the previous two lemmas we now immediately obtain that the ∗ translations of the
axioms and rules of inference of U0(FA) are derivable in �+

1 -IA. As a consequence, the ∗
translation of a derivable formula of U0(FA) is provable in �+

1 -IA. To summarize:

THEOREM 3.5. U0(FA) is contained in �+
1 -IA via the translation ∗.

Using the result about the �2 conservativity of �+
1 -IA over PRA mentioned above and

Theorem 3.2 we thus have the following:

COROLLARY 3.6. U0(FA) is proof-theoretically equivalent to Primitive Recursive Arith-
metic PRA.

In particular, we have that provably total terms of type (Nn → N) give rise to primitive
recursive algorithms.

COROLLARY 3.7. Let t be a closed U0(FA) term and assume that U0(FA) proves the
sequent ū ∈ N → t (ū) ∈ N. Then t defines a primitive recursive function.

3.4. Defining U(FA). The full unfolding U(FA) of finitist arithmetic FA is an exten-
sion of the operational unfolding U0(FA) and is used, in addition, to answer the question
of which operations on and to predicates, and which principles concerning them, are to be
accepted if one has accepted FA. It is proved in this section that U(FA) does not go beyond
Primitive Recursive Arithmetic PRA in proof-theoretic strength.

The language of U(FA) is an extension of the language of U0(FA). It includes, in ad-
dition, the constants nat (natural numbers), eq (equality), prP (free predicate P), inv
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UNFOLDING FINITIST ARITHMETIC 679

(inverse image), conj (conjunction), disj (disjunction), ex (existential quantification), and
join (disjoint unions). Moreover, as above, we have a new unary relation symbol � for
(codes of) predicates and a binary relation symbol ∈ for the elementhood relation. The
terms of U(FA) are built as before. The formulas of U(FA) extend the formulas of U0(FA)
by allowing the new atomic formulas �(t) and s ∈ t .

The axioms of U(FA) extend those of U0(FA). In addition, we have the obvious defining
axioms for the basic predicates of U(FA). These include straightforward reformulations
using sequents of the Axioms (9)–(12) and (14) of U(NFA) as well as the expected axiom
about existentially quantified predicates; just to give an example, the latter axiom is spelled
out in our restricted logical setting by the following three sequents.

�(a) → �(ex(a)),

�(a), u ∈ ex(a) → (∃x ∈ N)((u, x) ∈ a), and

�(a), (∃x ∈ N)((u, x) ∈ a) → u ∈ ex(a).

Further, Axiom (16) of U(NFA) concerning join is now stated in terms of suitable inference
rules; this is due to the absence of universal quantification in the framework of finitist
arithmetic. Thus, we have the following three rules of inference with J being the formula
from Section 2 and u denoting a fresh variable.

�, u ∈ N → �(tu)

� → �(join(t))
,

�, u ∈ N → �(tu)

�, v ∈ join(t) → J [t, v]
,

�, u ∈ N → �(tu)

�, J [t, v] → v ∈ join(t)
.

Finally, U(FA) of course also includes the substitution rule (Subst′) which we have spelled
out for U0(FA). The formulas B̄ to be substituted for P̄ are now in the language of U(FA);
the rule in the premise of (Subst′), however, is required to be in the language of U0(FA).
This last restriction is imposed as before since predicates may depend on the free relation
symbols P̄ . The intermediate unfolding system U1(FA) for FA is obtained by dropping the
rules about join.

3.5. U(FA) is contained in �+
1 -IA. In this section we will extend the embedding of

U0(FA) into �+
1 -IA by providing a suitable interpretation of the predicate part of U(FA).

We here make use of the usual primitive recursive coding machinery: 〈. . .〉 is a standard
primitive recursive function for forming n-tuples 〈t1, . . . , tn〉; Seq denotes the primitive
recursive set of sequence numbers; lh(t) denotes the length of (the sequence coded by)
t ; Seqn(t) abbreviates Seq(t) ∧ lh(t) = n; (t)i is the i th component of (the sequence
coded by) t for i < lh(t), in particular, t = 〈(t)0, . . . , (t)lh(t) .−1〉 for sequence numbers
t ; we write lst(t) for lh(t) .−1 and (t)i, j instead of ((t)i ) j ; 	 denotes the usual primitive
recursive operation of sequence concatenation; finally, if x̄ = x1, . . . , xn then we write 〈x̄〉
for 〈x1, . . . , xn〉.

For the interpretation of the predicates of U(FA) and their extension we could basically
just consider the recursively enumerable sets, which have all the required closure proper-
ties. Intuitively, the reason that join does not increase strength is that the recursive join of
�1 predicates is �1. This is in contrast to the case of NFA, where the full unfolding also
recognizes as defined predicates expressed by certain infinitary formulas which cannot be
reduced to ordinary arithmetical formulas.

But since predicates in U(FA) depend on the free relations P̄ , the situation is slightly
delicate, especially because we will have to take care of positive and negative occurrences
of P̄ and possible substitution instances in the sequel. For that reason we follow a more
direct approach and define the extension of (codes of) predicates by using a suitable
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680 SOLOMON FEFERMAN AND THOMAS STRAHM

notion of computation sequence. In the sequel we will only model a finite collection
P̄ = P1, . . . , Pn of free relation symbols for some fixed natural number n. This is no
essential restriction since a fixed derivation in U(FA) may only use finitely many free
relation symbols.

Below we use the following codes for predicates (P̄ = P1, . . . , Pn):

• 〈0〉 for the predicate nat,
• 〈1〉 for the predicate eq,
• 〈2, i〉 for the predicate prPi

,
• 〈3, b, c〉 for the predicate inv(b, c),
• 〈4, b, c〉 for the predicate conj(b, c),
• 〈5, b, c〉 for the predicate disj(b, c),
• 〈6, b〉 for the predicate ex(b),
• 〈7, b〉 for the predicate join(b).

The extension of these predicate codes will be determined by using the notion �Seq[a]
of a predicate computation sequence. Informally, �Seq[a] means that a is a sequence
number whose entries are pairs 〈x, y〉 witnessing that y belongs to the extension of the
predicate code x ; the sequence a can be thought of as a proof of the fact that y belongs to
x for each such pair 〈x, y〉. Accordingly, we set

�Seq[a] := Seq(a) ∧ (∀u<lh(a))[Seq2((a)u) ∧ C[(a)u,0, (a)u,1, a, u]],

where C[x, y, a, u] is the disjunction of the following formulas (0)–(7):13

(0) x = 〈0〉,
(1) x = 〈1〉 ∧ (∃z)(y = 〈z, z〉),
(2)

n∨
i=1

(x = 〈2, i〉 ∧ Pi (ỹ)),

(3) (∃b, c)[x = 〈3, b, c〉 ∧ (∃v<u)((a)v = 〈b, {c}(y)〉)],
(4) (∃b, c)[x = 〈4, b, c〉 ∧ (∃v,w<u)((a)v = 〈b, y〉 ∧ (a)w = 〈c, y〉)],
(5) (∃b, c)[x = 〈5, b, c〉 ∧ (∃v<u)((a)v = 〈b, y〉 ∨ (a)v = 〈c, y〉)],
(6) (∃b)[x = 〈6, b〉 ∧ (∃v<u)(∃z)((a)v = 〈b, 〈y, z〉〉)],
(7) (∃b)[x = 〈7, b〉 ∧ (∃v<u)(∃y0, y1)(y = 〈y0, y1〉 ∧ (a)v = 〈{b}(y0), y1〉)].

Observe that the free predicate symbols P̄ only have positive occurrences in theL1 formula
�Seq[a]. Moreover, since �+

1 collection is available in �+
1 -IA, we have that �Seq[a] is

equivalent to a �+
1 formula of L1, provably in �+

1 -IA.
Now to translate the predicate part of U(FA), let � range over the set of natural numbers

and translate the formula (y ∈ x) in the language of U(FA) by the L1 formula E[y, x],

E[y, x] := (∃a)[�Seq[a] ∧ (a)lst(a) = 〈x, y〉].
More generally, formulas of the form (s ∈ t) are translated accordingly, using the formulas
Vals[a] and Valt [a]. Observe that if x is not the code of a predicate of the forms specified
above, then the extension of x is empty according to the definition of E. Moreover, we have
that E[y, x] is also a �+

1 formula of the language L1.

13 For a free n-ary predicate symbol Pi , we let Pi (ỹ) stand for Pi ((y)0, . . . , (y)n−1) if n ≥ 2, Pi (y)
if n = 1 and Pi in case n = 0.
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UNFOLDING FINITIST ARITHMETIC 681

We now have for each formula A in the language of U(FA) its natural translation A∗ in
L1, containing the same parameters as A. Clearly, A∗ is provably equivalent in �+

1 -IA to a
�+

1 formula; in particular, the free relations P̄ only occur positively in A∗. The translation
∗ is extended to sequents in the obvious way, and the ∗ translation of a rule of inference is
understood accordingly.

LEMMA 3.8. The ∗ translation of each axiom of U(FA) is derivable in �+
1 -IA.

Proof. The axioms about predicates are direct by construction. To give an example,
consider the axioms about existential quantification. To this end, let us reason informally
in �+

1 -IA and first assume that E[y, 〈6, x〉]. Hence, there exists a predicate computation
sequence a such that (a)lst(a) = 〈〈6, x〉, y〉. By the definition of �Seq[a] this yields some
v < lst(a) and a z with (a)v = 〈x, 〈y, z〉〉. This shows that the sequence 〈(a)0, . . . , (a)v 〉
witnesses E[〈y, z〉, x]. For the reverse direction assume that there is a number z such that
E[〈y, z〉, x]. Then there is a predicate computation sequence a with (a)lst(a) = 〈x, 〈y, z〉〉.
Now clearly a 	 〈〈〈6, x〉, y〉〉 witnesses E[y, 〈6, x〉]. �

Next, note that our model of U(FA) in �+
1 -IA in fact validates a stronger form of the

Join axiom as is claimed by the corresponding rules of inference of U(FA). Indeed, our
modeling takes into account predicates of the form join( f ) which do not satisfy the premise
(∀x ∈ N)�( f x). Of course, the reason that one can easily accommodate this strengthening
lies in the absence of negated predicates.

Finally, the treatment of the substitution rule (Subst′) is the same as for U0(FA) so that
we can now state the following:

THEOREM 3.9. U(FA) is contained in �+
1 -IA via the translation ∗.

The following is now an immediate consequence of the result about the �2 conservativ-
ity of �+

1 -IA over PRA mentioned above and Theorem 3.2.

COROLLARY 3.10. U0(FA), U1(FA), and U(FA) are all proof-theoretically equivalent
to Primitive Recursive Arithmetic PRA.

COROLLARY 3.11. Let t be a closed U0(FA) term and assume that U(FA) proves the
sequent ū ∈ N → t (ū) ∈ N. Then t defines a primitive recursive function.

§4. The unfolding of FA with Bar Rule. The aim of this section is to study a natural
Bar Rule BR which allows us to use a special schema of transfinite induction along prov-
ably well-founded relations. That allows one to derive a general form of nested recursion
along well-founded relations. Then by the well-known result of Tait (1961), it is shown that
U0(FA) augmented by BR proves the well-foundedness of each α less than ε0. Further, an
embedding of U0(FA) plus BR in ACA0 reveals that this lower bound is sharp. Later we
will see that even the full unfolding of FA + BR does not go beyond PA.

By way of background and motivation for our formulation of BR, we begin with the
Bar Induction Principle (BI) that was introduced by L.E.J. Brouwer in his intuitionistic
redevelopment of analysis; see Troelstra & van Dalen (1988), Ch. 8.4 for an exposition.
Roughly speaking BI says that if there are no infinite descending sequences in a given
decidable tree, that is, if every potential such sequence meets a “bar”, then transfinite
induction follows on the tree ordering. This has been taken in both intuitionistic and
classical contexts in the more general form that if ≺ is a partial ordering satisfying NDS(≺)
(no infinite descending sequence property for ≺) then the principle TI(≺, P) of transfinite
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682 SOLOMON FEFERMAN AND THOMAS STRAHM

induction on ≺ holds for arbitrary predicates P . The corresponding Bar Rule BR is of the
form that we may infer TI(≺, P) from NDS(≺) for each predicate P . For our purposes, it
is sufficient to restrict this to provably decidable linear orderings ≺ in the natural numbers,
with 0 as least element. But further restrictions have to be made in order to fit a version
of BR to the language of FA. First of all, the statement that a given function f on N is
descending in the ≺ relation, as long as it is not 0, is universal, so cannot be expressed as a
formula of our language. Instead, we add a new function constant symbol f interpreted as
an arbitrary (or “anonymous”) function, and require that we establish a rule, NDS(≺, f),
that allows us to infer from the hypotheses that f : N → N and that f(u′) ≺ f(u) as long
as f(u) �= 0 (’u’ a free variable) the conclusion (∃x ∈ N)(f(x) = 0). In addition, we
must modify TI(≺, P), since its standard formulation for a unary predicate P is of the
form:

(∀x)[(∀u ≺ x)P(u) → P(x)] → (∀x)P(x).

Again, the idea is to treat this as a rule of the form:

from (∀u)[u ≺ x → P(u)] → P(x) infer P(x).

But we still need an additional step to reformulate the hypothesis of this rule in the language
of FA. For atomic A, B write A ⊃ B for (¬A ∨ B). Then the hypothesis is implied by

[t1 ≺ x ⊃ P(t1)] ∧ · · · ∧ [tm ≺ x ⊃ P(tm)] → P(x),

where the ti are terms that have been proved to be defined. Now it may be that we cannot
prove that ti↓ until we know that certain of its subterms s1, . . . , sn are defined and satisfy

[s1 ≺ x ⊃ P(s1)] ∧ · · · ∧ [(sn ≺ x ⊃ P(sn)],

and so on. Indeed, as we shall see, that is necessary to establish closure under nested
recursion on the ≺ ordering. This leads in the next section to the precise statement of BR
in the language of FA augmented by a new function symbol.

4.1. Defining U0(FA + BR). In the formulation of the rules below we use a binary
relation ≺ whose characteristic function is given by a closed term t≺ for which U0(FA)
proves t≺ : N2 → {0, 1}. We write x ≺ y instead of t≺xy = 0 and further assume that ≺
is a linear ordering with least element 0, provably in U0(FA).

In the following let f denote a new constant of our applicative language. There are no
nonlogical axioms for f; it serves as an arbitrary (or anonymous) function from N to N,
representing a possibly infinite descending sequence along a given ordering.

The rule NDS(f, ≺) says that for each possibly infinite descending chain f w.r.t. ≺ there
is an x such that fx = 0. Formally, it is given as follows:

u ∈ N → fu ∈ N,

u ∈ N, fu �= 0 → f(u′) ≺ fu,

u ∈ N, fu = 0 → f(u′) = 0

(∃x ∈ N)(fx = 0)
.

Next, the Bar Rule BR is spelled out in detail for the case of nesting level two and a
predicate with one parameter. The general case for nesting of arbitrary level and number
of parameters is analogous.
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UNFOLDING FINITIST ARITHMETIC 683

Let s̄r = sr
1, . . . , sr

n and s̄ p = s p
1 , . . . , s p

n be sequences of terms of length n, and let
t̄ r = tr

1 , . . . , tr
m and ¯t p = t p

1 , . . . , t p
m be sequences of terms of length m. The superscripts

‘r’ and ‘p’ stand for recursion and parameter, respectively.
The Bar Rule BR now reads as follows. Whenever we have derived the four premises

(1) NDS(f, ≺)

(2) x, y ∈ N → s̄r ∈ N ∧ s̄ p ∈ N
(3) x, y ∈ N,

∧
i

[sr
i ≺ x ⊃ P(sr

i , s p
i )] → t̄ r ∈ N ∧ ¯t p ∈ N

(4) x, y ∈ N,
∧
i

[sr
i ≺ x ⊃ P(sr

i , s p
i )],

∧
j

[tr
j ≺ x ⊃ P(tr

j , t p
j )] → P(x, y)

we can infer x, y ∈ N → P(x, y).14

The new unfolding system U0(FA + BR) is the extension of U0(FA) by this rule.

4.2. Nested recursion and well-foundedness in U0(FA + BR). In order to show that
Peano Arithmetic PA is a lower bound to the proof-theoretic strength of U0(FA + BR), it
will be shown that whenever we have derived NDS(f, ≺) in U0(FA + BR), for a specific
ordering ≺, then we can use the Bar Rule BR in order to justify function definitions by
nested recursion along ≺. To see this, let us look at the following example.

Let G, H, k, l, m, p be previously defined functions on the natural numbers which are
suitably represented by terms that are provably total in U0(FA + BR). Using the fixed
point operator of our combinatory universe, we can define a new function F by nested
level 2 recursion and parameter substitution to satisfy the following partial equalities for
0 �= x, y ∈ N:

F(0, y) � H(y)

F(x, y) � G(x, y, F(k(x, y, F(l(x, y)x , y))x , p(x, y, F(m(x, y)x , y))))

where as usual (r)x is r if r ≺ x and 0 otherwise. We need to show that U0(FA+BR) proves
the implication x, y ∈ N → F(x, y) ∈ N and want to achieve this by substituting P(x, y)
by (F(x, y) ∈ N) in the Bar Rule BR. Further, we have to specify the term sequences for
the premises of BR. We set n = 2 and m = 1 and choose the following terms:

sr
1 = l(x, y)x , s p

1 = y

sr
2 = m(x, y)x , s p

2 = y

tr
1 = k(x, y, F(l(x, y)x , y))x , t p

1 = p(x, y, F(m(x, y)x , y)).

It is now easy to see that the two premises (2) and (3) of BR are derivable using this choice
and, hence, together with NDS(f, ≺), we obtain x, y ∈ N → F(x, y) ∈ N as desired.

This example is typical and leads us to

THEOREM 4.1. Assume that NDS(f, ≺) is derivable in the system U0(FA + BR). Then
U0(FA + BR) justifies nested recursion along ≺.

In the following let us assume that for each ordinal α < ε0 we have a standard primitive
recursive well-ordering ≺α of ordertype α. Further, let us write NDS(f, α) for NDS(f, ≺α).

14 In the formulation of this rule, we have used the shorthand r ≺ x ⊃ A for the formula t≺r x =
1 ∨ A.
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684 SOLOMON FEFERMAN AND THOMAS STRAHM

The crucial ingredient of the argument to show that U0(FA + BR) derives NDS(f, α)
for each α < ε0 is the previously mentioned result by Tait (1961) that nested recursion
on ωα entails ordinary recursion on ωα or, more useful in our setting, nested recursion on
ωα entails NDS(f, ωα). A very concrete and compact presentation of the argument in Tait
(1961) has recently been given by Tait (2006b) in a personal communication with the first
author. That is presented in the appendix to this paper. From there it will be seen that the
argument can be directly formalized in U0(FA + BR); some more specific comments are
to be found in the appendix.15

THEOREM 4.2. Provably in U0(FA+BR), nested recursion along ωα entails NDS(f, ωα).

Clearly, U0(FA+BR) proves NDS(f, ω2) and hence we have nested recursion along ω2,
which in turn entails NDS(f, ω2); further, nested recursion on ω2 gives us NDS(f, ωω) and
thus nested recursion along ωω = ω(ωω). Then we can derive NDS(f, ωωω

) and so on.
The upshot is that U0(FA + BR) derives NDS(f, ωn) for each natural number n, where

as usual we set ω0 = ω and ωn+1 = ωωn . This gives us the crucial result of this section.

COROLLARY 4.3. We have for each α < ε0 that U0(FA + BR) derives NDS(f, α).

In the next subsection we will see that this lower bound is indeed sharp.

4.3. U0(FA + BR) does not go beyond PA. In the following we will sketch an em-
bedding of U0(FA + BR) in a version of ACA0, the well-known subsystem of second
order arithmetic based on arithmetical comprehension together with set induction. For that
purpose, let L2 denote the usual language of second order arithmetic extending the first
order language L1 by set variables X, Y, Z , . . . and function variables f, g, h, . . . . We
assume that L2 also contains our free relation symbols P̄ . The formulas of L2 are defined
in the usual way. A formula is called arithmetic, if it does not contain bound set or function
variables; it may contain, however, free set and function variables as well as positive and
negative occurrences of the relations P̄ .

ACA0 is the L2 theory comprising the axioms of Peano Arithmetic PA, for each arith-
metic formula A(x) the comprehension axiom

(∃X)(∀x)(x ∈ X ↔ A(x)),

the graph principle relating functions and sets,16

(∀x)(∃!y)〈x, y〉 ∈ X → (∃ f )(∀x)〈x, f (x)〉 ∈ X,

and, finally, induction on the natural numbers for sets:

0 ∈ X ∧ (∀x)(x ∈ X → x ′ ∈ X) → (∀x)(x ∈ X).

It is well known that ACA0 is a conservative extension of Peano Arithmetic PA.

15 In Tait (2006a), Sec. 6 Tait gives an analysis of a proposed proof of Bernays in Hilbert & Bernays
(1970), pp. 533–535 of induction up to ε0. Tait’s critical inspection of Bernays’ argument reveals
that the result indeed only shows that NDS(f, ωα) can be reduced to nested recursion on ωα.
Bernays’ attractive construction is spelled out in detail in Tait (2006a). In contrast to Tait’s
own argument in Tait (1961, 2006b) which uses the definition by nested recursion of a type
one function, in Bernays’ proof one defines a type two functional by nested recursion. Due to the
logical restrictions of our unfolding system for finitist arithmetic, Tait’s original argument is more
suitable for our formalization and hence we will follow Tait (1961, 2006b) in the sequel.

16 Below, 〈·, ·〉 denotes a primitive recursive pairing function.
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Let us now describe the interpretation of U0(FA + BR) in ACA0. It is a modification of
the translation of U0(FA) in PRA, but now taking into account the function constant f in
the language of U0(FA + BR). For that purpose, we fix a function variable f in L2 and
now translate (a · b) as {a} f (b), where {n} f for n = 0, 1, 2, . . . is a standard enumeration
of the functions that are partial recursive in f . Accordingly, f is interpreted as a natural
number i for which {i} f (x) � f (x).

This determines for each formula A its translation A∗. Observe that A∗ is an arithmetic
formula of L2 containing the function parameter f . The ∗ translation is extended to se-
quents and rules of inference as expected.

Clearly, the ∗ translation of all axioms of U0(FA + BR) and the induction rule of FA are
derivable in ACA0. Moreover, the treatment of the substitution rule (Subst′) is analogous
to U0(FA) by using the fact that the axioms of ACA0 are closed under substitutions of the
free relations P̄ by arithmetic formulas.

LEMMA 4.4. If A1, A2, . . . , An ⇒ A is a derivable rule of ACA0 and B̄ are arithmetic
formulas of L2, then also A1[B̄/P̄], A2[B̄/P̄], . . . , An[B̄/P̄] ⇒ A[B̄/P̄] is a derivable
rule of ACA0.

The crucial step of the embedding, of course, is the treatment of the Bar Rule BR.

LEMMA 4.5. The ∗ translation of the Bar Rule BR is an admissible rule of ACA0.

Proof. Let us assume that the ∗ translation of the rule NDS(f, ≺) is derivable in ACA0.17

Thus we can conclude that the following is derivable in ACA0:

(∀x)[( f (x) �= 0 → f (x ′) ≺ f (x)) ∧ ( f (x) = 0 → f (x ′) = 0)] → (∃x)( f (x) = 0).

This entails that ≺ is a well-founded relation, which in turn is equivalent in ACA0 to
the principle of transfinite induction for all sets, (∀X)TI(≺, X), where TI(≺, X) stands
for

(∀x)[(∀y ≺ x)(y ∈ X) → (x ∈ X)] → (∀x)(x ∈ X).

But trivially, (∀X)TI(≺, X) entails TI(≺, A) for each arithmetic formula A, that is, we
have transfinite induction along our ordering ≺ in ACA0 for every arithmetic property A.

It is now readily seen that our Bar Rule BR is valid by applying transfinite induction to
the predicate (∀y)P(x, y). �

We can now summarize our findings in the following main theorem.

THEOREM 4.6. U0(FA + BR) is contained in ACA0 via the translation ∗.

COROLLARY 4.7. U0(FA + BR) is proof-theoretically equivalent to Peano Arithmetic
PA.

In particular, we have that provably total terms of type (Nn → N) give rise to < ε0-
recursive functions.

COROLLARY 4.8. Let t be a closed U0(FA) term and assume that U0(FA + BR) proves
the sequent ū ∈ N → t (ū) ∈ N. Then t defines a < ε0-recursive function.

17 We can assume that the function variable f , which gives the interpretation for the function
constant f, only occurs as a parameter in this derivation, since we are only interested in derivations
coming from U0(FA + BR), where we simply have f as a constant.
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686 SOLOMON FEFERMAN AND THOMAS STRAHM

4.4. U(FA + BR) is contained in ACA0. The full unfolding system with Bar Rule,
U(FA + BR), does not go beyond Peano Arithmetic in strength. For, we can take the
preceding translation of U0(FA + BR) in ACA0 and extend it by the interpretation of the
predicate part of U(FA+BR) in literally the same way as in Section 3.5. This immediately
yields the desired embedding of U(FA + BR) in ACA0.

THEOREM 4.9. U0(FA+BR), U1(FA+BR), and U(FA+BR) are all proof-theoretically
equivalent to Peano Arithmetic PA.

COROLLARY 4.10. Let t be a closed U0(FA) term and assume that U(FA + BR) proves
the sequent ū ∈ N → t (ū) ∈ N. Then t defines a < ε0-recursive function.

A Well-foundedness of exponentiation. In this appendix we will present Tait’s ar-
gument showing that nested recursion on ωδ entails ordinary recursion on ωδ or, as we
will use it in our context, nested recursion on ωδ entails NDS(f, ωδ). We will follow the
presentation of this argument in Tait (2006b), which is essentially the same as in Tait
(1961), p. 248 ff., but more compact and readable since it refers directly to the usual
ordering of type ε0, whereas Tait (1961) uses a more general notion of standard ordering.
We will see that the argument can be directly formalized in U0(FA + BR).

In the following we will work with (codes of) ordinals below ε0 and assume that <
denotes the corresponding ordering relation on them. Further, let f be a fixed function
from ω to ωδ satisfying for all natural numbers n the condition

f (n) > 0 → f (n + 1) < f (n) and f (n) = 0 → f (n + 1) = 0. (	)

Given an ordinal α < ωδ in its normal form

α = ωα1a1 + · · · + ωαn an

where δ > α1 > · · · > αn and ai < ω (1 ≤ i ≤ n), we set

α{i} : = ωα1a1 + · · · + ωαn ak (k = min(n, i))

α[i] : =
{

ωαi + ai if 0 < i ≤ n

0 if n < i.

Clearly, α[i] < ωδ and 0{i} = 0[i] = 0. The following key lemma relates these notions.

LEMMA A.1. We have that α{i + 1} < β{i + 1} if and only if

α{i} < β{i} ∨ (α{i} = β{i} ∧ α[i + 1] < β[i + 1]).

The crucial step in Tait’s argument is to define a function μ : ω2 → ω such that (writing
μi ( j) for μ(i, j)),

f ( j + μi ( j)) = 0 ∨ f ( j + μi ( j)){i} < f ( j){i}. (		)

It will then suffice to choose μ0(0) as a root of f , since according to (		), we have that
f (μ0(0)) = 0.

The definition of μi ( j) will be by nested recursion on f ( j)[i + 1] < ωδ. We first de-
scribe the definition of μi ( j) informally and give the explicit definition by nested recursion
afterwards.

Let n be the number of summands in the normal form of f ( j). If i ≥ n, we may simply
set μi ( j) = 1; then (		) holds due to property (	) of our given function f . So assume
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0 ≤ i < n. Because f ( j)[i + 2] < f ( j)[i + 1], we can use μi+1( j) = μ̄ in the definition
of μi ( j). Hence, according to (		) we have for μ̄ that either (A 1) or (A 2) holds:

f ( j + μ̄) = 0 (A 1)

f ( j + μ̄){i + 1} < f ( j){i + 1}. (A 2)

If (1) holds, we set μi ( j) = μ̄. In case of (A 2), we use the lemma above to obtain one of
the following properties (A 3) or (A 4):

f ( j + μ̄){i} < f ( j){i} (A 3)

f ( j + μ̄){i} = f ( j){i} ∧ f ( j + μ̄)[i + 1] < f ( j)[i + 1]. (A 4)

In case of (A 3), we again set μi ( j) = μ̄. If (A 4) holds, then clearly μi ( j + μ̄) = ¯̄μ is
defined. In this case we set μi ( j) = μ̄ + ¯̄μ. Then we can verify, using property (		) for ¯̄μ,
that one of the following conditions (A 5) or (A 6) holds:

f ( j + μi ( j)) = f (( j + μ̄) + ¯̄μ) = 0 (A 5)

f ( j + μi ( j)){i} < f ( j + μ̄){i} = f ( j){i}. (A 6)

This is as desired and concludes the definition of the function μi ( j). Summarizing, μi ( j)
has been defined to satisfy the following equation:

μi ( j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if i ≥ n

μi+1( j), if f ( j + μi+1( j)) = 0 or f ( j + μi+1( j)){i} < f ( j){i}
μi+1( j) + μi ( j + μi+1( j)), else.

It remains to explicitly express the definition of μi ( j) by nested recursion on ωδ. For that
purpose let the function mi (α, j) be defined by nested recursion along α < ωδ as follows:

mi (α, j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if α = 0

m̃, if f ( j + m̃) = 0 or f ( j + m̃){i} < f ( j){i}
m̃ + mi (( f ( j + m̃)[i + 1])α, j + m̃), else.

where m̃ is an abbreviation for the term mi+1(( f ( j)[i + 2])α, j). Clearly, this is a valid
nested recursion and we readily see that indeed

μi ( j) = mi ( f ( j)[i + 1], j).

To conclude, let us briefly address the formalization of Tait’s argument in the system
U0(FA + BR). Assuming that the NDS property holds for the standard ordering of type
ωδ, we can define the function mi (α, j) by nested recursion along ωδ as we have indicated
in Section 4. This nested recursion uses the function constant f (representing a possibly
infinite descending sequence in ωδ) as a parameter. The totality of mi (resp. μi ) and all
necessary properties (e.g., (		)) can then be derived by means of BR.
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