IMA Journal of Numerical Analysi€008)28, 46—79
doi:10.1093/imanum/drm001
Advance Access publication on April 18, 2007

Hierarchical matrix techniques for low- and high-frequency
Helmholtz problems

LEHEL BANJAIT
Mathematical Institute, University of Zurich, Zurich, Switzerland

AND

WOLFGANG HACKBUSCHt
Max-Planck Institute for Mathematics in the Sciences, Leipzig, Germany

[Received on 4 March 2005; revised on 13 December 2006]

In this paper, we discuss the application of hierarchical matrix techniques to the solution of Helmholtz
problems with large wave numberin 2D. We consider the Brakhage—Werner integral formulation of the
problem discretized by the Galerkin boundary-element method. The denseGalerkin matrix arising

from this approach is represented by a sum otamatrix and ar{2-matrix, two different hierarchical
matrix formats. A well-known multipole expansion is used to constructtfenatrix. We present a new
approach to dealing with the numerical instability problems of this expansion: the parts of the matrix that
can cause problems are approximated in a stable way B{+aratrix. Algebraic recompression methods

are used to reduce the storage and the complexity of arithmetical operationséfrttedrix. Further,

an approximate LU decomposition of such a recompre$sedatrix is an effective preconditioner. We
prove that the construction of the matrices as well as the matrix-vector product can be performed in
almost linear time in the number of unknowns. Numerical experiments for scattering problems in 2D are
presented, where the linear systems are solved by a preconditioned iterative method.
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1. Introduction

Many physical problems (e.g. acoustics and electromagnetic scattering) require the solution of the
Helmholtz equation (sed&léctleg 2001). We investigate the numerical solution of the Helmholtz
equation by the boundary-element method (BEM). In such methods, the boundary is subdivided into
elements and the problem is reduced to the solution of am linear system of equations. The corre-
sponding matrixB, is dense making direct methods for the solution of the system prohibitively expen-
sive. To reduce the complexity from(6%) for the direct methods, or from @?) for iterative methods,

the so-called fast methods can be used (E-guatrices, panel clustering, fast multipole method (FMM),
wavelet method€¥ahmen1997 Greengard & Rokhlin1987 Hackbusch1999 Hackbusch & Nowak

1989). In these methods, the matrix is represented by a data-sparse format, reducing the cost of storage
and matrix-vector multiplication to @log? n) for a small constara > 0. The system is then solved

using an iterative method. In this paper, we describe how a combinatigfrofitrix and?/2-matrix
techniques can be used to compress matrices arising from the discretization of integral operators for the
Helmholtz equation.
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Two regimes of the Helmholtz problem are of interest: the high-frequency and the low-frequency
regimes. In the high-frequency regime, the number of elemensskept proportional to the wave
numberx when working in 2D, and proportional o when in 3D, i.exh = constant, wherd is
the mesh width. The conditionh = constant insures that the accuracy of the approximation to the
solution of the Helmholtz problem for different frequencies remains the same. In the low-frequency
regime, howeverg is a small constant and the number of elemeritsvaried depending on the accur-
acy that needs to be achieved. The latter problem has many similarities with the Laplace problem and
can be solved in hlog? n) operations by similar methods (sBérm & Grasedyck2004 and also
Section5 in this paper).

The high-frequency problem presents a considerably more difficult challenge. The FMM has been
used to accelerate the solution of the high-frequency Helmholtz problem by a number of authors.
Initially, one- or two-level versions were recommended which gaye®®) or O(n*3) algorithms
(Rokhlin, 199Q 1993, but recently multilevel implementations were reported on, both in 2D and 3D,
with complexity Qnlog? n) for some small constarat (seeAmini & Profit, 2003 Darve 2000 Lu &

Chew 1994). In this paper, we will draw on the contribution due to the multipole community. In particu-
lar, we use a well-known multipole expansion to construct#fematrix, the details we adopt being
closest to the paper @&mini & Profit (2003. In an#?2-matrix, a sub-blockR of the dense Galerkin
matrix B is replaced by an approximation of a special form

- (B)kj, ifni<k<ng mp<j<my,
R~USV', where(R)kj = ) (1.1)
0, otherwise

For the high-frequency case, it is essential that the m&rix of special structure, e.g. diagonal or
Toeplitz. This can be achieved by the use of multipole expansions. Unfortunately, for some sub-blocks,
I Slleoc can become very large and numerical instability problems render the approxinfatipor{us-

able. Numerical instability problems of the multipole expansion for the Helmholtz problem have been
well documented (se®hnuki & Chew 2003/2004. Using the findings o®hnuki & Chew(2003/2004,

we detect the blocks for which the approximatidnlf is unstable, and approximate these blocks by an
‘H-matrix which can be computed in a stable manner without the use of the multipole expansion. It is
possible to do this efficiently since these blocks stem from the discretization of parts of the boundary
that are small compared to the wavelength. Therefore, we approximate the GalerkinBriagraxsum

of an#2- and arf{-matrix:

B%ézéﬂz+é}[.

This splitting has further positive implications. It allows for considerable savings in storage and
the cost of the solution of the linear problem, as we explain next. Algebraic recompression techniques
described inGrasedyck2005 can be used to significantly reduce the storage and the complexity of
arithmetical operations of tHR-matrix, é’}.[ The LU decomposition of such a recompressedatrix
can be computed efficiently usifigrmatrix techniques as describedBebendor{2005 andGrasedyck
(2005. Once the LU decomposition is available, tHematrix can also be used as an effective precon-
ditioner, reducing the number of iterations needed by the iterative solver significantly. A further new
aspect of our proposed method is that we allow for interaction between clusters of different sizes, which
is not usually the case in the FMMs for the Helmholtz equation.

In this paper, we consider only the Helmholtz Dirichlet problem and use the classical Brakhage—
Werner integral formulationGolton & Kress 1983. We discretize the integral equation by the BEM
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with piecewise constant basis functions and prove that for a given accaracy), the proposed al-
gorithm has complexity ()c logx logn + nlogx log %) for the construction of thé/2-matrix and for
the matrix-vector product. Th&-matrix can be constructed and applied to a vector (knfaxn logn)
operations, wherkmax is independent of andn.

Since in the high-frequency regime, is proportional ton, the complexity in this case reduces
to O(nlog? n). However, the explicit dependence ®ris interesting since for a satisfactory accuracy,
the number of elements needs to be chosen much larger tharin our numerical experiments with
piecewise constant basis functionsy 32¢. The detailed complexity estimates serve better to explain
and predict the results of numerical experiments.

To illustrate our methods, in Secti@we solve an acoustic scattering problem, where the scatterer is
either the unit disk or a nonconvex object: the inverted ellipse. The numerical results are satisfactory up
to very high frequencies, and also for low and intermediate frequencies. The sharpness of the complexity
estimates is supported by the numerical results.

The paper is divided into five sections, first of which is this introduction, and an appendix. In
Section2, we state the Helmholtz problem we wish to solve and the corresponding Brakhage—Werner
integral formulation. Next, in SectioBwe give a brief introduction t6{- andH?-matrices. Sectiod
contains the main part of the paper. First, the analytical tools for the construction of the matrices are
developed. We then discuss the numerical instability issues, recompression and preconditioning, and
give the algorithm for the construction of a stable, data-sparse approximation to the Galerkin matrix.
We conclude the section with a proof of the complexity estimates. In Sestive give the results of
numerical experiments. The appendix contains proofs of the technical lemmata needed in&ection

2. Statement of the problem

Let @ € RY, d = 2,3, be a bounded domain with a smooth bound&rand exteriorQ¢. We are
interested in the numerical solution of the exterior Dirichlet problem

AU+x2u=0, xeQ°
uix) =FXx), xel,

. ou .
lim r(@-D/2 (a_r - ncu) =0, (2.1)

r-oo

where the wave numbaeris a positive real parameter (shéckleg 2001).
The fundamental solution of the Helmholtz elliptic operator, which respects the condition at infinity,
in 2D is the Hankel function of the first kind of order O,

i
Gie(%, y) = 7 Holx[Ix =y, (2.2)
and in 3D the zero-order spherical Hankel function of the first kind,

1 drlx-yl

SN = =T

(2.3)

To solve this problem numerically using BEM, the elliptic partial differential equation is formu-
lated as a boundary integral equation. In this paper, we use the Brakhage—Werner formulation
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(Brakhage & Werner1965. In this formulation, the solution is represented as a combination of the
single-layer and the double-layer operators applied to an unknown density

0 .
u(x) = /F oy G 06 VP ()T~ /F Ge(x, Yp(y)dT, (x € 2%, (2.4)

whereny is the unit normal ta” aty € I" anda > 0 is an arbitrary coupling parameter. Allowirxg
to tend to the boundary and using the boundary condition, we obtain the following boundary integral
equation for the unknown densigy

1 0 :
2000+ [ -G Ve mry —in | Gu v =Fe xer). @9

The reason for using a combination of double- and single-layer potentials is the well-known fact that
the single-layer, double-layer and hypersingular operators are not invertible for certain special values
of the wave numbek (seeNécdtleg 2001, Hackbusch1995 Lemma 8.5.3). It can be shown that for
F e L2(I"), the variational formulation of2.5) has a unique solution ih2(I") (seeBanjai & Sauter
2007).

To discretize the integral operators occurring in the Brakhage—Werner formulation, we apply the
Galerkin method. If we usg?, ..., ¢n} as both the test and trial basis, then the discrete counterpart of
(2.5 becomes

(Z/2+ K —iaV)v=Db, (2.6)

whereZ, K,V € C"™" are the matrices defined by

(D = /F /r $ (O(y)dTy AT, (2.7)
V)i = /P /r G (X, Y) ()i (y)dTy 1 (2.8)
(K = /F /F ainyex(x, V) () (y)dTy dT. (2.9)

and the right-hand side = (b)) € C" is defined by

b = /F F () (x)dT.

If v= (v) € C"is the solution of 2.6), then an approximatioé(y) to the densityy (y), aty € I, is
given by

p(Y) ~ §(y) == D vigi(y),

1=1

which is then substituted inta2(4) to obtain the corresponding approximation to the solution
Stability and convergence estimates for standard piecewise polynomial basis fugictiamsbe found
in Banjai & Sauter(2007), Chen & Zhou(1992 andGiebermanr(1997. The main aim of this paper
is to develop efficient methods for the construction and storage of the natsx /2 + K — iaV and
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for the solution of the linear problen2 ). The matrixB is dense, hence we have(r@) complexity

for storage and matrix-vector multiplication. In this paper, we show that a much lower complexity is
sufficient if we are satisfied with only an ‘approximation’ of the Galerkin maiSince for piecewise
constant basis functions, the matfixs a diagonal matrix and hence sparse, for most of the paper we
only deal with the dense matrik .= K —iaV.

H-matrix techniques have already been successfully applied to integral equations with asymptot-
ically smooth kernel functions(-, -) (seeBebendorf200Q Borm & Grasedyck2004 Hackbusch &
Khoromskij 2000. A function s(-, -) is said to be ‘asymptotically smooth’ if there exist constamts
andc; and a singularity degree € N such that for any e {Xj, yj} andn e N, the inequality

|7s(x, y)I < nleg(eallx — yI)™"" (2.10)
holds. For the Helmholtz kern&,., however, the inequality
107Gk (x, M| < ntea(@+xx =y (C2lx =y ™7 (2.11)

holds. Hence, if diam(Q) is a small constant, i.e. if we are in the low-frequency regime, the methods
developed for general asymptotically smooth kernels, e.g. the interpolation method described & B
Grasedyck (2004), should still be efficient. In the high-frequency regime, this is no longer the case, and
the #{-matrix techniques cannot be efficiently applied without a more involved structure dithe
matrices.

For the rest of the paper, we restrict the discussion tod2B,2. Further, the test and trial basis will
be the usual piecewise constant finite-element basis liftéd We proceed by giving a brief description
of H- andH2-matrices. For details, we refer the readeBtom (2004, Grasedyck & Hackbuscf2003
andHackbusch & Brm (2002.

3. H- and H2-matrices: the basics

Let the boundary™ be subdivided intm disjoint panelsrj, j € J = {1,..., n}. We consider piece-
wise constant basis functiogig such that suppj =z, j € J.

DEFINITION 3.1 Given a constar@ieaf > 0, a labelled tre§; is said to be a ‘cluster tree’ fof if the
following conditions hold:

e For eachr € 77, the label denoted by is a subset of/. In particular, the label of the root of the
tree is the clustey containing all the indices.

e If r € T has sons, then the sons form a partitionr pfe. 7 = U{{’: 7’ € songr)}.
e Foreveryr € Tz, #songr) € {0,2} and # > O.
e Foreach leat, #7 < Cear.

We say that the root of the tree is at level 0, and that if a parent is atlledn its children are at level
I + 1. We introduce the notation

Q. =Jmcr,
iet
for the subset of " corresponding to a clustere 7. The set of clusters which are at the same level
are denoted by

T}') ={r € Ty: 7 atlevell}.
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REMARK 3.2 A couple of simple properties of the cluster tree will be useful for later analysis:
e the total number of clusters is bounded by-21,
e atthe lowest levep, there are at most clusters, i.e. #}p) <n.

Introduce a restriction operatgy: R"*" for eachr € 77 by

( 1, ifk=jert, (3.1)
Kedki = 0, otherwise '
We call a pair of clusterér, o) a ‘block’. The corresponding block of the matris theny, Ay, . Note
that

A = Jo. o, (;Ty —i0)Gr (X, V) (X)pj (Y)dIydIy, if ke 7andjes,

A —
Ote AXo K| IO’ otherwise

Let us briefly explain the importance of such a blockQlfN Q, = @, then the singular kernel restricted
to these domains is smooth:

0 .
s(x,y) = (aT - Ia) Gi(X,y) eC®, xe€Q;, ye Q,, (3.2)
y
and the kernel can be approximated by a ‘separable expansion’:
M M
SOGY) X D D S mui(om(y), X € Qr, Ve Q. (3.3)
1=0 m=0

This can, e.g. be achieved by using Taylor expansionsHaekbusch & Nowak1989 or interpolation
(seeBorm & Grasedyck2004). Such an expansion allows us to approximate the bjaoky, of the
matrix by a low-rank matrix:

eAxs 2 USVT, (3.4)
where
ur (X x)dry, ifkez,l=1,..., M,
U = Jo, i) (x)d7 £ (3.5)
0, otherwise
i(ydry, ifjes,l=1...,M,
Wy — Jo, ()i (dTy j g 3.6)
j
0, otherwise

and (S)im := sm. Note that fory; Ay,, we need @Qz||o|) amount of storage, whereas forSVT,
O(zIM + |eIM). If M « maX|z|, |o|}, it can be significantly advantageous to use the low-rank
approximation of the block.

The blocks for which we expect to be able to obtain a low-rank approximation, we call the ‘admis-
sible blocks’. These blocks must be disjoint, otherwise the kernel is singular restricted to this block and
we cannot expect to have a good approximation by a separable expansion. We control the admissibility
property by a fixed parameter < 1. In the following definition and throughout the papgt) is the
Euclidean norm ofR2.
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DEFINITION 3.3 For eacht € 77, let a centrec, < R? and a radiugp, > 0 be given such that
Q; C D(C;, pr) = {y € R?||ly — ¢;|| < p.}. Then, we say that a blodk = (z,0) € Ty x Tyis
admissible if

Pr + po < llc; —Co |l (3.7)

To easily access such blocks, we construct a block clustef7iger. The tree is constructed by
induction.

DEFINITION 3.4 The root of the ‘block cluster tre§7 , 7 is the node7 x J. For eachh = (7,0) €
T, proceed as follows:

e If bis admissible, add it to the set of admissible leag&sof 77 7.
e If z ando are leaves of 7, addb to the set of inadmissible leaves .

e Otherwise, repeat the procedure for all pairs formed by the soasaofis (if one of the clusters
has no sons, use the cluster instead), which are then the sbrms thfe tree7 7, 7.

Note that the set of leaves of the block cluster t¥es, 7 is partitioned into the set of ‘admissible
leaves’Ct and the set of ‘inadmissible leave$*™. The levels of the block cluster tree can be defined
analogously to the case of the cluster tree. A property of the block cluster tree that is useful for com-
plexity estimates is the ‘sparsity constant’.

DEFINITION 3.5 Define the sparsity constantbf 7 by
Csp:= max[ max#{o € Ty | (r,0) € Tyxg}, max#{r € Ty | (z,0) € zjj}] .
€Ty oeTy

When dealing with sparse matrices, the cost of storage and matrix-vector multiplication is governed
by the maximum number of nonzero entries in a row or a column. The sparsity co@gtasiroughly
the analogous measure for data-spé{smatrices. InGrasedyck & Hackbusc{2003, it is shown that
T7 and7 747 can be constructed so thagy is bounded independently of the size ¢f #

3.1 ?H-matrices
DEFINITION 3.6 Let77 7 be a block cluster tree and let Lt — Ng be a rank distribution. We
define the set oH-matrices as
H(T7x7,K() :={M e C™"| rank(x; M y,) < k(b) for all admissible leaves = (z,0) € L}.
If k(b) < kmax for all b € £1, it can be shown that the cost of storage and the cost of the matrix-
vector multiplication of ar{-matrix is Q(nkmaxp), wherep > 1 is the depth of the block cluster tree
T7x7-

LEMMA 3.7 LetM € H(T7x7,K(-)) andkmax := maxk(b): b € £*}, and letp be the depth of
TJ)(J. Then

Nst < 2Csp(p + 1) Max{Kmax, Cleasin  @and Nz, < 2Nsy,
whereNg; is the storage requirement ahlg,., the complexity of the matrix-vector multiplication.

We recall thaCieat is an upper bound for the number of indices in a leaf cluster (see DefiSitipn
The proof of the lemma can be found@rasedyck & Hackbusc{2003.
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Instead of using separable expansions, an optimal approximation to the Galerkin Aéton
the set of{-matrices can be obtained by applying the singular value decomposition (SVD) to each
admissible blocky, Ay, . Let y; Ay, = U >V T be a singular value decomposition with singular values
ordered so that'y1 > 222 > --- > 2,y > 0. As an approximation of the block, we can use the rank
‘k-reduced singular value decomposititm‘k'zkvlj, whereXy ;= diag(2'11, 222, ..., Zkk) andUx and
Vi consist of the firsk columns of the matriceld andV, respectively. The error of the approximation
in the spectral norm is bounded By 1 k+1:

lxe Axo — Uk Sk ll2 < Zkiikats

which is optimal, in this norm, for a rankapproximation. For a proof of this standard result, see, e.g.
Trefethen & Bau1997).

In Fig. 1, we display the results of the following experiment: For a fixed accuraeyl x 10~° and
a range of values of the wave numhercompute the minimum rank such that a rank matrix AkBJ
exists with|| y, Ay, — Ax B|I||2 < €. Figurel indicates that the necessary radanis proportional to the
wave numbek. Therefore in the high-frequency regime, where we increaased requirech ~ x/n =
constant, complexity according to Lem®& is still O(n?). Since the SVD gives us the optimal results,
this experiment indicates that computing7drmatrix approximation to the whole Galerkin matrix must
be prohibitively costly in the high-frequency regime.

3.2 H2%-matrices

The structure of{?-matrices is considerably more involved than that ofthenatrices; here, we adopt
the description given iBdrm (2006. Just as we have used the notion of a separable expansion to

28 T T T T T
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24
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20

sufficient rank
®

8 1 1 1 1 1
0 20 40 60 80 100 120

k diam

FIG. 1. We compute the optimal low-rank approximatidmng to the matrixy; Ay, , Where(z, o) € £, by SVD. For a range
of values ofk, we plot the minimum rank necessary so that Ay, — AcBl 2 < 107°.
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describeH-matrices, we use it here to introduce thé-matrices. In particular, we describe how a
separable expansion can be used to construg{@matrix M so thatM is an approximation to the
Galerkin matrixA.

Letb = 7z x ¢ be an admissible block and let us assume that we have an approximate separable
expansion:

L L,
S Y) A DD LU (), X € Qr, ye Q. (3.8)

|=0 m=0

Here, as we have indicated by the notation, we require that the basis fungtien@espectivelypf,(-))
depend only on the cluster (respectivelys), and that the coefﬁmentq?m depend only on the block
clusterb = z x ¢. Therefore, the corresponding matri¢¢sandV,, see 6 5 and @.6), can be reused
wheneverr or o appears in a different admissible cluster, &/g= 7 x ¢’ € Lt for ¢’ # o. This is
clearly advantageous in terms of storage requirements. We call the méatriche ‘cluster basis’ and
give the following definition for a general cluster tree.

DEFINITION 3.8 (Cluster basis) Lef 7 be a cluster tree and let a rank distributiarnr — L, € N,
v € Ty, be given. Then, a family = (U;).c7; is called a cluster basis fat; with rank distribution
kif U, € C"™Lr andy, U, = U, forallz € 7.

The conditiony, U, = U, simply means thatU,); = 0if j ¢ 7, see 8.5. Further, note that the

rank distribution is defined on the clusters, not on the block clusters.
We require an additional structure, in particular we require that each fungtionis a linear com-

bination of basis functionaf'(-) and uf"(-) of its child clustersr’ and z”. Namely, we require that

Lz./ L‘L’”
ur () = D tut 00, uf(y) = >t ul (y), (3.9)
j=1 j=1
forxe Q,,ye Q.1 =1,2,...,L,.Inmatrix notation, this implies that
Ur =Up Ty + U Tor, (3.10)

where(T)j = tI "and(T, j = tI ". Therefore, we only need to store the cluster bases for the leaves
and the transfer matriced’, for aII clusters. As we will see later, this is advantageous both in terms of
storage and the cost of performing a matrix-vector product.

DEFINITION 3.9 (Nested cluster basis) L&} be a cluster tree and l&t be a corresponding cluster
basis with rank distributiok. Let T = (T;).<7,, be a family of matrices such that, e C-~*"- for
eachr’ € Ty that has a parent cluster The cluster basid is said to be nested with transfer matrices
T if
UT = U.L./ o+ Ur”T‘t”; (311)
for each parent clusterwith son clusters’ andz”.
We are now in the position to define the clasg4ftmatrices.

DEFINITION 3.10 (H2-matrix) Let7, 7 be a block cluster treé: = — L, a rank distribution and
U andV two nested cluster bases with transfer matri¢&sand TV, respectively. LeM e C"*".
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If for eachb = (7, o) € L1, there exists &, € CL-*Ls such that

xeMys = UTSDVHT,

the matrixM is said to be ari{2-matrix with ‘row cluster basisU and ‘column cluster basid’. The
collection of such matrices is denoted H}(zjj, U, V,K(-)). The family S = (S)pe+ is called
the family of ‘coefficient matrices’.

Note that we have not yet explicitly said what should be done with the inadmissible blocks, i.e. with
the Galerkin matrix blockg, Ay,, b = 7 x ¢ € L~. These blocks should simply be stored as dense
matrices. The final part in approximating the Galerkin ma#izy an?{2-matrix is to copy these blocks,

i.e. to require that

xeMxe = x:Axe, b=t x0€L”.

3.2.1 Fast matrix-vector multiplication. Let 77 be a cluster tree anfiy. 7 a corresponding block
cluster tree with the set of admissible leav&$ and the set of inadmissible leavés (see Defini-

tions 3.1 and3.4). For an arbitrary vecton € C" andM e HZ(TJXJ, U, V, k(-)), we consider the
computation of the matrix-vector product= Mu. To do this as efficiently as possible, the structure of
H2-matrices is used to the full extent. The computation is described in the following four-step algorithm:

1. Upward pass from leved to level O of the tre€/ :

e forall leavess € 77, computeu, = Vr,Tu;

e forall parentss on the current level, set, = (TVe")Tu,  + (TVo")Tugn.
2. Far field interaction:

e forallr € T7, computen, = Z(m)eﬁ S oUs.
3. Downward pass from level O to levplof tree 7 7:

e initialize the output vectos by zero;

o for each child clustet’, seto,, = v,/ + TT%,;

o foreveryleafr € 77, setv = v + U;o;.

4. Near field interaction:
* V=0+2 e X:MyoU.

It is not immediately clear if{2-matrices offer any real advantage for the case of high-frequency
scattering. Indeed, since the SVD obtains optimal results, we know that the rank of ablgek" ~
1 Ay, must increase at least linearly with Therefore, ifS, is a dense matrix, the complexity would
again be at least @2) = O(n?). The complexity can only be reduced if the coefficient matriggisave
some structure, e.g. if they are sparse or Toeplitz. In Sedtibnwve show that a separable expansion
exists such that the coefficient and transfer matrices are either diagonal or Toeplitz.
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4. Construction of the #2-matrix

In this section, we describe a separable expansion that has the progeBiemd @.9) for the kernel
function of the Brakhage—Werner integral operator. As described in S&#pwe will then be able to
construct ar#{2-matrix approximation to the Galerkin matrix. We make use of a separable expansion
of the fundamental solution to the Helmholtz problem. This expansion has been developed and made
well-known in the fast multipole community (see, eRpkhlin, 1990 Amini & Profit, 1999. We will

not give all the details but refer to results from the fast multipole literature. However, we give some
convergence proofs since in the literature, we could not find the results exactly appropriate to our needs.

4.1 Separable expansions

For ease of notation, for a vectere R?, we denote its polar coordinates by, 6x). In the following,
Jn(-) denotes the Bessel function of the first kind of ordeand Hy, (-) the Hankel function of the first
kind of ordern.

Letb = (r,0) € L+, 2, andQ, be contained in disks with centresandc, and radiip, andp,,
and letx, y € R? be such thak € Q, andy € Q,. The situation is depicted in Fig, where the bold
line depicts a segment of the bounddrand the intersection of the disk centreata{respectivelyc,)
with the boundary’™ is the region2, (respectivelyQ,).

We will use the following notations in this section:

¢, — ¢, = p(»? (coss ™), sing >\ T,
z:=(y—0C;)— (X—Cp). 4.1)
Sinceb = (z, o) is an admissible cluster,
pe + pg < np™). (4.2)
Also, sincex € Q. andy € Q,,

IX=Cell < pes Y —Coll < po. (4.3)

FIG. 2. An admissible paib = (z, ¢): The bold line depicts a segment of the bound&ryThe intersection of the disk centred at
c; (respectivelyc, ) with I" is the regionQ; (respectivelyQ, ).
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We refer to a result byAmini & Profit (1999, which gives a separable approximation to the funda-
mental solutiorG, and a remainder convenient for finding error bounds.

THEOREM4.1 LetL be an odd integet, = 2M+1. Then, using notatior®(1) and under the conditions
(4.2 and @.3),

GK(x,y>=}1Ho<x||y—x||)

L
> filex = co)a (e — ) fite(y —c,))
1=1

i i H (1,0 . m— iap (7.0
+5 2 Inlep)e ™ (HiGep )™ +im2Ha o))

Im|>M

wherea(m) is the unique integer such that= m(modL) anda € [—M, M]. The functionsf; andg
are defined by

. M
i) =) gy =5 Y

m=—M

(=H"
L

Hm(p()elm(@{—znvl_),

and f| is the complex conjugate df.

The above form of the separable expansion is the most commonly used diagonal form in FMMs. For
a detailed derivation se@hewet al. (2001). The next step is to give a bound on the number of terms
needed to obtain a fixed accuracy- 0. The result is not difficult to derive once the following lemma
has been proved. A similar result is proveddimini & Profit (1999, but with some further restrictions
on x and the length of expansiavl.

LEMMA 4.2 Letp > 0,0< ¢ < 1/2and O< < 1 be given. Then, there exists a const@qy) such
that for any O< r < rmax=np andM > C(n)(r + '09%),

o o o
DMl <e and > Ha(p)dnM) < D [Hnsa(p) ()] < e
n=M n=M n=M

Proof. The proof is given in the Appendix A. O
THEOREM4.3 Let the conditions of Theore1 hold and let O< € < 1/2 andx > 0 be given. Then,
there exists a consta@i(n) > 0 depending only o such that

2M+1

G, Y) = D file(x—c)ale(e, — ) fite(y — 6))| <,
=1

foranyM > C(7)(x(p: + po) + log (2)).
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Proof. We express the remainder as in Theoret

2M+1

Rm =G (%, y) — D file(x — co)a (e — ¢,)) filke(y — &)
=1

i 1 1 7,0 . 1 7,0
_ Z Z Jm(sz)e—lmHz (Hm(Kp(z,a))éma(» ) + Im_aHa(Kp(T’U))elaH( )) ’

[m|>M

wherela] < M. Since for a fixed argument > 0, |Hn(X)| is an increasing function afh > 0
(seeAmini & Profit, 2000, we have that

1
IRul <5 2> Nmlepa) Hn(ep ™).
Im|>M
The result now follows immediately from Lemnda2 since according to4(1) and é.2), p, = ||(y —
Co) — (X=C)Il < pr+po gnp(r,a)_ U
In the following corollary, we give an expression for a separable expansion of the singular kernel of
the Brakhage—Werner formulation.

COROLLARY 4.4 Under the conditions of Theore4n3, and witha < «, there exists a consta@t(y)
such that

P 2M+1
‘(— - ia) Gely) = 3 k(X — ) (e (ce — G) (— - ua) fi ey — )

<€,
any — any
foranyM > C(#)(k(p: + ps) + log(x) + log (2)).
Proof. For the proof, we need the estimate
3
‘_Jm(KPz)e Mo < 7Jm—1(’€pz)a (4.4)

which holds under the conditigm| > xp;+2 (seeAmini & Profit, 1999. Note thatC(y) can be chosen

so that anym, with |m| > M, satisfies such a condition. By Lemm&, the remainder in Theorem1
converges absolutely. The series obtained by formally differentiating each term in this remainder is,
due to @4.4) and Lemmat.2, also absolutely convergent and hence we are allowed to differentiate term
by term:

M. o . g
RY = (a—ny - ua) el y) = 3 k(X — ) k(e — G) (— - la) fi(e(y — G)

=1 My

a 7,0 . 1 7,0
! (aT —m) Im(pz)e iz (H (kp )M im=ap () (r.0))gad" )),
y

and bound the new remainder by
3
R (F+0) 2 1ttt
Im|>M—1
The proof now follows from an application of Lemma2 d
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Note that the separable expansion given by the above corollary is not exactly of the form required
by (3.8). The basis functiong/ (-) in (3.8) were required to depend only on the clustehis is not the
case for the function$ (-) since they explicitly depend on the length of the expansidr421 which in
turn depends op, andp,. In FMMs, this difficulty is avoided by only considering admissible blocks
b = (¢, o) for which p, = p,. Not to be restricted by this kind of a condition, we introduce a different
separable expansion.

To do this, we find it helpful to recall that the Bessel functions are the Fourier coefficients of plane
waves{ f| }:

1
2zin

1 T 2r .
Jn(r):ﬁ/o €' ¢ cognh)dy = /0 geosddfgyg n=0,1,..., (4.5)

seeAbramowitz & Stegur(1992 andWatson(1944. Note also thatl_, = (—1)"J,. The relationship
between Bessel functions and plane waves is of crucial importance for all the results in this section.

We will not only want to transform the plane wave functions to the Bessel functions but also
change the number of functions in the expansion. To do this, we will make use of a simple operator
Pm,,m, Which either truncates a vector or appends zeros to it depending on the sitin-efM». For
example,

0O 0 b1 b1
a1 1 0 0f /as a1 by 07) 07
Ps2olax | =10 1 OJ|lax]|=]a|, P3|bs]= 3T 2| bz | =|]bs
ag 0 0 1) \as ag bs (o) by

0 0 O 0 bs bs

The definition for generdl; and My is given next.

DEFINITION 4.5 LetlL; = 2M; + 1 andLy = 2M2 + 1 be two positive odd integers. M1 > Mo,
define the operatdPu,,m, by induction onM1 — Ma:

1. The matrixPy m = | € R?M+1x2M+1ig the identity matrix.
_ 0...0
2. DefinePyyjtim € R2ZM+]+D+1x2M+1 by Pmtj+1m == | Pm+jm
0...0

If My > My, thenPy, m, := (Pu,.my)T-

Next, we give the details of the transformation from a plane wave basis to a Bessel basis. For a
pictorial explanation, see Fi§.

PrROPOSITION4.6 LetM1, Mo € N with M7 > My and letL; = 2M; + 1 andL, = 2M» + 1. For
x e R?, letfy, (x) andgw, (x) be defined by
(fmy (X)), = fi(x) = rxcos@nl/Lli=t gng (gMz(x))j '=gj(X)

=M1 ()@ UM,
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FiG. 3. In this figure, we show the transformation from a Bessel basis to a plane wave basisMilere 30, My = 20 and
IX] = 5. In the top left figure, we plot the coefficients of the Bessel function lzggigx); the real parts are connected by a solid
line and the imaginary by a dashed line. We append zerggidx) to obtain an approximatiofy, m,9m, (X) ~ gm, (X);

shown in the top right plot. Next, we apply the mathgi to obtain an approximation to the plane wave bégis(x) shown in
the last plot.

| =1,...,L1,j =1,..., L. Further, let the shifted Fourier matrfy, € C-1%L1 be defined by

1 imemy_12
dm-Mi-DE

(FMl)m|=L_1 l’m:1’29~-~3|—1~

There exists a consta@t > 0 such that for any > 0, if M2 > C(px + log (2)), then

iz = |y (00 = Fi Pay g, (00| <

Proof. The proof is given in the Appendix A. O
We now finish the subsection by giving the separable expansion applicable to clusters of different
size.

THEOREM 4.7 Letb = (z,0) be an admissible cluster. Then, define the coefficient m&yix=
(ﬁbk) by

S:) = PMrsMr,tr FMr,ﬂdiaqa (K(CT - CO'))) Fl\]ig PMT,(79M/T 2 (46)
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whereM;, M,, M;, € N andg(-) are defined in Theored.1, | = 1,...,2M,, + 1. Under the
conditions of Corollaryt.4, there exist constan andC(7) such that

5 2M;+12M, +1 3
(——ia) Gy - > D sEVawx ) (ﬁ—ia) 6 ey — )| <.
y

ony =1 I=1

for anyM, > C(xp; +log (%)), My > C(xp, + logx +log (1)) andM. , > C(n)(M; + M,).

Proof. The main fact to note is thatDy |lcc = H Pm1,M, Hoo = ||[Fmllec = 1, so the errors are not
amplified by these matrices. Sin@q@l = (2M + 1)Fy,, whereFy, is the conjugate transpose of

Fwm, we have that| F,\]lnoo = 2M + 1. Since this term also does not have a significant effect on the
exponential convergence, the error estimate follows directly from Corolldrgnd Propositiod.6. [J

4.2 Transfer operators

To be able to construct thi&2-matrix, we need also the nestedness condition to be fulfilled, %6k (
Rewriting 3.9) in terms of our basis functiorg, if z’ is a child cluster of:, we need to find a transfer
matrix T, = (tf ) such that

L,

gk(X —C)) = D thgj(k(x — 1)), forxe @, I=1,..., L, (4.7)
j=1

Here, we see that the transfer matrix needs to do two things: change the centre of the expansion from
¢’ to c; and change the length of the expansion friopato L ;; the latter procedure is often called, and
performed by, interpolation. In our case, we will be able to guaradté&ednly approximately.

The connection between Bessel functions and the plane waves, see Propo§ji®nseful here as
well. One part of the transfer, translation of the centre of expansion, is easy for the plane waves and the
other, the interpolation, is easy for the Bessel functions. The translation for the plane wave functions is
given by

fi(e(x —¢r)) = fi(k(Cr —Co)) fi(x (X — Cr1)), (4.8)

where f| are defined as in Theorethl This property of plane waves is not difficult to check (for a
proof seeAmini & Profit, 2003. For the Bessel functions, the change of the centre is not as simple but
the interpolation, i.e. the change of the length of expansion, is trivial. It consists simply of truncation or
padding by zeros of the basis vectors, see EiyVe give now the definition of the translation operator.

DEFINITION 4.8 LetL = 2M + 1 be an odd positive integer and ketandz’ be two clusters. Define
the diagonal matridDy;" € CL*L that translates the centre of expansion fronto ¢, by

(Dv/)n =filkr-c)), I=1....2M+1

To simplify the notation, we will leave out the various subscripts and superscripts if they are clear
from the context. Combining the change of the centre of the plane wave expansion and the interpola-
tion of the Bessel function expansion with Propositib6 allows us to easily construct the transform
operator. The details are given in the next theorem.
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THEOREM 4.9 Letx, c,,c,s € R? be fixed and lel., = 2M, + 1 andL, = 2M, + 1 for some
M., M, € N. Definegy, (x) € C'* andgw, (x) € Ct< by

(Om, O == agi(xk(x—c;)) and (gm,, (X))} == gj(k(X —Cr)),

whereg, are defined in Propositiod.6. There exists a constaft > 0 such that for ang > 0, if
M. > C(xlIx — c. | +log ()) andM, > C(x|x — c.|| +log (2)),

HQM,(X) — Fm, Dwm, F,\ZLPM,,M,/QMT/ (X) HOO <€

holds.
Proof. The proof is very similar to the proof of Theorefy. O
Therefore, the transfer matrix is given Ay, = (FM, Dwm, F,\][lPM,,MT,)T. Since the operator

(aaTy —ia) is linear, the same transfer matrix can be used for the basis fun«ﬁgﬁyns i) g (e (Y — C5)).

4.3 Numerical stability

An important fact is hidden by error estimates of the type given in Thegr@mDue to numerical
stability problems, not every accuracy- 0 can be reached when working in finite precision. Numerical
stability problems of the separable expansion are due to the exponential increase of Hankel functions
H, (x) for fixed x andl > x (seeAbramowitz & Stegun1992. A careful analysis of the numeri-
cal stability issues has been performed@ynuki & Chew(2003/2004, whose results we will make
use of.

Let us return to the setting of Theorefril and let us assume that the radii of the clusterspare-
ps = a/2 > 0 (see also4.2)). We recall that_ is the length of the expansion used to approximate the
Hankel function. Then, define

d - 0, L < %‘Ka, 40
! {(L - %xa)/(l.S[%xa]lB)}?’/Z, otherwise. (49

In Ohnuki & Chew (2003/2004, it is argued that; is a good approximation to the number of
digits lost due to numerical stability problems. For example, this means that, if the required accuracy
is e = 107° and the other parameters are such that 10, in double precision the stability problems
should not be visible. However, a considerably higher accuracy could not be obtained. It is clear by
inspecting 4.9 that fewer digits are lost ifa is large, that means if the wave number times the size of
the cluster is large (see also F#). This suggests that the separable expansion should be used only for
admissible block clusters that are formed of clusters large enough for numerical stability problems not
to be visible. In our setting, the clusters need not have equal radii. In practice, we have found that the
following definition is suitable.

DEFINITION 4.10 Let7 7« s be ablock cluster tree and let> 0 be given. Divide the set of admissible
leavesCt into two disjoint subsets by

L :={(r,0) € £*: maxdiam(Q,), diam(Q,)} > a} and L} :=L*\L].

We will use the separable expansion only in admissible blocks belongifi.tdlote thata should
be chosen proportional tg/#, i.e.ax = constant.
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20 E

_5 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

Ka

FIG. 4. For a fixed expansion length= 10 andy = 1/2, the number of digits lost due to numerical instability is plotted against
xa, wherea is the size of the clusters.

4.4 Definition of the#{- and #2-matrix approximants

We are now in a position to construct an accurate hierarchical matrix approximation to the Galerkin
matrix. Letb = (z, o) € £]. We recall that

(re Ao = / / (i—ia) G (X, V)1 (VAT ATk, if ke  andl € 5.
Q. Jo, any

Using the separable expansion given in Theodei we can now, following the description given in
Section3.2, construct the/2-matrix approximant.

DEFINITION 4.11 Ift € Ty is a leaf cluster, given an odd numbey € N, define the corresponding
row cluster basit),; and column cluster basis by

Uy = {(f)g 0y etx —CDut9uT, ik - andj =1...L,, @10

and

Vo = {gg (2 —ia)gj(c(x — C)pk(x)dlx, ifkerandj=1,... L., @11)

if K¢z

Note that we have only made the definition applicable to leaf clusters. The reason behind this is that
if we had used the same definition for the parent clusters, the nestedness condition (see D&®ition
could only be satisfied approximately. Instead, we first define the transfer matrices using The&brem
and then use3(11) as a definition of cluster bases for parent clusters.
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DEFINITION 4.12 Letz’ € 77 be a child cluster with parent clusterand let odd numbers, =
2M; + 1 andL,, = 2M,, 4+ 1 be given. Then, define the corresponding transfer mﬁtr},’ixfor the
column cluster basis by

TV = (FMI D, F,\]}PM“MZ,)T

The transfer matrices fdJ are the conjugates of the transfer matricesvfor

U . \%
TY =TV,

T

Now, we can recursively define the cluster bases for parent nodes.

DEFINITION 4.13 If r € T is a parent cluster with child clustersandz’, define the corresponding
row U, and columnV; cluster basis matrices by

Up = U T + U TS, Vo= Vo TY + Ve TY.

Finally, we define the coefficient matric&s

REMARK 4.14 For a parent cluster, letU, be the matrix defined byi(10. Then,U, ~ U, whereU,
is defined in Definitiom.13 The error can be controlled using Theorér.

DEFINITION 4.15 Leth = (z,0) € Lf andletL, =2M; +1,L, =2M,; +1andL,, =2M,, +1
be given. Then, define the corresponding coefficient m&yjx € Ct-*L by

: & -1
S[,o- = PMT,MT,G FMT,O’ S[,g' FM,’U PMI,O'aMU H
where the ‘auxiliary coefficient matrixg, , € Ctwo %o is a diagonal matrix with

(S0 =3 (x(C; — C5))

ands () is given in Theorend.1, see Theorem.7.

REMARK 4.16 The cost of constructin@,{, using the definition o§ directly, requires QL2) opera-

tions. However, since the diagonal & , is the discrete Fourier transform of the vector
—_jy~M _ (r,6) (—j)—M+1 _ (z,0) _iM (t,o)\ T

(S—H_m (ep @ )e MO, LN H 1 (ep )MV L0 Hiy (p - )eM?™ ™)

it can be computed in Q. log L) operations using FFT (seemini & Profit, 2003.

REMARK 4.17 Note that we are allowed to chodslke, M, andM. , independently of each other. If

we had use(ﬁm as the coefficient matrices, such freedom would not have been available. In practice,
we have found that the freedom to choose different lengths of expansion for the cluster bases and the
separable expansions reduces the computational and storage requirements significantly.

REMARK 4.18 We have only given local estimates of approximation errors. The global error estimate
depends on the norms of the transfer and coefficient matrices. The entries in the coefficient matrices, as
discussed in Sectiof.3 can be large. The subclass of admissible bloqtshas been constructed to
control this negative effect.
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4.4.1 Adaptive cross approximation for small admissible blocké/e have yet to say what should be
done with admissible blocks i;tigL for which the separable expansion becomes unstable. The simplest
way of dealing with the numerical instability would be to regard block clusteﬁsj’lrin the same way

as the elements of ~: the corresponding parts of the Galerkin matrix would not be approximated
by a data-sparse format but just copied as dense blocks. This would be very costly for domains with
small detail, where many panels would be needed to resolve the small detail geometry and the part of
the Galerkin matrix due to these panels would be large (see Refrizk A simple alternative is to
approximate these blocks by low-rank matrices obtained using the adaptive cross approximation (ACA)
algorithm.

ACA, regarded as a black-box algorithm, performs as follows: Given a fundtibnj), defined
forl,j =1,...,m, and a desired accuraey> 0, it returns rank matricesAg, Bx € C™xk such that
| Ak B|I — Xll2 S €, where(X);; = f(, j), i.e. it computes a rank approximation to a matrix. To do
this, the ACA evaluates the functidi(-, -) at O(mk) arguments and overall requiregrak) storage and
computational time. We have used the symia@bove to indicate that the ACA does not guarantee an
exact spectral error estimate, but rather a good estimate of this error.

For the casef (I, j) = s(x, yj), wheres is an asymptotically smooth kernel andandy; are
restricted to two clusters that satisfy an admissibility condition, the ACA algorithm has been investigated
theoretically inBebendorf{2000 andBorm & GrasedycK2005. For the case of the Helmholtz kernel,
no theory exists at the moment, however, good numerical results have already been refitguein
(2009. Our experience is also positive, and we illustrate the ACA here with a single experiment. In
fact, we repeat the experiment on the performance of the SVD, se#, gt this time using the ACA
algorithm. The results, and a comparison with the optimal SVD, are given irbFig.

Figure 5 suggests that the ACA seems to perform very well even for large frequencies. For this
reason, in our implementation, we favour the use of ACA to a theoretically more sound algorithm,

35 T T T T

optimal (SVD)
— — — approx. (ACA)

sufficient rank

5 1 1 1 1 1

0 20 40 60 80 100 120
x diam

Fic. 5. We compute low-rank approximatiorg B|I to the matrixy; Ay, , where(z, o) € L1, by ACA and SVD. For a range
of values ofx, we plot the minimum rank necessary for the two methods so|thaf\y, — Ak BEHZ <1075,
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e.g. a low-rank approximation obtained by interpolation or Taylor expansions. Error estimates for the
interpolation or Taylor expansions could be obtained using the bautd) En partial derivatives of the
fundamental solution. Another reason for using ACA is its ease of use and implementation.

Finally we note that, as we have seen in FgACA does not encounter stability problems for small
clusters. This is no surprise since this kind of instability is not a property of the Helmholtz problem but
an artifact of the multipole expansion.

4.5 Construction of a data-sparse approximation to the Galerkin matrix

We now describe the steps required to build a data-sparse approxiréattmthe complete Galerkin
matrix B = Z/2+ A. Assuming double-precision computations, the new, numerically stable, algorithm
is given next.

e The parametey controlling the admissibility condition needs first to be fixed. We find that the choice
n = 2/3 works well in practice.

e Givene > 0, choosea > 0 using @.9) such that 16- d; > Iogm%. Note that this implies that
ax = C(n, €), a constant depending grande.

¢ Construct the cluster treg7 and the block cluster treE7 7.

e Foreach cluster € 77, setM, = |Cixp, + C1 Iog%J, for some constar; > O.

e For each admissible block cluster= (¢, 0) € £, set M, , = |Cox(p; + ps) + C2 Iog%J, for
some constan€, > 0.

o Foreach leat, construct the row and cluster basésandV,.
e For each child clustet’, constructT,..

e Foreachh = (z,0) € L], construct the auxiliary diagonal coefficient mat8x, . Also define, but
do not computey, By, :=U, S, , V..

e Foreach = (z,5) € £, construct a low-rank approximation By, to x. By, using ACA.
e For each inadmissible ledf= (z, o) € £, leave the data unperturbegd:; By, = y: By,.

The numerical instability issues have been investigated by a number of auth@isadn& Chew
(1999, the authors use an alternative separable expansion that can be stabilized by scaling. To do that,
however, one must sacrifice the Toeplitz structure initially present. Also the rank obtained using this
expansion is much larger than the one obtained using ACA since ACA produces results close to the
optimal result of the SVD. An altogether different approach using the so-called ‘exponential expan-
sions’ has been developed Breengardet al. (1998 andDarve & Hawe (2004gb). Here, an integral
representation of the fundamental solution is used:

i 00 dix o= 12—2y

i
'H Y2 4 v2) = eer 7
2 olx +Y9) ar | T

dA,

1For simplicity, we have ignored the term legequired by Theorem.7. In fact, in numerical experiments we always have
Iog% > logxk.
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valid fory > 0 (seeGreengaratt al, 1998. An equivalent expression can be given in 3D as well which
is the only case covered ljarve & Hawe (2004ha) andGreengardet al. (1998. In fact, this approach
is most useful in 3D, where it helps to speed up the cost of the translation operators frpthtd89
40p? + 6p°, wherep is the length of expansion used in the low frequency Ge=engardt al., 19989.
In 2D, the advantages are likely to be more modest; for the Laplace case, a reduction fro(8 27
8p? + 27p is obtained (seklrycak & Rokhlin 1999.
The advantage of our method is in its simplicity and its effectiveness as will be demonstrated by
numerical examples. Furthermore, tHematrix partBy, of the matrixB, defined by

By:= D 1B, (4.12)
(T,U)GL—U[,'Z"

can be coarsened and compressed and also used as a preconditioner. We elaborate on these issues in
Section 4.6. Let us just note that the mamz =B— BH is an?{2-matrix. Hence, our approximation
really is a sum of ari{-matrix and ar#{2-matrix.

4.6 Recompression and preconditioning

The storage requirements of the coefficient matrices and transfer matrices are, due to their simple struc-
ture, low. Since the Fourier matrices are never constructed, but their action is computed by FFT, for
each coefficient or transfer matrix only one or two diagonal matrices needs to be stored. The storage
cost for the cluster basés andV is also not large since they only need to be stored for leaf clusters.
The main storage cost is due to thematrix é% see 4.12). The recompression techniques developed

in GrasedycK2005 can be applied to this matrix. We give here a brief description, but for details refer
the reader t@srasedyck2009.

The recompression consists of two steps. As mentioned before, the ACA does not compute the
optimal low-rank matrix. To close this gap, the SVD is applied to each admissible block of the matrix
I§H. This can be done efficiently since the SVD of a radnknatrix already given in a factorized form
M = ABJ e C™N, A e C™K andBx € C™*k can be computed in ®@%(m + n)) operations (see
Grasedyck & Hackbusci2003. The second recompression optimizes the block structure making it
coarser. In this second step, the storage is also reduced, but perhaps more importantly the coarser block
structure allows for faster arithmetical operations. In particular, for preconditioning we are interested in
the hierarchical LU decomposition (sBebendorf2005. The effect of recompression on the storage
costs of the Galerkin matrif8 is shown in TableL.

Ultimately, we wish to efficiently solve linear systems of the type- Bv. To do this, we will use
iterative methods that make use only of matrix-vector products. To improve the convergence of such
methods, preconditioning can be used.Amini & Maines (1998 and Harris & Chen(2003, it is
recommended to use a splitting

B=B1+Cy,
whereB; is a sparse matrix and solve the following preconditioned system instead:
B 'Bv = (I + B 'Cyv = B[ b

In Amini & Maines (1998, é} is chosen to be the tridiagonal band Bftogether with the extreme
antidiagonal corner elementB)1n, and(B)n;.
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TABLE 1 In this table, we display the total time for the constructim’é@_[z and I§H the
time for the recompression and coarsening and the memory consumption before and after
the recompession

n k  Totaltime (s) Recompressiontime (s) Mem. (MB) Mem. reco(iyB)
210 25 2.72 0.35 4 2

211 26 6.39 0.88 9 6

212 ot 9.29 0.90 16 9

213 28 22.77 2.29 35 21

214 29 45.21 3.97 72 42

215 210 91.75 8.39 152 92

216 o1l 192.6 17.4 318 188

We employ a similar approach, but tik&matrix é;{l (cf. (4.12) will be the basis of the precondi-
tioner. We will not computeé;l1 directly, but rather compute aH-matrix LU decomposition 0By.
Two triangularH-matricesL4; andU4, can be computed efficiently such thag U, =~ By,. The accur-
acy of the LU decomposition can be varied. Lower accuracy will allow for faster computational times
(seeBebendorf 2005 Grasedyck2005. Since the LU decomposition will only be used for precondi-
tioning, high accuracy is not essential. The preconditioned linear system now reads:

(LyUg) 1By = (LyUy) b, (4.13)

This system will be solved using an iterative process that at each iteration requires a multiplication
of B and a vector and the solution of two triangular systems givel-imatrix format. The latter can

be done in @nlogn) time by H-matrix equivalents of forward and backward substitutions, as described
in Bebendorf(2005.

4.7 Complexity analysis

Before we estimate the computational complexity of the construction of the matrix and the cost of
matrix-vector multiplications, we make a couple of assumptions that hold in standard situations. First
of all, without loss of generality, we assume that digm < 1 and thatCgp is a constant. The final
assumption, pertinent to the 2D problem, is that there exists a coiggach that for any levd|,

> 2p. = > diam(@;) < Ce. (4.14)

7 ET‘Q) re'T}l)

This condition simply prevents pathological cases such as the case where each child cluster has the
same diameter as its parent cluster. A standard algorithm for the construction of the cluster tree, as
described inGrasedyck & Hackbuscf2003, would prevent such a case from happening. In the best
case, when the diameter of each child cluster is exactly half the diameter of its pareftholds with

C¢t = diam(Q). The condition is useful since it gives the following inequality:

1
Z M, <Cq (Cctx +#’7:9) log Z) .
reTg)
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Also, we recall that there are at most 2 1 clusters in the cluster trég;. Hence for any level ,
L
)
> HT) <2n-1
1=0

Now, we are in a position to give estimates for the storage and the cost of construction and matrix-vector
multiplication for the{2-matrix By2.

LEMMA 4.19 (Storage) lfp is the depth of/ 7, 7 and @.14 holds, then there exists a const&ht
depending only oi€1, C2, C¢t andCsp such that for large enough (x > max{1, log %} is sufficieny,

1 1
Nstgc(px+nlog—) and Ncon<C(pxlogx+n|ogxlog—),
€ €

whereNg; is the storage requirement ahldo, the cost of constructing th&2-matrix I§H2.

Proof. The cost of storing and constructing the row and column cluster bases for the leaf clusters is the
same. It can be estimated as follows (recall Ren3a2k

> #:M; <Ceat », M,

7 »57’\(7p> T eT}m

1
< CieafCe (Cct K+ #T}p) log Z)

1
< CleatC1 (Cct x +nlog z) .

The cost of storing the coefficient matrices is proportional to

1
Z Mr,a < Z Cox(pr + ps) +C2 lOg (Z)

b:(r,a)eﬁ'l*' b:(r,g)EEI

<

Z #o:(r,0) € ﬁi’ or(os,7) € ﬁf} (CZKP‘[ + Czlog (1))

p
€
1=0 tET}l)

p p
1 1
< Z Z Cspcz (K'p‘[ + |Og (2)) S Cspcz Z (Cct K+ #7:9) |Og Z)

1=0 (1) =0
teT;

1
< CqseCo (Cct;c(p +1)+ (2n—1)log Z) .

Since for each coefficient matrix we require a single application of FFT, the cost of the construction is
larger than the storage cost by a logarithmic factor:

log M, , <logCx + log (K(pr + ps) + log 1-)
€

<logCso + log(x(p; + ps + 1)) < logCz + log 2.
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So the total cost is increased by a multiplicative factor db@x):
1
CspCo2 (Cct k(p+1)+(2n—-121)log Z) log(2Coxk).

The cost of the construction and the storage of transfer matrices can be estimated as follows:

p—1
1
> > Mr<Cl(cctx(p+1)+(2n—l)logg).

1=0 (1)
teT;

LEMMA 4.20 (Multiplication) Under the same conditions as in the previous lemma, there exists a
constantC such that

NH»u < CNeon,

whereNy,., is the cost of matrix-vector multiplication fcéﬂz.

Proof. We compute the cost of matrix-vector multiplication following the steps of the fast algorithm
explained in SectioB.2.1 The reasoning is the same as in the proof of the previous lemma.

1. Upward pass:

(a) The cost of applying the cluster bases to a vector for the leaves is of the same order as the
cost of constructing them. Hence, by the proof of Lemrid, the total cost for all leaf
clusters is @k + nlog).

(b) The cost of applying the transform matrices to a vector is larger than the cost of construct-
ing them since applications of FFT are necessary. The further logarithmic factor gives the
complexity O px logx + nlogx log ).

2. Far field interaction: The cost of multiplication is the same as the cost of constructing the coeffi-
cient matrices since in both cases FFT is used. Hence, the cofpisi@x + nlogx log 1)

3. Downward pass: Same cost as in 1(b).
4. Near field interaction: The near field of th&-matrix B,z is in fact zero. So there is no cost.

Combining the above estimates gives the result. O

Since we are particularly interested in the high-frequency regime, ten, assumingy = O(logn)
ande a constant, we have that the cost of storage(isl@yn) and the cost of construction and matrix-
vector multiplication is @nlog? n). However, in practical situations, is considerably smaller tham
so that we expect the costs to behave closer @) @nd Qnlogn) for the storage and matrix-vector
complexity, respectively. We complete this section with remarks about the costs associated with the
H-matrix Byy.

REMARK 4.21 Note that by definition, fdo = (¢, o) € £, x(p: + ps) < ax = C(, €). Hence, the
length of expansion required by Theordm3is proportional taC (5, €) and independent af. Assuming
that the ACA recovers this behaviour (in fact, in practice, ACA gives a much lower rank than the
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separable expansion would produce), we have that

kmax:= max ranky:By,) < C(1, €),
b:(r,a)eﬁ}'

whereC(y, €) is a generic constant depending onlyspande. Hence, using Lemma.7, we have that

the cost of construction and matrix-vector multiplication §@knax), Wwherekmax is independent of.
Therefore, the costs associated with Henatrix part are not asymptotically larger than the costs asso-
ciated with the}{2-matrix. Note that such an estimate is not possible without the use of some data-sparse
representation for these blocks since a small size of @izyndoes not imply a small cardinalityt#

5. Numerical results

In this section, we demonstrate how our algorithm behaves in practice through numerical examples. We
do this by considering the exterior Helmholtz problenl) with the boundary dat& (x) = —e**d,

whered = (cosz /4, sinz/4)T. This problem describes the time-harmonic acoustic scattering problem,
where a plane wave coming from infinity at an anglét is being scattered by a sound-soft obstacle

Q c R? (seeColton & Kress 1998 Néckleg 2007). The solution we seek is the scattered wave. We
give results for two different obstacles. First of all, we solve the problem for the case of the unit disk for
which an analytic solution can be obtained through the Mie series. The second scatterer we investigate is
the inverted ellipse, which is the smooth, nonconvex shape shown i &gl defined by the following

mapping:

y (t) = v/1— 0.99 cogt)?(— sin(t), cogt))": [0, 27) — I (5.1)
We give results of experiments for both the low-frequency and the high-frequency regimes. We have
used the iterative solver GMRES to solve the arising linear systems. To speed up the convergence of the
solver, we have used the preconditioner described in Se4t®r\ll the computations were done on a

2.8 GHz Pentium IV processor. In all the computations, we have chosen the coupling parameter
as suggested bymini & Maines (1998 andGiebermanr{1997.

L

FiG. 6. A nonconvex (but smooth) obstacle and a plane wave coming from infinity.
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5.1 The low-frequency regime

For the low-frequency regime, we fix= 64 and increase the number of panelJo approximate the
Galerkin matrix, we use th#&-matrix obtained by ACA. We have used a low-accuracy LU decomposi-
tion of the whole Galerkin matrix as the preconditioner.

The results for the case of scattering by the unit disk are shown in Palfler this problem, the
exact solutionu and the boundary density are known. Apart from thé_?-error on the boundary:
lp — ¢3|||_2(r), we also consider a measure of the error outside the domain. This error is estimated
by computing the approximate solutian) at pointsx; € Q¢ j = 1,2,...,100. The pointsxj
are chosen to be equally spaced on the disk of radius 1.2. As the measure of the error, we use the
average:

100

error= "> |u(xj) — uj|/100
=1

By inspecting Table@, we can see that the convergence is o) for the error on the boundary
and Qn~2) for the error outside the obstacle. The higher order convergence outside the boundary can
be explained by the Aubin—Nitsche duality technique and the higher regularity of the solution in the
exterior (se€Chen & Zhoy 1992 Section 5.12Sauter & Schwaj2004 Section 4.2.5). Note, however,
that going fromn = 23 to n = 24 the ratio of the error outside the boundary is not exactly 4,
which is what one would expect for @ 2) convergence. The reason behind this goes deep in to
the implementation issues. Namely, for quadrature we use spectrally accurate Gaussian quadrature so
that for all these examples we uge= 2 quadrature points per element in 1D, therefore for the double
integrals we usg? quadrature points. At the final stage= 214, the errors in the quadrature are starting
to be seen. To see a perfeatro?) convergence, we would have to incregse 3. This would increase
the computational time for the construction of the matrix at the stage2!?, (3/2)? ~ 2.3 times. Since
the convergence of the quadrature routines we use are exponential, theahoi8avould suffice for
much largem than 24. To illustrate this issue, we perform a further computation witk= 214 and
g = 3 and obtain the following results:

n | Setup(s) | Solve(s) | Mem.(MB) | Mem.h (kB) | lIteration | ll¢ — ¢l 2 |  Error
214] 1862 | 82 | 768 | 48 | 11/33 | 67x10° |56x10°

TABLE 2 CPU times and memory consumption in the low-frequency regimexwith64. Columns

2-7 give the following information: time to construct the matrices (including coarsening), time to
construct the preconditioner and solve the linear system, total memory requirement, total memory
per degree of freedom, the number of iterations with and without the preconditioner anddhe err

n Setup (s) Solve (s) Mem.(MB) Mem.(kB) lIteration |l¢ —¢ll 2y Error

29 1.79 0.14 1.9 3.9 5/17 2x101 58x10°3
210 3.9 0.26 3.8 3.8 6/21 Ax101 14x10°°
211 8.5 0.52 7.2 3.6 7/24 Bx102 35x10*
212 224 1.76 15.6 3.9 9/28 2x102 88x10°°
213 515 4.02 34.4 4.3 10/31 .Ax 102 24x10°°

214 985 6.5 76.8 4.8 11/33 . Bx 103 76x10°°©
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TABLE 3 CPU times and memory consumption in the high-frequency regime for scattering by the
unit disk

n xk Setup(s) Solve(s) Mem.(MB) Mem.(kB) lteration |lp — @l 21 Error

210 25 2.72 0.19 2.8 2.8 5/18 5x102 41x10*
211 26 6.44 0.46 6.6 3.3 6/22 Bx102% 35x10*
212 o1 9.27 1.33 10.0 2.5 8/27 Bx102 33x10*
213 28 226 3.2 21.6 2.7 10/32 Bx 102 34x10*
214 29 4438 9.6 43.2 2.7 14/38 Bx 102 34x10°*
215 210 910 25.5 92.8 2.9 18/46 .Bx 102 38x10°*
216 211 106.2 62.0 192.0 3.0 19/56 .Bx 1072 37x 1074

TaBLE 4 CPU times and memory consumption in the high-frequency regime for scattering
by the inverteckllipse

n k Setup(s) Solve(s) Mem.(MB) Mem(kB) Iteration Error

210 25 3.88 0.23 2.8 2.8 12/30 .8x10°°
211 26 9.35 0.59 6.8 3.4 14/37 .@x10°°
212 o1 20.1 1.35 17.2 4.3 14/48  .Bx 10°°
213 28 37.7 4.31 34.4 4.3 13/59 .Bx 107>
214 29 77.7 7.1 68.8 4.3 13/78 A x 10°°
215 210 1349 16.1 118.4 3.7 13/80+ .®Bx 10°°
216 211 248.0 50.3 211.2 3.3 20/80+ .&x 10°°

As expected, both the computational times and the memory consumption scale almost linearly. Pre-
conditioning reduces the number of iterations significantly. The number of iterations does increase with
n, however, only slowly.

5.2 The high-frequency regime

For the high-frequency regime, we increase bo#ndx, keepingn/x = constant. We apply the mixed

format of an#?-matrix with low-rank matrices obtained by ACA as described in Secligh The

results for the case of the unit-disk obstacle are shown in Talilbe error is measured as for the low-
frequency case. Note also that the error stays approximately constant. Again, the preconditioner reduces
the number of iterations significantly. Still a slow increase of the number of iteratiorndsascreased,

is noticeable.

We perform the same experiment, but this time with the inverted ellipse as the obstacle. The inverted
ellipse is scaled so as to be contained just inside the unit disk,5sBe $ince for this problem the
analytical solution is not known, to estimate the error we compute a more accurate approximation (with
n approximately doubled) and use it as the exact solution. The results are shown id. Taklsee that
the more complicated domain has no significant adverse effect. The cost of constructing the matrices
has increased by a small amount as well as the memory consumption. The number of iterations for the
solution of the linear systems has not shown a clear increase, compared to the case of the unit disk. This
suggests that the preconditioner has accounted for the more difficult geometry. Note that the number
of iterations needed when no preconditioning is used is considerably higher than in the case of the unit
disk. In the last two computations, we have interrupted the solver at the 80th iteration.
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Appendix A. Proofs of lemmata

LEMMA Al Letr, p > Oand letn, m € Z with |m| + 1 > p. Then,
[dn(r)] < & Siha-ainl for anya > 0, (A.1a)

and

2 .
[Hm(p)| < /3/2 + Zersinhotdmi+d) = 5 — arcoski(im| + 1)/p). (A.1b)
T
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Also,

. L ) inha—(L—n)a
(—l)n P 2z1) 2ziln er sin
Jn(r)—T E e|rcos( )e L <4ﬂﬁ

L foranyL € Nanda > 0. (A.2)
=1

Proof. Since|Jn(r)| = |I—n(r)| and|Hm(p)| = |H-m(p)|, without loss of generality, we can assume
thatm, n > 0.

For a fixedr, cn := i"Jn(r) is thenth Fourier coefficient of the complex analytic functidiiz) :=
€' 02 see 4.5). For anya > 0, f is analytic in the horizontal striimz| < a and hencey(w) :=
f(% log w) is analytic in the annulus@ < |w| < €. The Fourier coefficients of are just the Laurent
coefficients ofg. These can be bounded by Cauchy’s estimateHseeici (1986, giving

Il < max |g(w)|e™" = max |f(z)|e”".
e |Im|z<a

ea<|w|<
Since Maymyj-a | f (2)| = MaX|mz—a | f (2)] < & Sha,
lcn] < € SiMha=an for anya > 0.

This finishes the proof ofA.14).
To obtain the bound inX.1b), we use the integral representationty,(-),

Hin(p) = Im(p) + — / i sin(p sind — mo)ds — - / (€M 4 (=1)M e MYygp Sinht gt
T Jo T Jo

which can be found inGradshteyn & Ryzhik(2000. Since according to equation (9.1.60) in
Abramowitz & Stegun 1992, Jn(p) < 172 and|2 [ sin(psind — mA)dg| < = [5 dO = 1, we
have that

2 [ .
[Hm(p)| < V3/2+ —/ gnt=psinht 4
T Jo

By inspecting the derivative with respecttof the function &™+t=/sinht we find that &m+1t=p sinht <
e(M+Do—psinhd for 5 — arcosti(m + 1)/p) and anyt > 0. Hence,

2 [ ) 2 — s 2 i
et / emt—p sinht dt < _e(m+l)()—p smhé/ e—t dt = _e(m+1)(5—p smhé'
T Jo T 0 T

With this, the proof of the second inequalit4.(b) is finished.
The quantity that we want to bound iA.Q) is the remainder of the composite trapezoidal rule for
2z -periodic functions. The periodic integrandfig(9) := (—i)" exp(ir cosd) exp(—ing). Since f,(-) is
an entire function, the remainder is bounded by the expression
e—La
Az |IrT3§a| fn(z)|m foranya > 0,
see Davis & Rabinowitz1(984 Section 4.6.5). The proof is finished by boundifid-):

max | fn(z)| < & Sinhat+na,
|Im z|<a
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Next, we give the proof of Lemmé&.2
Proof of Lemma 4.2.Let us first prove the easier, first inequality. FrofnXa), we have that

ersmha aM
Z 1dn(r)] < & sinha Z e = forarbitrarya > 0.

From this expression, the required result is easily deduced. For example, ehedkethen

smhl M 1
Z |dn(r)] < ————— < e forM > rsinh1+ log (Z) —log(1—e™.

Since, using the assumptien< 1/2,r sinh 1+ 2log(2) > r sinh 1+ log (1) — log(1 — %), we have
that for the first inequality it suffices to choo€&r) > 2.
Let us turn to the second inequality. Foisuch thatp < n + 2 < 2p, we can employA.1b) to

obtain that Hn11(p)| < 4/3/2 + exp{—p sinh(arcoshi(n + 2)/p)) + arcosti(n + 2)/p)(n + 2)}. Since
the functions sinh and arcosh are increasing, we have the following bound:

IHnt1(p)| < \/g_{_eo(—sinr(arcosml))+2arcoslq2)) < \/g_l_eSp < \/§+83(n+2) forp <n+1<2p.
(A.3)

Since for 1< v < X, |H, (X)| < 1, the above bound is valid for allsuch that 2< n + 2 < 2p. Let
us first consider the cadé + 2 < 2p and defineM; := 2| p — 2]. Then, making use of the inequalities
(A.3) and A.18), we have that

00 M1 00
D Ha () IOI< D7 Hipa () IOl + D Hosa(p) ()]
n=M n=M n=M;+1

M1 M1 %)
<V3/2 D7 19+ D @M @3INHe LN Hn1(p) dn (1)

n=M n=M n=M1+1
<V/3/2 Z|Jn<r>|+eﬁzefs'”ha @=3n 1. Z IHn41(p) In(1)].
n= M1+l

We already know how to deal with the first sum. The second can be dealt with in a similar way by
choosinga > 3. Hence, without loss of generality in the remainder of the proof, we will assume that
M+2> 2p.

From (A.1a) and @A.1b), we have that, for an arbitragy/> 0,

3 . .
[Hot1(0) ()] < \[5 |3n(r)| + gmax sha=an=y sSihinton42), 5, = arcosti(n + 2)/p).

With the choicea = y, = arsini’(r—r%X sinhén), the above expression becomes

3 P ;
[Hnga(p) ()] < \@un(rn + e,
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We recall that arsintx) = log(x + +/x2 4+ 1) and arcostx) = log(x + +/x2 — 1), for x > 1, and
are hence increasing functionsxfTherefore gy is an increasing sequence. Together vgiftimax =
Z > 1, this implies thaty, > dy for all n. Further, the functiom(x) := arsmk(rp smhx) — X is an
increasing function since

rﬂ coshx
h(x) = max——1> 0, forx> 1.

J1+ SII’]th

Therefore,yn, — dn = h(dn) is a positive, monotonically increasing sequence. Si#’ee_ 1/n and

N+2)/p > (M+2)/p > 2, we have thay, — dn > B, wherep = arsml’(%mh(arcoslﬂZ)))
arcosli2) > 0. Hence, we obtain the following estimate:

o 3 o o
> IHaa(p)dn()] < \@ D 1O+ D et
n=M n=M n=M

The first sum we have already dealt with. We concentrate now on the second sum. Note that

2

2 2 2
e = gparcoshinta)/v) — (_” * 2) 1+ [/1- L ) <4 (—n ki 2) :
p (n+2) p

Hence, for some consta@t > 0,

Z g An+20n < Z (n+ 2) g hn

4 e M
_—zmm—l—Mz(e_ﬁ )2 +2M2 -3 +e %) 3/ 4 %)
22 (1=

2 - 2 -
<C(M) _en <C(M) _em
p) L—eh)3 r ) (1-e#)3
Since the bound depends exponentially hand further only mildly ony andr, the proof is
finished. =
We conclude with the proof of Propositi@n6.
Proof of Proposition 4.6.Let us first consider the cas#; = M». Then, what we need to prove reduces
to showing that & > 0 exists such that

w200 — Ftaw, 00| <

forall Mz > C(px+log ). Since] FM1|| = 2M;+1, the above inequality is implied by the following:

||gM2(X) - FszMz(X) ”OO < (2M2 =+ 1)6

Now recall that

n ino; 1 . cosd in(@+0x) 1 2 cog0—0x) 4ind
i"In(px)€"* = — apx g g = — drx x) dhf 4o
2r 0 2 0
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We can therefore proceed by approximating the integral with the composite trapezoidal rule and use
(A.2) to bound the error. The rest of the proof is very similar to the proof of the first inequality in
Lemma4.2

If M1 > My, zeros first need to be appended to the vegig/(x) to get an approximation to the
vectorgw, (X). The error in this approximation also decreases exponentiallyMjthy py since Bessel
functions J,(r) decrease exponentially for > r (see A.18)). Therefore, the caskl; > My can be
dealt with by a triangle inequality. O
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