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Acoustic stimulation of the cochlea leads to a travelling wave in the cochlear fluids
and on the basilar membrane (BM). It has long been suspected that this travelling
wave leads to a steady streaming flow in the cochlea. Theoretical investigations
suggested that the steady streaming might be of physiological relevance. Here, we
present a quantitative study of the steady streaming in a computational model of a
passive cochlea. The structure of the streaming flow is illustrated and the sources
of streaming are closely investigated. We describe a source of streaming which has
not been considered in the cochlea by previous authors. This source is also related
to a steady axial displacement of the BM which leads to a local stretching of this
compliant structure. We present theoretical predictions for the streaming intensity
which account for these new phenomena. It is shown that these predictions compare
well with our numerical results and that there may be steady streaming velocities of
the order of millimetres per second. Our results indicate that steady streaming should
be more relevant to low-frequency hearing because the strength of the streaming flow
rapidly decreases for higher frequencies.
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1. Introduction

The cochlea is part of our hearing sense. It consists of three coiled chambers
(scalae) which are filled with different lymphatic fluids, of several compliant
membranes which separate the scalae, and of a large number of sensory hair cells
(figure 1). Mechanically, the most relevant membrane is the basilar membrane (BM)
which separates the cochlea in a fluid space above the BM (scala vestibuli and scala
media) and a fluid space beneath the BM (scala tympani).

Acoustic signals enter the cochlea through vibrations of the stapes which is attached
to the oval window of the cochlea. The cochlea transforms these vibrations to
travelling waves in the cochlear fluids and on the BM. Local resonance phenomena
yield a frequency discrimination along the principal axis of the cochlea. At the places
of resonance (characteristic places) the mechanical wave motion deflects hair bundles
of the inner and outer hair cells. Such a deflection opens gated ion channels and
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FIGURE 1. Schematics of (a) the cochlea with the three cochlear ducts (adapted from
http://ptolentinobioresearch.wikispaces.com/) and (b) a cross-section through the scala
media showing the BM and the Corti organ which includes the inner and outer hair cells
(adapted from http://en.wikipedia.org/wiki/Cochlear_duct).

initializes a flux of K* ions into the hair cells. In interaction with further biochemical
and neural processes, this leads to hearing. A comprehensive introduction into cochlear
mechanics and modelling is given in Baker et al. (2006).

The term ‘steady streaming’ denotes a time-averaged fluid motion which is
generated by an oscillating primary flow field with zero mean. Different types of
steady streaming are known, e.g. the quartz wind which is induced by a high-intensity
beam of sound, or the Rayleigh streaming induced by standing sound waves between
plane walls. These streaming motions are nonlinear effects and forced by Reynolds
stresses. In the present work, we also consider the Stokes drift as a steady streaming
flow although its origin is of purely kinematic nature. Overviews of different streaming
phenomena are given in, e.g., Lighthill (1978), Riley (2001), Boluriaan & Morris
(2003) and Suh & Kang (2008).

Besides the streaming due to Reynolds stresses, we will find that the BM vibration
is an additional source of cochlear streaming. In the general context of acoustic
streaming, this mechanism was first pointed out by Bradley (1996). Applications
of streaming due to vibrating walls have been discussed, for instance, by Luchini
& Charru (2005) and Bradley (2012). In microfluidics the phenomenon is actively
studied in the context of so-called ‘surface acoustic waves’ (Ding et al. 2013) which
can be used for pumping in microfluidic devices (Vanneste & Biihler 2011) or for
the manipulation of droplets (Tan et al. 2010).

In contrast to acoustic streaming phenomena which are directly related to acoustic
waves, the steady streaming in the cochlea is caused by travelling waves in the
cochlear fluids and on the BM. Although these waves run at acoustic frequencies,
they are not acoustic waves. They are characterized by phase velocities of the order
of 10 m s~' which is much lower than the typical acoustic wave speed, whereas
the material velocities (of the order of millimetres per second) are much higher than
in acoustic waves. They share some similarities with deep-water waves which are
well known to lead to a Stokes drift (Andrews & McIntyre 1978). In contrast to
deep-water waves, the cochlear waves feature thin Stokes boundary layers next to the
BM where Reynolds stresses present a source of streaming. A further attribute of the
cochlear travelling wave system is the rapid decrease in wave speed and wavelength
along the BM and the nearly instantaneous decay of velocity amplitudes once the
characteristic place has been passed.
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Steady streaming has long been suspected to be present in the cochlea. Already the
so-called Békésy eddies, which were observed in vitro many decades ago (Békésy
1960; also figure 4 in Lesser & Berkley 1972), suggested the presence of a slow
steady streaming flow on top of a primary travelling wave system with higher
flow velocities. Streaming has been explicitly mentioned by Lesser & Berkley
(1972) who presented a model of a passive cochlea based on two-dimensional
potential flow. The linear nature of the governing equations in their model and the
absence of viscous boundary layers naturally prevented the occurrence of streaming
phenomena apart from Stokes drift. Lighthill (1992) was the first (and to the best of
the authors’ knowledge still the only) author to provide tangible theoretical results
on streaming in the cochlea. His work was strictly of theoretical nature and provided
a set of surprisingly simple and elegant results predicting the streaming motion in a
harmonically stimulated cochlea.

As pointed out by Lighthill (1992), steady streaming in the cochlea might lead to a
force which deflects the hair bundles of the inner hair cells. Since mechanical bending
of these hair bundles triggers the nerve signals which lead to hearing, a direct impact
of streaming on the hearing sensation is possible. Further physiological effects related
to streaming will be discussed later in this work.

Despite the potential relevance of steady streaming to the hearing process, this
topic has found only little attention until recently (e.g. Bohnke & Scharff 2009;
Gerstenberger & Wolters 2011). Kotas, Rogers & Yoda (2011) performed an
experimental study on the streaming in the inner ear of fish and investigated whether
streaming might stimulate the hair cells of the otoliths (linear balance sense). To the
best of the authors’ knowledge, the only available numerical results on streaming
in the human cochlea are due to Gerstenberger (2013). A critical discussion of
Lighthill’s predictions is still outstanding.

It is the aim of the present article to investigate steady streaming in the cochlea
and to illustrate and verify Lighthill’s predictions on the basis of a computational
model. The different components of steady streaming will be shown, i.e. Eulerian and
Lagrangian streaming flows and the Stokes drift. Differences between results of our
model and Lighthill’s predictions shall be critically discussed. In particular, we will
investigate the contribution of the BM motion to Eulerian streaming.

For the present study, we will use a two-dimensional box model which includes
the scala vestibuli, the scala tympani and the BM. It neglects the other fluid spaces
and membranes (e.g. the scala media with the Corti organ, cf. figure 1b) as well
as the coiled shape of the cochlea. The small Reynolds numbers present in the
cochlea suggest that the coiling is irrelevant to the phenomena studied here. However,
neglecting the scala media and the Corti organ limits the applicability of our results.
In particular, we will be unable to apply our results directly to the deflection of the
inner hair cell bundles (see also the discussion in §4.4). Nevertheless, the present
morphological simplifications will allow us to obtain a better understanding of the
global mechanics within the cochlea which are relevant to trigger the microscopic
phenomena present in the Corti organ.

Furthermore, the used model for the cochlea does not take into account the active
processes in the outer hair cells which yield a nonlinear amplification of the local
travelling wave amplitudes. Our model belongs to the class of passive two-dimensional
box models of the cochlea which are often used to study basic cochlear mechanics
(Beyer 1992; Pozrikidis 2008; Edom et al. 2013). The mathematical description of
the model is based on first principles (Navier—Stokes equations for the fluid, linearly
elastic model for the BM). The idealizations in this model (e.g. neglect of the scala
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FIGURE 2. Schematic drawing of the two-dimensional box model of the cochlea.

media and the Corti organ) allow only for rough estimates of the strength of the
streaming motion in a real cochlea. For a detailed quantification of cochlear streaming
further phenomena, such as active amplification, have to be included. Nevertheless, the
present study will provide a good illustration of the streaming phenomena present in
a cochlea and shall help to further assess the relevance of steady streaming to the
hearing process.

The following section (§2) describes the computational model used for this study.
The primary wave system which results from the interaction between the cochlear
fluids and the compliant BM will be described in §3.1. This section also provides a
model validation by demonstrating that the well-known travelling wave phenomenon
in the cochlea is reproduced. Section 3.2 presents numerical results for the steady
streaming where we will distinguish between Eulerian and Lagrangian streaming fields
and the Stokes drift. Sections 3.3 and 3.4 discuss phenomena beyond the common
concept of steady streaming: the presence of higher harmonics in the flow fields and
a steady displacement of the BM. In § 4.1, the numerical results will be compared with
the predictions by Lighthill. Section 4.2 assesses the different mechanisms which lead
to steady streaming in the cochlea. Sections 4.3 and 4.4 discuss the magnitude of the
streaming in a real cochlea and the possible physiological consequences of streaming.
Section 5 concludes the paper.

2. Two-dimensional box model of a passive cochlea
2.1. Governing equations

We study the flow field in a two-dimensional box model of the cochlea (figure 2) with
a linearly elastic BM. The fluid motion is described by the Navier—Stokes equations
for an incompressible flow,

V.u=0, (2.1)
u

at+p(u-V)u=—Vp+uV2u+q, (2.2)

0

where u = (u, v) denotes the velocity vector, ¢ the time, p the pressure, p and u the
density and the dynamic viscosity of the cochlear fluids, respectively; g is a force
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density which will be used to introduce the effect of the BM on the fluid motion.
The coordinate directions x and y are oriented along the BM (axial direction) and
perpendicular to it (transversal direction), respectively, with the origin located at the
basal end of the BM.

No-slip boundary conditions are imposed at the outer walls and at the BM. At the
oval and the round window we impose harmonically oscillating inflow and outflow
velocities (perpendicular to the wall) to model the acoustic stimulation. We neglect
the small displacements of the two windows because their influence on the resulting
primary wave system is negligible.

The BM is modelled by an array of independent oscillators, positioned along the
BM. In typical cochlear models, these oscillators are governed by an equation of the
type

?*n  _on ]

m8t2 +R8t +Knp=—Ap il (2.3)
where (x, 1) = (n.(x, t), n,(x, 1)) denotes the displacement of the BM with respect
to its resting position. The parameter m(x), and the tensors R(x), and K(x) describe
the mass, damping and stiffness per unit area of the BM, respectively, and Ap(x) is
the pressure difference across the BM. Similar approaches for the BM model have
been used, e.g., by Peterson & Bogert (1950) and Lesser & Berkley (1972). Note
that neighbouring points in this model of the BM have no mechanical connection
apart from an indirect coupling through the surrounding fluid. This idealization is
justified by the highly anisotropic mechanical properties of the BM. The BM is not
a membrane in the usual mechanical sense; we should rather think of it as an array
of individually supported cantilever beams which are oriented perpendicularly to the
x—y plane (Baker et al. 2006).

In the present model, the inertia m of the BM is negligible in comparison with the
inertia of the fluid that is displaced by the BM (virtual mass). Therefore, we choose
m = 0 which is also in agreement with findings by de la Rochefoucauld & Olson
(2007) for small to moderately high frequencies. Furthermore, we assume that the
majority of the energy dissipation takes place in the thin Stokes boundary layers that
are forming on the BM. Therefore, the structural damping of the BM is neglected
as well (R = 0) such that no further modelling of this parameter is required. The
remaining stiffness tensor K defines a linearly elastic behaviour of the BM.

According to the no-slip boundary condition, the BM motion must be equal to the
fluid motion at the BM,

— =ulpu. (2.4)

The elastic reaction of the displaced BM leads to a force density q|zy which acts on
the flow field along the BM manifold. In line with (2.3), we compute this force as

qloy = — (’f) ;?) <Zy> . (2.5)

The description of the BM motion by (2.4) and (2.5) is a mobility formulation for
fluid—structure interaction. It translates naturally into the immersed boundary approach
that we will be using for the numerical implementation of the cochlea model (§2.2).

Because the density and the viscosity of cochlear fluids are known to be similar to
those of water (p = 10° kg m—3, u =107 kg m~' s~!; Baker et al. 2006), the BM
stiffness coefficients «, and «, remain the only physical parameters that have to be
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modelled. According to common practice in cochlear modelling, we assume that the
transversal stiffness «, decays exponentially along the x-axis such that we obtain a
logarithmic distribution of the resonance frequencies along the BM with 20 kHz at
the base of the cochlea and 20 Hz at the apex,

K, (x) =6.25 x 10" - exp(—x/2.606 mm) (N m~?). (2.6)

The axial stiffness «, of the BM elements has not been quantified conclusively so far
in the literature such that our model must rely on rough estimates. Here, we assume
that the axial stiffness is 100 times lower than the transveral stiffness, i.e. x, =k, /100.
This choice is motivated by the microstructure of the BM (e.g. figure 2 in Wittbrodt,
Steele & Puria 2006) which may lead to such an anisotropy. A decay in of the axial
stiffness toward the apex of the cochlea has been observed in experiments by Emadi,
Richter & Dallos (2004). Despite the relatively low axial stiffness, we will see (§3.1)
that the axial displacements of the BM are approximately two orders of magnitude
smaller than its transversal displacements. Moreover, it turns out that the observed
phenomena are fairly robust with respect to the actual choice of «,. An axial coupling
between neighbouring BM elements (Naidu & Mountain 2001) is not included in our
model.

The outer dimensions of the box model (figure 2) are 36 mm in length and
1.44 mm in height. These dimensions were selected following Lighthill (1981)
because results from this model will be compared with Lighthill’s predictions. The
BM is placed in the middle of the box and extends from the base of the cochlea
over a length of 35 mm. The resulting ‘hole’ at the apex corresponds to the so-called
helicotrema which connects the two fluid spaces above and below the BM.

The oval and round windows are located on the top wall of the box at 0.6 <
x < 3.6 mm and on the front wall at 0.12 <y < 0.54 mm, respectively. We assume
rectangular wall-normal velocity profiles at these windows (smoothed at the ends) to
prescribe an inflow and outflow due to vibration of the stapes (middle ear ossicle).
These velocities are varied harmonically with frequency f and amplitude U;, to
simulate a pure tone stimulation of the cochlea. The rectangular shape for the
velocity profile at the oval window is justified by the solid plane footplate of the
stapes which pushes onto the membrane-covered oval window. The round window,
however, is covered by a supple membrane and most likely does not deform in a
rectangular shape. Nevertheless, we believe that the effects of this idealization on the
streaming motion remains negligible, because the steady streaming is strongest close
to the BM at the characteristic place which is typically far from the round window.

2.2. Numerical implementation

The governing equations are solved with a high-order solver for the Navier-Stokes
equations (Henniger, Obrist & Kleiser 2010) which uses a third-order explicit
Runge—Kutta integration scheme in time and up to sixth-order finite differences
in space on a staggered Cartesian grid. The mesh width is reduced close to the walls
and the BM to resolve the boundary layers. The solver has been thoroughly validated
for different fluid dynamical problems (Henniger et al. 2010). Typical simulations use
grids with 320 x 9216 points and roughly 60000 time steps to simulate approximately
25 ms (for a 1000 Hz stimulation). The turnaround time for one such simulation was
approximately 400 h on eight cores of a personal computer with Xeon ES5-2643
processors.
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The interaction between the fluid and the BM is modelled through an immersed
boundary approach. The immersed boundary method (see Peskin 2002) has already
been used in the field of cochlear mechanics by Beyer (1992) and Givelberg & Bunn
(2003). Our approach implements the mobility formulation (2.4) and (2.5). To this end,
the manifold which represents the BM is discretized by an immersed one-dimensional
grid with roughly the same number of points as we use for the fluid grid in the
axial direction. The velocity u|gy on the right-hand side of (2.4) is interpolated from
the fluid grid onto the immersed grid with a bilinear scheme. Equation (2.4) is then
advanced to the next time step with the same explicit Runge—Kutta scheme as used
for the Navier—Stokes equations. This yields the new position n of the BM from
which we compute the force density q|gy according to (2.5). This field force density
is distributed to the surrounding fluid grid points again by a bilinear scheme.

The bilinear interpolation limits the overall order of convergence of our numerical
model. Nevertheless, validation tests have shown that the numerical errors introduced
by our fluid-structure interaction scheme remain below the overall level of accuracy
of the flow solver.

The simulations are started from a zero initial condition for the flow field and the
BM at its resting position. The amplitude of the harmonic stimulation at the oval
window 1is slowly ramped up over the first 12 oscillations. In the following, we will
present only results after a statistically steady flow field has been reached, such that
the numerically computed mean flow fields are independent of the time at which they
have been evaluated. Such a state is typically reached to a sufficient level of accuracy
after approximately 25 periods of the harmonic stimulation.

3. Results

In this section, we present results from our numerical model. Unless stated
otherwise, the simulations used a stimulation of the cochlea with f = 1000 Hz
and U;, =30 um s~! at the oval window. These values are equivalent to an acoustic
signal of approximately 76 dB ear canal pressure according to measurements by
Sim et al. (2010). In our model, the characteristic place (where the maximum BM
amplitude is found) for this stimulation is at x.~ 14.4 mm.

If we use the long axis of the stapes footplate (3 mm) as typical length scale L
and U, as a reference velocity, this stimulation leads to a Reynolds number of Re =
Uy,L/v=0.09 and a Womersley number of o = L\/w/v & 238 (where v = u/p and
w = 27f). This suggests that the effects of the advective terms of the Navier—Stokes
equations are weak and that the flow features very thin Stokes boundary layers.

3.1. Primary travelling wave system

The results in figures 3(a) and 4 confirm that a harmonic stimulation of the cochlea
leads to travelling waves in the fluid as well as on the BM. In the context of
steady streaming, we denote this travelling wave as the primary wave system which
oscillates at the fundamental frequency f. The phase velocity ¢, of the travelling wave
propagating toward the apex is of the order of 1 m s~! at the characteristic place and
goes rapidly to zero shortly beyond that point. The amplitude of the BM deflection
at the characteristic place increases for lower frequencies (figure 3b). The maximum
BM deflection remains several orders of magnitude below the overall dimensions
of the cochlea for all relevant acoustic stimulations. These results serve as a basic
validation of our computational model because they are in good agreement with
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FIGURE 3. Travelling waves on the BM: (a) amplitude (———) and instantaneous deflection
( ) of the transversal BM displacement 7, at 1000 Hz, phase velocity (—--) of the
travelling wave (right axis). (b) Amplitudes of the transversal displacement n, for different
stimulation frequencies indicated in Hertz.
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FIGURE 4. Velocity components (in mm s~') of the instantaneous flow field when
the stapes is moving out of the cochlea with a maximum velocity of 30 pum s
( exaggerated BM displacement; for the true magnitudes see figure 3). (a) Axial
velocity u. (b) Transversal velocity v.

the well-established concept of travelling waves (Békésy 1960) in passive cochlear
mechanics.

The fluid velocities in the travelling wave (figure 4) increase towards the
characteristic place and are highest close to the BM. They are one to two orders of
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magnitude larger than the stapes velocity amplitude U;,. Beyond the characteristic
place, nearly no fluid motion is found. At the bounding walls and at the BM, we
observe thin Stokes boundary layers whose thickness scales with ./v/w. For very
high frequencies the Stokes boundary layers become very thin such that the bulk flow
of the primary wave system may be described as a potential flow (Lesser & Berkley
1972). In order to include the Stokes boundary layers in the primary wave system, it
would be sufficient to solve the (unsteady) Stokes equations because the small scales
of travelling waves lead to Reynolds numbers well below unity. For studying steady
streaming, however, it is necessary to include also the nonlinear advective terms and
therefore we solve the full Navier—Stokes equations.

3.2. Eulerian and Lagrangian mean flow fields

As pointed out by many authors, e.g. Riley (2001), it is important to distinguish
between Eulerian and Lagrangian streaming velocities. The Eulerian mean velocity
refers to the average velocity at a fixed point in space, whereas the Lagrangian mean
velocity refers to the average velocity of a fluid particle along its trajectory. The
calculation of the Eulerian mean flow field ug is straightforward and consists of the
temporal average of the fluctuating velocity field over one period of the fundamental
oscillation 7= 1/f,

up(x) =ux) = % / u(x,t)dr. 3.1)
t—T

The computation of the Lagrangian mean flow u; is more involved. We define it as
the ratio of the distance Ax and the period T,

u,=Ax/T, 3.2)

where Ax =x,(t) — x,(t — T) is the distance travelled by a fluid particle over the
period T and

x,(1) =x,(0) + /0 u(x,(r), r)dr. (3.3)

Following Lighthill (1992), we define the difference between the Lagrangian and
the Eulerian mean as uy =u; —ug. It is synonymous to the well-known Stokes drift.
This component of the streaming originates from local gradients in the primary wave.
If we assume that u(x, r) = u(x) + Re{a(x) exp(iwr)} (where Re{-} indicates the real
part of a complex number) and that the velocity magnitude is sufficiently small, it can
be derived from (3.3) that the Stokes drift is given by

1, = —Re {“Vm*ﬁ } 34

2w

where #@(x) is some complex amplitude function and the superscript * denotes the
complex conjugate Lighthill (1992).

Figures 5(a) and 6(a) show the Eulerian and the Lagrangian streaming flow fields,
ur and u;, respectively. Both flow fields consist of a pair of vortices whose centres
are approximately aligned with the characteristic place at x. &~ 14.4 mm. The vortex
above the BM rotates in the counterclockwise direction, opposite to the vortex
beneath the BM. The highest streaming velocities are found close to the BM and
are approximately 4.75 pm s™' (15 % of the maximum stapes velocity U,,) for the
Eulerian field and approximately 1 wm s™' or 4% of U,, for the Lagrangian field.
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FIGURE 5. Eulerian mean flow field uz: (¢) magnitude and streamlines (in wm s');
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FIGURE 6. Lagrangian mean flow field u;: (a) magnitude and streamlines (in wm s=!);
(b) axial velocity profile u;(x., y) taken at the characteristic place.

The axial streaming profiles ug(x.,y) and u;(x.,y) at the characteristic place (figures
5b and 6b) highlight the differences between the two mean velocities in the boundary
layer region. The Eulerian mean velocity drops rapidly from its maximum value at
y =0 to nearly zero at the edge of the Stokes layer, whereas the Lagrangian mean
velocity increases from zero at the BM to a maximum within the boundary layer. In
the bulk flow region, the two mean velocities have approximately the same values.
The Lagrangian mean velocity at the resting position of the BM (y = 0) is exactly
zero because the elements of the BM are elastically fixed to a given location such that
they cannot drift (apart from a steady axial displacement attained during the transient
phase, see §3.4). The Eulerian mean velocity, however, is non-zero at y = 0 which
reflects the fact that the oscillating BM is generally either above or below its resting
position.

Finally, figure 7 shows the Stokes drift u); =u; —ur. The Stokes drift at the resting
position of the BM exactly cancels the Eulerian streaming such that the Lagrangian
mean velocity of the BM becomes zero. As a consequence, the vortices due to the
Stokes drift rotate opposite to the Lagrangian and the Eulerian vortices.
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FIGURE 7. Stokes drift uy =u; —ug: (a) magnitude and streamlines (in pm s™');
(b) axial velocity profile uy(x., y) taken at the characteristic place.

3.3. Higher harmonics

We can observe a phenomenon closely related to steady streaming when we study
the trajectory of a point on the BM itself (figure 8a). This trajectory has the shape
of a figure of eight or of a Lissajous figure with frequency ratio 2:1 and a 90° phase
shift. In fact, the axial velocity oscillates at twice the fundamental frequency while the
transversal motion follows the fundamental frequency. Apparently, the weak nonlinear
phenomena which lead to streaming have injected energy into a higher harmonic rather
than into the zero frequency.

In general, higher harmonics will always be present as soon as quadratic nonlinear
terms (such as the advective terms of the Navier—Stokes equations) are involved.
However, these components are usually not noticed because they are of much smaller
amplitude than the oscillations in the primary wave system. In this symmetric set-up
with an elastically supported mechanical structure, the axial component of the primary
wave system is exactly zero in the plane of symmetry such that the higher harmonics
are visible.

The trajectories of fluid particles only a little bit away from the BM are slender
ellipses and become circles in the bulk flow (figure 8b). These trajectories show no
obvious effects of higher harmonics because the axial oscillation at the fundamental
frequency is now dominant and masks the higher harmonic motion.

Finally, we would like to point out that the fluid trajectories are not closed (not
visible in figure 8) due to the non-zero Lagrangian mean velocity, whereas the BM
trajectories are closed because u;|,—o = 0.

3.4. Steady displacement of the BM

We stretch the concept of steady streaming further by considering the axial
displacement of the BM (figure 9). The axial oscillation of the BM has its highest
amplitude close to the characteristic place. In contrast to the transversal displacement,
the displacement in the axial direction has a non-zero mean. This mean displacement
results in an axial stretching of the BM away from the characteristic place to either
side (cf. figure 8a). It is the result of an axial drift during the transient period
while the flow is transitioning from its initial state toward the steady-state oscillating
configuration.
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FIGURE 8. (a) Trajectories of BM elements ( ) during one oscillation (e positions of
the elements in the relaxed BM). To highlight the figure-of-eight shape of the trajectories,
the aspect ratio of the trajectories is stretched in the axial direction. The arrows indicate
the steady axial BM displacement away from the characteristic place at x. ~ 14.4 mm.
(b) Trajectories of fluid and BM elements (——) with starting positions (e). The size
of the trajectories is strongly exaggerated for visibility, while the correct aspect ratio is
maintained in this panel.

This net displacement causes steady axial elastic forces pointing toward the
characteristic place. Apparently, there must exist a balance between these restoring
forces and the steady streaming forces which act on the BM. Section 4.2.1 will offer
an explanation for this phenomenon.

In general, the axial displacement 15, is two orders of magnitude below the
transversal displacement 7, although the axial stiffness is significantly smaller than
the transversal stiffness. Further numerical experiments showed that the magnitude of
the net BM displacement is inversely proportional to the axial stiffness «, of the BM.
Therefore, the steady axial restoring forces are independent of the axial stiffness. It
also follows that the phenomenon of the axially stretched BM occurs independently of
our particular choice of the ratio «,/k, (assuming that the axial stiffness is sufficiently
high such that the axial displacements remain small compared with the wavelengths
of the travelling wave).
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FIGURE 9. Axial BM displacement 1,: envelope (-——) and instantaneous
deflection ( ).

4. Discussion
4.1. Comparison to Lighthill’s results

Lighthill (1992) provides a number of analytical results for the flow field of the
primary wave system and of the various streaming fields. These results are given
in function of the wavenumber k(x) and the transversal velocity amplitude V(x) of
the travelling wave on the BM. These values can be determined with the help of
the Hilbert transform of the instantaneous BM displacement (Huang et al. 1998).
In the following, we will compare our numerical results with Lighthill’s predictions
where we use the wavenumbers and transversal velocity amplitudes obtained from
our simulations (cf. figure 3). We will find that there is a remarkable agreement
between Lighthill’s predictions and most of our numerical results. Only for the
so-called slip velocity (§4.2.1) do we observe significant differences. We will discuss
this observation in detail and describe an additional source of streaming, which may
explain the differences to Lighthill’s predictions.

4.1.1. Primary wave system

Lighthill gives a general solution [A 4] (we use brackets, [ - ], to refer to equations
in Lighthill 1992) for the primary wave system which divides the fluid motion into an
external irrotational flow and a Stokes boundary layer. If we apply the wavenumber
k(x) and the amplitude V(x) from our simulation to Lighthill’s theoretical results, they
agree very well with our numerical results in the vicinity of the characteristic place
(figure 10). Small differences arise mainly due to the Stokes layers at the bounding
walls of the cochlea which were neglected by Lighthill. Furthermore, Lighthill (1992)
writes expli(wt — kx)] for the travelling wave assuming only small changes either in k
or in x. Since the wavenumber increases exponentially along the BM (cf. figure 3a),
we changed the original term to expli(wf — [ kdx)].

Away from the characteristic place, the differences between our results and
Lighthill’s predictions increase because of the increasing influence of the bounding
walls and of the round and oval windows. We assume that these differences are
not relevant for the streaming motion because they arise at some distance from the
characteristic place where the largest streaming effect is present.
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FIGURE 11. Stokes drift u,, at y=0: simulation; ——— analytical prediction (4.1)
according to Lighthill (1992).

4.1.2. Stokes drift
Lighthill’s predictions for the Stokes drift uf, = (u};, vi,) again depend on the wave

number and the velocity amplitude of the travelling wave. For the Stokes drift at the
resting position y =0 of the BM, Lighthill predicts ([75], [B 17])

L v L
MM|y=0 = —m, UM|y:0 =

Figure 11 shows that the axial Stokes drift at y = 0 according to (4.1) agrees very
well with our results. The transversal drift vy|,—o in our model is of the order of
1072 wm s~!'. This small deviation from (4.1) can be attributed to the asymmetric
placement of the oval and round windows (cf. figure 2).

The axial velocity profile wuy(x., y) at the characteristic place (figure 7b) is
practically identical to the analytically predicted velocity profile [B 13] by Lighthill
(1992). Because the analytical result assumes no boundaries other than the BM, both
curves differ necessarily close to the bounding wall. Furthermore, Lighthill states that

0. (4.1a,b)
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vl =0 everywhere in his unbounded domain. In our model, the transversal streaming
velocity vy, must be non-zero in general because the bounding walls at the base and
at the apex lead to a two-dimensional flow such that conservation of mass can be
satisfied (cf. figure 7a).

4.1.3. Slip velocity

Lighthill derives a slip velocity u% for the Eulerian mean motions. This slip velocity
is measured at the edge of the Stokes boundary layer of the BM and reflects the
contributions of the Reynolds stresses to the Eulerian streaming. It can be understood
as a non-zero boundary condition for the bulk flow. Lighthill predicts in equation [92]
that

. Vo 3wV

"= 4o 4o’ 42)
where V' = dV/dx. The first term in (4.2) as well as part of the second term
(=VV'/4w) are due to the Reynolds shear stresses —pu'v’ where ' and v’ are the
fluctuating components of the velocity field (u, v) = (w, v) + (&', v') and the line
indicates an average according to (3.1). The remainder of the second term (—VV’'/2w)
is due to the normal Reynolds stresses —pu'?.

The Eulerian streaming field from our simulations (figure 5) does not agree with
these predictions. Moreover, it is difficult to make out a distinct edge of the Stokes
boundary layer where u} would apply (cf. figure 5b). We will discuss this issue in
detail in the following section where we will also provide an explanation for this
apparent mismatch.

4.2. Sources of steady streaming

The present section discusses the sources of the streaming motion, concentrating on
the comparisons between our results and Lighthill’s predictions. On the one hand, we
have seen that there is a remarkable agreement for the primary wave system as well
as for the Stokes drift. Therefore, it appears that Lighthill’s formulas yield accurate
predictions as long as the velocity amplitude V and the wavenumber k are known
for the primary wave system. On the other hand, the discrepancies for the Eulerian
mean flow (i.e. in u%) are significant and require further discussion. We will find in the
following that there exists an additional source of streaming that was not considered
by Lighthill. If we take into account this source which acts in addition to the Reynolds
stresses, we find a reasonable agreement with Lighthill’s theoretical results.

4.2.1. Streaming due to moving BM

We can learn more about the additional source of streaming when we repeat
our simulations with the unsteady Stokes equations, i.e. we deliberately neglect
the nonlinear advective terms of the Navier—Stokes equations. This eliminates any
contribution of the Reynolds stresses to the streaming. The primary wave system in
such simulations is almost identical to the primary wave system in the full model.
This confirms that the primary wave system is mainly governed by the unsteady
Stokes equations. As a consequence, we also obtain nearly the same Stokes drift
uy. One might expect that such a simulation does not yield any Eulerian mean flow
because there are no (apparent) nonlinearities in the governing equations. However,
the Eulerian mean is non-zero (figure 12a) and consists of a large pair of vortices
aligned with the characteristic place. Apart from the streaming velocity at y =0, the
associated axial flow profile (figure 12b) is very different from the Eulerian profile
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FIGURE 12. Eulerian mean velocity for the unsteady Stokes equations: (a) streamlines
with velocity magnitude (in wm s~'); (b) axial velocity profile at the characteristic place.
(The small wiggles in (a) at x ~ 17 mm are a numerical artefact due to the very slow
convergence of the steady state.)
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FIGURE 13. Axial stretching induced by a single element of the oscillating BM.

in figure 5(b) and does not exhibit any boundary layer length scales (e.g. the Stokes
boundary layer length scale /v/w~ 13 pm).

These results show that there exists a source of streaming other than the Reynolds
stresses. It results from the fluid—structure interaction. The equation of motion for the
BM, (2.4), together with the reaction forces, (2.5), yields the necessary nonlinearity
because these two equations combine the oscillation of the BM with a periodic force
acting on the fluid. The schematic in figure 13 explains one aspect of this effect:
consider a single element of the BM. When this element oscillates, the elastic reaction
force will always point toward the resting position. These reaction forces induce a
flow field as indicated in figure 13. While the transversal velocity component of this
flow cancels over one period at y =0, the axial velocities at y =0 point away from
the BM element during the whole oscillation period. This yields an Eulerian mean
flow with a quadrupole-like structure in which the axial velocities point away from
the characteristic place and the transversal velocities toward it.

The velocities which are induced by this mechanism are quite small and cannot
explain the vortical structures in the Eulerian streaming field in figure 12(a). However,
this axial streaming is responsible for a slow axial drift of the BM away from the
characteristic place. This drift leads to axial restoring forces of the BM which point
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FIGURE 14. Transversally displaced velocity profiles close to the BM. The axial velocities
at y=0 (bold arrows) are positive most of the time.

toward the characteristic place. Eventually the restoring forces are so large that the
axial drift becomes a steady axial displacement (on average over one period). This
effect is reflected in the steady axial displacement shown in figures 8(a) and 9 (and
§3.4).

To finally explain the Eulerian flow field shown in figure 12 we have to look in
more detail at the interaction of the BM displacement with the Stokes boundary layers
of the primary wave system. Lighthill (1992) computed the axial velocity profile in
the Stokes boundary layer as (according to [63])

up(x, y, 1) = Re {iV(x) [1 — eﬂ‘W} ei<‘°’*’“>} . 4.3)

Note that this formula implicitly assumes that the vibrating BM remains at y = 0
throughout the oscillation. This approximation appears reasonable for sufficiently
small BM displacements. However, it cannot explain the non-zero Eulerian mean
at y = 0 because up,(x, 0, f) = 0. Assuming that the BM displacement leads to a
small transversal shift n, of the velocity profiles, a better approximation for the axial
velocity is given by ug.(x,y —n,, t). Figure 14 illustrates this shift and shows that it
leads to a positive axial velocity at y =0 throughout most of the oscillation period.
The Eulerian mean at y =0 can be computed by linearizing wug, (x, y — n,, ) about
y=0,

1 t+T 1 t+T P
NV UpL /
Ugly=0 = T / up (X, y —n,, £)dr = T / |:uBL - ] dr. 4.4)
t t y=0

The first term in the second integral does not contribute to the Eulerian mean, whereas
the second term has a non-zero mean. If we take the transversal BM displacement as
ny(x, 1) =Re{—1V(x) /o expli(wt — kx)]} (Lighthill 1992), we obtain

V2
V8w

Apart from the sign, this expression is identical to Lighthill’s formula for the Stokes
drift at the BM, (4.1). Therefore, the Eulerian streaming due the moving BM exactly

(4.5)

Ugly—o =~
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cancels the Stokes drift at y=0. We will see in the following section that this result
has direct implications on Lighthill’s prediction for the slip velocity.

The streaming (4.5) can be interpreted as a slip boundary condition along the BM
which drives the vortices illustrated in figure 12. This bulk flow is steady and governed
by the (steady) Stokes equations. Therefore, it does not exhibit any Stokes boundary
layer length scales.

4.2.2. Streaming due to Reynolds stresses

The previous section illustrated the presence of an additional source of streaming,
but did not explain the discrepancy between Lighthill’s slip velocity and our results.
We can make further progress by studying the effect of the Reynolds stresses alone.
To this end, we have to include again the effect of the nonlinear advective terms of
the Navier—Stokes equations (in contrast to §4.2.1 where these terms were neglected).
Furthermore, we modify the model in such a way that the streaming due to the
moving BM (as was studied in §4.2.1) does not take place. We can achieve this
by applying the reaction forces of the BM at y =0 instead of y =n,. Likewise the
velocity u|py on the right-hand side of (2.4) is evaluated at y = 0. In other words,
this modified BM returns the correct reaction forces to the fluid whereas its small
transversal displacement within the fluid space is neglected. This is equivalent to a
first-order approximation of the actual BM motion. Similar concepts have been used
by other authors (e.g. Hill 1995) to model wall roughness by non-zero wall-normal
velocities transpiring through a flat wall. Following the reasoning of the previous
section, this modification eliminates the streaming source due to the moving BM
such that the effect of the Reynolds stresses alone can be studied.

We find that the primary wave system as well as the Stokes drift remain nearly
unchanged in this modified model. This confirms that our modifications only affect
the Eulerian streaming. The gradients of the resulting Reynolds stresses are shown
in figure 15. These quantities can be understood as force densities which drive the
Eulerian streaming of this modified model.

Figure 15 shows that the main contribution to streaming comes from the axial
shear stress term —p v’ du’/dy (figure 15b) whereas the contribution —p ' du'/dx
of the axial normal stresses (figure 15a) is negligible. The transversal Reynolds
stress components —p u’ dv’/ox and —p v’ dv’'/dy (figure 15¢,d) are of nearly equal
magnitude and are weaker than the axial shear stress term.

The force density fields in figure 15 lead to the Eulerian mean flow shown in
figure 16. It consists of a pair of vortices which rotate in the opposite(!) sense to
the vortices in the original model (cf. figure 5a). The effect of the Reynolds stresses
is concentrated within the boundary layer and leads to the (negative) peak at the edge
of the boundary layer (figure 16b). The velocity at this point can be identified with
Lighthill’s slip velocity, nevertheless the prediction uf§ still differs significantly from
this velocity. The reason is simply that Lighthill assumed that the Eulerian streaming
due to the Reynolds stresses must compensate for the Stokes drift at y=0. Therefore,
he imposed V?/4/8vw as a boundary condition (equation [80]). We know from the
previous section that this is not the right choice because the Stokes drift at y =0
is already compensated for by the Eulerian mean flow (4.5) due to the moving BM.
Figure 16(b) confirms that the Eulerian mean flow due to the Reynolds stresses is zero
at y=0. Therefore, Lighthill’s derivation for the slip velocity has to be repeated with
a homogeneous boundary condition at y=0. This leads to the corrected slip velocity

Vik  3VV V?
s 4w 4w Svw

(4.6)

where the third term is new compared with (4.2).
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FIGURE 15. Components of the gradient of the Reynolds stress terms: (a) —p v'du’/9x;
(b) —pv'ou'/dy; (¢) —pu'dv'/ox; (d) —pv'dv'/dy. They can be interpreted as force
densities with units (N m~?) which drive the Eulerian streaming motion in the modified
model from §4.2.2 (x indicates the location of the characteristic place).
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FIGURE 16. Eulerian mean velocity for the modified cochlear model (only Reynolds
stresses; without streaming due to the moving BM): (a) streamlines with velocity
magnitude (in pm s~!); (b) axial velocity profile at the characteristic place. (The small
wiggles in (a) at x~ 17 mm are a numerical artefact due to the very slow convergence
of the steady state.)
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FIGURE 17. Eulerian slip velocities at the edge of the boundary layer: corrected slip
velocity us (4.6); - -- - Lighthill’s slip velocity u% (4.2); ——— slip velocity obtained from
the modified cochlear model (the small wiggles at x ~ 17 mm are a numerical artefact
due to the very slow convergence of the steady state).

Figure 17 shows this corrected slip velocity ug together the slip velocity obtained
from the modified computational model. Although the agreement between ug with the
simulation results is not excellent, the corrected ug is a much better prediction than
u§. The remaining differences between prediction and computational model can most
likely be attributed to a transversal shifting of the velocity profiles (as we have studied
in the previous section, cf. (4.4)) and to higher-order correction factors for u§ that are
described in the appendix of Lighthill (1992).

4.2.3. Summary of streaming sources

We summarize our findings and list the relevant sources of streaming in the cochlea
as follows: first, there is the Stokes drift represented by u,, (figures 7 and 11) which
is well described by Lighthill’s theoretical results; second, there is the streaming due
to the moving BM which compensates for the Stokes drift at y=0 (figure 12); third,
there is the streaming due to Reynolds stresses (figure 16). The latter two sources
can be added because the streaming flow is governed by the linear Stokes equations.
This superposition yields the Eulerian mean flow field ug in figure 5. The vortices due
to the moving BM and the vortices due to the Reynolds stresses nearly cancel each
other in the bulk flow such that there remains only a pair of relatively weak vortices
(rotating in counterclockwise direction above the BM).

Finally, the superposition of the Stokes drift and the Eulerian streaming yields the
Lagrangian streaming field u; = uy, + ur (figure 6). It consists of a vortical flow in
counterclockwise direction (above the BM) and a zero mean velocity on the BM.

4.3. Magnitude of streaming velocities

In order to assess the relevance of the cochlear streaming to physiological processes
in the cochlea, it is necessary to estimate the magnitude of the streaming velocities
for different stimulation frequencies and amplitudes. So far, we have only shown
streaming flows that were obtained for a stimulation at 1000 Hz with U;, =30 pm s~!
which corresponds to a sound pressure level of 76 dB in the ear canal (Sim et al.
2010).
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FIGURE 18. Maximum absolute values of the three terms of the corrected slip velocity
( max, |V2/v/8vw|; ——— max, |V?k/dw|; —-— max, |3VV'/4o|; cf. (4.6)) and
maximum streaming velocities from the computational model (o max,, |ug|) for (a) U, =
30 wm s~! (corresponds to 76 dB SPL at 1000 Hz) and (b) a constant ear canal pressure
amplitude of 94 dB (corresponding U;, taken from Sim et al. (2010)). The dotted lines
indicate a decay rate of (a) 1/f> and (b) 1/f°.

It is clear from expressions such as (4.5) that the streaming velocity scales with the
square of the stapes velocity U;,. We have confirmed this quadratic scaling numerically
by changing the stapes velocity amplitude to U, =3 pm s~! and to 300 pm s~
The higher stapes velocity corresponds to a sound pressure level in the ear canal of
approximately 96 dB. In this case, the maximum streaming velocities reach values of
approximately 0.3 mm s~! (which is still an order of magnitude below the primary
wave velocities at the characteristic place).

The influence of the stimulation frequency on the streaming is less obvious from
the theoretical results because the BM velocity amplitude V strongly depends on the
frequency (cf. figure 3b) and because the terms in (4.6) scale either with 1/w or
1/4/w. Therefore, we have plotted in figure 18 the maximum absolute values of the
three terms of the corrected slip velocity (4.6). To this end, we have extracted the
amplitudes V and the wavenumbers k from simulations of the primary wave system for
different stimulation frequencies. Figure 18 shows that higher stimulation frequencies
yield, in general, smaller streaming velocities. The symbols in figure 18 indicate the
streaming velocities obtained directly from the computational model. We find that
the maximum Eulerian mean velocities are remarkably well predicted by V?/+/8vw
whereas the other terms in (4.6) play a minor role in the investigated frequency
range. For a constant stapes velocity amplitude (figure 18a) streaming is strongest in
a frequency range between 250 and 1000 Hz. For constant ear canal sound pressure
levels (figure 18b) the highest streaming velocity of approximately 0.3 mm s~! can be
found at 1000 Hz. For higher frequencies f the maximum streaming velocity decays
roughly like 1/f? (for constant stapes velocity amplitude) and like 1/f° (for constant
sound pressure level). Therefore, we expect steady streaming to be most relevant
for moderate to low-frequency hearing. This result stands in contrast to the common
understanding that cochlear streaming is mainly a high-frequency phenomenon (Baker
et al. 2006).
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4.4. Physiological relevance of cochlear streaming

We have seen that cochlear streaming due to loud acoustical stimulations may reach
values of the order of millimetres per second. In an actual human cochlea, the
streaming velocities may be higher than the values found in our model. This is not
so much due to the morphological differences (e.g. the tapering of the cochlea), but
rather due to active cell processes which can considerably amplify the magnitude of
the BM displacement. For soft tones this amplification reaches 40—60 dB (Hudspeth
2008). However, for higher sound intensity the active amplification is much smaller
(‘compressive nonlinearity’, Hudspeth 2008). Apart from the amplification, the active
processes lead to a sharper tuning of the cochlea, i.e. the peak at the characteristic
place is narrower in an actual cochlea than the peaks shown in figure 3. This
sharpening will mainly affect the second term in (4.6) because it scales with the
gradient of the BM amplitude. From the available results (cf. figure 18) it is difficult
to decide whether this effect is strong enough for the second term in (4.6) to become
relevant for the streaming velocity.

Based on these arguments it appears that the streaming in the human cochlea might
be sufficiently strong to support the deflection of the hair bundles of the inner hair
cells at the characteristic place. Furthermore, it is reasonable to assume that a directed
streaming flow would be more efficient in stimulating the inner hair cells than an
oscillating flow which repeatedly opens and closes the ion channels while the acoustic
stimulation lasts. This idea was originally formulated by Lighthill (1992) and briefly
discussed by Baker et al. (2006). However, the results from the present work are
not sufficient to prove or disprove Lighthill’s idea of inner hair cell stimulation by
streaming. Our simple box model is unable to appropriately represent the flow field
in the vicinity of the inner hair cells because they are embedded in a complex three-
dimensional structure (organ of Corti) with only a narrow gap giving access to the
cochlear fluids (cf. figure 1b). It is likely that the streaming in this narrow gap is
different from the streaming discussed here.

Apart from the inner hair cell stimulation, the streaming flow might be relevant
for the transport of solutes in the lymphatic fluids of the cochlea. A convective
transport of relevant metabolites (e.g. Nat, K*) might act in addition to the transport
by molecular diffusion. This could enhance the re-establishment of concentration
gradients which are necessary for the cell processes which generate the afferent nerve
signals. Note that this enhancement of the transport capacity is adaptive in the sense
that it acts where the nerve cells are active (i.e. at the characteristic place) and that
its intensity increases with the sound intensity. Such an adaptive local advective
transport mechanism reduces the need for blood vessels close to the organ of Corti
which helps reducing the interference of mechanical noise of the blood flow with the
hearing process. The Péclet number, Pe =1-u/D, estimates the balance between the
advective transport over a characteristic length scale / due to a streaming velocity u
and the transport due to molecular diffusion characterized by the diffusion constant D.
For Pe > 1 the advective transport is dominant. If we choose for the length scale /
the distance from stria vascularis (highly vascularized region acting as a source of
metabolites; cf. figure 10) to the hair cells (consumer of metabolites), which is of
the order of 107*~1073 m, and if we further assume that the molecular diffusion
coefficient in the lymphatic fluids is of the order of 10~° m? s=!' (Cussler 2009),
we find that advection due to streaming becomes the dominant transport process for
streaming velocities higher than 107> m s~'. Figure 18 suggests that such streaming
velocities may be reached at moderately high sound intensities.
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Finally, we would like to point out that streaming might also be useful for
transporting drugs which are injected into the cochlea via e.g. the round window
(Kingma, Miller & Myers 1992). Steady streaming might be used by applying
targeted acoustic stimulations during specific time spans in order to use the maximum
streaming velocities present at the characteristic place. Apart from the quasi-steady
acoustic stimulations, such methods could also use specific non-harmonic acoustic
stimulations which may possibly provide Lagrangian transport velocities that are
significantly higher than the steady streaming velocities discussed here.

5. Concluding remarks

We have presented numerical results for steady streaming in a two-dimensional
computational model of a passive cochlea. For moderate acoustic stimulations, the
streaming velocities are of the order of micrometres per second. They can reach
velocities of millimetres per second for loud sounds of 120 dB and more. The
streaming is strongest in the vicinity of the characteristic place and forms a pair
of counter-rotating vortices on either side of the BM. These results are in good
qualitative agreement with the recent numerical study of Gerstenberger (2013).

In addition to the steady streaming flow, we found similar nonlinear phenomena
related to the displacement of the BM. We described a small axial oscillation of the
BM at twice the stimulation frequency such that the trajectory of a BM element has
the shape of a figure of eight. We also found a steady axial displacement of the BM
which results in an axial stretching of the BM in vicinity of the characteristic place.

Furthermore, we studied the different sources of streaming and found that the
BM motion as well as the Reynolds stresses lead to a Eulerian mean flow. The
Stokes drift has been predicted theoretically very well by Lighthill (1992), whereas
his predictions for the Eulerian streaming require some modifications as he did not
consider the streaming due to the moving BM. This effect leads to an Eulerian
streaming flow even if the nonlinear advective terms of the Navier—Stokes equations
are neglected.

The streaming due to the moving BM is also of relevance to numerical modelling.
Oftentimes in computational fluid dynamics, small displacements of a vibrating wall
are modelled by transpiration through a fixed wall, i.e. by a Dirichlet boundary
condition for the wall-normal velocity while the wall itself remains in place. We
have shown that this approximation leads to a correct primary flow field (e.g. a
travelling wave) but that the resulting streaming flow is wrong. We observed this for
the mean vortical flow above the BM which rotates in counterclockwise direction
if the wall displacement is considered (figure 5) whereas it rotates clockwise if the
wall displacement is neglected (figure 16). As we have confirmed in an independent
numerical study, a similar phenomenon can be observed for the peristaltic transport in
channels if the travelling wave on the wall has only small amplitudes. If the travelling
wave is represented by an actual wall displacement, the net peristaltic transport is in
the direction of the phase velocity of the travelling wave. If the wall displacement
is modelled by wall transpiration only, the peristaltic transport goes in the opposite
direction.

Finally, we tried to assess the relevance of steady streaming to the hearing process.
We found that streaming is capable of supporting the local transport of metabolites to
the organ of Corti. At the same time, we concluded that the results are not detailed
enough to decide whether streaming plays a role in the stimulation of the inner hair
cells. The strong decay of the streaming velocities for high frequencies (cf. figure 18)
suggests that streaming should be mostly relevant to low-frequency hearing.
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