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Gaudin subalgebras and stable rational curves

Leonardo Aguirre, Giovanni Felder and Alexander P. Veselov

Abstract

Gaudin subalgebras are abelian Lie subalgebras of maximal dimension spanned by
generators of the Kohno–Drinfeld Lie algebra tn. We show that Gaudin subalgebras form
a variety isomorphic to the moduli space M̄0,n+1 of stable curves of genus zero with n+ 1
marked points. In particular, this gives an embedding of M̄0,n+1 in a Grassmannian of
(n− 1)-planes in an n(n− 1)/2-dimensional space. We show that the sheaf of Gaudin
subalgebras over M̄0,n+1 is isomorphic to a sheaf of twisted first-order differential
operators. For each representation of the Kohno–Drinfeld Lie algebra with fixed central
character, we obtain a sheaf of commutative algebras whose spectrum is a coisotropic
subscheme of a twisted version of the logarithmic cotangent bundle of M̄0,n+1.

1. Introduction

The Kohno–Drinfeld Lie algebra tn (n= 2, 3, . . . ) over C, see [Koh85, Dri90], is the quotient
of the free Lie algebra on generators tij = tji, i 6= j ∈ {1, . . . , n}, by the ideal generated by the
relations

[tij , tkl] = 0 if i, j, k, l are distinct,
[tij , tik + tjk] = 0 if i, j, k are distinct.

This Lie algebra appears in [Koh85] as the holonomy Lie algebra of the complement of the union
of the diagonals zi = zj , i < j, in Cn. The universal Knizhnik–Zamolodchikov connection [Dri90]
takes values in tn.

In this paper we consider the abelian Lie subalgebras of maximal dimension contained in
the linear span t1n of the generators tij . Motivating examples are the algebras considered by
Gaudin [Gau76, Gau83] in the framework of integrable spin chains in quantum statistical mech-
anics and the Jucys–Murphy subalgebras spanned by t12, t13 + t23, t14 + t24 + t34, . . . appearing
in the representation theory of the symmetric group (see [OV96, VO04] and references therein).

Our main result is the classification of Gaudin subalgebras. We show that they are
parametrised by the moduli space M̄0,n+1 of stable curves of genus zero with n+ 1 marked
points (Theorem 2.5). The Gaudin subalgebras parametrised by the open subset M0,n+1 are the
ones considered originally by Gaudin (with tij replaced by their image in certain representations
of tn). To prove this theorem, it is useful to represent M̄0,n+1 as a subvariety of a product of
projective lines given by explicit equations. We give such a description, proving a variant of a
theorem of Gerritzen et al. [GHv88], in Appendix A.

Gaudin subalgebras form a locally free sheaf of Lie algebras on M̄0,n+1. We describe this
sheaf as a sheaf of first-order twisted logarithmic differential operators (Theorem 3.3). For an
algebra homomorphism U tn→A from the universal enveloping algebra of tn to an associative
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algebra A, we then get a sheaf of commutative subalgebras EA of the OX -algebra A⊗OX on
X = M̄0,n+1. We show that its relative spectrum is a coisotropic subscheme of a Poisson variety,
a twisted version of the logarithmic cotangent bundle of M̄0,n+1 (Corollary 4.3). For a large class
of representations of U tn these spectra, or at least their part over M0,n+1, have been recently
described in algebro-geometric terms using the Bethe ansatz, see [Fre05, MTV09, MTVa, MTVb,
FFR10, FFT10] and references therein, and shown to have a surprising connection with several
other mathematical subjects. It will be interesting to relate these descriptions to the geometry
of M̄0,n+1. This and possible generalisations to other root systems will be the subject of further
investigation.

It is interesting to look at our result in the context of the relation between flag varieties
and configuration spaces initiated by Atiyah [Ati00, Ati01, AB02], who was inspired by
Berry and Robbins. Note that the usual flag variety U(n)/Tn can be naturally viewed as the
space of all Cartan subalgebras in the unitary Lie algebra u(n). Our result and a parallel between
Gaudin and Cartan subalgebras give another link between these two varieties.

The limiting behaviour of the algebras introduced by Gaudin, that in our approach are
parametrised by the open subsetM0,n+1, has been studied in various contexts. In [Vin90], Vinberg
studied the commutative subspaces of degree two of the universal enveloping algebra Ug of a
semisimple Lie algebra g in relation with Poisson commutative subalgebras of the Poisson algebra
Sg of polynomial functions on the dual of g. In the case of sln, his result implies a set-theoretic
description of all possible limits of Gaudin subalgebras. Limits of Gaudin subalgebras of U(g)⊗n

were studied more recently in [CFR09, CFR10]. In [CFR10], it was noticed that Jucys–Murphy
elements arise as limits of Gaudin Hamiltonians, see Remark 2.6.

It is important to mention that our result works over any field. In particular, it holds over
reals, which is important for applications. It is known that the set of real points M̄0,n+1(R)⊂
M̄0,n+1 is a smooth real manifold, which can be glued of n!/2 copies of the Stasheff associahedron
(see [Kap93]). This gives a very convenient geometric representation of all limiting cases of
the real Gaudin subalgebras and related quantum integrable systems. In particular, Jucys–
Murphy subalgebra corresponds to one of the vertices of the associahedron. The spectrum in
this case was studied in detail by Vershik and Okounkov [OV96, VO04]. What happens at other
vertices labelled by different triangulations of an n-gon is worthy of further investigation. As was
explained in [FM03, CFR09, CFR10], the corresponding integrable systems have a nice geometric
realisation as Kapovich–Millson bending flows [KM96].

2. Classification of Gaudin subalgebras

Since tn is defined by homogeneous relations, it is graded in positive degrees: tn =
⊕

i>1 tin, with
t1n =

⊕
i<j Ctij , t2n =

⊕
i<j<k C[tij , tik]. In particular,

dim(t1n) =
n(n− 1)

2
, dim(t2n) =

n(n− 1)(n− 2)
6

.

Definition 2.1. A Gaudin subalgebra of tn is an abelian subalgebra of maximal dimension
contained in t1n.

We will prove that this maximal dimension is n− 1. It follows from the maximality condition
that the central element

cn =
∑

16i<j6n

tij

belongs to all Gaudin subalgebras.
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Gaudin subalgebras and stable rational curves

Example 2.2. The Jucys–Murphy elements t12, t12 + t13, . . . ,
∑n−1

i=1 tin are pairwise commuta-
tive and thus span a Gaudin subalgebra. They play an important role in the representation
theory of the symmetric group, see Remark 2.6.

Example 2.3. The main class of examples is provided by the spaces [Gau76, Gau83]

Gn(z) =
{ ∑

16i<j6n

ai − aj
zi − zj

tij , a ∈ Cn

}
, (1)

parametrised by z ∈ Σn/Aff, where

Σn = Cn
∖⋃

i<j

{z ∈ Cn | zi = zj}

is the configuration space of n distinct ordered points in the plane and Aff is the group of
affine maps z 7→ az + b, a 6= 0, acting diagonally on Cn. This parameter space is isomorphic to
the moduli space M0,n+1 = ((P1)n+1 −

⋃
i<j{zi = zj})/PSL2(C): the class of z is mapped to the

class of (z1, . . . , zn,∞) in M0,n+1.

Lemma 2.4. The dimension of Gn(z) is n− 1.

Proof. The dimension is at most n− 1 since there are n parameters a1, . . . , an defined up to a
common shift. Taking a= (1, . . . , 1, 0, . . . , 0) with the number of ones ranging from 1 to n− 1,
we obtain n− 1 elements Kj which are linearly independent: tj,j+1 appears in Kj with non-
vanishing coefficient but not in Ki, i 6= j. 2

The main result of this section is that Gaudin subalgebras are in one to one correspondence
with points in the Knudsen compactification M̄0,n+1 ofM0,n+1, which is a non-singular irreducible
projective variety defined over Z (see [Knu83]). More precisely, we have the following result.

Theorem 2.5. Gaudin subalgebras in tn form a non-singular subvariety of the Grassmannian
G(n− 1, n(n− 1)/2) of (n− 1)-planes in t1n, isomorphic to M̄0,n+1.

Remark 2.6. To prove this theorem, we only use the defining relations of tn and the fact that
both the generators tij , 1 6 i < j 6 n, and the brackets [tij , tik], 1 6 i < j < k 6 n, are linearly
independent. Thus, our result holds for any quotient of tn with these properties. An important
example is the image of tn in the group algebra CSn of the symmetric group with commutator
bracket, with tij sent to the transposition of i and j. An approach to the representation
theory of Sn based on the simultaneous diagonalisation of the image of the Jucys–Murphy
elements was proposed in [OV96, VO04]. Another interesting case is given by the homomorphism
φ : tn 7→ Uo(n) into the universal enveloping algebra of the Lie algebra of the orthogonal group
sending tij to X2

ij , where Xij , i < j, are the standard generators of the Lie algebra o(n). The
image consists of (the complex versions of) quantum Hamiltonians of the corresponding Manakov
tops [Man76].

The rest of this section is dedicated to the proof of Theorem 2.5.

Let Dn be the set of all distinct triples (i, j, k) of numbers between 1 and n (i.e. the set of
injective maps {1, 2, 3}→ {1, . . . , n}). For (i, j, k) ∈Dn, denote by pijk : t1n→ C3 the linear map∑

i<j

aijtij → (ajk, aik, aij),
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where aij is extended to all pairs by the rule aji = aij . The map p :Dn→Hom(t1n, C3), (i, j, k) 7→
pijk is equivariant under the natural action of S3 on Dn and on C3.

We start with the following simple calculation, which was probably first done by
Vinberg [Vin90].

Lemma 2.7. Let V ⊂ t1n be a Gaudin subalgebra. Then, for all (i, j, k) ∈Dn, pijk(V ) contains
(1, 1, 1) and is at most two dimensional.

Proof. By the S3-equivariance, it is sufficient to prove the claim for i < j < k. The space pijk(V )
contains pijk(cn) = (1, 1, 1). Let a=

∑
i<j aijtij , b=

∑
i<j bijtij ∈ t1n. The commutator [a, b] is a

linear combination of the linearly independent elements [tij , tjk], 1 6 i < j < k 6 n. Then the
equation [a, b] = 0 is equivalent to the system

aijbjk − aijbik + aikbij − aikbjk + ajkbik − ajkbij = 0,

1 6 i < j < k 6 n. These equations are conveniently written in determinant form (cf. [Vin90,
Proof of Theorem 1])

det

ajk bjk 1
aik bik 1
aij bij 1

= 0. (2)

Thus, pijk(V ) contains at most two linearly independent vectors. 2

Thus, for each Gaudin subalgebra there exists an S3-equivariant map ` :Dn→ (C3)∗ sending
(i, j, k) to a linear form `ijk vanishing on (1, 1, 1) and such that

`ijk ◦ pijk|V = 0. (3)

If V =Gn(z), (3) is satisfied with the linear forms

`ijk = (zj − zk, zk − zi, zi − zj).

Conversely, we have the following result.

Lemma 2.8. Let ` :Dn→ (C3)∗, (i, j, k) 7→ `ijk, be an S3-equivariant map such that
`ijk(1, 1, 1) = 0 for all (i, j, k). Then

V =
⋂
ijk

Ker(`ijk ◦ pijk)

is an abelian Lie subalgebra.

Proof. The vanishing condition implies that cn ∈ V . If a, b ∈ V , then pijk(a), pijk(b) and (1, 1, 1)
belong to a two-dimensional subspace of C3 and therefore obey (2) for all i, j, k. It follows as in
the proof of Lemma 2.7 that [a, b] = 0. 2

It remains to determine which systems of linear forms `ijk give commuting subspaces of
maximal dimension. With respect to the basis tij of t1n, we can represent the linear forms `ijk ◦ pijk
as the rows of a matrix L, so that the corresponding commuting subspace is the kernel of L. The
matrices arising in this way belong to the following set.

Definition 2.9. Let n> 3 and Ln be the space of matrices whose rows are labelled by triples
in D+

n = {(i, j, k), 1 6 i < j < k 6 n}, whose columns are labelled by pairs in Z+
n = {(i, j), 1 6

i < j 6 n} and such that:
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(1) the matrix elements in the row labelled by (i, j, k) ∈D+
n vanish except possibly those in the

columns (j, k), (i, k), (i, j);
(2) each row has at least a non-vanishing matrix element;
(3) the sum of the matrix elements in each row is zero.

For example, matrices in L4 are of the form

12 13 14 23 24 34
123
124
134
234


c123 b123 0 a123 0 0
c124 0 b124 0 a124 0

0 c134 b134 0 0 a134

0 0 0 c234 b234 a234

, (4)

with non-zero rows and zero row sums.

Proposition 2.10. Let L ∈ Ln, m6 n. Let Lm be the matrix obtained from L by taking the
matrix elements labelled by D+

m × Z+
m ⊂D+

n × Z+
n . Then Lm ∈ Lm.

Proof. The claim is an easy consequence of the definition. 2

Lemma 2.11. Let L ∈ Ln and Lm, 3 6m6 n, be the submatrix with labels in D+
m × Z+

m. Then

rank(L) >
(n− 1)(n− 2)

2
,

with equality if and only if

rank(Lm) =
(m− 1)(m− 2)

2
for all m= 3, . . . , n.

Proof. We claim that there exists a row index set I = I3 ∪ I4 ∪ · · · ∪ In ⊂D+
n such that:

(1) for each m, the set Im has m− 2 elements; they are of the form (i, j, m) for some i < j <m;
(2) for each m, there are distinct indices k1, . . . , km−1 ∈ {1, . . . , m} and an ordering

r1, . . . , rm−2 of Im such that the entry of row ri in column (kj , m) is zero for i < j and
non-zero if i= j.

The (n− 1)(n− 2)/2 rows of L labelled by I are then clearly linearly independent, and the same
holds for the rows of Lm in I3 ∪ · · · ∪ Im for all m6 n. It is also clear that if a row of L labelled
by D+

m ⊂D+
n is a linear combination of rows labelled by I, then it is a linear combinations of

rows labelled by Im. This proves the lemma assuming the existence of I.
To describe the construction of I, it is notationally convenient to think of D+

n as the set Dn/S3

of subsets of three elements and thus to identify (i, j, k) = (j, i, k) = (i, k, j). The row indices Im
can then be taken as ri = (σm(i), σm(i+ 1), m), for some permutation σm of {1, . . . , m− 1} such
that the entry of the row rj in the column (σm(j + 1), m) is non-zero. By property (1) of Ln,
this then implies that only rj among r1, . . . , rm−1 has a non-zero entry in this column and we
set kj = σm(j + 1), as desired. It remains to prove that such a permutation exists. Let Γm be the
complete graph with vertex set {1, . . . , m}. Pick an orientation i→ j on each edge {i, j} of Γm
such that the entry in the row (i, j, m) and the column (j, m) is non-zero. Such an orientation
exists since at least two of the entries in columns (i, j), (i, m) and (j, m) are non-zero. Then the
claim follows from the following simple result of elementary graph theory.

Lemma 2.12. For any orientation of the edges of a complete graph with k vertices, there exists
an oriented path σ(1)→ σ(2)→ · · · → σ(k) visiting each vertex exactly once.
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In graph theory, such a path is called Hamiltonian and this fact is known as the existence of
a Hamiltonian path in any tournament [Red34].

The proof is by induction: for k = 1 there is nothing to prove. Let Γk be the complete graph
with vertex set {1, . . . , k}. An orientation of its edges restricts to an orientation of the edges of
Γk−1 ⊂ Γk. If we have a path γ on Γk−1 starting at a vertex i and ending at a vertex j, then
either there is an edge k→ i or j→ k and we can complete γ to a path in Γk by adding it, or
there exists a step a→ b of γ that can be replaced by a→ k→ b to obtain a path in Γk with the
required property. 2

Corollary 2.13. Abelian subalgebras lying in t1n have dimensions at most n− 1.

Indeed, the rank of a matrix in Ln is at least (n− 1)(n− 2)/2 and its kernel has dimension
at most

n(n− 1)
2

− (n− 1)(n− 2)
2

= n− 1.

Lemma 2.14. Suppose that L ∈ Ln has minimal rank (n− 1)(n− 2)/2, so that Ker L defines
a Gaudin subalgebra. Denote the entries of row (i, j, k) in columns (i, j), (i, k), (j, k) by
aijk, bijk, cijk, respectively. Then

(aijk : bijk : cijk) = (bjik : ajik : cjik) = (aikj : cikj : bikj), (5)
aijk + bijk + cijk = 0 (6)

for all (i, j, k) ∈Dn, and

bijkcijlbikl + cijkbijlcikl = 0 (7)

for all (i, j, k, l) ∈ Vn.

Proof. The first two equations are a rephrasing of the S3-equivariance and the condition
`ijk(1, 1, 1) = 0. Consider the third equation. By possibly renumbering the vertices, we can
assume that the four indices are 1, 2, 3, 4. By Lemma 2.11, the submatrix L4 with labels in
D+(4)× Z+(4) has rank three. This matrix has the form (4). Since the last row is non-zero, the
upper left 3× 3 minor vanishes. 2

We can now conclude the proof of Theorem 2.5. Let Zn be the subvariety of Gaudin
subalgebras in the Grassmannian of (n− 1) planes in t1n. By Lemma 2.7, every Gaudin subalgebra
V is contained in Ker L, for some L ∈ Ln. Since, by Lemma 2.8, Ker L is an abelian subalgebra,
it follows by maximality that V is actually equal to Ker L. Let Yn be the subvariety of (P2)Dn

defined by the equations (5)–(7) for homogeneous coordinates (aijk : bijk : cijk). By Lemma 2.14,
we then have a map Zn→ Yn which is clearly injective. Since the subalgebras Gn(z) are contained
in Zn, Zn has a component of dimension n− 2. As we will presently see, Yn is isomorphic to the
non-singular irreducible projective (n− 2)-dimensional variety M̄0,n+1 and therefore Zn→ Yn is
an isomorphism.

It remains to prove that Yn ' M̄0,n+1. In order to do so, let us first notice that by (6), Yn
actually lies in (P1)Dn , where P1 ⊂ P2 is embedded as (x : y) 7→ (x− y :−x : y). It is easy to
rewrite the remaining equations defining Yn in these coordinates:

(1) xikjxijk = yikjyijk;

(2) xjikyijk = yijkyjik − xijkyjik;
(3) xijkyijlxikl = yijkxijlyikl.
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It turns out that, by a variant of a theorem of Gerritzen, Herrlich and van der Put, these are
precisely the relations defining M̄0,n+1 as a subvariety of (P1)Dn . We deduce this variant from
the original theorem of Gerritzen, Herrlich and van der Put in Appendix A, see Theorem A.2.

3. The sheaf of Gaudin subalgebras

By Theorem 2.5, Gaudin subalgebras of tn form a family of vector spaces Gn on M̄0,n+1: the fibre
at z is the Gaudin subalgebra corresponding to z. The purpose of this section is to identify this
family in terms of the geometry of M̄0,n+1.

Consider first the Gaudin subalgebras parametrised by M0,n+1. Let M̃0,n+1 = Σn/C, where
the group C⊂Aff is the translation subgroup. The natural projection p : M̃0,n+1→M0,n+1 is a
principal C×-bundle. The t1n-valued 1-form

ω =
∑
i<j

dzi − dzj
zi − zj

tij

is a C×-invariant element Ω1(M̃0,n+1)⊗ t1n. The pairing with ω defines a map

TzM̃0,n+1→ t1n

from the tangent space at z ∈ M̃0,n+1 to t1n, with image Gn(z), see (1). By Lemma 2.4, this
map is injective. Now Gn(z) =Gn(z′) if and only if z′ = λz for some λ ∈ C×. More precisely, the
action of C× on M̃0,n+1 lifts naturally to TM̃0,n+1 and the invariance of ω implies that ω defines
an injective bundle map.

TM̃ 0,n+1/C× //

��

M0,n+1 × t1n

��
M0,n+1 M0,n+1

Its image is a vector bundle with fibres Gn(z), z ∈M0,n+1. Moreover, TM̃0,n+1/C× is an
extension of the tangent bundle to M0,n+1: the kernel of the natural surjective bundle map
TM̃0,n+1/C×→ TM 0,n+1 is spanned by the class of the Euler vector field

E =
n∑
i=1

zi
∂

∂zi
,

generating the C×-action. Turning to the language of sheaves, more convenient when we pass to
M̄0,n+1, we thus have an exact sequence of locally free sheaves on X =M0,n+1:

0→OX →Gn→ TX → 0. (8)

Here TX is the sheaf of vector fields and Gn is the sheaf of t1n-valued functions whose value at
each z lies in Gn(z). For any open set U ⊂M0,n+1, Gn(U) may be identified via the map ω with
the space of C×-invariant vector fields on p−1(U).

As is well known, invariant vector fields can be identified with first-order twisted differential
operators on the base manifold.

Lemma 3.1. Let p : P →X be a principal C×-bundle on a smooth variety X and L= P ×C× C
be the associated line bundle, where C× acts on C by multiplication. Then for each open set
U ⊂X, the Lie algebra TP (p−1(U))C× is isomorphic to the Lie algebra D1

L∨(U) of first-order
differential operators acting on sections of the dual line bundle L∨ (i.e. twisted by L∨).
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Proof. A section of L∨ on U is the same as a function f : p−1(U)→ C such that f(y · λ) = λf(y),
y ∈ p−1(U), λ ∈ C×. It is clear from this representation that TP (p−1(U))C× acts on sections of L∨.
Moreover, the infinitesimal generator E of the C×-action acts by 1. Thus, upon choosing a local
trivialisation of P , we may write any invariant vector field as ξ + fE, where ξ is a vector field
on U and f ∈OX(U). This invariant vector field acts on a section as the first-order differential
operator ξ + f . 2

As a consequence, we have a description of Gn as a sheaf of twisted first-order differential
operators.

Proposition 3.2. Gaudin subalgebras corresponding to points of M0,n+1 form a locally free
sheaf isomorphic to the sheaf D1

L∨ of first-order differential operators on M0,n+1 twisted by the
line bundle L∨ dual to the associated bundle to M̃0,n+1 via the identity character of C×.

Let us now extend this to M̄0,n+1.
Let us first recall some known facts about the geometry of M̄0,n+1 [Knu83, GHv88, Kee92].

This space can be defined as the closure in (P1)Dn of the image of the injective map

µ :M0,n+1 = Σn/Aff → (P1)Dn

sending the class of z ∈ Σn to the collection of cross ratios involving the point at infinity

µijk(z) =
zi − zk
zi − zj

=
(zi − zk)(∞− zj)
(zi − zj)(∞− zk)

, (i, j, k) ∈Dn.

Moreover, the image is characterised by an explicit set of equations, see Theorem A.2.
The complement of M0,n+1 in M̄0,n+1 is a normal crossing divisor D =

⋃
DS , where the

union is over all subsets S of {1, . . . , n} with at least two and at most n− 1 elements.
The irreducible component DS is isomorphic to M̄0,m+1 × M̄0,n−m+2 and is the closure of the
subvariety consisting of stable curves with one nodal point such that the marked points labelled
by S are those on the component not containing the point labelled by n+ 1.

Local coordinates on a neighbourhood in M̄0,n+1 of a generic point of DS are the cross ratios
ζr = µijr, r ∈ Sr{i, j}, zs = µiks, s ∈ Scr{k}, t= µijk, for any fixed i, j ∈ S, k 6∈ S (Sc denotes
the complement of S in {1, . . . , n}). In these coordinates, DS is given by the equation t= 0.
The change of variables from these coordinates to the coordinates zi of M0,n+1 is as follows. We
may assume that S = {1, . . . , m} and choose i= 1, j =m, k =m+ 1 (the general case can be
obtained from this by permuting the coordinates). Then for generic t 6= 0 the point in M0,n+1

with coordinates (ζ, z, t) is

[0, tζ2, . . . , tζm−1, t, z2, . . . , zn−m, 1] ∈M0,n+1 = Σn/Aff. (9)

To extend the exact sequence (8) to M̄0,n+1, we first show that M̃0,n+1 extends to a principal
C×-bundle

p : ˜̄M0,n+1→ M̄0,n+1.

This can be seen from the presentation of Theorem A.2. Let H be the kernel of the product
map (C×)Dn → C×. Then Pn = (C2r{0})Dn/H is a principal C×-bundle on (P1)Dn and M̃0,n+1

embeds into Pn (via z 7→ class of ((zi − zk, zi − zj)(i,j,k)∈Dn
)) as the restriction of Pn to the image

of M0,n+1 in (P1)Dn . We then define ˜̄M0,n+1 to be the restriction of Pn to M̄0,n+1 ⊂ (P1)Dn .
Recall that the locally free sheaf TX〈−D〉 of logarithmic vector fields on a variety X with a

normal crossing divisor D consists of vector fields whose restriction to a generic point of D is
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tangent to D. It is dual to the sheaf Ω1
X〈D〉 of logarithmic 1-forms, spanned over OX by regular

1-forms and df/f , where f ∈ OX with f 6= 0 on XrD, see [Del70, § II.3].

Theorem 3.3. Let L be the associated line bundle ˜̄M0,n+1 ×C× C with the identity character
of C×. Gaudin subalgebras form a vector bundle on M̄0,n+1. As a locally free sheaf, it is
isomorphic to the sheaf D1

L∨〈−D〉 of first-order differential operators on M̄0,n+1 twisted by L∨,
whose symbol is logarithmic. In particular, there is an exact sequence of sheaves on X = M̄0,n+1:

0→OX →Gn→ TX〈−D〉 → 0.

The embedding of the trivial bundle OX sends 1 to cn =
∑

i<j tij .

Proof. Let us introduce the abbreviated notation X = M̄0,n+1, p : X̃ = ˜̄M0,n+1→X. Let D̃ =
p−1(D) be the pull-back to X̃ of the divisor D. Then ω is a form in Ω1(X̃)⊗ t1n with logarithmic
coefficients. Indeed, in the coordinates ζ, z, t of (9) and fibre coordinate λ ∈ C× around a generic
point of D̃, ω has the local coordinate expression

ω =
∑

16i<j6m

tij d log(ζi − ζj) +
∑

16i<j6m

tij d log(t)

+
∑

m<i<j6n

tij d log(zi − zj) +
∑

16i<m<j6n

tij d log(zj) + cn d log(λ), (10)

with the understanding that ζ0 = 0, ζm = zn = 1. Thus, ω may be paired with invariant
logarithmic vector fields on X̃, which in turn may be identified by Lemma 3.1 with first-order
differential operators on X, to give a map D1

L∨〈−D〉 → t1 ⊗OX which is injective on M0,n+1. We
need to show that the map is injective on all of X = M̄0,n+1. Since the locus of non-injectivity
is empty or of codimension one, it is sufficient to show that the map is injective as we approach
a generic point of the divisor D. This is easy to check using (10).

The embedding of OX sends 1 to 〈ω, E〉= cn. 2

Thus, Gn is a sheaf of twisted first-order differential operators with regular singularities along
D, see [Uen08, § 5.2].

Remark 3.4. The divisor class of the line bundle L can be easily computed by choosing a section.
The result is

[L] =−
∑

S⊃{1,2}

[DS ].

4. Coisotropic spectra

Suppose that U tn→A is a homomorphism of unital algebras, e.g. A= End(V ) for some
representation V of tn. Then we get a sheaf EA of commutative subalgebras of A on X = M̄0,n+1

as the image of the symmetric OX -algebra SGn. By Theorem 3.3, Gn is naturally a sheaf of Lie
algebras, so that SGn is a sheaf of Poisson algebras.

Corollary 4.1. Let ϕ : U t1n→A be an algebra homomorphism. Then the kernel of the induced
map of sheaves of algebras ϕ : SGn→A⊗OX , is closed under Poisson brackets.

Proof. This is basically a consequence of the fact that ω is closed. The map is defined by
identifying Gn with the sheaf of C×-invariants of p∗TX̃〈−D̃〉. It is the algebra homomorphism
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sending an invariant section ξ to ωA(ξ) = ϕ(ω(ξ)). A Poisson bracket of monomials ξ1 · · · ξk,
η1 · · · ηl, ξi, ηj ∈ Gn ' p∗TX̃〈−D̃〉

C× is sent to

ϕ({ξ1 · · · ξk, η1 · · · ηl})
=
∑
i,j

ϕ([ξi, ηj ]ξ1 · · · ξ̂i · · · ξk η1 · · · η̂j · · · ηl)

=
∑
i,j

ωA([ξi, ηj ])
∏
r 6=i

ωA(ξr)
∏
s6=j

ωA(ηs)

=
∑
i,j

∏
r<i

ωA(ξr)
∏
s<j

ωA(ηs)ωA([ξi, ηj ])
∏
r>i

ωA(ξr)
∏
s>j

ωA(ηs)

=
∑
i,j

∏
r<i

ωA(ξr)
∏
s<j

ωA(ηs)(ξiωA(ηj)− ηjωA(ξi))
∏
r>i

ωA(ξr)
∏
s>j

ωA(ηs)

=
∑
i,j

∏
r<i

ωA(ξr)
∏
s<j

ωA(ηs)ξiωA(ηj)
∏
s>j

ωA(ηs)
∏
r>i

ωA(ξr)

−
∑
i,j

∏
s<j

ωA(ηs)
∏
r<i

ωA(ξr)ηjωA(ξi)
∏
r>i

ωA(ξr)
∏
s>j

ωA(ηs)

=
∑
i

∏
r<i

ωA(ξr)ξiϕ(η1 · · · ηl)
∏
r>i

ωA(ξr)

−
∑
j

∏
s<j

ωA(ηs)ηjϕ(ξ1 · · · ξk)
∏
s>j

ωA(ηs).

In this calculation, we use the fact that ωA(ξr), ωA(ηs) commute with each other; the peculiar
choice of ordering of factors is necessary since their derivatives ξiωA(ηj), ηjωA(ξi) do not
necessarily commute with them.

It follows that if ϕ(a) = ϕ(b) = 0, then also ϕ({a, b}) = 0, which is the claim. 2

Recall that Ω1
X̃
〈D̃〉 is locally free and thus the sheaf of sections of a vector bundle, the

logarithmic cotangent bundle. Let us denote by T ∗X̃〈D̃〉 the total space of this vector bundle. It
is the relative spectrum of the symmetric algebra STX̃〈−D̃〉, which is a sheaf of Poisson algebras.
Thus, T ∗X̃〈D̃〉 is a Poisson variety; the Poisson structure restricts to the usual symplectic
structure on the cotangent bundle of M̃0,n+1. The group C× acts on X̃ preserving D̃. This
action lifts to a Hamiltonian action on the logarithmic cotangent bundle with moment map
E ∈ Γ(X̃, TX̃〈−D̃〉)⊂ Γ(X̃, STX̃〈−D̃〉) =O(T ∗X̃〈D̃〉).

Definition 4.2. Let α ∈ C. The twisted logarithmic cotangent bundle T ∗Xα〈D〉 with twist α is
the Hamiltonian reduction E−1(α)/C×.

By construction, T ∗Xα〈D〉 is a Poisson variety. For α= 0, it is the logarithmic cotangent
bundle of X. By definition, the regular functions on an open set Ũ = p−1(U), U ⊂X, are sections
of (STX̃〈−D〉(Ũ))C×/I(Ũ), where I(Ũ) is the ideal generated by E − α.

Then Corollary 4.1 can be reformulated as follows.

Corollary 4.3. Let U t1n→A be an algebra homomorphism such that cn is mapped to α1 and
let EA be the corresponding sheaf of commutative algebras on X = M̄0,n+1. Then the relative
spectrum of EA is a coisotropic subscheme of the twisted logarithmic cotangent bundle T ∗Xα〈D〉.

In particular, if A is finite dimensional, then the part of the spectrum over X0 =M0,n+1 is a
Lagrangian subvariety of the symplectic manifold T ∗X0

α = (E−1(α) ∩ T ∗X̃0)/C×.
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Appendix A. Stable curves of genus zero

Recall that a stable curve of genus zero with r > 3 marked points is a pair (C, S), where C is a
connected projective algebraic curve of genus 0 whose singularities are ordinary double points and
S = (p1, . . . , pr) is an ordered set of distinct non-singular points of C such that each irreducible
component of C has at least three special (marked or singular) points. The genus zero condition
means that the irreducible components are projective lines whose intersection graph is a tree.
The moduli space M̄0,r of stable rational curves with r > 3 marked points [Knu83] is a smooth
algebraic variety of dimension r − 3 defined over Q. It contains as a dense open set the quotient
of the configuration space

M0,r = {z ∈ (P1)r | zi 6= zj , for all i 6= j}/ PSL2

of r distinct labelled points on the projective line by the diagonal action of Aut(P1)' PSL2.
Here is a simple description of M̄0,r, due to Gerritzen et al. [GHv88]. For each distinct

(i, j, k, l) in {1, . . . , r}, let λijkl :M0,r→ P1 be the map sending the class of z to the cross ratio

λijkl(z) =
(zi − zl)(zj − zk)
(zi − zk)(zj − zl)

∈ C⊂ P1.

Let Vr be the set of distinct quadruples of integers between 1 and r. Then M̄0,r is the closure of
the image of the embedding

M0,r→ (P1)Vr , z→ (λv(z))v∈Vr

sending z to the system of cross ratios λijkl(z) ∈ P1r{0,∞, 1}.
The cross ratios λv = λv(z) of a point in M0,r obey the following relations:

(λ1) λjikl = 1/λijkl for all distinct i, j, k, l;

(λ2) λjkli = 1− λijkl for all distinct i, j, k, l;

(λ3) λijklλijlm = λijkm for all distinct i, j, k, l, m.

Theorem A.1 (Gerritzen et al. [GHv88]). The subvariety of (P1)Vr defined by these relations,
more precisely by their version for homogeneous coordinates λv = xv/yv,

(1) xjiklxijkl = yjiklyijkl for all distinct i, j, k, l,

(2) xjkliyijkl = yijklyjkli − xijklyjkli for all distinct i, j, k, l,

(3) xijklxijlmyijkm = yijklyijlmxijkm for all distinct i, j, k, l, m,

is a fine moduli space of stable curves of genus zero. The dense open subvariety M0,r is embedded
via the cross ratios z 7→ (xv : yv)v∈Vr , with

(xijkl : yijkl) = ((zi − zl)(zj − zk) : (zi − zk)(zj − zl)).
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For our purpose, it is useful to have a more economical description of the moduli space
by taking only cross ratios involving a distinguished marked point. Let n= r + 1 > 2 and
Dn be the set of all distinct triples (i, j, k) of integers between 1 and n.1 The cross ratios
µijk(z) = λi,n+1,j,k(z) obey:

(µ1) µikj = 1/µijk for all distinct i, j, k;

(µ2) µjik = 1− µijk for all distinct i, j, k;

(µ3) µijkµikl = µijl for all distinct i, j, k, l.

The claim is that the homogeneous version of these relations defines M̄0,n+1.

Theorem A.2. The moduli space M̄0,n+1 is isomorphic to the subvariety of (P1)Dn defined by
the following equations.

(1) xikjxijk = yikjyijk for all (i, j, k) ∈Dn.

(2) xjikyijk = yijkyjik − xijkyjik for all (i, j, k) ∈Dn.

(3) xijkxiklyijl = yijkyiklxijl for all (i, j, k, l) ∈ Vn.

The open subvariety M0,n+1 is embedded via the cross ratios z 7→ (xd : yd)d∈Dn , with

(xijk : yijk) = ((zi − zk)(zn+1 − zj) : (zi − zj)(zn+1 − zk)).

Remark A.3. In [GHv88], M̄0,n+1 is considered as a scheme over Z, being defined as a subscheme
of
∏
v∈Vn+1

Proj(Z[xv, yv]). Our proof applies also to this more general setting.

Proof. Let us denote by Yn the subvariety of (P1)Dn defined by these relations. We have an
obvious map f : M̄0,n+1→ Yn, the projection onto the cross ratios µijk = (xi,n+1,j,k : yi,n+1,j,k),
with (i, j, k) ∈Dn. We show that this map is an isomorphism by constructing the inverse map
µ 7→ λ= g(µ). If one of i, j, k, l is equal to n+ 1, λijkl is obtained using (λ1) and (λ2) from

λi,n+1,k,l = µikl. (A1)

For (i, j, k, l) ∈ Vn, λijkl is given by either

λijkl =
µikl
µjkl

(A2)

or

λijkl =
µkij
µlij

, (A3)

depending on which of the two expressions is defined (i.e. not 0/0 or ∞/∞).2

We first check that (A1)–(A3) correctly define a map Yn→ (P1)Vn+1 . First of all, (λ1) and
(λ2) say that the map λ : Vn+1→ P1 is equivariant under the natural action of S4 on Vn+1 and on
P1 by fractional linear transformations. Since, by (µ1) and (µ2), µ is S3-equivariant, (A1) defines
consistently λv for v in the S4-orbit of (i, n+ 1, k, l). Next, we claim that at least one of the ratios
in (A2) and (A3) is defined. Indeed, suppose that (A2) is not defined because µikl = µjkl = 0.
Then, by (µ1) and (µ2), µkil = 1 and µklj = µ−1

kjl = (1− µjkl)−1 = 1. Thus, by (µ3), µkij = 1
and (A3) is defined. Similarly, if µikl = µjkl =∞, then µlij = 1. The same arguments shows

1 Following [GHv88], we denote the sets of distinct pairs, triples and quadruples by the initials Z, D and V of the
corresponding German or Dutch numerals.
2 The notation x3 = x1/x2 for xi = (x′i : x′′i ) ∈ P1 means x′3x

′
2x
′′
1 = x′1x

′′
2x′′3 ; this defines x3 given x1 and x2 unless

x1 and x2 are both 0 = (0 : 1) or ∞= (1 : 0).
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that (A2) is defined if (A3) is not. It remains to show that if the right-hand sides of both (A2)
and (A3) are defined then they are equal. The following identity is useful for this purpose.

Lemma A.4. Suppose that (µd)d∈Dn obey (µ1), (µ2) and let (i, j, k) ∈Dn. Then either
µijk, µjki, µkij are a permutation of 0,∞, 1 or none of them belongs to {0,∞, 1}. In the latter
case, their product is −1 or, equivalently,

µijk =−
µjik
µkij

.

Indeed, if µijk = x, then µjki = 1/µjik = 1/(1− x) and µkij = 1− 1/x, which implies the lemma.
This lemma combined with (µ1) and (µ3) implies the following two identities (holding

whenever the expressions are defined):
µikl
µjkl

=
µikjµijl
µjkiµjil

=
µkij
µlij

,
µkij
µlij

=
µkilµklj
µlikµlkj

=
µikl
µjkl

. (A4)

Assume that both right-hand sides of (A2) and (A3) are defined. We have four cases: (a) µikl,
µjkl /∈ {0,∞, 1}. Then the second identity in (A4) proves that (A2) and (A3) agree. (b) µkij , µlij /∈
{0,∞, 1}. Here the first identity implies the claim. (c) µikl = 0. Since, by (µ3), µikl = µikjµijl, we
have either µikj = 0 or µijl = 0. In the first case, µkij = 1 and therefore µkjl = µkjiµkil = 1 · 1 = 1,
implying that µjkl = 0, in contradiction with the assumption that the right-hand side of (A2)
is defined. In the second case, µlij = 1− 1/µijl =∞ and thus (A3) gives λijkl = 0, in agreement
with (A2). The cases where any of µikl, µjkl, µkij , µlij are 0 or ∞ are treated in the same way.
(d) µikl = 1. Then µkil = 0 and thus µkijµkjl = 0. The case µkij = 0 is covered by (c), so let
µkjl = 0, whence µjkl = 1. Equation (A2) gives then λijkl = 1. By (µ3), µikj = µiklµilj = 1 · µilj ,
(µ1) implies that µkij = µlij and thus also (A3) gives λijkl = 1. The remaining case µkij = µlij = 1
is treated in the same way by exchanging i, j and k, l.

Thus, g is a well-defined morphism Yn→ M̄0,n+1 and by construction g ◦ f is the identity.
It remains to show that λ= g(µ) obeys the relations (λ1)–(λ3). The first relation (λ1) is

obviously satisfied. The relation (λ2) is satisfied by construction if one of i, j, k, l is equal to
n+ 1. Also, by construction, we have

λijkl = λklij (A5)
for all distinct i, j, k, l. If (i, j, k, l) ∈ Vn and µjli, µkli /∈ {0,∞, 1}, (µ1)–(µ3) imply that

λjkli =
µjli
µkli

=
1− µlji
µkli

=
1− µljkµlki

µkli
=

1− (1− µjlk)µlki
1− µlki

= 1 +
µjlkµlki
1− µlki

= 1− µikl
µjkl

= 1− λijkl.

We now consider the degenerate cases. (a) If µkli = 0, then µlki = 1 and thus µlji = µljkµlki = µljk
and therefore also µjli = µjlk. Either µjli 6= 0, so that λjkli =∞ and λijkl = µikl/µjkl =∞ · µjlk =
∞ · µjli =∞ proving the identity; or µjli = 0, so that the second formula (A3) applies and we
have

λjkli =
µljk
µijk

=
µlji
µijk

=
1
µijk

= µikj .

On the other hand, since µlij = 1/(1− µjli) = 1,

1− λijkl = 1−
µkij
µlij

= 1− µkij = µikj ,

proving the claim. (b) If µkli = 1, then µikl = 0 = µlki. Then either µjkl = 0 and (a) with
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permuted indices gives λijkl = 1− λlijk, which with (A5) implies the claim; or µjkl 6= 0 and
λijkl = µikl/µjkl = 0. In this case, λjkli = µjli/1 = 1− µlji = 1− µljkµlki = 1− µljk · 0 = 1, since
µljk = 1− 1/µjkl 6=∞. (c) If µkli =∞, then µilk = 1 and we are in case (b) up to permutation
of i and k, so that we get λjilk = 1− λkjil, which reduces to the claim by using (λ1) and (A5).
Thus, the cases where the denominator µkli belongs to {0,∞, 1} are covered by (a)–(c). (d) The
case where the numerator µjli is in {0,∞, 1} is reduced to the previous case by the substitutions
i↔ k, j↔ l. Indeed, (a)–(c) give λlijk = 1− λklij , which reduces to (λ2) by applying (A5). This
completes the proof of (λ2).

Finally, if µ is generic, (λ3) follows from (µ3):

λijklλijlm =
µikl
µjkl

µilm
µjlm

= λijkm. (A6)

This formula applies more generally if one or both λijkl and λijlm are given by (A2): the only
tricky case is if the left-hand side of (A6) is 0 · ∞, but in this case there is nothing to prove (see
the footnote on page 1474). If both factors are given by (A3), we have (trivially)

λijklλijlm =
µkij
µlij

µlij
µmij

= λijkm.

The remaining case is when for one factor, say λijkl, (A3) is not defined and for the other, say
λijlm, (A2) is not defined. Then

λijkl =
µikl
µjkl

, λijlm =
µlij
µmij

.

If (A3) for λijkl is 0/0, i.e. µlij = 0 and µkij = 0, we have that µmij 6= 0 (since λijlm is assumed
to be defined by (A3)) and λijlm = 0/µmij = 0. Also, λijkm = µkij/µmij is defined and equal to
zero and (λ3) is obeyed. Similarly, in the case where (A3) is λijkl =∞/∞, (λ3) is obeyed since
λijlm = λijkm =∞. 2
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