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In this paper, we discuss the application of hierarchical matrix techniques to the solution of Helmholtz
problems with large wave numberκ in 2D. We consider the Brakhage–Werner integral formulation of the
problem discretized by the Galerkin boundary-element method. The densen × n Galerkin matrix arising
from this approach is represented by a sum of anH-matrix and anH2-matrix, two different hierarchical
matrix formats. A well-known multipole expansion is used to construct theH2-matrix. We present a new
approach to dealing with the numerical instability problems of this expansion: the parts of the matrix that
can cause problems are approximated in a stable way by anH-matrix. Algebraic recompression methods
are used to reduce the storage and the complexity of arithmetical operations of theH-matrix. Further,
an approximate LU decomposition of such a recompressedH-matrix is an effective preconditioner. We
prove that the construction of the matrices as well as the matrix-vector product can be performed in
almost linear time in the number of unknowns. Numerical experiments for scattering problems in 2D are
presented, where the linear systems are solved by a preconditioned iterative method.
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1. Introduction

Many physical problems (e.g. acoustics and electromagnetic scattering) require the solution of the
Helmholtz equation (seeNéd́elec, 2001). We investigate the numerical solution of the Helmholtz
equation by the boundary-element method (BEM). In such methods, the boundary is subdivided inton
elements and the problem is reduced to the solution of ann × n linear system of equations. The corre-
sponding matrix,B, is dense making direct methods for the solution of the system prohibitively expen-
sive. To reduce the complexity from O(n3) for the direct methods, or from O(n2) for iterative methods,
the so-called fast methods can be used (e.g.H-matrices, panel clustering, fast multipole method (FMM),
wavelet methods (Dahmen, 1997; Greengard & Rokhlin, 1987; Hackbusch, 1999; Hackbusch & Nowak,
1989)). In these methods, the matrix is represented by a data-sparse format, reducing the cost of storage
and matrix-vector multiplication to O(n loga n) for a small constanta > 0. The system is then solved
using an iterative method. In this paper, we describe how a combination ofH-matrix andH2-matrix
techniques can be used to compress matrices arising from the discretization of integral operators for the
Helmholtz equation.
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Two regimes of the Helmholtz problem are of interest: the high-frequency and the low-frequency
regimes. In the high-frequency regime, the number of elementsn is kept proportional to the wave
numberκ when working in 2D, and proportional toκ2 when in 3D, i.e.κh = constant, whereh is
the mesh width. The conditionκh = constant insures that the accuracy of the approximation to the
solution of the Helmholtz problem for different frequencies remains the same. In the low-frequency
regime, however,κ is a small constant and the number of elementsn is varied depending on the accur-
acy that needs to be achieved. The latter problem has many similarities with the Laplace problem and
can be solved in O(n loga n) operations by similar methods (seeBörm & Grasedyck(2004) and also
Section5 in this paper).

The high-frequency problem presents a considerably more difficult challenge. The FMM has been
used to accelerate the solution of the high-frequency Helmholtz problem by a number of authors.
Initially, one- or two-level versions were recommended which gave O(n3/2) or O(n4/3) algorithms
(Rokhlin, 1990, 1993), but recently multilevel implementations were reported on, both in 2D and 3D,
with complexity O(n loga n) for some small constanta (seeAmini & Profit, 2003; Darve, 2000; Lu &
Chew, 1994). In this paper, we will draw on the contribution due to the multipole community. In particu-
lar, we use a well-known multipole expansion to construct theH2-matrix, the details we adopt being
closest to the paper ofAmini & Profit (2003). In anH2-matrix, a sub-blockR of the dense Galerkin
matrix B is replaced by an approximation of a special form

R ≈ U SVT, where(R)k j =

{
(B)k j , if n1 6 k 6 n2, m1 6 j 6 m2,

0, otherwise.
(1.1)

For the high-frequency case, it is essential that the matrixS is of special structure, e.g. diagonal or
Toeplitz. This can be achieved by the use of multipole expansions. Unfortunately, for some sub-blocks,
‖S‖∞ can become very large and numerical instability problems render the approximation (1.1) unus-
able. Numerical instability problems of the multipole expansion for the Helmholtz problem have been
well documented (seeOhnuki & Chew, 2003/2004). Using the findings ofOhnuki & Chew(2003/2004),
we detect the blocks for which the approximation (1.1) is unstable, and approximate these blocks by an
H-matrix which can be computed in a stable manner without the use of the multipole expansion. It is
possible to do this efficiently since these blocks stem from the discretization of parts of the boundary
that are small compared to the wavelength. Therefore, we approximate the Galerkin matrixB by a sum
of anH2- and anH-matrix:

B ≈ B̂ = B̂H2 + B̂H.

This splitting has further positive implications. It allows for considerable savings in storage and
the cost of the solution of the linear problem, as we explain next. Algebraic recompression techniques
described inGrasedyck(2005) can be used to significantly reduce the storage and the complexity of
arithmetical operations of theH-matrix, B̂H. The LU decomposition of such a recompressedH-matrix
can be computed efficiently usingH-matrix techniques as described inBebendorf(2005) andGrasedyck
(2005). Once the LU decomposition is available, theH-matrix can also be used as an effective precon-
ditioner, reducing the number of iterations needed by the iterative solver significantly. A further new
aspect of our proposed method is that we allow for interaction between clusters of different sizes, which
is not usually the case in the FMMs for the Helmholtz equation.

In this paper, we consider only the Helmholtz Dirichlet problem and use the classical Brakhage–
Werner integral formulation (Colton & Kress, 1983). We discretize the integral equation by the BEM
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with piecewise constant basis functions and prove that for a given accuracyε > 0, the proposed al-
gorithm has complexity O

(
κ logκ logn + n logκ log 1

ε

)
for the construction of theH2-matrix and for

the matrix-vector product. TheH-matrix can be constructed and applied to a vector in O(kmaxn logn)
operations, wherekmax is independent ofκ andn.

Since in the high-frequency regime,κ is proportional ton, the complexity in this case reduces
to O(n log2 n). However, the explicit dependence onκ is interesting since for a satisfactory accuracy,
the number of elementsn needs to be chosen much larger thanκ; in our numerical experiments with
piecewise constant basis functions,n ≈ 32κ. The detailed complexity estimates serve better to explain
and predict the results of numerical experiments.

To illustrate our methods, in Section5 we solve an acoustic scattering problem, where the scatterer is
either the unit disk or a nonconvex object: the inverted ellipse. The numerical results are satisfactory up
to very high frequencies, and also for low and intermediate frequencies. The sharpness of the complexity
estimates is supported by the numerical results.

The paper is divided into five sections, first of which is this introduction, and an appendix. In
Section2, we state the Helmholtz problem we wish to solve and the corresponding Brakhage–Werner
integral formulation. Next, in Section3 we give a brief introduction toH- andH2-matrices. Section4
contains the main part of the paper. First, the analytical tools for the construction of the matrices are
developed. We then discuss the numerical instability issues, recompression and preconditioning, and
give the algorithm for the construction of a stable, data-sparse approximation to the Galerkin matrix.
We conclude the section with a proof of the complexity estimates. In Section5, we give the results of
numerical experiments. The appendix contains proofs of the technical lemmata needed in Section4.

2. Statement of the problem

Let Ω ∈ Rd, d = 2, 3, be a bounded domain with a smooth boundaryΓ and exteriorΩc. We are
interested in the numerical solution of the exterior Dirichlet problem

1u + κ2u = 0, x ∈ Ωc,

u(x) = F(x), x ∈ Γ,

lim
r →∞

r (d−1)/2
(

∂u

∂r
− iκu

)
= 0, (2.1)

where the wave numberκ is a positive real parameter (seeNéd́elec, 2001).
The fundamental solution of the Helmholtz elliptic operator, which respects the condition at infinity,

in 2D is the Hankel function of the first kind of order 0,

Gκ(x, y) =
i

4
H0(κ‖x − y‖), (2.2)

and in 3D the zero-order spherical Hankel function of the first kind,

Gκ(x, y) =
1

4π

eiκ‖x−y‖

‖x − y‖
. (2.3)

To solve this problem numerically using BEM, the elliptic partial differential equation is formu-
lated as a boundary integral equation. In this paper, we use the Brakhage–Werner formulation
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(Brakhage & Werner, 1965). In this formulation, the solution is represented as a combination of the
single-layer and the double-layer operators applied to an unknown densityϕ:

u(x) =
∫

Γ

∂

∂ny
Gκ(x, y)ϕ(y)dΓy − iα

∫

Γ
Gκ (x, y)ϕ(y)dΓy (x ∈ Ωc), (2.4)

whereny is the unit normal toΓ at y ∈ Γ andα > 0 is an arbitrary coupling parameter. Allowingx
to tend to the boundaryΓ and using the boundary condition, we obtain the following boundary integral
equation for the unknown densityϕ:

1

2
ϕ(x) +

∫

Γ

∂

∂ny
Gκ(x, y)ϕ(y)dΓy − iα

∫

Γ
Gκ(x, y)ϕ(y)dΓy = F(x) (x ∈ Γ ). (2.5)

The reason for using a combination of double- and single-layer potentials is the well-known fact that
the single-layer, double-layer and hypersingular operators are not invertible for certain special values
of the wave numberκ (seeNéd́elec, 2001; Hackbusch, 1995, Lemma 8.5.3). It can be shown that for
F ∈ L2(Γ ), the variational formulation of (2.5) has a unique solution inL2(Γ ) (seeBanjai & Sauter,
2007).

To discretize the integral operators occurring in the Brakhage–Werner formulation, we apply the
Galerkin method. If we use{φ1, . . . , φn} as both the test and trial basis, then the discrete counterpart of
(2.5) becomes

(I/2 + K − iαV)v = b, (2.6)

whereI, K , V ∈ Cn×n are the matrices defined by

(I)lk =
∫

Γ

∫

Γ
φl (x)φk(y)dΓy dΓx, (2.7)

(V)lk =
∫

Γ

∫

Γ
Gκ(x, y)φl (x)φk(y)dΓy dΓx, (2.8)

(K )lk =
∫

Γ

∫

Γ

∂

∂ny
Gκ(x, y)φl (x)φk(y)dΓy dΓx, (2.9)

and the right-hand sideb = (bl ) ∈ Cn is defined by

bl =
∫

Γ
F(x)φl (x)dΓx.

If v = (vl ) ∈ Cn is the solution of (2.6), then an approximation̂ϕ(y) to the densityϕ(y), at y ∈ Γ , is
given by

ϕ(y) ≈ ϕ̂(y) :=
n∑

l=1

vl φl (y),

which is then substituted into (2.4) to obtain the corresponding approximation to the solutionu.
Stability and convergence estimates for standard piecewise polynomial basis functionsφl can be found
in Banjai & Sauter(2007), Chen & Zhou(1992) andGiebermann(1997). The main aim of this paper
is to develop efficient methods for the construction and storage of the matrixB = I/2 + K − iαV and
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for the solution of the linear problem (2.6). The matrixB is dense, hence we have O(n2) complexity
for storage and matrix-vector multiplication. In this paper, we show that a much lower complexity is
sufficient if we are satisfied with only an ‘approximation’ of the Galerkin matrixB. Since for piecewise
constant basis functions, the matrixI is a diagonal matrix and hence sparse, for most of the paper we
only deal with the dense matrixA := K − iαV .
H-matrix techniques have already been successfully applied to integral equations with asymptot-

ically smooth kernel functionss(∙, ∙) (seeBebendorf, 2000; Börm & Grasedyck, 2004; Hackbusch &
Khoromskij, 2000). A function s(∙, ∙) is said to be ‘asymptotically smooth’ if there exist constantsc1
andc2 and a singularity degreeσ ∈ N such that for anyz ∈ {xj , yj } andn ∈ N, the inequality

|∂n
z s(x, y)| 6 n!c1(c2‖x − y‖)−n−σ (2.10)

holds. For the Helmholtz kernelGκ , however, the inequality

|∂n
z Gκ(x, y)| 6 n!c1(1 + κ‖x − y‖)n(c2‖x − y‖)−n−σ (2.11)

holds. Hence, ifκ diam(Ω) is a small constant, i.e. if we are in the low-frequency regime, the methods
developed for general asymptotically smooth kernels, e.g. the interpolation method described in Börm &
Grasedyck (2004), should still be efficient. In the high-frequency regime, this is no longer the case, and
theH-matrix techniques cannot be efficiently applied without a more involved structure of theH2-
matrices.

For the rest of the paper, we restrict the discussion to 2D,d = 2. Further, the test and trial basis will
be the usual piecewise constant finite-element basis lifted toΓ . We proceed by giving a brief description
ofH- andH2-matrices. For details, we refer the reader toBörm(2004), Grasedyck & Hackbusch(2003)
andHackbusch & B̈orm(2002).

3. H- andH2-matrices: the basics

Let the boundaryΓ be subdivided inton disjoint panelsπ j , j ∈ J := {1, . . . , n}. We consider piece-
wise constant basis functionsφ j such that suppφ j = π j , j ∈ J .

DEFINITION 3.1 Given a constantCleaf > 0, a labelled treeTJ is said to be a ‘cluster tree’ forJ if the
following conditions hold:

• For eachτ ∈ TJ , the label denoted bŷτ is a subset ofJ . In particular, the label of the root of the
tree is the clusterJ containing all the indices.

• If τ ∈ TJ has sons, then the sons form a partition ofτ , i.e. τ̂ = ∪̇{τ̂ ′: τ ′ ∈ sons(τ )}.

• For everyτ ∈ TJ , #sons(τ ) ∈ {0, 2} and #̂τ > 0.

• For each leafτ , #τ̂ 6 Cleaf.

We say that the root of the tree is at level 0, and that if a parent is at levell , then its children are at level
l + 1. We introduce the notation

Ωτ :=
⋃

i ∈τ̂

πi ⊆ Γ,

for the subset ofΓ corresponding to a clusterτ ∈ TJ . The set of clusters which are at the same level
are denoted by

T (l )
J := {τ ∈ TJ : τ at levell }.
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REMARK 3.2 A couple of simple properties of the cluster tree will be useful for later analysis:

• the total number of clusters is bounded by 2n − 1,

• at the lowest levelp, there are at mostn clusters, i.e. #T (p)
J 6 n.

Introduce a restriction operatorχτ : Rn×n for eachτ ∈ TJ by

(χτ )k j =

{
1, if k = j ∈ τ̂ ,

0, otherwise.
(3.1)

We call a pair of clusters(τ, σ ) a ‘block’. The corresponding block of the matrixA is thenχτ Aχσ . Note
that

(χτ Aχσ )k j =

{
(A)k j =

∫
Ωτ

∫
Ωσ

(
∂

∂ny
− iα

)
Gκ(x, y)φk(x)φ j (y)dΓy dΓx, if k ∈ τ̂ and j ∈ σ̂ ,

0, otherwise.

Let us briefly explain the importance of such a block. IfΩτ ∩Ωσ = ∅, then the singular kernel restricted
to these domains is smooth:

s(x, y) :=
(

∂

∂ny
− iα

)
Gκ(x, y) ∈ C∞, x ∈ Ωτ , y ∈ Ωσ , (3.2)

and the kernel can be approximated by a ‘separable expansion’:

s(x, y) ≈
M∑

l=0

M∑

m=0

sl ,mul (x)vm(y), x ∈ Ωτ , y ∈ Ωσ . (3.3)

This can, e.g. be achieved by using Taylor expansions (seeHackbusch & Nowak, 1989) or interpolation
(seeBörm & Grasedyck, 2004). Such an expansion allows us to approximate the blockχτ Aχσ of the
matrix by a low-rank matrix:

χτ Aχσ ≈ U SVT, (3.4)

where

(U )kl :=

{∫
Ωτ

ul (x)φk(x)dΓx, if k ∈ τ̂ , l = 1, . . . , M,

0, otherwise,
(3.5)

(V) j l :=

{∫
Ωσ

vl (y)φ j (y)dΓy, if j ∈ σ̂ , l = 1, . . . , M,

0, otherwise,
(3.6)

and (S)lm := slm. Note that forχτ Aχσ , we need O(|τ ||σ |) amount of storage, whereas forU SVT,
O(|τ |M + |σ |M). If M � max{|τ |, |σ |}, it can be significantly advantageous to use the low-rank
approximation of the block.

The blocks for which we expect to be able to obtain a low-rank approximation, we call the ‘admis-
sible blocks’. These blocks must be disjoint, otherwise the kernel is singular restricted to this block and
we cannot expect to have a good approximation by a separable expansion. We control the admissibility
property by a fixed parameterη < 1. In the following definition and throughout the paper,‖∙‖ is the
Euclidean norm onR2.
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DEFINITION 3.3 For eachτ ∈ TJ , let a centrecτ ∈ R2 and a radiusρτ > 0 be given such that
Ωτ ⊆ D(cτ , ρτ ) = {y ∈ R2|‖y − cτ‖ < ρτ }. Then, we say that a blockb = (τ, σ ) ∈ TJ × TJ is
admissible if

ρτ + ρσ 6 η‖cτ − cσ ‖. (3.7)

To easily access such blocks, we construct a block cluster treeTJ×J . The tree is constructed by
induction.

DEFINITION 3.4 The root of the ‘block cluster tree’TJ×J is the nodeJ × J . For eachb = (τ, σ ) ∈
TJ×J , proceed as follows:

• If b is admissible, add it to the set of admissible leavesL+ of TJ×J .

• If τ andσ are leaves ofTJ , addb to the set of inadmissible leavesL−.

• Otherwise, repeat the procedure for all pairs formed by the sons ofτ andσ (if one of the clusters
has no sons, use the cluster instead), which are then the sons ofb in the treeTJ×J .

Note that the set of leaves of the block cluster treeTJ×J is partitioned into the set of ‘admissible
leaves’L+ and the set of ‘inadmissible leaves’L−. The levels of the block cluster tree can be defined
analogously to the case of the cluster tree. A property of the block cluster tree that is useful for com-
plexity estimates is the ‘sparsity constant’.

DEFINITION 3.5 Define the sparsity constant ofTJ×J by

Csp := max

{
max
τ∈TJ

#{σ ∈ TJ | (τ, σ ) ∈ TJ×J }, max
σ∈TJ

#{τ ∈ TJ | (τ, σ ) ∈ TJ×J }
}

.

When dealing with sparse matrices, the cost of storage and matrix-vector multiplication is governed
by the maximum number of nonzero entries in a row or a column. The sparsity constantCsp is roughly
the analogous measure for data-sparseH-matrices. InGrasedyck & Hackbusch(2003), it is shown that
TJ andTJ×J can be constructed so thatCsp is bounded independently of the size of #J .

3.1 H-matrices

DEFINITION 3.6 LetTJ×J be a block cluster tree and letk: L+ → N0 be a rank distribution. We
define the set ofH-matrices as

H(TJ×J , k(∙)) := {M ∈ Cn×n| rank(χτ Mχσ ) 6 k(b) for all admissible leavesb = (τ, σ ) ∈ L+}.

If k(b) 6 kmax for all b ∈ L+, it can be shown that the cost of storage and the cost of the matrix-
vector multiplication of anH-matrix is O(nkmaxp), wherep > 1 is the depth of the block cluster tree
TJ×J .

LEMMA 3.7 Let M ∈ H(TJ×J , k(∙)) andkmax := max{k(b): b ∈ L+}, and let p be the depth of
TJ×J . Then

Nst 6 2Csp(p + 1) max{kmax, Cleaf}n and NH∙v 6 2Nst,

whereNst is the storage requirement andNH∙v the complexity of the matrix-vector multiplication.

We recall thatCleaf is an upper bound for the number of indices in a leaf cluster (see Definition3.1).
The proof of the lemma can be found inGrasedyck & Hackbusch(2003).
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Instead of using separable expansions, an optimal approximation to the Galerkin matrixA from
the set ofH-matrices can be obtained by applying the singular value decomposition (SVD) to each
admissible blockχτ Aχσ . Letχτ Aχσ = UΣVT be a singular value decomposition with singular values
ordered so thatΣ11 > Σ22 > ∙ ∙ ∙ > Σnn > 0. As an approximation of the block, we can use the rank
‘k-reduced singular value decomposition’UkΣkVT

k , whereΣk := diag(Σ11,Σ22, . . . , Σkk) andUk and
Vk consist of the firstk columns of the matricesU andV , respectively. The error of the approximation
in the spectral norm is bounded byΣk+1,k+1:

‖χτ Aχσ − UkΣkVT
k ‖2 6 Σk+1,k+1,

which is optimal, in this norm, for a rankk approximation. For a proof of this standard result, see, e.g.
Trefethen & Bau(1997).

In Fig. 1, we display the results of the following experiment: For a fixed accuracyε = 1× 10−5 and
a range of values of the wave numberκ, compute the minimum rankk such that a rankk matrix Ak BT

k
exists with‖χτ Aχσ − Ak BT

k ‖2 < ε. Figure1 indicates that the necessary rankk is proportional to the
wave numberκ. Therefore in the high-frequency regime, where we increaseκ and requireκh ≈ κ/n =
constant, complexity according to Lemma3.7is still O(n2). Since the SVD gives us the optimal results,
this experiment indicates that computing anH-matrix approximation to the whole Galerkin matrix must
be prohibitively costly in the high-frequency regime.

3.2 H2-matrices

The structure ofH2-matrices is considerably more involved than that of theH-matrices; here, we adopt
the description given inBörm (2006). Just as we have used the notion of a separable expansion to

FIG. 1. We compute the optimal low-rank approximationsAk BT
k to the matrixχτ Aχσ , where(τ, σ ) ∈ L+, by SVD. For a range

of values ofκ, we plot the minimum rank necessary so that‖χτ Aχσ − Ak BT
k ‖2 < 10−5.
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describeH-matrices, we use it here to introduce theH2-matrices. In particular, we describe how a
separable expansion can be used to construct anH2-matrix M so thatM is an approximation to the
Galerkin matrixA.

Let b = τ × σ be an admissible block and let us assume that we have an approximate separable
expansion:

s(x, y) ≈
Lτ∑

l=0

Lσ∑

m=0

sb
l ,muτ

l (x)vσ
m(y), x ∈ Ωτ , y ∈ Ωσ . (3.8)

Here, as we have indicated by the notation, we require that the basis functionsuτ
l (∙) (respectively,vσ

m(∙))
depend only on the clusterτ (respectively,σ ), and that the coefficientssb

l ,m depend only on the block
clusterb = τ × σ . Therefore, the corresponding matricesUτ andVσ , see (3.5) and (3.6), can be reused
wheneverτ or σ appears in a different admissible cluster, e.g.b′ = τ × σ ′ ∈ L+ for σ ′ 6= σ . This is
clearly advantageous in terms of storage requirements. We call the matricesUτ the ‘cluster basis’ and
give the following definition for a general cluster tree.

DEFINITION 3.8 (Cluster basis) LetTJ be a cluster tree and let a rank distributionk: τ 7→ Lτ ∈ N0,
τ ∈ TJ , be given. Then, a familyU = (Uτ )τ∈TJ is called a cluster basis forTJ with rank distribution
k if Uτ ∈ Cn×Lτ andχτUτ = Uτ for all τ ∈ TJ .

The conditionχτUτ = Uτ simply means that(Uτ ) j l = 0 if j 6∈ τ̂ , see (3.5). Further, note that the
rank distribution is defined on the clusters, not on the block clusters.

We require an additional structure, in particular we require that each functionuτ
l (∙) is a linear com-

bination of basis functionsuτ ′

l (∙) anduτ ′′

l (∙) of its child clustersτ ′ and τ ′′. Namely, we require that

uτ
l (x) =

Lτ ′∑

j =1

tτ
′

j l uτ ′

j (x), uτ
l (y) =

Lτ ′′∑

j =1

tτ
′′

j l uτ ′′

j (y), (3.9)

for x ∈ Ωτ ′ , y ∈ Ωτ ′′ , l = 1, 2, . . . , Lτ . In matrix notation, this implies that

Uτ = Uτ ′ Tτ ′ + Uτ ′′ Tτ ′′ , (3.10)

where(Tτ ′)l j = tτ
′

l j and(Tτ ′′)l j = tτ
′′

l j . Therefore, we only need to store the cluster bases for the leaves
and the ‘transfer matrices’Tτ for all clusters. As we will see later, this is advantageous both in terms of
storage and the cost of performing a matrix-vector product.

DEFINITION 3.9 (Nested cluster basis) LetTJ be a cluster tree and letU be a corresponding cluster
basis with rank distributionk. Let T = (Tτ )τ∈TJ be a family of matrices such thatTτ ′ ∈ CLτ ′×Lτ for
eachτ ′ ∈ TJ that has a parent clusterτ . The cluster basisU is said to be nested with transfer matrices
T if

Uτ = Uτ ′ Tτ ′ + Uτ ′′ Tτ ′′ , (3.11)

for each parent clusterτ with son clustersτ ′ andτ ′′.

We are now in the position to define the class ofH2-matrices.

DEFINITION 3.10 (H2-matrix) LetTJ×J be a block cluster tree,k: τ → Lτ a rank distribution and
U and V two nested cluster bases with transfer matricesTU and TV , respectively. LetM ∈ Cn×n.
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If for eachb = (τ, σ ) ∈ L+, there exists aSb ∈ CLτ ×Lσ such that

χτ Mχσ = Uτ SbVT
σ ,

the matrixM is said to be anH2-matrix with ‘row cluster basis’U and ‘column cluster basis’V . The
collection of such matrices is denoted byH2(TJ×J ,U, V, k(∙)). The family S = (Sb)b∈L+ is called
the family of ‘coefficient matrices’.

Note that we have not yet explicitly said what should be done with the inadmissible blocks, i.e. with
the Galerkin matrix blocksχτ Aχσ , b = τ × σ ∈ L−. These blocks should simply be stored as dense
matrices. The final part in approximating the Galerkin matrixA by anH2-matrix is to copy these blocks,
i.e. to require that

χτ Mχσ = χτ Aχσ , b = τ × σ ∈ L−.

3.2.1 Fast matrix-vector multiplication. Let TJ be a cluster tree andTJ×J a corresponding block
cluster tree with the set of admissible leavesL+ and the set of inadmissible leavesL− (see Defini-
tions 3.1 and3.4). For an arbitrary vectoru ∈ Cn and M ∈ H2(TJ×J ,U, V, k(∙)), we consider the
computation of the matrix-vector productv = Mu. To do this as efficiently as possible, the structure of
H2-matrices is used to the full extent. The computation is described in the following four-step algorithm:

1. Upward pass from levelp to level 0 of the treeTJ :

• for all leavesσ ∈ TJ , computeuσ = VT
σ u;

• for all parentsσ on the current level, setuσ = (TVσ ′ )Tuσ ′ + (TVσ ′′ )Tuσ ′′ .

2. Far field interaction:

• for all τ ∈ TJ , computevτ =
∑

(τ,σ )∈L+ Sτ,σ uσ .

3. Downward pass from level 0 to levelp of treeTJ :

• initialize the output vectorv by zero;

• for each child clusterτ ′, setvτ ′ = vτ ′ + TU
τ ′ vτ ;

• for every leafτ ∈ TJ , setv = v + Uτ vτ .

4. Near field interaction:

• v = v +
∑

(τ,σ )∈L− χτ Mχσ u.

It is not immediately clear ifH2-matrices offer any real advantage for the case of high-frequency
scattering. Indeed, since the SVD obtains optimal results, we know that the rank of a blockUτ SbVT

σ ≈
χτ Aχσ must increase at least linearly withκ. Therefore, ifSb is a dense matrix, the complexity would
again be at least O(κ2) = O(n2). The complexity can only be reduced if the coefficient matricesSb have
some structure, e.g. if they are sparse or Toeplitz. In Section4.1, we show that a separable expansion
exists such that the coefficient and transfer matrices are either diagonal or Toeplitz.
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4. Construction of theH2-matrix

In this section, we describe a separable expansion that has the properties (3.8) and (3.9) for the kernel
function of the Brakhage–Werner integral operator. As described in Section3.2, we will then be able to
construct anH2-matrix approximation to the Galerkin matrix. We make use of a separable expansion
of the fundamental solution to the Helmholtz problem. This expansion has been developed and made
well-known in the fast multipole community (see, e.g.Rokhlin, 1990; Amini & Profit, 1999). We will
not give all the details but refer to results from the fast multipole literature. However, we give some
convergence proofs since in the literature, we could not find the results exactly appropriate to our needs.

4.1 Separable expansions

For ease of notation, for a vectorx ∈ R2, we denote its polar coordinates by(ρx, θx). In the following,
Jn(∙) denotes the Bessel function of the first kind of ordern andHn(∙) the Hankel function of the first
kind of ordern.

Let b = (τ, σ ) ∈ L+, Ωτ andΩσ be contained in disks with centrescτ andcσ and radiiρτ andρσ ,
and letx, y ∈ R2 be such thatx ∈ Ωτ andy ∈ Ωσ . The situation is depicted in Fig.2, where the bold
line depicts a segment of the boundaryΓ and the intersection of the disk centred atcτ (respectively,cσ )
with the boundaryΓ is the regionΩτ (respectively,Ωσ ).

We will use the following notations in this section:

cτ − cσ = ρ(τ,σ )(cosθ(τ,σ ), sinθ(τ,σ ))T,

z := (y − cσ ) − (x − cτ ). (4.1)

Sinceb = (τ, σ ) is an admissible cluster,

ρτ + ρσ 6 ηρ(τ,σ ). (4.2)

Also, sincex ∈ Ωτ andy ∈ Ωσ ,

‖x − cτ‖ < ρτ , ‖y − cσ ‖ < ρσ . (4.3)

FIG. 2. An admissible pairb = (τ, σ ): The bold line depicts a segment of the boundaryΓ . The intersection of the disk centred at
cτ (respectivelycσ ) with Γ is the regionΩτ (respectivelyΩσ ).
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We refer to a result byAmini & Profit (1999), which gives a separable approximation to the funda-
mental solutionGκ and a remainder convenient for finding error bounds.

THEOREM4.1 LetL be an odd integer,L = 2M+1. Then, using notation (4.1) and under the conditions
(4.2) and (4.3),

Gκ(x, y) =
i

4
H0(κ‖y − x‖)

=
L∑

l=1

f̄l (κ(x − cτ ))sl (κ(cτ − cσ )) fl (κ(y − cσ ))

+
i

4

∑

|m|>M

Jm(κρz)e
−imθz

(
Hm(κρ(τ,σ ))eimθ(τ,σ )

+ im−aHa(κρ
(τ,σ ))eiaθ(τ,σ )

)
,

wherea(m) is the unique integer such thata ≡ m(mod L) anda ∈ [−M, M ]. The functionsfl andsl

are defined by

fl (ζ ) = eiρζ cos(2π l/L−θζ ), sl (ζ ) =
i

4

M∑

m=−M

(−i)m

L
Hm(ρζ )e

im(θζ −2π l/L),

and f̄l is the complex conjugate offl .

The above form of the separable expansion is the most commonly used diagonal form in FMMs. For
a detailed derivation seeChewet al. (2001). The next step is to give a bound on the number of terms
needed to obtain a fixed accuracyε > 0. The result is not difficult to derive once the following lemma
has been proved. A similar result is proved inAmini & Profit (1999), but with some further restrictions
onη and the length of expansionM .

LEMMA 4.2 Letρ > 0, 0< ε < 1/2 and 0< η < 1 be given. Then, there exists a constantC(η) such
that for any 0< r 6 rmax = ηρ andM > C(η)

(
r + log 1

ε

)
,

∞∑

n=M

|Jn(r )| < ε and
∞∑

n=M

|Hn(ρ)Jn(r )| 6
∞∑

n=M

|Hn+1(ρ)Jn(r )| < ε.

Proof. The proof is given in the Appendix A. �

THEOREM 4.3 Let the conditions of Theorem4.1hold and let 0< ε < 1/2 andκ > 0 be given. Then,
there exists a constantC(η) > 0 depending only onη such that

∣
∣
∣
∣
∣
Gκ(x, y) −

2M+1∑

l=1

f̄l (κ(x − cτ ))sl (κ(cτ − cσ )) fl (κ(y − cσ ))

∣
∣
∣
∣
∣
< ε,

for any M > C(η)
(
κ(ρτ + ρσ ) + log

(1
ε

))
.
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Proof. We express the remainder as in Theorem4.1:

RM := Gκ (x, y) −
2M+1∑

l=1

f̄l (κ(x − cτ ))sl (κ(cτ − cσ )) fl (κ(y − cσ ))

=
i

4

∑

|m|>M

Jm(κρz)e
−imθz

(
Hm(κρ(τ,σ ))eimθ(τ,σ )

+ im−aHa(κρ
(τ,σ ))eiaθ(τ,σ )

)
,

where |a| 6 M . Since for a fixed argumentx > 0, |Hm(x)| is an increasing function ofm > 0
(seeAmini & Profit, 2000), we have that

|RM | 6
1

2

∑

|m|>M

|Jm(κρz)Hm(κρ(τ,σ ))|.

The result now follows immediately from Lemma4.2 since according to (4.1) and (4.2), ρz = ‖(y −
cσ ) − (x − cτ )‖ < ρτ + ρσ 6 ηρ(τ,σ ). �

In the following corollary, we give an expression for a separable expansion of the singular kernel of
the Brakhage–Werner formulation.

COROLLARY 4.4 Under the conditions of Theorem4.3, and withα 6 κ, there exists a constantC(η)
such that

∣
∣
∣
∣
∣

(
∂

∂ny
− iα

)
Gκ(x, y) −

2M+1∑

l=1

f̄l (κ(x − cτ ))sl (κ(cτ − cσ ))

(
∂

∂ny
− iα

)
fl (κ(y − cσ ))

∣
∣
∣
∣
∣
< ε,

for any M > C(η)
(
κ(ρτ + ρσ ) + log(κ) + log

(1
ε

))
.

Proof. For the proof, we need the estimate
∣
∣
∣
∣

∂

∂ny
Jm(κρz)e

−mθz

∣
∣
∣
∣ 6

3κ

2
Jm−1(κρz), (4.4)

which holds under the condition|m| > κρz+2 (seeAmini & Profit, 1999). Note thatC(η) can be chosen
so that anym, with |m| > M , satisfies such a condition. By Lemma4.2, the remainder in Theorem4.1
converges absolutely. The series obtained by formally differentiating each term in this remainder is,
due to (4.4) and Lemma4.2, also absolutely convergent and hence we are allowed to differentiate term
by term:

R(1)
M :=

(
∂

∂ny
− iα

)
Gκ(x, y) −

2M+1∑

l=1

f̄l (κ(x − cτ ))sl (κ(cτ − cσ ))

(
∂

∂ny
− iα

)
fl (κ(y − cσ ))

=
i

4

∑

|m|>M

(
∂

∂ny
− iα

)
Jm(κρz)e

−imθz
(

Hm(κρ(τ,σ ))eimθ(τ,σ )
+ im−aHa(κρ

(τ,σ ))eiaθ(τ,σ )
)

,

and bound the new remainder by

|R(1)
M | 6

(
3κ

2
+ α

) ∑

|m|>M−1

|Jm(κρz)Hm+1(κρ
(τ,σ ))|.

The proof now follows from an application of Lemma4.2. �
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Note that the separable expansion given by the above corollary is not exactly of the form required
by (3.8). The basis functionsuτ

l (∙) in (3.8) were required to depend only on the clusterτ . This is not the
case for the functionsfl (∙) since they explicitly depend on the length of the expansion 2M + 1 which in
turn depends onρτ andρσ . In FMMs, this difficulty is avoided by only considering admissible blocks
b = (τ, σ ) for whichρτ = ρσ . Not to be restricted by this kind of a condition, we introduce a different
separable expansion.

To do this, we find it helpful to recall that the Bessel functions are the Fourier coefficients of plane
waves{ fl }:

Jn(r ) =
1

π in

∫ π

0
eir cosθ cos(nθ)dθ =

1

2π in

∫ 2π

0
eir cosθ einθ dθ, n = 0, 1, . . . , (4.5)

seeAbramowitz & Stegun(1992) andWatson(1944). Note also thatJ−n = (−1)n Jn. The relationship
between Bessel functions and plane waves is of crucial importance for all the results in this section.

We will not only want to transform the plane wave functions to the Bessel functions but also
change the number of functions in the expansion. To do this, we will make use of a simple operator
PM1,M2 which either truncates a vector or appends zeros to it depending on the sign ofM1 − M2. For
example,

P3,2






a1

a2

a3




 =










0 0 0

1 0 0

0 1 0

0 0 1

0 0 0















a1

a2

a3




 =










0

a1

a2

a3
0










, P2,3










b1

b2

b3

b4

b5










= PT
3,2










b1

b2

b3

b4

b5










=






b2

b3

b4




 .

The definition for generalM1 andM2 is given next.

DEFINITION 4.5 Let L1 = 2M1 + 1 andL2 = 2M2 + 1 be two positive odd integers. IfM1 > M2,
define the operatorPM1,M2 by induction onM1 − M2:

1. The matrixPM,M := I ∈ R2M+1×2M+1 is the identity matrix.

2. DefinePM+ j +1,M ∈ R2(M+ j +1)+1×2M+1 by PM+ j +1,M :=




0 ∙ ∙ ∙ 0

PM+ j,M

0 ∙ ∙ ∙ 0



 .

If M2 > M1, thenPM1,M2 := (PM2,M1)
T.

Next, we give the details of the transformation from a plane wave basis to a Bessel basis. For a
pictorial explanation, see Fig.3.

PROPOSITION4.6 Let M1, M2 ∈ N with M1 > M2 and letL1 = 2M1 + 1 andL2 = 2M2 + 1. For
x ∈ R2, let fM1(x) andgM2(x) be defined by

(
fM1(x)

)
l := fl (x) = eiρx cos(2π l/L1−θx) and

(
gM2(x)

)
j := gj (x)

:= i j −M2−1Jj −M2−1(ρx)e
i( j −M2−1)θx ,
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FIG. 3. In this figure, we show the transformation from a Bessel basis to a plane wave basis. Here,M1 = 30, M2 = 20 and
|x| = 5. In the top left figure, we plot the coefficients of the Bessel function basisgM2(x); the real parts are connected by a solid
line and the imaginary by a dashed line. We append zeros togM2(x) to obtain an approximationPM1,M2gM2(x) ≈ gM1(x);

shown in the top right plot. Next, we apply the matrixF−1
M1

to obtain an approximation to the plane wave basisfM1(x) shown in
the last plot.

l = 1, . . . , L1, j = 1, . . . , L2. Further, let the shifted Fourier matrixFM1 ∈ CL1×L1 be defined by

(
FM1

)
ml =

1

L1
e

i(m−M1−1) 2π l
L1 , l , m = 1, 2, . . . , L1.

There exists a constantC > 0 such that for anyε > 0, if M2 > C
(
ρx + log

(1
ε

))
, then

r M2 :=
∥
∥
∥fM1(x) − F−1

M1
PM1,M2gM2(x)

∥
∥
∥

∞
6 ε.

Proof. The proof is given in the Appendix A. �
We now finish the subsection by giving the separable expansion applicable to clusters of different

size.

THEOREM 4.7 Let b = (τ, σ ) be an admissible cluster. Then, define the coefficient matrixSb =
(sb

l ,k) by

Sb = PMτ ,Mτ,σ FMτ,σ diag(sl (κ(cτ − cσ )))F−1
Mτ,σ

PMτ,σ ,Mσ , (4.6)



H-MATRIX TECHNIQUES FOR HELMHOLTZ PROBLEMS 61

where Mτ , Mσ , Mτ,σ ∈ N andsl (∙) are defined in Theorem4.1, l = 1, . . . , 2Mτ,σ + 1. Under the
conditions of Corollary4.4, there exist constantsC andC(η) such that

∣
∣
∣
∣
∣
∣

(
∂

∂ny
− iα

)
Gκ(x, y) −

2Mτ +1∑

l=1

2Mσ +1∑

l=1

s(τ,σ )
l ,k ḡl (κ(x − cτ ))

(
∂

∂ny
− iα

)
gl (κ(y − cσ ))

∣
∣
∣
∣
∣
∣
< ε,

for any Mτ > C
(
κρτ + log

(1
ε

))
, Mσ > C

(
κρσ + logκ + log

(1
ε

))
andMτ,σ > C(η)(Mτ + Mσ ).

Proof. The main fact to note is that‖DM‖∞ =
∥
∥PM1,M2

∥
∥

∞ = ‖FM‖∞ = 1, so the errors are not

amplified by these matrices. SinceF−1
M = (2M + 1)F∗

M , where F∗
M is the conjugate transpose of

FM , we have that‖F−1
M ‖∞ = 2M + 1. Since this term also does not have a significant effect on the

exponential convergence, the error estimate follows directly from Corollary4.4and Proposition4.6. �

4.2 Transfer operators

To be able to construct theH2-matrix, we need also the nestedness condition to be fulfilled, see (3.9).
Rewriting (3.9) in terms of our basis functionsgl , if τ ′ is a child cluster ofτ , we need to find a transfer
matrix Tτ ′ =

(
tτ

′

l j

)
such that

gl (κ(x − cτ )) =
Lτ ′∑

j =1

tτ
′

j l gj (κ(x − cτ ′)), for x ∈ Ωτ , l = 1, . . . , Lτ . (4.7)

Here, we see that the transfer matrix needs to do two things: change the centre of the expansion from
cτ ′ to cτ and change the length of the expansion fromLτ ′ to Lτ ; the latter procedure is often called, and
performed by, interpolation. In our case, we will be able to guarantee (4.7) only approximately.

The connection between Bessel functions and the plane waves, see Proposition4.6, is useful here as
well. One part of the transfer, translation of the centre of expansion, is easy for the plane waves and the
other, the interpolation, is easy for the Bessel functions. The translation for the plane wave functions is
given by

fl (κ(x − cτ )) = fl (κ(cτ ′ − cτ )) fl (κ(x − cτ ′)), (4.8)

where fl are defined as in Theorem4.1. This property of plane waves is not difficult to check (for a
proof seeAmini & Profit, 2003). For the Bessel functions, the change of the centre is not as simple but
the interpolation, i.e. the change of the length of expansion, is trivial. It consists simply of truncation or
padding by zeros of the basis vectors, see Fig.3. We give now the definition of the translation operator.

DEFINITION 4.8 Let L = 2M + 1 be an odd positive integer and letτ andτ ′ be two clusters. Define
the diagonal matrixDτ,τ ′

M ∈ CL×L that translates the centre of expansion fromcτ ′ to cτ by

(
Dτ,τ ′

M

)

ll
:= fl (κ(cτ ′ − cτ )), l = 1, . . . , 2M + 1.

To simplify the notation, we will leave out the various subscripts and superscripts if they are clear
from the context. Combining the change of the centre of the plane wave expansion and the interpola-
tion of the Bessel function expansion with Proposition4.6 allows us to easily construct the transform
operator. The details are given in the next theorem.
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THEOREM 4.9 Let x, cτ , cτ ′ ∈ R2 be fixed and letLτ = 2Mτ + 1 andLτ ′ = 2Mτ ′ + 1 for some
Mτ , Mτ ′ ∈ N. DefinegMτ (x) ∈ CLτ andgMτ ′ (x) ∈ CLτ ′ by

(gMτ (x))l := gl (κ(x − cτ )) and (gMτ ′ (x)) j := gj (κ(x − cτ ′)),

wheregl are defined in Proposition4.6. There exists a constantC > 0 such that for anyε > 0, if
Mτ > C

(
κ‖x − cτ‖ + log

(1
ε

))
andMτ ′ > C

(
κ‖x − cτ ′ ‖ + log

(1
ε

))
,

∥
∥
∥gMτ (x) − FMτ DMτ F−1

Mτ
PMτ ,Mτ ′ gMτ ′ (x)

∥
∥
∥

∞
< ε

holds.

Proof. The proof is very similar to the proof of Theorem4.7. �
Therefore, the transfer matrix is given byTτ ′ =

(
FMτ DMτ F−1

Mτ
PMτ ,Mτ ′

)T. Since the operator
(

∂
∂ny

− iα
)

is linear, the same transfer matrix can be used for the basis functions
(

∂
∂ny

− iα
)
gl (κ(y−cσ )).

4.3 Numerical stability

An important fact is hidden by error estimates of the type given in Theorem4.3. Due to numerical
stability problems, not every accuracyε > 0 can be reached when working in finite precision. Numerical
stability problems of the separable expansion are due to the exponential increase of Hankel functions
Hl (x) for fixed x and l > x (seeAbramowitz & Stegun, 1992). A careful analysis of the numeri-
cal stability issues has been performed byOhnuki & Chew(2003/2004), whose results we will make
use of.

Let us return to the setting of Theorem4.1and let us assume that the radii of the clusters areρτ =
ρσ = a/2 > 0 (see also (4.2)). We recall thatL is the length of the expansion used to approximate the
Hankel function. Then, define

d1 :=

{
0, L < 1

η κa,
{(

L − 1
η κa

)/(
1.8
[ 1

η κa
]1/3)}3/2

, otherwise.
(4.9)

In Ohnuki & Chew(2003/2004), it is argued thatd1 is a good approximation to the number of
digits lost due to numerical stability problems. For example, this means that, if the required accuracy
is ε = 10−5 and the other parameters are such thatd1 = 10, in double precision the stability problems
should not be visible. However, a considerably higher accuracy could not be obtained. It is clear by
inspecting (4.9) that fewer digits are lost ifκa is large, that means if the wave number times the size of
the cluster is large (see also Fig.4). This suggests that the separable expansion should be used only for
admissible block clusters that are formed of clusters large enough for numerical stability problems not
to be visible. In our setting, the clusters need not have equal radii. In practice, we have found that the
following definition is suitable.

DEFINITION 4.10 LetTJ×J be a block cluster tree and leta > 0 be given. Divide the set of admissible
leavesL+ into two disjoint subsets by

L+
1 := {(τ, σ ) ∈ L+: max{diam(Ωτ ), diam(Ωσ )} > a} and L+

2 := L+ \ L+
1 .

We will use the separable expansion only in admissible blocks belonging toL+
1 . Note thata should

be chosen proportional to 1/κ, i.e.aκ = constant.
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FIG. 4. For a fixed expansion lengthL = 10 andη = 1/2, the number of digits lost due to numerical instability is plotted against
κa, wherea is the size of the clusters.

4.4 Definition of theH- andH2-matrix approximants

We are now in a position to construct an accurate hierarchical matrix approximation to the Galerkin
matrix. Letb = (τ, σ ) ∈ L+

1 . We recall that

(χτ Aχσ )kl =
∫

Ωτ

∫

Ωσ

(
∂

∂ny
− iα

)
Gκ(x, y)φl (x)φk(y)dΓy dΓx, if k ∈ τ̂ andl ∈ σ̂ .

Using the separable expansion given in Theorem4.7, we can now, following the description given in
Section3.2, construct theH2-matrix approximant.

DEFINITION 4.11 If τ ∈ TJ is a leaf cluster, given an odd numberLτ ∈ N, define the corresponding
row cluster basisUτ and column cluster basisVτ by

(Uτ )k j =

{∫
Ωτ

ḡj (κ(x − cτ ))φk(x)dΓx, if k ∈ τ and j = 1, . . . Lτ ,

0, if k /∈ τ,
(4.10)

and

(Vτ )k j =

{∫
Ωτ

(
∂

∂nx
− iα

)
gj (κ(x − cτ ))φk(x)dΓx, if k ∈ τ and j = 1, . . . Lτ ,

0, if k /∈ τ.
(4.11)

Note that we have only made the definition applicable to leaf clusters. The reason behind this is that
if we had used the same definition for the parent clusters, the nestedness condition (see Definition3.9)
could only be satisfied approximately. Instead, we first define the transfer matrices using Theorem4.9
and then use (3.11) as a definition of cluster bases for parent clusters.



64 L. BANJAI AND W. HACKBUSCH

DEFINITION 4.12 Letτ ′ ∈ TJ be a child cluster with parent clusterτ and let odd numbersLτ =
2Mτ + 1 andLτ ′ = 2Mτ ′ + 1 be given. Then, define the corresponding transfer matrixTV

τ ′ for the
column cluster basis by

TV
τ ′ :=

(
FMτ DMτ F−1

Mτ
PMτ ,Mτ ′

)T
.

The transfer matrices forU are the conjugates of the transfer matrices forV :

TU
τ ′ := TV

τ ′ .

Now, we can recursively define the cluster bases for parent nodes.

DEFINITION 4.13 If τ ∈ TJ is a parent cluster with child clustersτ andτ ′, define the corresponding
row Uτ and columnVτ cluster basis matrices by

Uτ := Uτ ′ TU
τ ′ + Uτ ′′ TU

τ ′′ , Vτ := Vτ ′ TV
τ ′ + Vτ ′′ TV

τ ′′ .

Finally, we define the coefficient matricesS.

REMARK 4.14 For a parent clusterτ , let Ũτ be the matrix defined by (4.10). Then,Uτ ≈ Ũτ whereUτ

is defined in Definition4.13. The error can be controlled using Theorem4.9.

DEFINITION 4.15 Letb = (τ, σ ) ∈ L+
1 and letLτ = 2Mτ + 1, Lσ = 2Mσ + 1 andLτ,σ = 2Mτ,σ + 1

be given. Then, define the corresponding coefficient matrixSτ,σ ∈ CLτ ×Lσ by

Sτ,σ := PMτ ,Mτ,σ FMτ,σ S̃τ,σ F−1
Mτ,σ

PMτ,σ ,Mσ ,

where the ‘auxiliary coefficient matrix’̃Sτ,σ ∈ CLτ,σ ×Lτ,σ is a diagonal matrix with

(S̃τ,σ )ll = sl (κ(cτ − cσ ))

andsl (∙) is given in Theorem4.1, see Theorem4.7.

REMARK 4.16 The cost of constructing̃Sτ,σ , using the definition ofsl directly, requires O(L2) opera-
tions. However, since the diagonal of̃Sτ,σ is the discrete Fourier transform of the vector
( (−i)−M

L H−M (κρ(τ,σ))e−Mθ(τ,σ )
, (−i)−M+1

L H−M+1(κρ
(τ,σ))e(−M+1)θ(τ,σ )

, . . . , (−i)M

L HM (κρ(τ,σ))eMθ(τ,σ ))T,
it can be computed in O(L log L) operations using FFT (seeAmini & Profit, 2003).

REMARK 4.17 Note that we are allowed to chooseMτ , Mσ and Mτ,σ independently of each other. If
we had used̃Sτ,σ as the coefficient matrices, such freedom would not have been available. In practice,
we have found that the freedom to choose different lengths of expansion for the cluster bases and the
separable expansions reduces the computational and storage requirements significantly.

REMARK 4.18 We have only given local estimates of approximation errors. The global error estimate
depends on the norms of the transfer and coefficient matrices. The entries in the coefficient matrices, as
discussed in Section4.3, can be large. The subclass of admissible blocksL+

1 has been constructed to
control this negative effect.
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4.4.1 Adaptive cross approximation for small admissible blocks.We have yet to say what should be
done with admissible blocks inL+

2 for which the separable expansion becomes unstable. The simplest
way of dealing with the numerical instability would be to regard block clusters inL+

2 in the same way
as the elements ofL−: the corresponding parts of the Galerkin matrix would not be approximated
by a data-sparse format but just copied as dense blocks. This would be very costly for domains with
small detail, where many panels would be needed to resolve the small detail geometry and the part of
the Galerkin matrix due to these panels would be large (see Remark4.21). A simple alternative is to
approximate these blocks by low-rank matrices obtained using the adaptive cross approximation (ACA)
algorithm.

ACA, regarded as a black-box algorithm, performs as follows: Given a functionf (l , j ), defined
for l , j = 1, . . . , m, and a desired accuracyε > 0, it returns rankk matricesAk, Bk ∈ Cm×k such that
‖Ak BT

k − X‖2 . ε, where(X)l j = f (l , j ), i.e. it computes a rankk approximation to a matrix. To do
this, the ACA evaluates the functionf (∙, ∙) at O(mk) arguments and overall requires O(mk) storage and
computational time. We have used the symbol. above to indicate that the ACA does not guarantee an
exact spectral error estimate, but rather a good estimate of this error.

For the casef (l , j ) = s(xl , yj ), wheres is an asymptotically smooth kernel andxl and yj are
restricted to two clusters that satisfy an admissibility condition, the ACA algorithm has been investigated
theoretically inBebendorf(2000) andBörm & Grasedyck(2005). For the case of the Helmholtz kernel,
no theory exists at the moment, however, good numerical results have already been reported inStolper
(2004). Our experience is also positive, and we illustrate the ACA here with a single experiment. In
fact, we repeat the experiment on the performance of the SVD, see Fig.1, but this time using the ACA
algorithm. The results, and a comparison with the optimal SVD, are given in Fig.5.

Figure 5 suggests that the ACA seems to perform very well even for large frequencies. For this
reason, in our implementation, we favour the use of ACA to a theoretically more sound algorithm,

FIG. 5. We compute low-rank approximationsAk BT
k to the matrixχτ Aχσ , where(τ, σ ) ∈ L+, by ACA and SVD. For a range

of values ofκ, we plot the minimum rank necessary for the two methods so that‖χτ Aχσ − Ak BT
k ‖2 < 10−5.
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e.g. a low-rank approximation obtained by interpolation or Taylor expansions. Error estimates for the
interpolation or Taylor expansions could be obtained using the bound (2.11) on partial derivatives of the
fundamental solution. Another reason for using ACA is its ease of use and implementation.

Finally we note that, as we have seen in Fig.5, ACA does not encounter stability problems for small
clusters. This is no surprise since this kind of instability is not a property of the Helmholtz problem but
an artifact of the multipole expansion.

4.5 Construction of a data-sparse approximation to the Galerkin matrix

We now describe the steps required to build a data-sparse approximationB̂ to the complete Galerkin
matrix B = I/2+ A. Assuming double-precision computations, the new, numerically stable, algorithm
is given next.

• The parameterη controlling the admissibility condition needs first to be fixed. We find that the choice
η = 2/3 works well in practice.

• Given ε > 0, choosea > 0 using (4.9) such that 16− d1 > log10
1
ε . Note that this implies that

aκ = C(η, ε), a constant depending onη andε.

• Construct the cluster treeTJ and the block cluster treeTJ×J .

• For each clusterτ ∈ TJ , setMτ =
⌊
C1κρτ + C1 log 1

ε

⌋
, for some constantC1 > 0.

• For each admissible block clusterb = (τ, σ ) ∈ L+
1 , set1 Mτ,σ =

⌊
C2κ(ρτ + ρσ ) + C2 log 1

ε

⌋
, for

some constantC2 > 0.

• For each leafτ , construct the row and cluster basesUτ andVτ .

• For each child clusterτ ′, constructTτ ′ .

• For eachb = (τ, σ ) ∈ L+
1 , construct the auxiliary diagonal coefficient matrixS̃τ,σ . Also define, but

do not compute,χτ B̂χσ := Uτ Sτ,σ VT
σ .

• For eachb = (τ, σ ) ∈ L+
2 , construct a low-rank approximationχτ B̂χσ to χτ Bχσ using ACA.

• For each inadmissible leafb = (τ, σ ) ∈ L−, leave the data unperturbed:χτ B̂χσ = χτ Bχσ .

The numerical instability issues have been investigated by a number of authors. InZhao & Chew
(1999), the authors use an alternative separable expansion that can be stabilized by scaling. To do that,
however, one must sacrifice the Toeplitz structure initially present. Also the rank obtained using this
expansion is much larger than the one obtained using ACA since ACA produces results close to the
optimal result of the SVD. An altogether different approach using the so-called ‘exponential expan-
sions’ has been developed byGreengardet al. (1998) andDarve & Hav́e (2004a,b). Here, an integral
representation of the fundamental solution is used:

i

4
H0(κ

√
x2 + y2) =

i

4π

∫ ∞

−∞

eiλx e−
√

λ2−κ2y

√
κ2 − λ2

dλ,

1For simplicity, we have ignored the term logκ required by Theorem4.7. In fact, in numerical experiments we always have
log 1

ε > logκ.
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valid for y > 0 (seeGreengardet al., 1998). An equivalent expression can be given in 3D as well which
is the only case covered byDarve & Hav́e (2004b,a) andGreengardet al. (1998). In fact, this approach
is most useful in 3D, where it helps to speed up the cost of the translation operators from 189p4 to
40p2 + 6p3, wherep is the length of expansion used in the low frequency (seeGreengardet al., 1998).
In 2D, the advantages are likely to be more modest; for the Laplace case, a reduction from 27p2/2 to
8p2 + 27p is obtained (seeHrycak & Rokhlin, 1998).

The advantage of our method is in its simplicity and its effectiveness as will be demonstrated by
numerical examples. Furthermore, theH-matrix partB̂H of the matrixB̂, defined by

B̂H :=
∑

(τ,σ )∈L−∪L+
2

χτ B̂χσ , (4.12)

can be coarsened and compressed and also used as a preconditioner. We elaborate on these issues in
Section 4.6. Let us just note that the matrixB̂H2 := B̂− B̂H is anH2-matrix. Hence, our approximation
really is a sum of anH-matrix and anH2-matrix.

4.6 Recompression and preconditioning

The storage requirements of the coefficient matrices and transfer matrices are, due to their simple struc-
ture, low. Since the Fourier matrices are never constructed, but their action is computed by FFT, for
each coefficient or transfer matrix only one or two diagonal matrices needs to be stored. The storage
cost for the cluster basesU andV is also not large since they only need to be stored for leaf clusters.
The main storage cost is due to theH-matrix B̂H, see (4.12). The recompression techniques developed
in Grasedyck(2005) can be applied to this matrix. We give here a brief description, but for details refer
the reader toGrasedyck(2005).

The recompression consists of two steps. As mentioned before, the ACA does not compute the
optimal low-rank matrix. To close this gap, the SVD is applied to each admissible block of the matrix
B̂H. This can be done efficiently since the SVD of a rankk matrix already given in a factorized form
M = Ak BT

k ∈ Cm×n, Ak ∈ Cm×k and Bk ∈ Cn×k can be computed in O(k2(m + n)) operations (see
Grasedyck & Hackbusch, 2003). The second recompression optimizes the block structure making it
coarser. In this second step, the storage is also reduced, but perhaps more importantly the coarser block
structure allows for faster arithmetical operations. In particular, for preconditioning we are interested in
the hierarchical LU decomposition (seeBebendorf, 2005). The effect of recompression on the storage
costs of the Galerkin matrix̂B is shown in Table1.

Ultimately, we wish to efficiently solve linear systems of the typeb = B̂v. To do this, we will use
iterative methods that make use only of matrix-vector products. To improve the convergence of such
methods, preconditioning can be used. InAmini & Maines (1998) and Harris & Chen(2003), it is
recommended to use a splitting

B̂ = B̂1 + C1,

whereB̂1 is a sparse matrix and solve the following preconditioned system instead:

B̂−1
1 B̂v = (I + B̂−1

1 C1)v = B̂−1
1 b.

In Amini & Maines (1998), B̂1 is chosen to be the tridiagonal band ofB̂ together with the extreme
antidiagonal corner elements(B̂)1n and(B̂)n1.
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TABLE 1 In this table, we display the total time for the construction ofB̂H2 and B̂H, the
time for the recompression and coarsening and the memory consumption before and after
the recompression

n κ Total time (s) Recompression time (s) Mem. (MB) Mem. recomp.(MB)

210 25 2.72 0.35 4 2
211 26 6.39 0.88 9 6
212 27 9.29 0.90 16 9
213 28 22.77 2.29 35 21
214 29 45.21 3.97 72 42
215 210 91.75 8.39 152 92
216 211 192.6 17.4 318 188

We employ a similar approach, but theH-matrix B̂−1
H (cf. (4.12)) will be the basis of the precondi-

tioner. We will not computeB̂−1
H directly, but rather compute anH-matrix LU decomposition ofB̂H.

Two triangularH-matricesLH andUH can be computed efficiently such thatLHUH ≈ B̂H. The accur-
acy of the LU decomposition can be varied. Lower accuracy will allow for faster computational times
(seeBebendorf, 2005; Grasedyck, 2005). Since the LU decomposition will only be used for precondi-
tioning, high accuracy is not essential. The preconditioned linear system now reads:

(LHUH)−1B̂v = (LHUH)−1b. (4.13)

This system will be solved using an iterative process that at each iteration requires a multiplication
of B̂ and a vector and the solution of two triangular systems given inH-matrix format. The latter can
be done in O(n logn) time byH-matrix equivalents of forward and backward substitutions, as described
in Bebendorf(2005).

4.7 Complexity analysis

Before we estimate the computational complexity of the construction of the matrix and the cost of
matrix-vector multiplications, we make a couple of assumptions that hold in standard situations. First
of all, without loss of generality, we assume that diam(Ω) 6 1 and thatCsp is a constant. The final
assumption, pertinent to the 2D problem, is that there exists a constantCct such that for any levell ,

∑

τ∈T (l )
J

2ρτ =
∑

τ∈T (l )
J

diam(Ωτ ) 6 Cct. (4.14)

This condition simply prevents pathological cases such as the case where each child cluster has the
same diameter as its parent cluster. A standard algorithm for the construction of the cluster tree, as
described inGrasedyck & Hackbusch(2003), would prevent such a case from happening. In the best
case, when the diameter of each child cluster is exactly half the diameter of its parent, (4.14) holds with
Cct = diam(Ω). The condition is useful since it gives the following inequality:

∑

τ∈T (l )
J

Mτ 6 C1

(
Cctκ + #T (l )

J log
1

ε

)
.
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Also, we recall that there are at most 2n − 1 clusters in the cluster treeTJ . Hence for any levelL,

L∑

l=0

#T (l )
J 6 2n − 1.

Now, we are in a position to give estimates for the storage and the cost of construction and matrix-vector
multiplication for theH2-matrix B̂H2.

LEMMA 4.19 (Storage) Ifp is the depth ofTJ×J and (4.14) holds, then there exists a constantC
depending only onC1, C2, Cct andCsp such that for large enoughκ

(
κ > max

{
1, log 1

ε

}
is sufficient

)
,

Nst 6 C

(
pκ + n log

1

ε

)
and Ncon6 C

(
pκ logκ + n logκ log

1

ε

)
,

whereNst is the storage requirement andNcon the cost of constructing theH2-matrix B̂H2.

Proof. The cost of storing and constructing the row and column cluster bases for the leaf clusters is the
same. It can be estimated as follows (recall Remark3.2):

∑

τ∈T (p)
J

#τ Mτ 6Cleaf

∑

τ∈T (p)
J

Mτ

6CleafC1

(
Cct κ + #T (p)

J log
1

ε

)

6CleafC1

(
Cct κ + n log

1

ε

)
.

The cost of storing the coefficient matrices is proportional to

∑

b=(τ,σ )∈L+
1

Mτ,σ 6
∑

b=(τ,σ )∈L+
1

C2κ(ρτ + ρσ ) + C2 log

(
1

ε

)

6
p∑

l=0

∑

τ∈T (l )
J

#{σ : (τ, σ ) ∈ L+
1 or (σ, τ ) ∈ L+

1 }
(

C2κρτ + C2 log

(
1

ε

))

6
p∑

l=0

∑

τ∈T (l )
J

CspC2

(
κρτ + log

(
1

ε

))
6 CspC2

p∑

l=0

(
Cct κ + #T (l )

J log
1

ε

)

6CspC2

(
Cctκ(p + 1) + (2n − 1) log

1

ε

)
.

Since for each coefficient matrix we require a single application of FFT, the cost of the construction is
larger than the storage cost by a logarithmic factor:

log Mτ,σ 6 logC2 + log

(
κ(ρτ + ρσ ) + log

1

ε

)

6 logC2 + log(κ(ρτ + ρσ + 1)) 6 logC2 + log 2κ.
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So the total cost is increased by a multiplicative factor of O(logκ):

CspC2

(
Cct κ(p + 1) + (2n − 1) log

1

ε

)
log(2C2κ).

The cost of the construction and the storage of transfer matrices can be estimated as follows:

p−1∑

l=0

∑

τ∈T (l )
J

Mτ 6 C1

(
Cct κ(p + 1) + (2n − 1) log

1

ε

)
.

�

LEMMA 4.20 (Multiplication) Under the same conditions as in the previous lemma, there exists a
constantC such that

NH∙v 6 C Ncon,

whereNH∙v is the cost of matrix-vector multiplication for̂BH2.

Proof. We compute the cost of matrix-vector multiplication following the steps of the fast algorithm
explained in Section3.2.1. The reasoning is the same as in the proof of the previous lemma.

1. Upward pass:

(a) The cost of applying the cluster bases to a vector for the leaves is of the same order as the
cost of constructing them. Hence, by the proof of Lemma4.19, the total cost for all leaf
clusters is O

(
κ + n log 1

ε

)
.

(b) The cost of applying the transform matrices to a vector is larger than the cost of construct-
ing them since applications of FFT are necessary. The further logarithmic factor gives the
complexity O

(
pκ logκ + n logκ log 1

ε

)
.

2. Far field interaction: The cost of multiplication is the same as the cost of constructing the coeffi-
cient matrices since in both cases FFT is used. Hence, the cost is O

(
pκ logκ + n logκ log 1

ε

)

3. Downward pass: Same cost as in 1(b).

4. Near field interaction: The near field of theH2-matrix B̂H2 is in fact zero. So there is no cost.

Combining the above estimates gives the result. �
Since we are particularly interested in the high-frequency regime, i.e.κ ∝ n, assumingp = O(logn)

andε a constant, we have that the cost of storage is O(n logn) and the cost of construction and matrix-
vector multiplication is O(n log2 n). However, in practical situations,κ is considerably smaller thann
so that we expect the costs to behave closer to O(n) and O(n logn) for the storage and matrix-vector
complexity, respectively. We complete this section with remarks about the costs associated with the
H-matrix B̂H.

REMARK 4.21 Note that by definition, forb = (τ, σ ) ∈ L+
2 , κ(ρτ + ρσ ) 6 aκ = C(η, ε). Hence, the

length of expansion required by Theorem4.3is proportional toC(η, ε) and independent ofκ. Assuming
that the ACA recovers this behaviour (in fact, in practice, ACA gives a much lower rank than the
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separable expansion would produce), we have that

kmax := max
b=(τ,σ )∈L+

2

rank(χτ B̂χσ ) 6 C(η, ε),

whereC(η, ε) is a generic constant depending only onη andε. Hence, using Lemma3.7, we have that
the cost of construction and matrix-vector multiplication is O(npkmax), wherekmax is independent ofκ.
Therefore, the costs associated with theH-matrix part are not asymptotically larger than the costs asso-
ciated with theH2-matrix. Note that such an estimate is not possible without the use of some data-sparse
representation for these blocks since a small size of diam(Ωτ ) does not imply a small cardinality #τ̂ .

5. Numerical results

In this section, we demonstrate how our algorithm behaves in practice through numerical examples. We
do this by considering the exterior Helmholtz problem (2.1) with the boundary dataF(x) = −eiκx∙d,
whered = (cosπ/4, sinπ/4)T. This problem describes the time-harmonic acoustic scattering problem,
where a plane wave coming from infinity at an angleπ/4 is being scattered by a sound-soft obstacle
Ω ⊂ R2 (seeColton & Kress, 1998; Néd́elec, 2001). The solution we seek is the scattered wave. We
give results for two different obstacles. First of all, we solve the problem for the case of the unit disk for
which an analytic solution can be obtained through the Mie series. The second scatterer we investigate is
the inverted ellipse, which is the smooth, nonconvex shape shown in Fig.6 and defined by the following
mapping:

γ (t) =
√

1 − 0.99 cos(t)2(− sin(t), cos(t))T: [0, 2π) → Γ. (5.1)

We give results of experiments for both the low-frequency and the high-frequency regimes. We have
used the iterative solver GMRES to solve the arising linear systems. To speed up the convergence of the
solver, we have used the preconditioner described in Section4.6. All the computations were done on a
2.8 GHz Pentium IV processor. In all the computations, we have chosen the coupling parameterα = κ
as suggested byAmini & Maines (1998) andGiebermann(1997).

FIG. 6. A nonconvex (but smooth) obstacle and a plane wave coming from infinity.
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5.1 The low-frequency regime

For the low-frequency regime, we fixκ = 64 and increase the number of panelsn. To approximate the
Galerkin matrix, we use theH-matrix obtained by ACA. We have used a low-accuracy LU decomposi-
tion of the whole Galerkin matrix as the preconditioner.

The results for the case of scattering by the unit disk are shown in Table2. For this problem, the
exact solutionu and the boundary densityϕ are known. Apart from theL2-error on the boundary:
‖ϕ − ϕ̂‖L2(Γ ), we also consider a measure of the error outside the domain. This error is estimated
by computing the approximate solutionu j at pointsxj ∈ Ωc, j = 1, 2, . . . , 100. The pointsxj

are chosen to be equally spaced on the disk of radius 1.2. As the measure of the error, we use the
average:

error=
100∑

j =1

|u(xj ) − u j |/100.

By inspecting Table2, we can see that the convergence is of O(n−1) for the error on the boundary
and O(n−2) for the error outside the obstacle. The higher order convergence outside the boundary can
be explained by the Aubin–Nitsche duality technique and the higher regularity of the solution in the
exterior (seeChen & Zhou, 1992, Section 5.12;Sauter & Schwab, 2004, Section 4.2.5). Note, however,
that going fromn = 213 to n = 214, the ratio of the error outside the boundary is not exactly 4,
which is what one would expect for O(n−2) convergence. The reason behind this goes deep in to
the implementation issues. Namely, for quadrature we use spectrally accurate Gaussian quadrature so
that for all these examples we useq = 2 quadrature points per element in 1D, therefore for the double
integrals we useq2 quadrature points. At the final stage,n = 214, the errors in the quadrature are starting
to be seen. To see a perfect O(n−2) convergence, we would have to increaseq to 3. This would increase
the computational time for the construction of the matrix at the stagen = 214, (3/2)2 ≈ 2.3 times. Since
the convergence of the quadrature routines we use are exponential, the choiceq = 3 would suffice for
much largern than 214. To illustrate this issue, we perform a further computation withn = 214 and
q = 3 and obtain the following results:

n Setup(s) Solve(s) Mem.(MB) Mem./n (kB) Iteration ‖ϕ − ϕ̂‖L2(Γ ) Error
214 186.2 8.2 76.8 4.8 11/33 6.7 × 10−3 5.6 × 10−6

TABLE 2 CPU times and memory consumption in the low-frequency regime withκ = 64. Columns
2–7 give the following information: time to construct the matrices (including coarsening), time to
construct the preconditioner and solve the linear system, total memory requirement, total memory
per degree of freedom, the number of iterations with and without the preconditioner and the error

n Setup (s) Solve (s) Mem.(MB) Mem./n (kB) Iteration ‖ϕ − ϕ̂‖L2(Γ ) Error

29 1.79 0.14 1.9 3.9 5/17 2.1 × 10−1 5.8 × 10−3

210 3.9 0.26 3.8 3.8 6/21 1.1 × 10−1 1.4 × 10−3

211 8.5 0.52 7.2 3.6 7/24 5.4 × 10−2 3.5 × 10−4

212 22.4 1.76 15.6 3.9 9/28 2.7 × 10−2 8.8 × 10−5

213 51.5 4.02 34.4 4.3 10/31 1.3 × 10−2 2.4 × 10−5

214 98.5 6.5 76.8 4.8 11/33 6.7 × 10−3 7.6 × 10−6
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TABLE 3 CPU times and memory consumption in the high-frequency regime for scattering by the
unit disk

n κ Setup (s) Solve (s) Mem. (MB) Mem./n (kB) Iteration ‖ϕ − ϕ̂‖L2(Γ ) Error

210 25 2.72 0.19 2.8 2.8 5/18 5.5 × 10−2 4.1 × 10−4

211 26 6.44 0.46 6.6 3.3 6/22 5.4 × 10−2 3.5 × 10−4

212 27 9.27 1.33 10.0 2.5 8/27 5.3 × 10−2 3.3 × 10−4

213 28 22.6 3.2 21.6 2.7 10/32 5.2 × 10−2 3.4 × 10−4

214 29 44.8 9.6 43.2 2.7 14/38 5.2 × 10−2 3.4 × 10−4

215 210 91.0 25.5 92.8 2.9 18/46 5.2 × 10−2 3.8 × 10−4

216 211 196.2 62.0 192.0 3.0 19/56 5.2 × 10−2 3.7 × 10−4

TABLE 4 CPU times and memory consumption in the high-frequency regime for scattering
by the invertedellipse

n κ Setup (s) Solve (s) Mem. (MB) Mem./n (kB) Iteration Error

210 25 3.88 0.23 2.8 2.8 12/30 6.9 × 10−5

211 26 9.35 0.59 6.8 3.4 14/37 4.8 × 10−5

212 27 20.1 1.35 17.2 4.3 14/48 3.9 × 10−5

213 28 37.7 4.31 34.4 4.3 13/59 6.1 × 10−5

214 29 77.7 7.1 68.8 4.3 13/78 7.4 × 10−5

215 210 134.9 16.1 118.4 3.7 13/80+ 6.7 × 10−5

216 211 248.0 50.3 211.2 3.3 20/80+ 6.4 × 10−5

As expected, both the computational times and the memory consumption scale almost linearly. Pre-
conditioning reduces the number of iterations significantly. The number of iterations does increase with
n, however, only slowly.

5.2 The high-frequency regime

For the high-frequency regime, we increase bothn andκ, keepingn/κ = constant. We apply the mixed
format of anH2-matrix with low-rank matrices obtained by ACA as described in Section4.4. The
results for the case of the unit-disk obstacle are shown in Table3. The error is measured as for the low-
frequency case. Note also that the error stays approximately constant. Again, the preconditioner reduces
the number of iterations significantly. Still a slow increase of the number of iterations, asκ is increased,
is noticeable.

We perform the same experiment, but this time with the inverted ellipse as the obstacle. The inverted
ellipse is scaled so as to be contained just inside the unit disk, see (5.1). Since for this problem the
analytical solution is not known, to estimate the error we compute a more accurate approximation (with
n approximately doubled) and use it as the exact solution. The results are shown in Table4. We see that
the more complicated domain has no significant adverse effect. The cost of constructing the matrices
has increased by a small amount as well as the memory consumption. The number of iterations for the
solution of the linear systems has not shown a clear increase, compared to the case of the unit disk. This
suggests that the preconditioner has accounted for the more difficult geometry. Note that the number
of iterations needed when no preconditioning is used is considerably higher than in the case of the unit
disk. In the last two computations, we have interrupted the solver at the 80th iteration.
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Appendix A. Proofs of lemmata

LEMMA A1 Let r, ρ > 0 and letn, m ∈ Z with |m| + 1 > ρ. Then,

|Jn(r )| 6 er sinha−a|n| for anya > 0, (A.1a)

and

|Hm(ρ)| 6
√

3/2 +
2

π
e−ρ sinhδ+δ(|m|+1), δ = arcosh((|m| + 1)/ρ). (A.1b)
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Also,
∣
∣
∣
∣
∣
Jn(r ) −

(−i)n

L

L∑

l=1

eir cos
(

2π l
L

)
e

2π il n
L

∣
∣
∣
∣
∣
6 4π

er sinha−(L−n)a

1 − e−La
for anyL ∈ N anda > 0. (A.2)

Proof. Since|Jn(r )| = |J−n(r )| and|Hm(ρ)| = |H−m(ρ)|, without loss of generality, we can assume
thatm, n > 0.

For a fixedr , cn := in Jn(r ) is thenth Fourier coefficient of the complex analytic functionf (z) :=
eir cosz, see (4.5). For anya > 0, f is analytic in the horizontal strip|Im z| < a and henceg(w) :=
f
(1

i logw
)

is analytic in the annulus e−a < |w| < ea. The Fourier coefficients off are just the Laurent
coefficients ofg. These can be bounded by Cauchy’s estimate, seeHenrici (1986), giving

|cn| 6 max
e−a<|w|<ea

|g(w)|e−an = max
|Im| z<a

| f (z)|e−an.

Since max|Imz|<a | f (z)| = max|Imz|=a | f (z)| 6 er sinha,

|cn| 6 er sinha−an for anya > 0.

This finishes the proof of (A.1a).
To obtain the bound in (A.1b), we use the integral representation ofHm(∙),

Hm(ρ) = Jm(ρ) +
i

π

∫ π

0
sin(ρ sinθ − mθ)dθ −

i

π

∫ ∞

0
(emt + (−1)m e−mt)e−ρ sinht dt,

which can be found inGradshteyn & Ryzhik(2000). Since according to equation (9.1.60) in
Abramowitz & Stegun (1992), Jm(ρ) 6

√
1/2 and

∣
∣ 1
π

∫ π
0 sin(ρ sinθ − mθ)dθ

∣
∣ 6 1

π

∫ π
0 dθ = 1, we

have that

|Hm(ρ)| 6
√

3/2 +
2

π

∫ ∞

0
emt−ρ sinht dt.

By inspecting the derivative with respect tot of the function e(m+1)t−ρ sinht , we find that e(m+1)t−ρ sinht6
e(m+1)δ−ρ sinhδ for δ = arcosh((m + 1)/ρ) and anyt > 0. Hence,

2

π

∫ ∞

0
emt−ρ sinht dt 6

2

π
e(m+1)δ−ρ sinhδ

∫ ∞

0
e−t dt =

2

π
e(m+1)δ−ρ sinhδ.

With this, the proof of the second inequality (A.1b) is finished.
The quantity that we want to bound in (A.2) is the remainder of the composite trapezoidal rule for

2π -periodic functions. The periodic integrand isfn(θ) := (−i)n exp(ir cosθ) exp(−inθ). Since fn(∙) is
an entire function, the remainder is bounded by the expression

4π max
|Im z|<a

| fn(z)|
e−La

1 − e−La
for anya > 0,

see Davis & Rabinowitz (1984, Section 4.6.5). The proof is finished by boundingfn(∙):

max
|Im z|<a

| fn(z)| 6 er sinha+na.
�
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Next, we give the proof of Lemma4.2.
Proof of Lemma 4.2.Let us first prove the easier, first inequality. From (A.1a), we have that

∞∑

n=M

|Jn(r )| 6 er sinha
∞∑

n=M

e−an =
er sinha−aM

1 − e−a
for arbitrarya > 0.

From this expression, the required result is easily deduced. For example, choosea = 1, then

∞∑

n=M

|Jn(r )| 6
er sinh 1−M

1 − e−1
6 ε for M > r sinh 1+ log

(
1

ε

)
− log(1 − e−1).

Since, using the assumptionε < 1/2, r sinh 1+ 2 log
(1

ε

)
> r sinh 1+ log

(1
ε

)
− log(1− e−1), we have

that for the first inequality it suffices to chooseC(η) > 2.
Let us turn to the second inequality. Forn such thatρ < n + 2 6 2ρ, we can employ (A.1b) to

obtain that|Hn+1(ρ)| 6
√

3/2+ exp{−ρ sinh(arcosh((n + 2)/ρ)) + arcosh((n + 2)/ρ)(n + 2)}. Since
the functions sinh and arcosh are increasing, we have the following bound:

|Hn+1(ρ)| 6
√

3
2 + eρ(− sinh(arcosh(1))+2arcosh(2)) 6

√
3
2 + e3ρ 6

√
3
2 + e3(n+2) for ρ < n + 16 2ρ.

(A.3)

Since for 16 ν 6 x, |Hν(x)| 6 1, the above bound is valid for alln such that 26 n + 26 2ρ. Let
us first consider the caseM + 26 2ρ and defineM1 := 2bρ − 2c. Then, making use of the inequalities
(A.3) and (A.1a), we have that

∞∑

n=M

|Hn+1(ρ)Jn(r )|6
M1∑

n=M

|Hn+1(ρ)Jn(r )| +
∞∑

n=M1+1

|Hn+1(ρ)Jn(r )|

6
√

3/2
M1∑

n=M

|Jn(r )| +
M1∑

n=M

er sinha−(a−3)n+6 +
∞∑

n=M1+1

|Hn+1(ρ)Jn(r )|

6
√

3/2
∞∑

n=M

|Jn(r )| + e6
∞∑

n=M

er sinha−(a−3)n +
∞∑

n=M1+1

|Hn+1(ρ)Jn(r )|.

We already know how to deal with the first sum. The second can be dealt with in a similar way by
choosinga > 3. Hence, without loss of generality in the remainder of the proof, we will assume that
M + 2 > 2ρ.

From (A.1a) and (A.1b), we have that, for an arbitrarya > 0,

|Hn+1(ρ)Jn(r )| 6

√
3

2
|Jn(r )| + ermax sinha−an−ρ sinhδn+δn(n+2), δn = arcosh((n + 2)/ρ).

With the choicea = γn := arsinh
( ρ

rmax
sinhδn

)
, the above expression becomes

|Hn+1(ρ)Jn(r )| 6

√
3

2
|Jn(r )| + e−n(γn−δn)+2δn .



78 L. BANJAI AND W. HACKBUSCH

We recall that arsinh(x) = log(x +
√

x2 + 1) and arcosh(x) = log(x +
√

x2 − 1), for x > 1, and
are hence increasing functions ofx. Therefore,δn is an increasing sequence. Together withρ/rmax =
1
η > 1, this implies thatγn > δn for all n. Further, the functionh(x) := arsinh

( ρ
rmax

sinhx
)
− x is an

increasing function since

h′(x) =
ρ

rmax
coshx

√

1 + ρ2

r 2
max

sinh2 x

− 1 > 0, for x > 1.

Therefore,γn − δn = h(δn) is a positive, monotonically increasing sequence. Sinceρ
rmax

= 1/η and

(n + 2)/ρ > (M + 2)/ρ > 2, we have thatγn − δn > β, whereβ := arsinh
( 1

η sinh(arcosh(2))
)

−
arcosh(2) > 0. Hence, we obtain the following estimate:

∞∑

n=M

|Hn+1(ρ)Jn(r )| 6

√
3

2

∞∑

n=M

|Jn(r )| +
∞∑

n=M

e−βn+2δn .

The first sum we have already dealt with. We concentrate now on the second sum. Note that

e2δn = e2arcosh((n+2)/ρ) =
(

n + 2

ρ

)2


1 +

√

1 −
ρ2

(n + 2)2





2

6 4

(
n + 2

ρ

)2

.

Hence, for some constantC > 0,

∞∑

n=M

e−βn+2δn 6
4

ρ2

∞∑

n=M

(n + 2)2 e−βn

=
4

ρ2

e−βM

(1 − e−β)3
(4 + M2(e−β − 1)2 + 2M(2 − 3 e−β + e−2β) − 3 e−β + e−2β)

6C

(
M

ρ

)2 e−βM

(1 − e−β)3
6 C

(
Mη

r

)2 e−βM

(1 − e−β)3
.

Since the bound depends exponentially onM and further only mildly onη and r , the proof is
finished. �

We conclude with the proof of Proposition4.6.
Proof of Proposition 4.6.Let us first consider the caseM1 = M2. Then, what we need to prove reduces
to showing that aC > 0 exists such that

∥
∥
∥fM2(x) − F−1

M2
gM2(x)

∥
∥
∥

∞
< ε,

for all M2 > C
(
ρx+log 1

ε

)
. Since

∥
∥F−1

M2

∥
∥

∞ = 2M2+1, the above inequality is implied by the following:
∥
∥gM2(x) − FM2fM2(x)

∥
∥

∞ < (2M2 + 1)ε.

Now recall that

in Jn(ρx)e
inθx =

1

2π

∫ 2π

0
eiρx cosθ ein(θ+θx) dθ =

1

2π

∫ 2π

0
eiρx cos(θ−θx) einθ dθ.
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We can therefore proceed by approximating the integral with the composite trapezoidal rule and use
(A.2) to bound the error. The rest of the proof is very similar to the proof of the first inequality in
Lemma4.2.

If M1 > M2, zeros first need to be appended to the vectorgM2(x) to get an approximation to the
vectorgM1(x). The error in this approximation also decreases exponentially withM2 > ρx since Bessel
functionsJn(r ) decrease exponentially forn > r (see (A.1a)). Therefore, the caseM1 > M2 can be
dealt with by a triangle inequality. �
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