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1. Introduction

We study the bifurcation of solutions of equations which have one of the following
forms:

Su-F(u) = Xu, (1.1)

or

Su = X{u-F(u)}, (1.2)

where S is a linear self-adjoint operator and F is the gradient of a real-valued function.
We suppose that F(0) = 0 and that F is of order higher than linear at the origin. The
classical results deal with bifurcation from isolated eigenvalues, X, of finite multiplicity
of S. At such points, S — XI is a Fredholm operator and the method of Lyapunov and
Schmidt reduces the problem to the study of an equation in the null space of S — XI. In
this paper we are especially interested in bifurcation from points X at which S — XI is
not a Fredholm operator. In particular, the case where S — XI is injective but not
surjective occurs naturally in the L2-theory of elliptic equations on unbounded
domains. For such problems the Lyapunov-Schmidt reduction cannot be used and
we must work directly with the infinite-dimensional problem.

In §2 we introduce the basic notation and assumptions adopted throughout the
paper. The special hypotheses used to establish bifurcation for the equations (1.1) and
(1.2) are given in §§ 3 and 4. The remainder of the paper is devoted to applications of
these general results to the following two non-linear eigenvalue problems. Find
u € L2(U") and Xe U such that

- Au(x)-r(x)|u(x)\au(x) = Xu(x) for x e Un, (1.3)

or

- Au(x) = X{u(x)-r(x)| u{x)\au{x)} for x e U", (1.4)

where the function r: U" -*• [0, oo) and the constant a > 0 are given. For such
problems, one of the requirements of the general theory is that the functional,

be weakly sequentially continuous on the Sobolev space

W i i W ) = { u e L2(Un): d{u e L2(U") f o r l ^ i ^ n } .

(Here d(u denotes the ith partial derivative of u in the sense of distributions.) In § 5 we
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ensure this by requiring that r(x) -* 0 as | x | -> oo (Lemma 5.2). If r is merely
bounded, cp is not necessarily weakly sequentially continuous. However, for n ^ 2,
this behaviour can be recovered by restricting attention to the radially symmetric
elements of W^")? provided that r is radially symmetric. This device, which allows us
to cover the case where r is constant, is used in §6.

In the one-dimensional case, the weak sequential continuity of q> is not recovered by
restricting attention to even elements of WJW-1° t m s c a s e (1-3) is equivalent to the
Neumann problem,

- u"(x) - r(x) | u(x) \au{x) = ?M(X) for x > 0,

t/'(0) = 0, ue L2(0, oo),

provided that r is even. The persistent lack of weak sequential continuity means that
the problem (1.5) requires special attention [4, 12].

In § 7, we discuss the corresponding Dirichlet problem,

- w"(x) - r(x) | w(x) \"w(x) = Xw(x) for x > 0,
(1.6)

w(0) = 0, w e L2(0, oo),

where the function r: (0, oo) -> [0, oo) is bounded and measurable on compact subsets
of (0, oo). This problem arises if we seek radially symmetric solutions of (1.3) in the case
where n = 3 [10, 11], but it is also of independent interest.

For the problems (1.3) and (1.4), A = 0 is the infimum of the spectrum of the
linearized problem,

-Au(x) = Au(x) for xeU",

u e L2(Un),

and the results in §§ 3 and 4 furnish conditions on a > 0 and the function r which
imply that 0 is a bifurcation point for the non-linear problems. These conditions
depend upon the measure of the size of a solution with respect to which bifurcation is
considered. Here we concentrate on bifurcation in terms of the measures

u(x)2 dx and
Rn

Elsewhere [10, 11, 13] we have considered bifurcation with respect to the quantities

{u(x)2+|Vu(x)|2}dx and

and we have treated more general non-linearities.
As in the related articles [9-13], our results give conditions under which there is

bifurcation to the left of the lowest point of the spectrum of the linearization.
Complementary results, dealing with bifurcation to the right of the lowest point of the
spectrum, have appeared recently [1].

The relationship between equations (1.3) and (1.4) and some problems from physics
is discussed in [7, 8].

2. General assumptions

Let H denote a real Hilbert space with norm || • || and scalar product <• , •>. If
L : ^ (L) c H -* H is a linear operator whose domain, 3>{L\ is a dense subspace of H,
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then its adjoint in H [14] is denoted by L*: <2)(L*) <= H -> / / .We suppose henceforth
that the following condition holds.

(CO) Let S: 3){S) c / / - > / / be a positive self-adjoint operator.

That is to say, S = S* and <Su, u> ^ 0 for all u e 3)(S). In particular, S is a closed
operator and its domain, ®{S), equipped with the graph norm of S,

is a Hilbert space which will be denoted by H2. Let T: Q(T) c= / / - > / / be a closed
operator which is densely defined and such that S = T*T. (For example, we could
choose T to be the positive self-adjoint square root of S, but this is not always the
most convenient choice [9-12].) The domain of T equipped with the graph norm of T,

is a Hilbert space which we denote by / / , . Then H2a Hx <= H and these embeddings
are continuous. Furthermore, T can be regarded as a bounded linear operator from
H1 into H and, as such, it will be denoted by Tt: Hx -> H. Then the dual (or
conjugate) operator T\ : H* -> H\ is also bounded [14]. Now 2)(T) is a dense subset
of H and so H* can be simultanously identified with H and with a subspace of //f.
Thus we can write Hi c: / / = //* c= //f and this identification is such that we can
write f(v) = </, u> whenever

f e H* and y e / / or / e //* and v ^ Hl.

With these identifications, it is easy to see that

T\ is an extension of T*,

9{T*) = {VEH: T\veH},

T\Ti: H1 -• H% is an extension of S,

H2 = 9{S) = {i)eH,: T'^v e / / } ,

and

for all u,v e Hx. (These identifications and their consequences are dealt with in detail
in [13].)

We can now formulate our basic assumption about the form of the mapping F.

(Cl) Let q>: //x -> U be a continuously Frechet differentiable mapping such that
<p(0) = 0. Then, for each u e //1? q>'(u) e //J and so we can write

(p'(u)v = <F(M),U> for all u,v E Hx,

where F: Hi -> //J is a continuous mapping.

When the condition (Cl) holds, we say that F is the gradient of q> and that (p is a
potential for F. We note that the operator 7^T^: Hx -> //f is a gradient and that
ill TjW ||2 is a potential for T\TX.
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3. Bifurcation for the problem (1.1)

In this section we give results concerning the bifurcation of solutions of equations of
the form

Su-F{u) = Xu. (3.1)

We use the general notation and assumptions introduced in §2. In particular, the
conditions (CO) and (Cl) are supposed to hold.

We say that (u,X) e H x U is a generalized solution o/(l.l) if

UGHX and T\Txu-F{u) = Xu. (3.2)

If, in addition,

ueH2 and F(u) e H (3.3)

then (u,X) is called a strong solution of(3A).
We have previously [9-11] discussed (3.1) under the following stronger assumption.

(Cl)' The condition (Cl) holds and F maps Hx continuously into H.

Our terminology is justified by the observation that if the conditions (CO) and (Cl)'
are satisfied and (u,X) is a generalized solution of (3.1), then (u,X) is in fact a strong
solution.

Suppose that the conditions (CO) and (Cl) hold and that F(0) = 0. Let

EG = {(u,X) e Ht x R: T\Txu-F{u) = Xu and u * 0}

and
ES = {(u,X) e EG:ueH2 and F(u) e H).

The notion of bifurcation depends upon the quantity used to measure the size of a
solution. The following two cases seem natural. We write Xo e BG if and only if there
exists a sequence {(uk,Xk)} in EG such that Xk -> Xo and || uk || -»• 0 as k -> oo. (We
allow the possibility that + oo e BG.) We write Xo e BG* if and only if there exists a
sequence {(uk,Xk)} in EG such that Xk -> Xo and || Txuk || -> 0 as k -* oo.

Similarly, when dealing with bifurcation from infinity we use the notation
Xo e BG(co)/BG*(oo) if and only if there exists a sequence {(uk,Xk)} in EG such that
Xk -> Xo as || uk || -> oo/1| 7>fc || -> oo as k -> oo.

The following assumptions allow us to study bifurcation by a simple variational
argument.

(C2) For all t ^ 1 and all M 6 / / b cp(tu) ^ t2(p(w) ^ 0 and (F(u), u> ^ 2(/)(u).

(C3) There exist constants K > 0, a e [0,2), and /? > 0 such that a + 0 > 2 and

| <F(u),w> I ̂ K || Tu ||a || M f for all usHx.

Note that (Cl) and (C3) together imply that F(0) = 0, and, if F : Hx -* H* is
continuously differentiate at 0, that F'(0) = 0 [10, 11].

Let il/:Hl-^U be defined by ij/(u) = $\\Tlu\\2-(p(u). For c> 0, let
S(c) = {ueHl:\\u\\=c} and m(c) = inf{^(«): u G S(C)}. Note that S(c) is an un-
bounded subset of Hi (unless S is a bounded operator in H).
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LEMMA 3.1. Let the conditions (CO), (Cl), and (C3) hold. Then BG c [0, oo) u {+ 00}
for equation (3.1).

Proof. Suppose that {{uk,Xk)} is a sequence in EG such that l i m ^ ^ || uk \\ = 0 and
Xk < 0 for all k e N. Then, for all k e N,

and so , by (C3) , - K \\ Tuk \\* | | u k \ \ p ^ lk \\ uk\\
2. O n the other hand , s ince kk < 0 ,

\\Tuk\\
2^K\\Tuk\n\uk\\P.

Hence

KUA2 ^ -K[K\\uk\\^
2-^\\ukf

and so Ak ^ _ / c 2 / ( 2 " a ) || ufc ||2(«+/»-2)/(2-«) s i n c e | Uk || ^ 0 S i n c e a + ^ _ 2 > 0 and

2 - a > 0, we thus have that liminfk.+ 00Ak ^ 0. This proves that BG c= [0, oo)u { + 00}.

PROPOSITION 3.2. Let the conditions (CO) to (C3) /10W. Suppose in addition that
(i) cp\ Hx -* U is weakly sequentially continuous (i.e. (p(un) -> cp(u) whenever un

converges weakly to u in Hi),
(ii) m(c) < 0.

Then m(c) > — 00 and there exists {uc,?,c) e HtxU such that

| | u c | | = c , || Tuc || ^ [K C <T / ( 2 - a ) , ^(uc) = m(c),

,c2(«+p-2)/(2-«) ^ ; v ^ 2m(c)/c2 < 0,

iTiu,. — F(MC) = Xcuc in H\.

Proof. Let {(uk, AJ} be a sequence in S(c) such that ^(ufc) -> w(c) as /c -> 00. We may
suppose that i/̂ (uk) < 0 for all k e M and hence, using (C2) and (C3), we have that

|| Tuk ||2 < 2q>(uk) ^ (F(uk),uk) < K || Tuk ||-1| uk f.

Thus we see that || Tuk || ^ [K \\ uk ||^W(2-«) = [xc"]1/ (2-a> for all keN, since
a e [0,2). This implies that the minimizing sequence {uk} is bounded in H^. By passing
to a subsequence, we may suppose that uk —* uc weakly in Hl. That is,

<w, uk — MC> -»• 0 as /c -»• 00 for all w e / / ? .

In particular, uk-^uc weakly in H since H = H* cz Hf. This implies that
|| uc || < lim inffc.,^ || uk \\ = c. Furthermore, for v e / / ,

-uc)> = < 7 > , u k - u c > -> 0

as ĉ -> 00 and so T i « k ^ Txuc weakly in H. This implies that

|| Txue\\ ^liminfk_0 0 | |T1uk| | .

From (i), it now follows that

# 0 = ill ^ u J I 2 - ^ ) ^ lim inf i l l T,uk \\2-q>{uk)} = m(c).
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Since m(c) < 0 and (p(0) = 0, we have that uc # 0. Setting t = c/\\ uc ||, we have that
1 ^ t < oo. But

W"c) = ht2 II Tuc ||2 - (p(tuc) ^ t2^{uc) (by (C2))

^ t2m(c) (since t2 ^ 1 and ij/{uc) ^ m{c))

^ tl\j/{tuc) (since tuc e 5(c)).

Hence (f2- \)\l/(tue) ^ 0 and «̂ (twc) ^ t2m(c) < 0. This means that t2 ^ 1. Since we
already have that t ^ 1, we conclude that t = 1. Thus we see that uc e 5(c) and that
«A(wc) = w(c).

It now follows from the Euler-Lagrange principle [13] that there exists 1 C G R such
that T'^u.-Fiu,) = /fuc. Since ^(uc) = m(c) < 0, it follows that

|| Tuc || ^ [ K c T / ( 2 - a ) .

Furthermore,

Af || uc ||
2 = || 7 \ ||2 - <F(«C), uc> ^ 2^(uc) = 2m(c), by (C2),

and so

On the other hand, as in the proof of Lemma 3.1, we have that

This completes the proof of the proposition.

THEOREM 3.3. Let the conditions (CO) to (C3) hold and suppose also that cp: Hx -» U is
weakly sequentially continuous.

(a) If there exists c0 > 0 sucfi f/iat m(c) < Ofor all c e (0, c0), t/ien 0 e BGfor equation
(3.1).

(b) Ifm(c)/c2 -> —oo as c -»• +oo, t/ien — oo e BG(co)for equation (3.1).

Proo/ These results follow immediately from Proposition 3.2.

In dealing with bifurcation with respect to || Tyu\\, it is appropriate to replace (C3)
by the following condition.

(C3)* There exist constants K > 0, a > 0, 0 e [0,2) such that a + fi > 2 and

| (F(u), u> | ^ K || Tu \\a || u H" for all UGH^

As before (Cl) and (C3)* together imply that F(0) = 0. Let i//*: Hx -* U be
defined by t//*(w) = j\\u \\2-(p(u). For c> 0, set S*(c) = {u G ^ : || Tu || = c} and
M(c) = inf{ij/*(c): u e S*(c)}. Note that S*(c) is an unbounded subset of Hx (unless S
has a bounded inverse in H).

LEMMA 3.4: Let the conditions (CO), (Cl), and (C3)* /io/d. 77ien

£G* c [0 ,oo)u{ + oo}

/or equation (3.1).
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Proof. Suppose that {{uk,Xk)} is a sequence in EG such that l im^^ || T ^ || = 0 and
4 < O f o r all/ce N.Then

\\Tuk\\
2-(F(uk),uk) = Xk\\uk\\

2 f ora l l f ce lM.

Hence
-K || Tuk ||« || ukf^Xk || uk ||

2

and

\ \ T u k \ \ 2 ^ K \ \ T u k \ \ a \ \ u k \ \ p .

Since uk # 0 and Xk < 0, it follows that || Tuk || ^ 0. If /? > 0, we have that

= K2IP || T,uk \\2(*+P-2M for all k e N.

This proves that l i m ^ ^ | Xk | = 0 and so BG* c [0, oo) u {+ oo} if 0 > 0. If /? = 0,
|| Tuk ||2 ^ K || Tuk ||a where a > 2 and so || Txuk \\ > Kin2~a). But || Tuk \\ - 0 as
fc -» oo. Hence BG* c [0, oo) u {+ oo} if j5 = 0.

We can deduce a sufficient condition for bifurcation with respect to || Txu || from the
results proved in §4 provided that F is homogeneous of degree <r+ 1 for some a > 0,
that is,

F{tu) = ta+1F(u) for all t > 0 and all ueHy.

THEOREM 3.5. Let the conditions (CO), (Cl), (C2), and (C3)* hold. Suppose also that
(p:Hx -* Mis weakly sequentially continuous and that F is homogeneous of degree a + 1
where a > 0.

(a) If M(c)/c2 + a -> - o o as c -» +oo, t/ien 0 e BG* for equation (3.1).
(b) / / /? > 0 and there exists c0 > 0 sucn that M(c) < 0 /or all c e (0,c0), t/ien

— oo e BG*(oo)for equation (3.1).

Proo/ This follows immediately from Proposition 4.4 and the observation that, for
X < 0, (u,X) is a generalized solution of equation (4.1) if and only if (\X\llau, X) is a
generalized solution of equation (3.1).

REMARKS. 1. We have chosen to stress the results obtained for bifurcation with
respect to || u \\ and || Txu || = || Siu ||, but Proposition 3.2 also yields information
about bifurcation with respect to other measures of the size of a solution. For
example, under the hypotheses of Theorem 3.3 (a), 0 is a bifurcation point with respect
to

Furthermore, if (Cl) is replaced by the stronger assumption (Cl)' then we have
bifurcation of strong solutions with respect to the norm

under the same hypotheses. (See [13] for details.)
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2. Under the hypotheses of Theorems 3.3 (a) or 3.5 (a) we have that 0 = inf a(S). (See
[10] for details.)

4. Bifurcation for the problem (1.2)

In this section we deal with equations which have the form

Su = A{u-F(u)}, (4.1)

where we again adopt the general hypotheses and conventions set out in § 2. We use
the notation introduced in §3 for the sets of bifurcation points for the equation (4.1),
except that in the present context,

EG = {(M,A) e i f j x R : T'J^u = l\u-F(u]\ and u # 0}

is the set of all generalized solutions o/(4.1) and

ES = {(u, X)eEG:ue H2 and F(u) e H)

is the set of strong solutions of (4.1).

LEMMA 4.1. Let the conditions (CO), (Cl), and (C3) hold. Then

BGa [0, oo)u{±oo}

for equation (4.1).

Proof. Suppose that {{uk,?.k)} is a sequence in EG such that l i m ^ ^ || uk || = 0 and
kk < 0 for all ke N. Then

\\Tuk\\
2 = lk{\\uk\\

2-<F(uk),uk>}

and so

and

uk\\
2^K\\Tuk\n\uk\\

p fora l l fceN.k\\^K\\Tuk\n\uk

Hence, if a > 0, we have || Tuk || ^ 0 and

This proves that lk -»• - o o if a > 0. If a = 0, then || uk ||
2 ^ /C || uk f where i? > 2,

and consequently || uk \\ ^ x1 / ( 2"P ) . This proves the lemma.

THEOREM 4.2. Let the conditions (CO) to (C3) Jzo/d. Suppose also that q>: Hv -+ U is
weakly sequentially continuous and that F is homogeneous of degree o+ 1 where a > 0.

(a) Ifm(c)/c2+a -> —oo as c -+ oo, then — oo e BG for equation (4.1).
(b) / / a > 0 and there exists c0 > 0 suc/i t/iat m(c) < 0 for all c e (0,c0), then

0 e BG(oo) for equation (4.1).
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Proof This follows immediately from Proposition 3.2 and the observation that, for
k < 0, ( I U ) e EG for (4.1) if and only if {\k\ll°u,X) e EG for (3.1).

LEMMA 4.3. Let the conditions (CO), (Cl), and (C3)* /ioW. 77ien

flG* c [0,oo)u{±oo}

/or equation (4.1).

Proo/ Let {(ufc,/lk)} be a sequence in EG such that l i m ^ ^ || Txuk || = 0 and Afc < 0
for all k G N. Then

\\Tuk\\
2 = Xk{\\uk\\

2-(F(uk),uk}}

and so

V ' II Tuk ||
2 ^ - K || Tuk\\* || u j | '

and

\\uk\\
2^K\\Tuk\\*\\uk\\P f o r a l l f c e N .

Combining these inequalities we obtain

| | 7 X | | ^ 0 and 0 > ^ - 1 ^ - # C 2 / ( 2 - w | | T u k | | 2 ( 8 + " - 2 ^ 2 - « .

This proves the result.

PROPOSITION 4.4. Let the conditions (CO), (Cl), (C2), and (C3)* hold. Suppose in
addition that

(i) cp: Hx -> R is weakly sequentially continuous,
(ii) M(c) < 0.

T/ien M(c) > — oo and there exists {uc,Xc) e HlxU such that

|| Tuc\\ = c, || uc || ^ lK<f]ill2-», il/*(uc) = M(c),

c2/2M(c) ^ Xc ̂  _ /c 2 ^- 2 >c 2 ( a + / J - 2 ) / ( " - 2 )

and

T\T,uc = Xc{uc-F{uc)} in Hi.

Proof. Let {(uk,Xk)} be a sequence in S*(c) such that i//*(uk) -»• M(c) as /c -• oo. We
may suppose that \jj*(uk) < 0 for all k G N. Hence, using (C2) and (C3)*, we have that

II uk || ^ [K || Tuk ||*]W(2-/n = [Kc-]i/<2-flf

for all /c G N. This implies that the sequence {ufc} is bounded in Hx. Hence, as in the
proof of Proposition 3.2, there exists uc G HX such that uk—- MC weakly in # (and in //j)
and Tuk —>Tuc weakly in H. In particular,

| | c | | ^ || T i / & | | = c

/(-•CO

and
>H"c) = i II ue \\

2-<p(uc) ^ l iminf{i || ufc ||
2-(p(«fc)} =

fc-»co

Since M{c) < 0, we see that (p(uc) > 0. But according to (C2) and (C3)*,

0 ^ 2q>{uc) ^ K || Tuc \\a \\ uc f where a > 0.
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This shows that Tuc # 0. Setting t = c/ \\ Tuc \\, we have that t ^ 1. Then, arguing as
in the proof of Proposition 3.2, we find that t = 1. Hence uc e S*{c), \j/*(uc) = M(c),
and there exists £c e U such that

uc-F(uc) = £cT\Tiuc in / /* .

Since IJJ*(UC) = M(c) < 0, it follows that || uc || < lKcay{2~p). Furthermore,

4 || Tuc | | 2 = || uc ||2-(F(uc),uc)

^ 2<A*(uc) = 2M(c), by (C2),

and so £c ^ 2M(c)/c2 < 0. Let ;k(r = & ' * • T h en c2/2M(c) ^ /lc < 0 and, as in the proof
of Lemma 4.3, we then have that

This completes the proof of the proposition.

THEOREM 4.5. Let the conditions (CO), (Cl), (C2), and (C3)* hold. Suppose also that
cp: / / , —»• IR is weakly sequentially continuous.

(a) If there exists c0 > 0 sucft tliat M(c) < 0/or a// c e (0,c0), t̂ ien — oo E BG* for
equation (4.1).

(b) If M(c)/c2 -> — oo as c -> oo, t/ien 0 G BG*{co)for equation (4.1).

These results follow immediately from Proposition 4.4.

5. The Dirichlet problem with decay

In this section we discuss bifurcation for the problems (1.3) and (1.4) for n ^ 2. The
results depend upon the value of the constant a > 0 and on the behaviour of the
function r. The following notation will help us to distinguish the different properties of
r which will be used.

(Rl) The function r: U" -• [0, oo) is bounded and measurable. Let 0 ^ r(x) ^ R for
all x e W.

(R2) We let r(x) -• 0 as | x | -• oo, where | x | = (2J=i*i2)* and x = (x l 5 . . . ,x j G W.

(R3) There exist A > 0 and t G (0,2) such that r(x) ^ A{\ + | x | ) " ' for all x G W.

(R4) There exist B > 0 and r e (0,2) such that 0 ^ r(x) ^ B(\ + \x\)~l for all

X G U".

(R5) There exists rj > 0 such that jlxl<nr(x)dx > 0.

In order to use the general formulation introduced in §§ 2 to 4, we set

H = L2{U") with || u || = | u(x)2 c
UR"

= {u G //: d,-dyU G // for 1 ^ i, 7 ^ n}
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and

Su= - A w = - £ di2u for u

Then S: 3>{S) <= H -* H satisfies the condition (CO) and H2 coincides (up to
equivalence of norms) with the Sobolev space which is usually denoted by W2.^").
Furthermore, if we choose T = S*, the Plancherel extension of the Fourier transform
shows that HY coincides with the Sobolev space W ^ " ) - In particular, for

where Vu = (c^u, ...,dnu). (See [13] for details.)
Let us now consider the non-linear term in (1.3) and (1.4). For a > 0 and a function

r satisfying (Rl), we set

F(u) = r | u \au

and

With these conventions, we see that the notions of generalized and strong solution
introduced in §§ 3 and 4 correspond to the usual notions of generalized and strong
solution of (1.3) and (1.4) used in the theory of partial differential equations.

In the following results we often encounter expressions of the form a/(n — 2) where
a > 0. In the case where n = 2 such expressions are interpreted as +oo.

LEMMA 5.1. Suppose that r satisfies the condition (Rl) and that a e (0,4/(n —2)). Then
F maps Hi ( = ^^(R")) continuously and boundedly into H\. Furthermore, <p: Hl -* U
is continuously Frechet differentiable and (p'(u)v = (F(u),vy for all u,v€Ht. If
a G (0 ,2 / (n -2 ) ) , then F maps Hl continuously and boundedly into H ( = L2(U")).

Proof. We recall that Hx is continuously embedded in LP(U") for all
p E [2,2n/(n — 2)) and consequently Lpl(p~l)(U) is continuously embedded in / / ? .
Hence F will map H{ continuously and boundedly into //* provided that it maps
LP{U") continuously and boundedly into Lpl{p~l)(W) for some p e [2,2n/(n-2)). Now
by the basic result on Nemytskii operators (see [3], for example) F maps LP(U")
continuously and boundedly into Lq(W) provided that <r+ 1 = p/q. Hence F maps Hy

continuously and boundedly into //* provided that <x+l=p— 1 for some
p e [2,2n/{n — 2)). This is ensured by the requirement that a e (0,4/(n —2)).

In the same way we see that F maps H^ continuously and boundedly into H
provided that <r+ 1 = \p for some p e [2,2n/(n — 2)). This is ensured by the require-
ment that a G (0,2/(n-2)).

Finally, we consider the differentiability of cp. For u,veHx, we have
F(u) e LpKp-l)(U") and v e LP(U"), where p = a+ 2 e [2,2n/(n-2)). Hence

= I r(x)\u(x)\"u(x)v(x)dx
J
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F(U)

where p = <7 + 2. In particular, (p(u) = (<r + 2)~1<F(u), u> maps H{ into [0, oo).
Furthermore, for u,v e Hlt

r{x))'
id\u(x)+tv(x)r2

= | r(x) {| u(x) + tv(x) \°[u(x
I J O

\-\u(x)\°u(x)}dtv(x)dx

-F{u) \LPI<P-iHRn)

where p = a + 2 e [2,2n/(n — 2)). But for p e [2,2n/(n —2)), there exists a constant
D > 0 (depending only on p and n) such that || u ||LP(Rn) ^ D \\ v ||{ for all v E Hx. (See
(5.1).) Hence

/> || u || x max \\F{u + tv)-F{u)\\LPI[P-i){Rn),

where p = a+ 2. Since we have already shown that F maps Hl continuously into
Lpl{p~l)(U") it follows that <p is differentiable in the sense of Frechet at u and that
(p'(u)v = <F(U),J;>. This completes the proof of the lemma.

LEMMA 5.2. Suppose that r satisfies the conditions (Rl) and (R2) and that
a G (0,4/(n — 2)). Then cp: H1 -> IR is weakly sequentially continuous.

Proof. Let the sequence {uk} converge weakly in Hx to u. Then there exists a
constant M > 0 such that

and | | t t | | , ^ M forallfeeM.

For c > 0,

r(x) | uk{x) \a + 2dx+\ r(x) \ u(x) \o + 2dx.
\x\>c J\x\>c

Now, by the compactness of the Sobolev embeddings on bounded domains,

\LP(B{c))we have that \\uk — u
B(c) = { X G U": \x\ ^ c } . But

[ r(x){\uk(x)\°+2-\u(x)\<
%} \X\ ^C

0 as k -*• oo for p e [2,2n/(n — 2)), where

{F(uk)(x)uk(x)-F(u)(x)u(x)}dx

F(uk)-F{u) ||L,(B(e» || uk | | t P ( B ( c ) )+ || F(u) u k - u



DIRICHLET PROBLEMS WITHOUT EIGENVALUES 181

where p = a+ 2 and q = p/{p— 1). But, as in the proof of Lemma 5.1, F maps Lp(B{c))
continuously and boundedly in Lq(B(c)) where p = <r + 2 and q = p/(p— 1). Thus we
see that

J r(x){K(x)r + 2 - |U( -> 0 as k -> oo,

and consequently

r(x){|Mk(x)r+2 + |u(x)r
fc-»oo fce\ J|x|>c

Let e > 0. Then, by (R2), there exists c(e) > 0 such that 0 ^ r(x) < e for |x|>c(e).
Hence

r
limsup((7 + 2)|(p(ufc)-<p(w)| <e sup {| uk(x)\a+2+ \u(x)\a + 2}dx

k-ao fceN J|x|>c(a)

by the Sobolev embedding, since a + 2 e [2,2n/(n — 2)). This proves that q>(uk) -> q>{u)
as k ~* oo.

In order to verify the conditions (C3) or (C3)* in the present context, we begin by
recalling the special multiplicative form of the Sobolev inequalities due to Gagliardo,
Nirenberg, and Golovkin. (See [5, Theorem 2.2] or [13].) For p e [2,2n/(n — 2)), there
exists a constant D(p, n) (depending only on p and n) such that

for all M G Hi ( = W!(Rn)), where y = n{\-p~y).

LEMMA 5.3. Let a G (0,4/(n —2)). Then there exists a constant K(a) > 0 such that

,u>| </C(a)|| Tun|M| | f f + 2 " a for all u G HX,

where
(a) a = \na ifr satisfies the condition (Rl),
(b) a = n^a + s"1) j / r e LS(R") for some s e (2n/(4-<r(n-2)), oo),
(c) a G [^nc, \no + d) where 3 = min{t, j{4 — a(n — 2))} ifr satisfies the conditions (R1)

and (R4).

Proof. We recall that, for usHl(= Wl
2(U

n)), Tu = S*u and that || Tu || = || | Vw 11|.
(a) For u e Hx, we have

\()r
by (5.1) where y = n{\- l/(a + 2)), since (T + 2 G [2,2n/(n-2)). Setting

a = y(a + 2) = |MCT and /C(a) = RD(a + 2,n)a+2,

we have the desired inequality,
(b) For u G H1, by Holder's inequality,

,,., || | u(x)\
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Since s > 2n/(4 — a(n-2)) ^ 1, we have that s e (1, oo) and that

q = (G + 2)s/(s-l)e[2,2n/(n-2)).

Hence

| <F(u),u) | ^ || r \\LHRn)\\ u \\i:>n, < || r || Ls(Rn){D(q,n) \\ Tu ||> \\ u \\l-'}'+2,

by (5.1) where y = nfe—q~l) and q = (<r + 2)s/(s- l ) . Setting a = y(<7 + 2) and
K(cc) = || r || \\Ls{Rn)D(q,n)a+2, we obtain the desired inequality.

(c) The hypothesis (R4) implies that r e L%Un) for all s > n/x > 1. Hence the result
follows from parts (a) and (b), provided that

1 . [x 4-o{n-2)
<min<< m i n < ,

s [n 2n

REMARK. If r satisfies the conditions (Rl) and (R4) and 4n~1(l—|r) < a < 4/(n —2),
then (c) shows that F satisfies the condition (C3) but for a value of a > 2. As we have
noted elsewhere [10,11] this implies that there is no bifurcation to the left at X = 0 for
equation (1.3). If we make some additional hypotheses about the regularity of r, it is
possible to show (as in [10, 11] for the one-dimensional case) that BG = 0 if
a > 4n~1(l —\T). This indicates that the following result is quite sharp.

THEOREM 5.4. Suppose that r satisfies the conditions (Rl) and (R2) and that
0 < a < 4/(n — 2). Then, for the equation (1.3), we have the following results.

(a) Ifr satisfies (R3), then 0 € BG provided that 0 < a < 2n~l(2-t).
(b) Ifr satisfies (R5), then — oo e BG(co) provided that 0 < a < 4n~l.
(c) Ifn ^ 3 and r satisfies(R3), then 0 e BG* provided that 0 < a < 2{n-2)~l{2-t).
(d) If n = 2 and r satisfies (R3) and (R4), then 0 e BG*.

Proof. By Lemmas 5.1 and 5.2, we have that the conditions (CO), (Cl), and (C2) are
satisfied in all cases and that q>: Hx -> R is weakly sequentially continuous.

(a) We shall apply Theorem 3.3 (a). By Lemma 5.3 (a), we have that the condition
(C3) is satisfied. Let c > 0. We shall show that

m(c) ^ $c2<xD{n)-ca+2I(n)0Lina+i', (5.2)

for all a e (0,1], where

\\~t~(a + 2M dx

d{n)2 =

and

A and t being the constants appearing in (R3). For a > 0, let wa: R" ->• R be defined
by

wJLx) = a e
M . for x e R " . (5.3)
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Then wa e Hi and || vva || =1 for all a > 0. Furthermore,

n

/ \d-w (x)~| dx
RM i = 1

' n

R " i = l

= 4a2 I |x|2wa(x)2dx
JR»

,2+in

(5.4)

by the change of variable yt = a*x,-. Now, for a > 0,

(by(R3))

by the change of variable y( = a*x,-. Hence for a e (0,1],

<p(wa) > I(n)(xina+^. (5.5)

Since cwa G S{C) for all c> 0, (5.2) follows from (5.4) and (5.5). Let
<x(c,n) = [caI(n)/D(n)Ytll-y), where y = ±no+±t. Note that 0 < y < 1. Given n ^ 2,
there exists c(n) > 0 such that a(c, n) ^ 1 for all c e (0, c(n)) and so

for all c e (0,c(n)). This completes the proof of part (a).
(b) We shall apply Theorem 3.3 (b). By Lemma 5.3 (a), we have that the condition

(C3) is satisfied. Hence we need only show that m(c)/c2 -• — co as c -* oo. For a > 0,
let wa be defined by (5.3). Then

where

j(n) = g
 2 w r 1+2 r(x)dx > °» by (R5)-

Hence

Since cwx G S(C) for all c > 0, this proves that m(c)/c2 ^ jD(n)-cffJ(n), from which it
follows that m(c)/c2 -> — oo as c -* oo. This proves part (b) of the theorem.

(c) We shall apply Theorem 3.5 (a). By Lemma 5.3 (a), we see that the condition
(C3)* is satisfied for n ̂  3. We must prove that M(c)/c2+a -> — oo as c -* oo. For
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a > 0, let wa = {aD(n)}~*wa, where wa is defined by (5.3). Then vva e Hx, || Twa || = 1,
and || vva || = {aD(n)}~*, for all a > 0. Furthermore,

<p(wa) = {aD(n)}-±(<T + 2V(wa) ^ {<xD(n)}-*a + 2)I(n)(x±na+tt,

for all a e (0,1], by (5.5). Now cwa e S*(c) for all a > 0, and so M{c) ^ iA*(cwa) for all
a > 0, and

il/*(cwa) ^ $c2{<xD(n)}-l-c2+a{<xD(n)}-

for a e (0,1]. Hence

M(c)/c2+a ^ {2c°(xD{n)}-1 -a*ff ("-2) + *'-1D(n)"*(ff + 2)/(n) for a e (0,1].

Let a(c,n) = [D(n)*Vc*/(n)]I/(y+1), where y = i c r (M-2)+ | r -1 . Note that y+ 1 > 0.
Given n ^ 3, there exists c(n) > 0 such that a(c, n) < 1 for all c ^ c(ri), and so
M(c)/c2 + f f^ -ia(c,n)vZ)(n)~±(<r + 2)/(n) for c^c{n). Since y < 0, this proves that
M(c)/c2+a -* - o o as c -> oo and the proof of part (c) is complete.

(d) We shall again apply Theorem 3.5 (a). By Lemma 5.3 (c), we see that the
condition (C3)* is satisfied. As in part (c), we have that M(c)/c2+a -* — oo as c -> oo.
This complete the proof of part (d) of the theorem.

THEOREM 5.5. Suppose that r satisfies (Rl) and (R2) and that 0 < a < 4 / (n-2) . Then
for the equation (1.4) we have the following results.

(a) Ifr satisfies (R3), then 0 e BG(oo) provided that 0 < a < 2n~l(2-t).
(b) / / n ^ 3 and r satisfies (R3), then 0 G BG*(OO) provided that

0<a<2(n-2)~l(2-t).
(c) If n = 2 and r satisfies (R3) and (R4), then 0 e J5G*(oo).

Proof By Lemmas 5.1 and 5.2, the conditions (CO), (Cl), and (C3) are satisfied in all
cases. Furthermore, <p: Hl -> U is weakly sequentially continuous.

(a) We shall apply Theorem 4.2 (b). By Lemma 5.3 (a), we have that condition (C3) is
satisfied. Furthermore the inequality (5.2) holds and so, as in the proof of Theorem
5.4(a), we have that there exists c(n) > 0 such that m(c) < 0 for all c e (0,c(n)).

(b) We shall apply Theorem 4.5 (b). By Lemma 5.3(a), the condition (C3)* is satisfied
for n ^ 3. But, in the proof of Theorem 5.4 (c), we have shown that M(c)/c2*a -> — oo
as c -> oo, and so, a fortiori, M(c)/c2 -> — oo as c -> oo.

(c) We again apply Theorem 4.5 (b), noting that Lemma 5.3 (c) shows that the
condition (C3)* is satisfied.

6. The Dirichlet problem with radial symmetry

In this section we continue our discussion of bifurcation for the problems (1.3) and
(1.4), but we no longer assume that r satisfies (R2). Hence the functional cp may fail to
be weakly sequentially continuous on W\(W). Since the results of §§3 and 4 may fail
to hold if cp is not weakly sequentially continuous (see [10-12]), we must modify our
approach. Noting that <p is weakly sequentially continuous on the subspace formed by
the radially symmetric elements of W ^ " ) * w e m a v proceed by seeking radially
symmetric solutions of (1.3) and (1.4). Of course this means that r must also be radially
symmetric.

Let the spaces H and Hi and the functions T, Tt, and F be as in § 5. Let O(n) denote
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the group of all linear mappings, F, of U" onto itself such that | det F | = 1. We suppose
that r is radially symmetric in the following sense:

(R6) r{rx) = r(x) for all F e O(n) and all xeU".

We need some properties of the projection of a function onto its radially symmetric
part. Let

= -^-[ u(\x\s)ds(\), (6.1)
w(1)J

where u: U" -> U, dS(\) is the usual Lebesgue surface measure on the unit sphere in
U", and a>(\) is the total surface area of this sphere.

LEMMA 6.1. (a) The formula (6.1) defines an orthogonal projection, P: H -* H,in H

with image

I m P = {ue H: uoT = ufor all F € O(n)}.

(b) For u e Hx, we have Pu e Hx and

|| TPu || = || | VPM| II ^ || />|Vu| | | ^ || Tu ||.

Hence the formula (6.1) defines a bounded linear operator from Hx into Hx which will be
denoted by Pi'. Hi -+ Hx. The dual operator, P'x: Hf -*• H\, is an extension of
P.H -*• H. (Recall the identifications agreed upon in §2.)

(c) For all ueHu P\T\Txu = T\TxPxu.
(d) Suppose that r satisfies (Rl) and (R6) and that 0 < a < 4 / (n-2) . Then, for all

Proof See [13].

The next result establishes the uniform asymptotic decay of radially symmetric
elements in W^IR") for n ^ 2. It is this decay which allows us to recover the weak
sequential continuity of cp.

LEMMA 6.2. For n ^ 2, there exists a constant B(n) (depending only on n) such that, for

| u(x) | ^ B(n) | x |*(1 "n) || u || i for almost all \ x \ ̂  1.

Proof This result is contained in [7] and a different proof is given in [13].

With F and <p as defined in § 5, we set

O(w) = (p(P{u) and G(u) = P\F(Pxu) for u e Hx.

LEMMA 6.3. Suppose that r satsifies (Rl) and that 0 < a < 4/(n — 2). Then
O: Hy -> U is continuously Frechet differentiate and <&'(u)v = <G(u), v) for all
u,v G Hx. Furthermore, <b: Hx -*• U is weakly sequentially continuous and G maps Hx

continuously and boundedly in Hf.
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Proof. By Lemmas 5.1 and 6.1 (b), O: Hx -> U is continuously Frechet differentiable
and

<b'(u)v = (p'iP^PiV

= (F(Piu),P1v)

= (P'.FiP^v) = (G(u),v)

for all u,v e Hy.
For the weak sequential continuity of O, let {uk} be a sequence in Hy which

converges weakly to u. Then there is a constant M such that

for all k e N. Let vk = Pyuk and vePyU. Then by Lemma 6.1 (b), {vk} is a sequence in
H{ which converges weakly to v. Furthermore,

II vk\\ i ^ M and || y || t ^ M for all k e N.

Then, for c> 0,

(<x + 2) | <D(ufc) - O(U) | = (a + 2) | (p(vk) - cp(v) \

dx

r(x)\v(x)\a+2dx.
\x\>c J\x\>c

Hence, as in Lemma 5.2,

[a + 2) lim sup | O(«fc) — O(u) | = (a + 2) lim sup | q>(vk) — q>(v) \
k-»oo k->oo

r
\a + 2^ s u p r(x){|yk(x)r+ 2+|y(x)|e

But, according to Lemma 6.2,

| vk(x) | ^ B(n) | x | i ( 1 "n) || vk ||! ^ £(n)M | JC |*(1 "">

and

| u(x) | ^5(n)M|x |* ( 1"n )

for all k e N and almost all | x | ^ 1. Hence, for c ^ 1,

n)]<T {vk(x)2 + v{x)2} dx
J\x\>c

Hence, for c ^ 1,

+ 2)limsup|<D(ufc)-O(w)|
fc-oo
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Since a > 0 and n > 1, this proves that

O(uk) -> O(u) as k -> oo.

We shall now discuss the bifurcation of radially symmetric solutions of (1.3). The
equation (1.4) can be treated similarly. Let

EGR = {(u,A) e HlxU: T\Txu-F{u) = Au, u e ImP and u # 0},

where Hx, Tl9 and F are as defined in §5 and P is defined by (6.1). Then we write
Xo G BGR*/BG*R if and only if there exists a sequence {(uk,Ak)} in EGR such that
Afc -> Ao and || ufc || —»• 0/1| 7\Mfc [| —• 0 as k -> oo. Similarly for bifurcation from
infinity, we write Ao e BGR(co)/BG*R(oo) if and only if there exists a sequence
{(uk,Ak)} in £GK such that Ak -* Ao and || uk || -> oo/|| Txuk || -» oo as /c -> oo.

THEOREM 6.4. Suppose that r satisfies (Rl) am/ (R6) and t/iat 0 < a < 4 / (n-2) . 7/ien
we have the following results for equation (1.3).

(a) Ifr satisfies (R3), then 0 e #GK provided that 0 < a < 2n~l(2-t).
(b) / / n ^ 3 and r satisfies (R3), rnen 0 e £G*R provided that

0<(7<2(n-2) - 1 (2 -0 .

REMARK. In the important special case where (Rl) and (R6) hold and
0 < B ^ r(x) ̂  /I for all xeR", the condition (R3) is satisfied for all t e (0,2). Hence,
in this case,

OeBGR ifO<<r<4/n
and

0 £ BG*R if n ^ 3 and 0 < a < 4/(n-2).

The latter result has already been observed in [2] for the case where r is a positive
constant.

Proof, (a) We consider the problem

T\TlV-G(v) = v, (6.2)

which is of the form (1.1). By Lemma 6.2, G and O satisfy the conditions (Cl) and (C2)
of § 3 and it follows from Lemmas 5.3 (a) and 6.1 that the condition (C3) is fulfilled by
G. Furthermore, O: Hx -> U is weakly sequentially continuous. To apply Proposition
3.2 to the equation (6.2) we must show that m(c) < 0, where

m(c) = inf{i || Tv | | 2-O(y): v e S(c)}.

But the functions wa defined by (5.3) are such that vva G Im P for all a > 0 and so
<D(wJ = (p(wa) for all a > 0. Hence fh(c) < 0 for all c < 0.

Thus, by Proposition 3.2, there exists (vc, Xc) e Hi x U such that

i II Tvc ||
 2-(D(t;c) = m( C )<0,

-K2/ ( 2- a>c2 ( a + / ? -2 ) / ( 2 - a ) ^ Ac < 2m(c)/c2 < 0,

and

T\Tlve-G{ve) = Aeve.
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Let uc = P{vc. Then (uc, lc) e H^U and uc e Im P. Also || uc || ^ || vc || = c and
II 7X11 < II Tve\\ ^[Kcpyi{2-a), by Lemma 6.1. Since | | | 7 \ | | 2 - O ( i ; c ) < ( ) , we have
that <D(uc) = (p(uc) < 0. This shows that uc ^ 0.

Finally we note that

and so T\Txuc — F{uc) = Auc by Lemma 6.1. Thus (uc,Xc) G EGR for equation (1.3)
and result (a) is proved.

Part (b) is proved in a similar way using Proposition 4.4.

7. The Dirichlet problem on (0, oo)

In this section we consider the problem (1.6). In order to use the general results of
§§ 2 and 3, we set

H = L2(0, oo) with || u \\ = 1 I u(x)2 dsV ,
w J

2){S) = {usH: U" e H and u(0) = 0},
and

Su= -u" for UE9{S).

The prime denotes differentiation in the sense of distributions. It is well known that
S:^(S)aH -• H is a positive self-adjoint operator (i.e. the condition (CO) is
satisfied). Let T: 2){T) c / / - > / / be the closed operator defined as follows:

9{T) = {u e H: u' e H and u(0) = 0}

and

7 u = -u' for u e ^ ( T ) .

Then it follows that

^(T*) = { K G / / : M ' G H } ,

T*M = u' for u e 3>{T*),

and

In terms of the notation and conventions of § 2, Hx = {u G / / : u' G H and u(0) = 0}
and || u ||t = {|| u \\2+ \\u' H2}*. We recall that, if u G Hl, then u can be identified with
a continuous function on [0, oo) and we have the following inequalities:

u(x)2 = - 2 I u{y)u'(y)dy ^2\\u\\ || u' || for x ^ 0, (7.1)

<x*| |u ' | | f o r x > 0 , (7.2)

and (Hardy's inequality)

^ - 2 2 2
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In discussion of the equation (1.6) the following notation will help us to distinguish
various useful properties of the function r.

(Bl) Let r: (0, oo) -> [0, oo) be a measurable function which is bounded on compact
subsets of (0, oo). Furthermore, s u p ^ ^(x) < oo and there exists a constant y ^ 0 such
that xV(x) -» 0 as x -»• 0.

(B2) r(x) -*• 0 as r -> oo.

(B3) There exist A > 0 and t e (0,2) such that r(x) $s A(l +x)~f for all x > 0.

(B4) There exist B > 0 and T G [0,2] such that 0 ^ xV(x) ^ B for all x > 0.

For a > 0 and r a function satisfying (Bl), let

F(u) = r | u \au

and

1

LEMMA 7.1. Suppose that a > 0 and ttart r satisfies the condition (Bl) witAi y = 2+icr.
77ien F : Hj -+ H\ is continuous and bounded, cp: Ht -*• Uis Frechet differentiable, and
(p'(u)v = <F(w),v} for all u,v e Hl. / / (B l ) holds with y = \+\o, then F maps //j
continuously and boundedly into H.

Proof. Let £: [0, oo) -> U be a smooth increasing function such that

Jx for 0 ^ x ^ 1,

Let u,v,w € Ht. Then

But, using (7.3), we have that

and so

| <F(u)-F(v), w> | ^ 2 || ZF(u)-ZF{v) \\ \\w\\,

for all w G H^
Now x1+*<T<^(x)r(x) -> 0 as x -• 0, by (Bl). Thus the mapping £r satisfies the

conditions (Cl) and (C2)' of Theorem 3.1 of [10]. (Clearly the differentiability of r
required by (Cl) is not necessary.) Hence, £F{u) G H for all u G HX and
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\\£F(u) — £F(v)\\ —> 0 as || u — v || x —> 0. It follows that F maps Hx boundedly and
continuously in H*.

The differentiability of q>: Hl -> R is now established much as in Lemma 5.1 and
we do not give the details. If (Bl) holds with y = \+\o, the boundedness and
continuity of F as a mapping from Hx into H follow immediately from Theorem 3.1 of
[10].

LEMMA 7.2. Suppose that a > 0 and that r satisfies the conditions (Bl) and (B2) with
y = 2 + JCT. Then (p: H{ -> R is weakly sequentially continuous.

Proof. Let {uk} be a sequence which converges weakly to u in Hl. Then there exists a
constant M > 0 such that

II uk II i ^ M a n d II u || j ^ M for all k e N.

Choose e < 0. By (Bl), there exists 5 > 0 such that 0 ^ x2+i°r(x) ^ e for all x e (0,5).
Hence

r(x)\uk(x)\2+adx^e\ x-(2+i<r)|Mfc(x)|2+(Tdx
Jo

^e sup {x-±|ufc(x)|}ffPx-2|ufc(x)|2dx
0<x<d Jo

^ eM°AM2 (by (7.2) and (7.3))

= 4eM2+a.

Similarly, Jor(x) | u(x) | 2 + a dx ^ 4eM2+<T. On the other hand, by (B2), there exists z > 0
such that 0 ^ r(x) < e for all x ^ z. Hence

^eMaM2 (by (7.1))

= £M 2 + f f .

Similarly, $?r(x)\u{x)\2+a dx ^ EM2+O. Hence

(o + 2)\<p{uk)-q>(u)\

r{x)\uk{x)\2 + adx+\ r(x)\u{x)\2+adx
J

r(x){\uk(x)\2 + a - \ u
i

+ j \(x)\uk(x)\2+°dx +

^ \0EM2+"

Now uk -* u uniformly on [5,z] as k -> oo. Hence

lim sup(a + 2) | (p(wt) — cp(u) \ ^ lOeM
fc-00

and the result is proved.

2+<T
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LEMMA 7.3. Suppose a > 0 and that r satisfies the conditions (Bl), (B2), and (B4), with

y = 2+ia. Then, for all ueHx,

0 ^ (F(u),u) ^ 2i<r + xB || u'

Proof. For u e //x,

o

2+ax-z\u{x)\2+adx (by(B4))

«ll]i<T x-Tu(x)2dx (by (7.1)).
Jo

But, using Holder's inequality, we have that
»
x~2u(x)2 dx [

10

^ I I M I ^ - ^ H M ' I I 2 } * 1 (by (7.3))

= 2M|n'lltl |K|l2~t.

H e n c e , 0 ^ <F{u),u) ^ B[2 \\ u' || || u || ] i < T 2 r || u' \\x \\ u\\2'x a n d t h e p r o o f is c o m p l e t e .

THEOREM 7.4. Suppose that a e (0,4) and that r satisfies the conditions (Bl), (B2),
(B3), and (B4) with x e [0, 2-{a). Then, for the problem (1.6), we have that 0 e BG
provided that 0 < a <2(2-t).

Proof. Since the condition (B4) holds with x e [ 0 , 2 - \ o ) , it follows that we can take
y = 2+\a in condition (Bl). Hence the condition (Cl) of §2 is satisfied and
q>: Hx -> U is weakly sequentially continuous (Lemmas 7.1 and 7.2). By Lemma 7.3,
the conditions (C2) and (C3) are fulfilled. To apply Theorem 3.3 (a) let c > 0. We shall
show that

m{c)^\c2a.2-c2+aL(^a+t for a e (0,1], (7.4)
where

For a > 0, let va: [0, oo) -»• U be the function defined by

va(x) = 2a3/2xe"a* for x > 0.

Then va e Ht, || va || = 1, and || v'a || = a for all a > 0. By (B3),

1 r ° ° r (x )K(x) | 2 + ^x
o

M a3(2+«r)/2 Too ^^ _^ + 2

I

J ^ i«

(ff + 2)

for a e (0,1].
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Hence we have that cva e S(c) and

\\j{cva) ^ {c2v.2-c2+"La±a+t for a e (0,1].

This proves the inequality (7.4). Let a(c) = (c°L)lll2~y) where y = \a + t. Note that
0 < y < 2. Hence there exists c0 > 0 such that 0 < a(c) ^ 1 for all c e (0,c0), and so

m(c) ̂  -\c2+aLoi{c)y < 0 for all c e (0,c0).

This completes the proof of the theorem.

REMARK. The preceding theorem deals with (1.6) in the case where r(x) -> 0 as
x -> +oo. We note that, for (1.6), there is no counterpart to the results presented in
§6. Indeed, if r satisfies (Bl) and is increasing, then EG = 0 for all a > 0 and so there is
no bifurcation [10,11]. For the problem (1.5) the situation is different and this matter
is discussed further in [12].
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