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Cortical neurons are often classified by current--frequency relation-
ship. Such a static description is inadequate to interpret neuronal
responses to time-varying stimuli. Theoretical studies suggested
that single-cell dynamical response properties are necessary to
interpret ensemble responses to fast input transients. Further, it
was shown that input-noise linearizes and boosts the response
bandwidth, and that the interplay between the barrage of noisy
synaptic currents and the spike-initiation mechanisms determine
the dynamical properties of the firing rate. To test these model
predictions, we estimated the linear response properties of layer 5
pyramidal cells by injecting a superposition of a small-amplitude
sinusoidal wave and a background noise. We characterized the
evoked firing probability across many stimulation trials and a range
of oscillation frequencies (1--1000 Hz), quantifying response
amplitude and phase-shift while changing noise statistics. We
found that neurons track unexpectedly fast transients, as their
response amplitude has no attenuation up to 200 Hz. This cut-off
frequency is higher than the limits set by passive membrane
properties (~50 Hz) and average firing rate (~20 Hz) and is not
affected by the rate of change of the input. Finally, above 200 Hz,
the response amplitude decays as a power-law with an exponent
that is independent of voltage fluctuations induced by the back-
ground noise.
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Introduction

The response of a single neuron to a changing input is limited

by the neuron’s maximal spike frequency. Inputs which vary

faster can only be encoded in the collective activity of

a population. This can be observed in cortical rhythms when

individual cells fire irregularly and at much lower spiking rate

than the population rhythm revealed through local field

potentials (Buzsaki and Draguhn 2004). Individual cells tend

to fire more often at the peak of the oscillation but cannot emit

a spike for every cycle. However, whereas 1 cell is in the

refractory period another 1 may fire during the next cycle, so

that the population can globally sustain fast rhythms. It is

therefore of central importance to investigate how neurons

respond to time-varying inputs and to identify the impact of

synaptic background noise (Paré et al. 1998; Shadlen and

Newsome 1998; Steriade 2001).

Previous theoretical studies (Knight 1972a; Gerstner 2000)

extensively addressed these issues in models of spiking

neurons. They emphasized the role of background noise in

simplifying the neuronal response dynamics and allowing

arbitrarily fast time-varying inputs to be encoded undistorted.

Brunel et al. (2001) confirmed these theoretical findings for

a more realistic mathematical description of synaptic back-

ground noise and quantitatively linked the temporal correla-

tions of the background inputs (i.e., the synaptic filtering) to

the response dynamics. However, by a more accurate de-

scription of the spike-initiation mechanisms in nonlinear

integrate-and-fire neurons and conductance-based models, it

was predicted that the linear response of a neuron is always

dominated by a low-pass behavior, whose cut-off frequency is

independent of the background noise as well as the rate of

change of the input (Fourcaud-Trocmé et al. 2003; Fourcaud-

Trocmé and Brunel 2005; Naundorf et al. 2005).

By investigating how the instantaneous firing rate is

modulated by a noisy input with a small sinusoidal component,

we experimentally estimated the linear response properties of

layer 5 pyramidal cells of the rat somatosensory cortex, over

a wide frequency range of input oscillations (i.e., 1--1000 Hz).

We evaluated the extent of response linearity, tested the ability

of cells to track temporally varying inputs, and investigated the

impact of background noise. In the limit of small input

amplitude, this allows one to predict the spiking activity of

a population of weakly interacting neurons, on the basis of the

single-cell responses to elementary sinusoidally modulated

currents. This also allows to study how neurons take part in

collective rhythms, inferring the preferred global frequency in

recurrent networks (Fuhrmann et al. 2002; Brunel and Wang

2003; Wang 2003; Geisler et al. 2005) where each cell responds

to a correlated foreground rhythm (i.e., the signal) while

experiencing a distinct synaptic background activity.

Although the response properties of cortical neurons to

stationary fluctuating inputs have been previously characterized

(Chance et al. 2002; Rauch et al. 2003; Giugliano et al. 2004;

Higgs et al. 2006; La Camera et al. 2006; Arsiero et al. 2007),

this is the 1st time that the response of cortical neurons to

temporally modulated inputs is investigated over a wide range of

input frequencies and through analysis of the background noise.

Materials and Methods

Experimental Preparation and Recordings
Tissue preparation was as described in Rauch et al. (2003). Briefly,

neocortical slices (sagittal, 300 lm thick) were prepared from 14- to

52-days-old Wistar rats. Large layer 5 (L5), regular-spiking pyramidal

cells (McCormick et al. 1985) of the somatosensory cortex with a thick

apical dendrite were visualized by differential interference contrast

microscopy. Some neurons were filled with biocytin and stained (Hsu

et al. 1981), to check that the entire neuronal apical dendrite was

indeed in the plane of the slice, which was always the case. Whole-cell

patch-clamp recordings were made at 32 �C from the soma (10--20 MX
access resistance) with extracellular solution containing (in mM): 125

NaCl, 25 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 2 CaCl2, 1 MgCl2, 25 glucose,
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bubbled with 95% O2, 5% CO2, perfused at a minimal rate of 1 mL/min.

Electrode resistance and capacitance were 6.97 ± 0.18 MX and 23.73 ±
1.11 pF, respectively, when filled with an intracellular solution

containing (in mM): 115 K-gluconate, 20 KCl, 10 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES), 4 adenosine triphosphate-Mg,

0.3Na2-guanosine triphosphate, 10Na2-phosphocreatine, pH adjusted to

7.3 with KOH. All the chemicals were from Sigma or Merck (Switzer-

land). Other pipette solutionswere reported not to alter significantly the

response properties of the cells under very similar experimental

conditions (Rauch et al. 2003). A BVC-700A bridge amplifier (Dagan

Corporation, MN) was used in current-clamp mode and bridge balance

and capacitance neutralization were routinely applied. Hyperpolarizing

current steps and linear swept sine waves (ZAP) were injected to obtain

estimates of the passive properties of patched neurons, such as the total

membrane capacitance Cm and apparent input resistance Rin (Iansek and

Redman 1973), as well as the membrane impedance amplitude profile

(Hutcheon et al. 1996). Signals were low-pass filtered at 2.5 kHz, sampled

at 5--15 kHz, and captured on the computer.

Finally, care was taken to ensure that the neuronal response was

consistent and reproducible throughout the whole recording session

(see Fig. 1b). The total whole-cell resistance Rin and the resting

membrane voltage Em were continuously monitored (during T2 and T1,

respectively, located as in Fig. 1). Data collection began after these

observables attained stable values and the experiment was stopped in

case of any drift.

The results reported here represent data from L5 pyramidal cells

(n = 67) of the somatosensory cortex. The average resting membrane

potential was Em = –66 ± 4.4 mV, the apparent input resistance (Rin) was

45 ± 2.6 MX, the membrane time-constant (sm) was 18.32 ± 0.8 ms. The

total capacitance Cm was estimated as 448 ± 19 pF. Liquid junction

potentials were left uncorrected.

Injection of Sinusoidal Noisy Currents
To probe the response dynamics of pyramidal cells under in vivo--like

conditions, independent realizations of a noisy current were computer-

synthesized and injected somatically in current-clamp configuration

(see Fig. 1a). Each experiment consisted of the repeated injection of

current stimuli I(t), lasting T = 10--30 s each, interleaved by a recovery

Trec of 30 s. A deterministic sinusoidally oscillating current with

frequency f was superimposed to the noisy current component and

injected (Fig. 2c,d), so that

I ðt Þ = I0 + I1sinð2pft Þ + Inoiseðt Þ: ð1Þ

Inoiseðt Þwas generated as a realization of an Ornstein--Uhlenbeck

stochastic process with zero-mean and variance s
2 (Rauch et al.

2003), and independently synthesized for each repetition by iterating

the equation

Inoiseðt +dt Þ = Inoiseðt Þð1 –dt=sÞ + s
ffiffiffiffiffiffiffiffiffiffiffiffi
2dt=s

p
nt ; ð2Þ

where nt represents a random variable from a normal distribution (Press

et al. 1992), and it was updated at every time step dt (i.e. 5--15 kHz).

Inoise(t) is then an exponentially filtered white-noise and it aims at

mimicking in vitro the barrage of a large numbers of balanced

background excitatory and inhibitory synaptic inputs at the soma

(Destexhe et al. 2001, 2003; Rauch et al. 2003; Arsiero et al. 2007).

Inoise(t) is characterized by a steady-state Gaussian amplitude-distribu-

tion with zero-mean and variance s
2, and by a steady-state autocorre-

lation function exponentially decaying with time constant s. The value

of s corresponds to the decay time-constants of individual synaptic

currents and it was varied in the range 5--100 ms, thereby referring to

fast (AMPA- and GABAA-mediated) as well as slow (NMDA- and GABAB-

mediated) synaptic currents (Tuckwell 1988; Rauch et al. 2003). The

choice of s2 was aimed at mimicking the membrane voltage fluctuations

observed in cortical recordings in vivo, which are around 3--5 mV (Paré

et al. 1998), and it is also effectively representative of nonzero cross-

correlations of background inputs (Rudolph and Destexhe 2004).

The number of repetitions for the same set of stimulation parameters

(I0, I1, s, s, f) was 5--20, approximately ensuring an accuracy of at least

10% on the estimate of the instantaneous firing rate, with a confidence

of 68% (see Rauch et al. 2003). Waveforms were injected in a random

order to minimize the effect of slow drifts in the recording conditions.

Although the explored range for f was 1--1000 Hz, the effect of distinct

values for s and for (I0, s) was also investigated (as in Figs 5 and 6).

Stimulations by a single sinusoid at the time were preferred to probing

simultaneously the entire frequency-domain, with the aim of shorten-

ing each stimulation epoch in favor of the stability of the recordings

(Fig. 1) and of the signal-to-noise ratio.

Injection of Noisy Broadband Waveforms
We also injected periodic broadband waveforms instead of sinusoids,

under background noise Inoise(t). In analogy to equation (1), the

stimulation current is defined as

I ðt Þ = I0 + iðt Þ + Inoiseðt Þ: ð3Þ

Similar signals were preferred to a superposition of many sinusoids as

they let us to compare our results with those of Mainen and Sejnowski

Figure 1. In vivo--like stimulation protocol and the stability of in vitro recording conditions. In vivo irregular background synaptic inputs were emulated in vitro by injection of noisy
currents under current-clamp. Specifically, gaussian currents characterized by mean I0, standard deviation s and correlation time s, were injected into the soma of layer 5
pyramidal cells. A deterministic sinusoidally oscillating waveform of amplitude I1 and modulation frequency f was then superimposed to the background noise (a—lower trace),
and the stimulation trials were interleaved by a recovery interval Trec. The initial segments of each stimulus (i.e., lasting T1, T2, and T3) were used to monitor the stability of the
recording conditions on a trial-by-trial basis. Panel b shows a typical experimental session, plotting over time the whole-cell resistance Rin (estimated during T2, b—upper panel),
the resting membrane potential Em (averaged during T1, b—middle panel), as well as the reproducibility of the cell discharge rate rfix, evaluated in response to a stationary noise,
characterized by fixed statistics (s, s)fix (during T3). Continuous lines in (b) represent average values of each observable across the whole experiment, whereas the gray shading in
(b—lower panel) indicates a confidence level of approximately 68%, which describes the variance allowed for the data. The middle panel shows a layer V pyramidal cell of the
somatosensory cortex of the rat stained with Biocytin.
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(1995), who did not consider any background component in their

stimulation protocol. A set of waveforms iT(t) of duration T = 100 ms

was generated once and for all by iterating equation (2) offline, using

s = 1 ms and s = I1. Thus, each iT(t) was a segment of a frozen colored

noise, with zero-mean and significant spectral energy content

approximately up to s–1 = 1 kHz. We could generate distinct waveforms

by choosing different initialization seed n0 in equation (2). In order to

allow a repeated stimulation by iT(t) and efficient data collection, i(t)

was constructed by ‘‘gluing’’ together hundreds of identical and

nonoverlapping replicas of iT(t). n0 was selected to minimize the

absolute difference |iT(0) – iT(T)| and thus reducing discontinuities at

the boundaries between 2 successive replicas.

Data Analysis
The membrane voltage was recorded in response to each noisy

(independent) periodic stimulus realization (see Fig. 2c,d, lower

panels). Raw traces were offline processed in Matlab (The Mathworks,

Natick, MA) to extract individual spike times {tk}, k = 1,2,3,. . ., after
discarding an initial transient where spike-frequency adaptation and

other voltage-dependent currents might not be at ‘‘regime’’ (i.e., 1--3 s

out of T—see Fig. 1). Most of the data analysis was devoted to

quantitatively estimating the response rate r(t) evoked by the periodic

noisy current stimulation I(t).

The peristimulus time histogram (PSTH) of the spike times was

constructed over all repetitions by aligning the evoked spike trains

according to successive cycles of the same stimulus I(t), for the sake of

direct comparison with the analysis performed by Fourcaud-Trocmé

et al. (2003). The bin size was chosen as one-thirtieth of the input

period 1/f, so that the stimulus duration T corresponds to the same

a priori statistical accuracy on the estimate of r(t), irrespectively of f. A

sinusoid of frequency f was then fit to the PSTH by the Levenberg--

Marquardt algorithm, in the least-squares sense (Press et al. 1992),

obtaining estimates of the instantaneous firing rate amplitude r1(f) and

the phase U(f) and their confidence intervals.

The analysis of the neuronal response to broadband waveforms

injections (eq. 3) was performed by means of PSTH over 0.5-ms-wide

bins, and evoked spike trains were aligned according to the

corresponding successive cycles of iT(t). The spikes collected during

an initial transient of each stimulation trial were discarded. By taking an

average-window moving across successive stimulation cycles, the

stationarity of the mean number of spikes emitted in each cycle of

duration T was monitored as a strict necessary condition for further

data analysis and phenomenological model identification. This pro-

cedure allowed us to detect and remove the effect of brief transient

fluctuations in the input resistance.

Phenomenological Model
Along the lines of phenomenological ‘‘cascade’’ predictive models of

neural response properties (French 1976; Victor and Shapley 1979c;

Carandini et al. 1996; Kim and Rieke 2001; Powers et al. 2005; Slee et al.

2005), and in closer analogy to classic Fourier System Identification

(Brogan 1991), we considered an input--output relationship based on

linear ordinary differential equations (i.e., a linear filter, eq. 5), similarly

to Powers et al. (2005). Unlike that approach, we focused on the

transformation of the input signal component (i.e., sinusoids or iT(t))

into firing rates r(t). Thus, the identification of these transformations

depended on the statistics of the background noise (i.e. I0, s, and s).
Instead of the time-domain, the linear filtering was operatively specified

and identified in the frequency-domain (eq. 6). This allowed us to

consider a reduced number of free parameters.

In detail, the input is 1st fed into a threshold-linear element H(x) (see

Fig. 7a):

H ðt Þ =H ðiT ðt ÞÞ =
iT ðt Þ –P1 iT ðt Þ>P1
0 iT ðt Þ <P1

;

�
ð4Þ

where iT(t) is the input signal measured in nA. Then H(iT(t)) is

transformed into y(t) according to the following equation,

and
ny=dt n + � � � +a1dy=dt +a0y = bmdmH=dtm + � � � +b1dH=dt +b0H ;

ð5Þ

where n > m (Brogan 1991). The filter model alone as employed in

Figures 5 and 6, can simply be obtained by setting H(x) = x in equation

Figure 2. Analyzing the discharge response to the oscillatory input signal over a background of irregular synaptic inputs. Irregular spike trains were evoked in the same neuron by
sinusoidally modulated noisy current injections. The time of occurrence of each action potential (a, b) was referred to its peak and represented by a thick vertical mark. Lower
panels show the spike raster-plots collected for different input modulation frequencies, f 5 10 Hz and f 5 250 Hz. The instantaneous firing rate r(t) (c, d—upper panels) reveals
a sinusoidal modulation in time. This was estimated by the peristimulus time histograms (PSTHs) (bars) across repeated trials and successive input cycles, and quantified by the
best-fit sinusoid with frequency f (black thick line). For the sake of comparison, the sinusoidal component of I(t) (c, d—lower panels) was plotted in red and superimposed to the
actual injected waveform. Although the mean firing rate r0 remains constant, its modulation r1 and phase-shift U depend on the input frequency f.
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(5). Under periodic regimes, equation (5) is equivalent to the product

ŷðf Þ=X̂ðf ÞĤðf Þwhere ŷðf Þand Ĥðf Þare the (discrete) Fourier trans-

forms of y(t) and H(iT(t)), respectively, and X̂ðf Þcan be written as

X̂ðf Þ =G0�
�
ðj �f + z 1Þ�ðj �f + z 2Þ� . . . �ðj �f + zmÞ
ðj �f +p1Þ�ðj �f +p2Þ� . . . �ðj �f +pnÞ

�
�
�
p1�p2� . . . �pn
z1�z2� . . . �zm

�
ð6Þ

where j=
ffiffiffiffiffi
–1

p
and G0 is a real number that represents the low-

frequency gain. {zi} and {pi} are the roots of the polynomials with

coefficients {bi} and {ai} and act as the lower or upper cut-off

frequencies of elementary high-pass or low-pass filters, respectively,

arranged in cascade and have the physical meaning of the inverse of

intrinsic time-constants. The filter input--output gain and phase-shift

across input modulation frequencies f are fully specified by G0 and by

the number of distinct {zi} and {pi} (i.e., m and n) and their values. For

instance, equation (6) accounts for the high-frequency (f / +N)

power-law :X̂ðf Þ � f –a observed in our experiments, with a = n – m,

strictly integer. Identical input--output relationships are commonly

employed to describe electrical filters, composed of linear resistors,

capacitors and inductors (Horowitz and Hill 1989). Finally, a constant

propagation delay Dt was further included, together with an output

offset, so that

r ðt Þ = yðt –Dt Þ +P2;or equivalently:X̂ðf Þ/:X̂ðf Þ – 360+f Dt ; ð7Þ

where the phase of :X̂ðf Þ was indicated by : and expressed in

degrees.

In summary, equations (5--7) describe a linear transformation

preceded by a static, or no-memory, threshold-linear stage (eq. 4).

The cascade ordering ‘‘nonlinear--linear’’ was preferred to ‘‘linear--

nonlinear’’ for slightly better fit performances. All the parameters (i.e.,

P1, P2, G0, {zi},{pi}, Dt) were adjusted to minimize the discrepancies

between actual data and model predictions, employing Simulated

Annealing techniques (Press et al. 1992). The chosen cost--function to

minimize was represented by the v2 that quantified the mean quadratic

discrepancy between actual data and model prediction, weighted by

the confidence interval (Press et al. 1992). Large deviations are

therefore weighted on the basis of the confidence on these data

estimates. For the identification of the full cascade model in the time-

domain, v2 was complemented by 1st-derivative mean discrepancies.

Statistics
Ninety-five percent confidence accuracy intervals on the nonlinear least-

square parameter estimateswere determined for r0, r1(f), andU(f) by the
Levenberg--Marquardt fit algorithm, providing error bars in the plots of

Figures 5 and 6 as in Fourcaud-Trocmé et al. (2003). For Figure 1b (lower

panel) and Figure 6b, the gray shading represents the asymmetric 68%

confidence accuracy interval (i.e., corresponding to 1 standarddeviation)

for the mean firing rate rfix, as in Rauch et al. (2003).

In the case of identification of the phenomenological filter models,

the v2-test was used to evaluate the quality of the fits (Press et al. 1992),

implicitly taking into account the number of free parameters.

Kendall’s Tau nonparametric (rank-order) test (Press et al. 1992) was

finally employed to assess correlations among spike-shape features and

stimulation parameters, providing a measure c of correlation together

with its significance level P, which represents the probability of

obtaining the same value for c from statistically independent samples

(i.e., false positive).

Results

The Linear Response to Time-Varying Noisy Inputs

Due to irregular spontaneous activity and the high degree of

convergence, cortical neurons receive a continuous barrage of

excitatory and inhibitory potentials in the intact brain. At the

same time cortical cells participate in a variety of oscillations,

whose frequency spans several orders of magnitude (e.g., 0.05--

500 Hz) during distinct behavioral states (Buzsaki and Draguhn

2004). What is the impact of the background activity on

neuronal responsiveness and on collective oscillations? We

approached these issues by studying the linear response

properties of single neurons characterizing their instantaneous

discharge rate r(t) in response to a noisy background current

with a small sinusoidal component, hereafter referred to as the

‘‘signal.’’ This allowed us not only to investigate how cortical

neurons participate in an oscillatory regime, but especially how

cells track temporally varying inputs under distinct background

conditions (Fig. 1). We systematically varied the input oscil-

lation frequency f, its amplitude I1 and offset I0, as well as the

statistics (s, s) of the background noise (eqs. 1 and 2). Because

no correlation between the shape of the action potentials and

these stimulation parameters was found, we restricted our

analysis to the timing of each spike. However, very small

correlations c exist between (I0, I1, s) and the maximal

upstroke velocity and spike duration (|c| < 0.1; P < 10
–3), but

they are consequence of nonideal bridge-balancing. Weak

correlations cwere instead found between the rat postnatal day

and the spike upstroke velocity (c = 0.21; P < 10
–12),

downstroke velocity (c = –0.23; P < 10
–14), and spike duration

(c = –0.27; P < 10
–19), as observed by many investigators.

The firing rate r(t) was estimated from the peristimulus time

histograms (PSTHs) of the spike times over hundreds of cycles

of the input current and over several stimulation trials. It was

interpreted as the instantaneous discharge probability or,

equivalently, as the firing rate of a cortical population com-

posed of independent neurons.

In the limit of small-signal input amplitude I1, r(t) could be

well approximated by a sine wave oscillating at the same

frequency f as the input current (Fig. 2c,d, upper panels):

r ðt Þ ffi r0 + r1ðf Þsin½2pft +Uðf Þ�: ð8Þ

r(t) is fully described in terms of mean firing rate r0, modulation

amplitude r1(f), and phase-shift U(f) relative to the input

current, as in linear dynamical transformations. At the

beginning of each experiment, the stimulation parameters

were selected in a way that r0 was in the range 10--20 Hz, the

membrane voltage fluctuations induced by the noise were 1--5

mV, and the discharge modulation amplitude r1 was 0 < r1 < r0.

Figure 2 reports typical spike responses evoked by input

modulations at f = 10 Hz and at f = 250 Hz, recorded in the

same cell. Individual firing times across successive input cycles

and trial repetitions showed high variability (Fig. 2a,b, lower

panels), as a consequence of the noise component uncorre-

lated with the sinusoidal signal oscillations.

Scaling the input amplitude I1 in the range 20--200 pA while

keeping I0, s, and f fixed resulted in a linear scaling of the

output amplitude r1 (n = 3, not shown). However, for large

input modulation depth (i.e. I1 > 0.3 I0), the amplitudes of

output superimposed sinusoidal oscillations characterized by

multiple frequencies of f (i.e., higher harmonic components)

increased (n = 3), revealing the presence of input--output

distortions as the limit of small input amplitude was exceeded.

Thus, in most of the experiments we employed I1 smaller than

30% of I0, to fulfill the validity of the linear approximation

where higher harmonics in the output could be neglected.

Although similar values of I1 are not infinitesimal with respect

to I0, this choice was confirmed to be reasonable by studying

and predicting the neuronal discharge in response to more

complex inputs signals across a wide range of firing rates, as

discussed in the experiments of Figure 7.
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Consistent with the hypothesis of linearity, no significant

difference between the sum of the responses to individual

sinusoids and the response to the sum of multiple sinusoids

injected simultaneously was observed (Movshon et al. 1978;

Victor 1979; Carandini et al. 1996) (n = 20, not shown).

Cortical Neurons Track Fast Inputs

Our experimental characterization aimed at identifying the

linear neuronal response properties and at studying the way

background noise affects them (Sakai 1992; Chichilnisky 2001;

Fourcaud-Trocmé et al. 2003; Naundorf et al. 2005; Apfaltrer

et al. 2006). In the framework of classic Fourier decomposition

of any input signal to a neuron, r1(f) and U(f) give quantitative

information on how the neuronal encoding differentially

attenuates and delays each frequency component f of the

input, in the limit of small-signal amplitude.

Figure 3 summarizes population data and reports the

unexpectedly wide bandwidth of the output temporal modu-

lation depth r1/r0 and output phase-shift U. Although r0 was

unaffected by f, r1 decreased significantly only for f > 100--200

Hz, regardless of the intensity and temporal correlations of the

background noise. The profile of r1(f) across frequencies did

not match the membrane impedance, which was dominated by

voltage-dependent resonances in the low-frequency range (i.e.,

5--10 Hz—previously related to h-currents and M-currents) and

by a low-pass behavior at high frequencies (not shown) with

strong attenuation above 50 Hz (Gutfreund et al. 1995;

Hutcheon et al. 1996).

Above 200 Hz the output modulation depth decayed as

a negative power-law, which appears as a straight (dashed) line

in the double-logarithmic plot of Figure 3. The power-law

exponent estimated by linear regression through the popula-

tion data of Figure 3 was close to 2 (a = –1.80) and it matched

the value obtained by averaging the exponents estimated in

single experiments (a = –1.81 ± 0.31, n = 6—see Fig. 4a). A

similar qualitative dependence, induced by system lineariza-

tion, was anticipated by theoretical studies (Gerstner 2000;

Knight 1972a) and could be replicated quantitatively in the

case of integer power-law exponents through canonical phase

oscillator models (Naundorf et al. 2005), nonlinear integrate-

and-fire models (Fourcaud-Trocmé et al. 2003), and conduc-

tance-based neuronal modeling (Fourcaud-Trocmé et al. 2003).

Integer values of a also relate to the number of best-fit free

parameters of the phenomenological band-pass filters used in

Figures 5--7 (see the Methods—eq. 6), introduced to fit the

experimental data as discussed in the following sections.

Even though the inspection of Figure 3 seems to indicate

that the points at highest frequencies can be fitted by 1/f,

Figure 4a supports the conclusion that 1/f 2 is a more precise

characterization. Nevertheless, numerical simulations showed

that the high-frequency asymptotic behavior might be reached

at frequencies which are much higher than the cut-off fre-

quency (Fourcaud-Trocmé et al. 2003), so that assessing the

precise value of a might not be conclusive on the basis of our

observations.

As opposed to typical linear systems, the phase-shift at high

frequencies did not saturate but decreased linearly with f (see

Fig. 4b). This is reminiscent of the presence of a constant time
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Figure 3. Modulation depth (r1/r0) and phase-shift U of the response to a noisy
oscillatory input. The instantaneous firing rate r(t) evoked by small sinusoidal currents
over a noisy background revealed sinusoidal oscillations with amplitude r1 and phase-
shift U, around a mean r0 (quantified as in Fig. 2c,d). Surprisingly, pyramidal neurons
can relay fast input modulations, up to several hundred cycles per second. The high-
frequency response behavior matches a power-law relationship (i.e., r1 ~ fa) with
a linear phase-shift (i.e., U ~ f). These plots were obtained for 67 cells, averaging
across available repetitions and distinguishing between offset-currents I0 above
(suprathreshold regime) and below (subthreshold regime) the DC rheobase of the
corresponding cell (as in Fig. 5). Data points corresponding to distinct input
modulation frequencies were pooled together in nonoverlapping bins with size 0.1--10
Hz (low frequencies) and 100--200 Hz (high frequencies). Error bars represent the SE
across the data points available (32 ± 25) for each bin. Markers shape and color
identify the suprathreshold or weak-noise regime (black) and the subthreshold or
strong-noise regime (red), characterized by distinct values for I0 and s2, adapted to
yield a similar mean rate r0 ~ 20 Hz (i.e., 19.7 ± 1.5 Hz).
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Figure 4. The high-frequency dynamical response properties of a typical cortical
neuron, plotted in linear scale. The modulation amplitude (a) r1(f), elicited by noisy
oscillatory inputs, shows a power-law behavior (see also Fig. 3) captured by
1/fa, with a ~ 2, whereas the phase U of the response (b) decreases linearly with
increasing frequencies f (i.e., U / �360��f�Dt). Stimulation parameters (I0, I1, s) 5
(400, 150, 500) pA and s 5 5 ms.
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delay Dt between input and output. This delay was in the range

0.3--1.1 ms, sometimes much larger than the ‘‘threshold-to-peak

voltage’’ lag ssp during a spike. ssp quantifies the rising phase of

each action potential, upon conventional definition of ‘‘thresh-

old’’ as the membrane voltage corresponding to a rate of

change of 10 mV/ms, and it was in the range of 0.3--0.5 ms. As

expected from the previous report (Fourcaud-Trocmé et al.

2003), Dt model was always equal to ssp in single-compartmental

computer simulations (not shown). However, the mismatch

between ssp and Dt observed in some cells might be explained

in terms of relevant additional axo-somatic and somato-axonic

propagation latencies of about 0.2 ms each. This was measured

directly by Palmer and Stuart (2006), who reported that

cortical cells initiate action potentials at the distal end of the

initial axon segment (see also Shu et al. 2006).

The Background Noise Affects the Neuronal Dynamical
Response at Intermediate Frequencies

In the absence of background fluctuations, a neuron discharges

only when its input current surpasses a certain threshold (i.e.,

the rheobase current). When the input current is noisy and

fluctuations are induced in the membrane voltage, the neuron

can be brought to spiking even when its average input is below

the threshold (i.e., ‘‘subthreshold’’). Thus, the mean firing rate

of the neuron r0 is determined by both the mean current I0 and

the standard deviation s of the noise. At the beginning of each

experiment, I0 and s were tuned to obtain the same mean firing

rate r0, chosen in the range 10--20 Hz. This allowed us to evoke

2 different discharge regimes, reflected in the degree of the

irregular firing: the suprathreshold or weak-noise regime and

the subthreshold or strong-noise regime. In the weak-noise

regime, the background input fluctuation amplitude s was set

to 20--50 pA and its mean I0 was chosen above rheobase.

Conversely, in the strong-noise regime, I0 was set below

rheobase, and s was increased until r0 matched the value

obtained in the suprathreshold regime.

Figure 5 summarizes the results of these experiments,

reporting the responses of 4 typical cells (see also Fig. 3). It

shows that the intensity s of the background noise, mimicking

presynaptic firing as well as presynaptic background cross-

correlations (Rudolph and Destexhe 2004), differentially

affects the neuronal response. This occurs especially at

intermediate frequencies, flattening the response profile, and

smoothening resonances as predicted in theoretical studies

(Knight 1972a; Brunel et al. 2001; Fourcaud-Trocmé et al. 2003;

Richardson et al. 2003). The modulation of the neuronal

discharge does not appear significantly attenuated at frequen-

cies lower than 100--300 Hz in both regimes (see also Fig. 2), as

for Figure 3 but plotted in linear instead of logarithmic scale for

the vertical axis. At low input frequencies f (1--20 Hz), an

increase in r1 and a phase-advance were always observed (see

Figs 5 and 6). These effects are apparent when analyzing single-

cell responses rather than population averages (compare

Figs 3 and 5).

Figure 5. The intensity of background fluctuations affects the dynamical response of cortical neurons. The impact of the noise variance s2 was examined across a wide range of
input frequencies f, in 4 distinct cells (a--d), under the same conditions of Figure 3. Strong background noise smoothes r1(f) at intermediate frequencies, as in a programmable
equalizer. Linear instead of logarithmic scale has been employed here for the y-axis. Each subpanel (top to bottom) reports r1(f) and U(f), identifying the suprathreshold or weak-
noise regime (‘‘supra’’—black markers) and the subthreshold or strong-noise regime (‘‘sub’’—red markers) by different marker shapes and colors. Each regime is characterized by
distinct values for I0 and s2, adapted to yield a similar mean rate r0 ~ 20 Hz. Experimental data points (markers) have been plotted together with the best-fit predictions from
a phenomenological filter model (continuous traces). For these cells, band-pass 2nd-order filters (i.e., n 5 2—eq. 6) were found to describe the experimental data with high
significance (see Supplemental Table S1). Error bars represent the 95% confidence intervals, obtained by the Levenberg--Marquardt fit algorithm. High-frequency error bars were
large because of the poor signal-to-noise ration as well as for the ambiguity of the (periodic) estimates of U(f). Although I1 5 50 pA and s 5 5 ms were fixed for all cells and
both regimes, the remaining stimulation parameters were: (suprathreshold) (I0, s)a 5 (500, 50), (I0, s)b 5 (400, 20), (I0, s)c 5 (250, 25) and (I0, s)d 5 (350, 50) pA;
(subthreshold) (I0, s)a 5 (300, 400), (I0, s)b 5 (150, 325), (I0, s)c 5 (100, 250) and (I0, s)d 5 (100, 450) pA.
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In general, uniform and dense sampling of the frequency axis

was not practicable, given the limited time window for stability

and reproducibility of the neuronal response in typical

recordings (see the Methods). This resulted in privileging high

frequencies in some experiments (e.g., see Fig. 4) while

neglecting intermediate frequencies in others, and vice versa

(e.g., Fig. 6). This prompted us to test a posteriori whether data

points collected simultaneously on the response magnitude r1
and phase U were consistent with the hypothesis of linearity,

while providing meaningful interpolations between samples

(see Fig. 5d). In fact, the mutual relationship between r1 and

phase U cannot be arbitrary in a linear system. Therefore,

a filter model (eqs. 6 and 7, see the Methods) was routinely

employed to fit the data from each experiment. This model

captured the neuronal response to the input signal component

and its best-fit attenuation and phase-shift were plotted in

Figures 5 and 6 as thick continuous lines. As in electrical filters

made of linear resistors, capacitors and inductors (Horowitz

and Hill 1989), the number and location of the model intrinsic

time-constants account for integer power-law behavior and for

low frequencies resonances and phase-advance, while match-

ing the profiles of r1 and U simultaneously. Changing the

background noise level (black and red colors in Figs 3 and 5)

resulted only in a shift in the best-fit values of the intrinsic time-

constants of the model and required no modification of their

number. This shift was smaller for faster time-constants (i.e.,

less than ± 30%, for time constants below ~3 ms—see

Supplemental Table S1), indicating that the high-frequency

response of the neuron was generally unaffected by the noise

intensity.

Background Temporal Correlations Do Not Speed up
Neuronal Reaction Times

The timescale of background fluctuations (i.e., the ‘‘color’’ of

the noise) was systematically varied in our experiments (Fig. 6).

This is set by the correlation time s of the noise (eq. 2) that

mimics the decay time-constant of synaptic currents. In

previous theoretical studies, the dependence of U on s was

emphasized (Brunel et al. 2001), suggesting that synaptic noise

might have an impact on the reaction times to fast inputs

transients reducing the response phase-lag to zero and

removing amplitude attenuations (Knight 1972a; Gerstner

2000). Here, we explored the effect of changing the values of

s in the range 5--100 ms, thereby mimicking the contribution of

fast (AMPA- and GABAA-mediated), slow (NMDA- and GABAB-

mediated) synaptic currents. Both U and r1 showed sensitivity

to s for intermediate frequencies, but not in the high-frequency

regime, as plotted in Figure 6 for 4 typical cells. This is

consistent with the results of the simulations of a conductance-

based model neuron (not shown), and with the predictions of

Fourcaud-Trocmé et al. (2003).

As discussed in the previous section and shown in Figure 5,

r1(f) and Uðf Þ could be simultaneously fit by the frequency

response of a linear filter model. A change of the noise time-

constant s shifted the best-fit parameters, but required no

modification of their number. The shift was smaller for faster

Figure 6. The timescale of background fluctuations affects the dynamical response of cortical neurons. The effect of the timescale of fluctuations (i.e., correlation time s) was
examined across a wide range of input frequencies f, in 4 cells (a--d). At high input frequencies pyramidal neurons are insensitive to the noise-color, in the sense that they do not
speed up or slow down their fastest reaction time, for ‘‘white’’ or ‘‘colored’’ background noise. Linear instead of logarithmic scale has been employed here for the y-axis. The
panels (top to bottom) report r1(f) and U(f), with different marker shapes and colors referring to 2 stimulation regimes, indicated as sslow (red markers) and sfast (black markers).
Although sfast was fixed to 5 ms and sslow was (a--d) 45--50 ms, in (d) the range 5--100 ms could be explored. As in Figure 5, experimental data points (markers) have been
plotted together with the best-fit predictions from a phenomenological filter model (continuous and dashed traces). For these cells, band-pass third-order filters (i.e., n 5 3—eq.
6) were found to describe the data with high significance (see Supplemental Table S2). Error bars represent the 95% confidence intervals obtained by the Levenberg--Marquardt
fit algorithm. High-frequency error bars were large because of the poor signal-to-noise ration as well as for the ambiguity of the (periodic) estimates of U(f). Stimulation
parameters were: (I0, I1, s)a 5 (250, 50, 100), (I0, I1, s)b 5 (300, 50, 100), (I0, I1, s)c 5 (300, 50, 100), and (I0, I1, s)d 5 (300, 50, 75) pA.
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time-constants (i.e., less than ± 20%, for time constants

generally below ~3 ms—see Supplemental Table S2).

Significance of the Linear Response Properties to Predict
Neuronal Responses

The good accuracy of the linear filter to fit the experimental

data (Figs 5 and 6, continuous lines) prompted us to test up to

which extend linear properties dominate the input--output

response in pyramidal neurons. In fact, ideal linear systems

process each Fourier-component of their input independently

and distortion-free, so that the frequency-domain response of

the system is sufficient to predict the corresponding output.

We investigated the response r (t) to a broadband signal iT(t),

instead of sinusoids (see the Methods). With the aim of

approaching the conditions of the periodic regime studied in

the previous sections, iT(t) was cyclically repeated with a period

of T = 100 ms. With the additional background noise, these

experiments generalize and extend those of Mainen and

Sejnowski (1995), who looked at fast stimulus transients and

neuronal response reliability. Furthermore, our approach

allows one to study the response of a cortical population,

where neurons experience uncorrelated background activity,

weakly interacting with each other and receiving the same

input signal. In Figure 7b, a sample waveform of the broadband

input was plotted, together with the raster-plots of the spikes

evoked across hundreds of cycles and repetitions. In analogy to

the analysis shown in Figure 2, the peristimulus time histo-

grams (PSTHs) computed from the raster-plot was used to

estimate the instantaneous firing rate r(t).

Although instantaneous input amplitudes were not small

compared with I0, the phenomenological filter employed in

Figures 5 and 6 could predict the time-varying neuronal

response with satisfying accuracy over a wide range of output

firing rates (Fig. 7), tracking fast input transients. However, to

account for large negative input amplitudes that occasionally

occur, a minimal current-threshold was needed in cascade to

the linear filter (eqs. 4, 6, and 7). Without it, the correct

dynamical range of the response could not be replicated and

the fitting procedure led to low prediction performances. The

order ‘‘nonlinear--linear’’, sketched in Figure 7a, was preferred

to the ‘‘linear--nonlinear’’ (Sakai 1992) as it systematically led to

slightly superior fit performances, as well as to a possible

interpretation as the neuronal rheobase.

Discussion

In the present work we studied the basic questions of how

neurons encode time-varying inputs into spike trains, how

efficiently they achieve it and what the impact of the

background noise is. This is of central importance to un-

derstand network activities like network-driven persistent

oscillatory regimes, which depend on the single-cell dynamical

response properties and on recurrent connectivity.

Previous studies used deterministic oscillating inputs in

invertebrate (Knight 1972b; French et al. 2001) and vertebrate

neurons in hippocampus and entorhinal cortex (Schreiber et al.

2004), in thalamocortical neurons (Smith et al. 2000), in spinal

interneurons and motoneurons (Baldissera et al. 1984), in the

vestibular system (du Lac and Lisberger 1995; Ris et al. 2001), in

the auditory (Liu et al. 2006), and visual systems (Victor and

Shapley 1979a, 1979b; Sakai 1992; Carandini et al. 1996; Nowak

et al. 1997), with emphasis on spike timing and reliability

(Fellous et al. 2001; Schaette et al. 2005) and synchronization

(Gutkin et al. 2005). Our results extend those studies in 2 ways:

1) by examining the contribution of background fluctuations

and 2) by systematically exploring the dynamical response

properties up to the high-frequency range (1 kHz).

By the interpretation of the instantaneous firing rate as a

population activity, our analysis suggests that cortical ensem-

bles are extremely efficient in tracking transients that are much

faster than the membrane time-constant (~20 ms—see the

Methods) and the average interspike interval (~1/r0 ffi 50 ms)

of individual cells. This finding was anticipated by many

theoretical studies and it correlates with the previous obser-

vations that single cortical neurons (Mainen and Sejnowski

1995) and hypoglossal motoneurons (Powers et al. 2005) may

have phase-locked firing responses to fast-varying current

inputs, as well as with the study of Bair and Koch (1996),

who observed large cut-off frequencies in the power spectra

of the responses of middle temporal cortical neurons to in vivo

random visual stimulation. However, our results extend the

previous studies to the case of high-frequency phase-locking of

the population firing rates, under noisy background. Although

this is not unexpected (Knight 1972a), our findings disprove

Figure 7. Prediction of the discharge response to a broadband input signal over
a background noise. We challenged the significance of the linear response properties,
searching for best-fit parameters of a phenomenological cascade model to predict the
instantaneous firing rate in response to a broadband input iT(t) (b—upper panel).
Such a model, sketched in (a), has the structure of a classic Hammerstein model
(Sakai 1992), where a static, or no-memory, threshold-linear element is followed by
a linear system, as for the band-pass filters of Figures 5 and 6 (see the Methods). In
(b), only the broadband current signal is shown (top), together with the corresponding
spiking pattern elicited across different cycles and repetitions (middle). In the lower
panel, the best-fit output r(t) of the model (red dots) was compared with the
instantaneous firing probability (continuous blue line) obtained as a PSTH with a 68%
confidence interval (gray shaded area), estimated over the corresponding raster plot
(middle). The cascade model captures the input--output response properties of
cortical neurons to fast inputs with acceptable accuracy (see Supplemental Table S3).
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that the noise and its temporal correlations make a neuronal

population respond instantaneously to an input (Knight 1972a;

Gerstner 2000; Brunel et al. 2001; Silberberg et al. 2004). In

fact, both noise intensity s and correlation time s modulate the

neuronal response only at low and intermediate input

frequencies and do not affect the low-pass filtering profile of

the response, in agreement with Fourcaud-Trocmé et al. (2003)

and with Naundorf et al. (2005).

The location of the observed cut-off frequency was higher

than the predictions from single-compartmental conductance

based model neurons (Fourcaud-Trocmé et al. 2003). In those

studies, the cut-off was of the order of r0 and increased with

the increasing sharpness of the action potentials. Similarly,

Naundorf et al. (2005) observed an increase in the neuronal

response at input frequencies much higher than r0 (i.e. up to

200 Hz) for increasing action potential onset speed, while

studying a phase-oscillator point neuron model. We propose

that the effective spike sharpness could be higher than what

was previously modeled at the soma. We speculate that

a multicompartmental description that incorporates the de-

tails of axonic spike initiation (McCormick et al. 2007;

Shu et al. 2007) might quantitatively support our experimental

observations.

We observed a phase-advance at low input frequencies that

was previously interpreted mechanistically on the basis of ion

currents responsible for spike-frequency adaptation (Fleidervish

et al. 1996; Ahmed et al. 1998; Fuhrmann et al. 2002; Compte

et al. 2003; Paninski et al. 2003), as well as of resonances of the

membrane impedance (Brunel et al. 2003; Richardson et al.

2003). These hypotheses are consistent with the input

frequency range ~1--10 Hz (i.e. (100 ms)
–1--(1000 ms)

–1) of the

phase-advance and with its sensitivity to the levels of the

background noise we observed in our experiments.

The use of current-clamp was a meaningful choice for an

immediate comparison to the analytical and numerical studies

of Fourcaud-Trocmé et al. (2003), Geisler et al. (2005) and

many others. A more realistic somatic conductance--injection is

expected to change quantitatively but not qualitatively our

conclusions (see also Apfaltrer et al. 2006). Even when

excitatory and inhibitory fluctuating conductances significantly

alter the effective membrane time-constant sm of the neuron

(Destexhe et al. 2003), their additional temporal modulation

will not affect further sm, in the limit of small amplitude

considered here. Previous theoretical studies directly showed

that the location of the cut-off frequency as well as of the

resonances due to subthreshold resonances (Richardson et al.

2003) shift with distinct conductance-states of the neuron, but

pointed out that the power-law exponent a and the sensitivity

to the background noise remain unaffected (Fourcaud-Trocmé

et al. 2003; Geisler et al. 2005). Nevertheless, in order to

carefully extend the discussion of Rauch et al. (2003) (see

also La Camera et al. 2004; Richardson and Gerstner 2005)

towards a mapping between the dynamical response properties

induced by current-driven stimuli to those induced by

conductance-driven stimuli, our results will require to be

reevaluated under dynamic-clamp recordings (Robinson 1994;

Destexhe et al. 2001).

The response amplitude r1(f) decays as a power-law in the

high-frequency range and the exponent a of the power-law 1/

f
a was approximately 2. This is in contrast to what is predicted

for the Wang-Buzsaki model (Wang and Buzsaki 1996) and for

the exponential integrate-and-fire neuron (Fourcaud-Trocmé

et al. 2003), but it is consistent with a polynomial V--I

dependence of the spike-initiating mechanisms (not shown).

This steeper power-law is unlikely a measurement artifact. The

glass pipette used to inject sinusoidal input currents has indeed

low-pass filter properties in ‘‘cascade’’ to the neuron. However,

these filtering properties occur mainly between input--output

voltages due to parallel parasitic capacitances. Input--output

currents are unlikely to be prefiltered due to inductive

electrical effects and viscosity in the movement of charge

carriers in the pipette solutions, as these are negligible

phenomena in the frequency range we investigated.

Finally, the local slope (i.e., gain) of the static f--I curve

affects neuronal responses regardless of the input modulation

frequencies (Fourcaud-Trocmé et al. 2003). Previously

reported gain-modulations induced by background noise

(Chance et al. 2002; Higgs et al. 2006) are qualitatively distinct

than the effects shown in Figures 5 and 6, as they act by scaling

the firing rate output of the neurons across all the input

frequency-bands.

Our experimental results then suggest that the action

potential is a major evolutionary breakthrough, not only for

making possible long-distance propagation of signals, but more

importantly because it represents a powerful large-bandwidth

digital intercellular communication channel, through popula-

tion coding. In fact, our work shows that population coding

with spikes has no significant attenuation in the range 0--200

Hz, while it compensates the heavy drawbacks of the analog

intracellular membrane properties, which filter out input

frequencies faster than ~50 Hz.

Relations to Reverse-Correlation Methods

Neural coding and the dynamical characterization of the input--

output transformation operated by neurons, have been pre-

viously addressed by using methods of stimulus reconstruction

(Bialek et al. 1991; Rieke et al. 1995) or reverse correlation

(de Boer and Kuyper 1968; Gerstner and Kistler 2002). The last

identifies the typical input current preceding a spike. Such

a procedure estimates the 1st-order Wiener kernel and thus the

linear component of the system (Kroller 1992) even though

underlying nonlinearities might be present ‘‘in cascade’’

(Chichilnisky 2001). The reverse correlation kernel is pro-

portional to the impulse response of the linear response of the

neuron and it characterizes the ‘‘meaning’’ of each spike

(Kroller 1992). The frequency-domain characterization that we

considered so far directly relates to such an impulse response

upon Fourier transform, although here we focused only on the

encoding of the input signal (and not of the overall waveform)

into the output. We thus generalized the previous experimen-

tal investigations to include the effect of background noise.

Consistently with the weak impact of background noise at

high input frequencies that we reported, one might expect that

similar cut-off frequencies (i.e. ~100--200 Hz) were quantita-

tively observed by previous investigators, although they might

have not included any background noise. For instance, the

‘‘stimulus kernel’’ identified by Powers et al. (2005) in moto-

neurons by injecting stationary ‘‘white’’-noise inputs, appears to

be dominated by a single decay time-constant in the order of

5--10ms, indeedmatching the 100--200 Hz cut-off frequencies of

our data. Similarly, the low-noise phase-advance properties we

observed (e.g., Fig. 2a) and the filter model intrinsic (high-pass)

time-constants identified in our experiments, quantitatively

correlate with the ‘‘feed-back’’ kernel computed by the same
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authors after selecting short and long interspike-intervals to

unveil the effect of spike-frequency adaptation.

Finally, with the aim of further exploring the relationship of

our approach with the previous ones, we directly computed

the spike-triggered average (STA) of the input current pre-

ceding a spike, in 3 experiments where a broadband signal iT(t)

was injected. In Figure 8, we compare the Fourier transform of

the STA to the frequency response of the best-fit linear filter

model optimized to match the instantaneous firing rate (as in

Fig. 7). As expected interpreting the STA as the 1st-order

kernel reveals striking similarities between the 2 approaches,

especially for frequencies higher than 200 Hz.

The Phenomenological Filter Model

Linear response properties are relevant to predict the response

to complex noisy waveforms, even though the hypothesis of

small input amplitude was not strictly respected by iT(t). As

discussed by Carandini et al. (1996), our experiments support

the idea that in vivo membrane potential fluctuations linearize

the response to stimulus-related input components (Masuda

et al. 2005). Consistently, the neuronal response r(t) could not

be captured by employing a static nonlinearity alone (not

shown), even though for stationary noisy stimuli a similar

description is appropriate (Rauch et al. 2003; Giugliano et al.

2004; La Camera et al. 2006; Arsiero et al. 2007). The additional

cascade threshold-linear element simply relates to the presence

of a minimal input threshold. It is interesting to note that the

piecewise-linear profile of such nonlinearity reflects the minor

role played by distortions and harmonics in our experiments.

Summarizing, a simple ‘‘cascade’’ model could quantitatively

capture the time course of the instantaneous discharge rate

(see also Shelley et al. 2002; Gutkin et al. 2005; Schaette et al.

2005), although it neglected the precise firing times. On the

other hand, these can be captured by spiking neuron models, as

in Jolivet et al. (2006) and Paninski (2006), identifying the

parameters of an exponential (or quadratic) integrate-and-fire

including spike-frequency adaptation as in Brette and Gerstner

(2005).

Cortical Rhythms

Slow inputs produced a phase-advance of the output response

whereas fast inputs a phase-lag, relative to the input modula-

tion (Fuhrmann et al. 2002). This has been proposed to have

important consequences for emerging population dynamics in

recurrent networks, as the signals propagation between pre-

and postsynaptic spikes does not only depend on the synaptic

delays but also on the (oscillation frequency-dependent) delay

introduced by the postsynaptic neuron itself. The fact that

spike timing depends on f is particularly relevant for the

emergence of population rhythms including fast ripples

(Buzsaki et al. 1992; Csicsvari et al. 1999; Grenier et al. 2003;

Buzsaki and Draguhn 2004; Buzsaki et al. 2004). In fact, the

spikes of a presynaptic neuron, which is engaged in network-

driven oscillations, generate periodic synaptic currents. Then

the postsynaptic neuron experiences the periodic maxima of

these currents after a synaptic delay, and responds to such

a current signal reaching the maximum of its firing rate with an

additional delay U(f) and attenuation r1/I1. If both presynaptic

and postsynaptic neurons are participating in the same global

rhythm, the overall delay between the pre- and postsynaptic

spikes must be consistent with the period of the global

oscillation and no strong attenuation should occur at that

frequency, as shown in computer simulations by Fuhrmann

et al. (2002), Brunel and Wang (2003), and Geisler et al. (2005).

Therefore, not every oscillation frequency f is compatible with

a given recurrent network architecture, synaptic coupling and

firing regime.

We showed that the phase-shift and response amplitude of

L5 pyramidal cells depends on the background fluctuations

(Figs 5 and 6). This suggests that the frequency of emerging

rhythms can be modulated by a background network embed-

ding those neurons, as the phase of single-cell response is

affected. More general, any network activity that relies on the

timing of recurrent spikes is governed not only by the synaptic

dynamics but is also controlled by the response properties

(U(f), r1) of single cells.

Supplementary Material

Supplementary material can be found at: http://www.cercor.

oxfordjournals.org/
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Figure 8. Comparison between the 1st-order kernels computed by reverse-
correlation techniques and the best-fit frequency response of the linear filter model of
Figure 7. The modulation amplitude r1(f) (dashed line, identifying eq. 6) was compared
with the fast Fourier transform (FFT) of the STA (markers) of the input current
preceding a spike. The last was evaluated correlating the signal component iT(t) with
the timing of each action potential, in 3 experiments. As expected from interpreting
the STA as the 1st-order kernel, striking similarities are apparent.
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