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Parametric excitation of AlfvSn and acoustic waves
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The nonlinear interaction between two Alfve'n waves and a sound wave is studied,
using the normal-mode approach. This leads, in a simple way to a set of coupled
equations, and consequently to a dispersion relation for the waves under con-
sideration. I t is shown that a large-amplitude Alfve'n wave can give rise to two
distinct types of parametric instabilities, namely the oscillating and the purely
growing waves. In each case, the expressions for the threshold pump intensity,
the frequency shift and the growth rate of the excited waves are obtained. In
particular, the results for a propagating pump under perfect frequency matching
conditions are compared with those of Sagdeev & Galeev.

1. Introduction
I t is well known that an electromagnetic wave, above a certain threshold

intensity, can excite other plasma waves through the parametric coupling
mechanism. These effects, presumably responsible for various observed pheno-
mena (e.g. anomalous reflection and enhanced absorption of laser radiation),
have recently been of interest, both in the domain of laser fusion and in iono-
sphere research (DuBois, 1972).

In this paper we study the interaction of two Alfve'n waves and a sound wave,
using the coupled-mode theory, where both the frequency mismatch and the
finite wavelengths of the waves are taken into account. One of the interests of
this problem lies in the fact that a large amplitude Alfve'n wave is an exact solu-
tion of the nonlinear MHD equations. Resonant harmonic generation being
absent, the main nonlinear mechanism responsible for the decay of this wave
should be its coupling with another Alfven and a sound wave. This coupling
process can be studied by various well-known methods (Kadomtsev 1965;
Sagdeev & Galeev 1969). Here, the normal-mode approach will lead in a simple
way to a set of first-order differential equations.

In § 2 we obtain the normal modes of the Alfve'n and sound waves within
a linear analysis of the MHD equations. In § 3 we derive a coupled set of equations
for the three-wave interaction. In §4 we consider the case of a large-ampli-
tude Alfve'n wave acting as a pump to excite another Alfve'n and a sound wave.
I t is shown that, according to the nature of the pump wave (standing or
propagating), there can exist two distinct types of parametric instabilities
(§§4.1 and 4.2).
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446 N. T. Hung

2. The linear equations
Let us consider the case of Alfve'n and sound waves both propagating along an

externally-imposed magnetic field, in a uniform, unbounded plasma. The equili-
brium state of the plasma is characterized by a density p0, a scalar pressure p0,
a zero drift velocity (Vo = 0), and a steady magnetic field Ho = Hoz.

In an ideally conducting, compressible plasma, the Alfvdn wave, as well as
the acoustic wave, can be appropriately described by the MHD equations
(Van Kampen & Felderhof 1967)

J V = 0, (la)

^ V ? - i H x ( V x H ) J (16)

^ - = V x ( V x H ) , (lc)

together with an equation of state

To obtain some approximate solution of this highly nonlinear coupled system,
we shall first study its normal modes within a linear analysis.

Let
H = H 0 + H ± , V = V,, + VJL, p = Po+p, (2)

where the subscripts || and ± refer to the components parallel and perpendicular
to the static magnetic field. The linearized form of (1) can be expressed as

, , . 2 df{p) , 2 m
where we define ci = -—— and cA = - — . (3e,j)

dp p^p 4^/90

This system can easily be solved by introducing the normal modes of the Alfv6n
and sound waves, defined as

with the coefficients cx and c2 chosen such that

da . 8b .
— = -iu)sa, — = -io)Ab, (4c, d)
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Parametric excitation 447

cjs and o)A being the frequencies of the linear waves under consideration. By
taking a linear combination of (3a, 6), one immediately gets

da, dV,

Assuming a spatial dependence of the form exp {iksz}, and using (4c) one then
obtains the dispersion law

(0% — c%k% a n d c1= ±p0ksl(Os- (6a, 6)

Thus, for a given wave vector ks, there exist two normal modes of the sound
wave ,

a+ = p+ + -$-p0 Vf ~ exp {iksz - io)st}, (7 a)

k
and a~ = p~—-p0 Ff ~ exp{iksz + io)st}. (76)

Clearly, a+ and a~ correspond to the forward and backward propagating waves
with respect to the wave vector k s (of course, ws is here defined as a real positive
quantity).

In a quite analogous way, one obtains the normal modes of the Alfve'n wave

^ - i o ) A t } , (8a)

b~ = Hz + -^H0Vj. ~ ex${ikAz + ia>At}, (86)

with the dispersion law

oA = cAkA and c2 = +

Before going on to a nonlinear analysis, let us express the perturbed quantities
p, Vt, V± and H± in terms of the normal modes a and 6. This is readily done by
means of (3) and (6)-(8):

p± = £a±, Fn± = ± - ^ - a ± , F± = + - | ^ - 6 ± , H± = ^ . (9a-d)

3. The coupled equations
We now consider the interaction between a sound wave and two Alfve'n waves

(denoted by indices 1 and 2). Here nonlinear terms corresponding to the har-
monic generation of these waves will be neglected. Equations (la-d) then
reduce to „ ~ „„

| ^ = O, (10a)

dV c%dp 1 d
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448 N. T. Hung

8\\ cA8Hx_ 8V2 cA 8H2

8t °8z~ 8z(K-Hlh

8V2 cA8H2_ 8VX _&_~8HX

8t F 0 S z ~ Kr8z PoHo
p- 8z '

where the sign ± referring to the transverse components of the Alfven waves,
has been omitted.

In a low ft plasma (c% <̂  cA), (10c-/) can be further simplified by neglecting
the first terms on the right-hand sides, because they are small compared with the
second terms.

Taking the same linear combination of (10a-/) as we did to obtain (5), we now

8a± ks 8 , „ „ x

dt 8z

8b£ 8b£
~8T±CA~8Z~

As such, this system is still intractable, except for the case of weak coupling.
But one can look for solutions in the form of plane waves with ' slowly' varying
amplitudes, i.e.

a± = A±(t) exp {iksz + i(ost} + complex conjugate, (12a)

6± = B±(t)exp{ikAz + iwAi] + complex conjugate, (126)

with (12c)

On substituting these solutions into (11a), and using (9) to express p±, H^ in
terms of a± and 6J2>

 w e readily obtainf

8t

<ox + (o2, kx + k2) + Bf B2{o)x - wa> kx + k2)

£ 2 (-(i)x-u)2,kx + k2)

~t{u>x - w2, kx - k2) + B£ B2(o)x + OJ2, kx - kt)

+ BXB£{-<J)X- w2, kx - k2) +BxB2(-o)x + w2, ̂ i - &2)]

+ complex conjugate}, (13)

where a barred quantity stands for its complex conjugate, and the abbreviation
(o), k) stands for exp {ikz — io)i).

t In calculating the coupling terms on the right-hand side of (11), one must allow for
the influence of both the forward and backward modes.
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Parametric excitation 449

Let us now consider only the interaction between three waves satisfying the
conditions

k 1 - k 2 = ks, w1-(o2 = 8 x ws. (14)

On substituting (14) into (13), and keeping only terms with approximately the
same oscillating exponentials on both sides of (13), this will reduce to

dA+ . „ o7 ^dl+
_ + ( _ 2 W s , _ 2 f c s ) _

16na)s
l

-B+B+(-8-(Ds, -2ks)-B~iBz(S-(Os, -2ks)]. (15)

Noting that the mode amplitudes are only time-dependent, we can therefore take
a space average of (15) and obtain

8A+ -U
- 1 R~, " t^i"B* exp { - i ( 5 - u>s) i) + £ f £^exp {i(8 + (os) t}]. (16a)

In a quite similar way, one gets

f)A- )'P

Ot

_
B^exV{i(8-<os)t}l (166)

_ i } + A_B± e x p { ± . { S ± ^

(16d)

Equations (16a-d) represent the nonlinear coupling between 6 normal modes
treated on the same basis. In § 4 we shall consider the case of parametric coupling
in which one of the waves has an amplitude much larger than that of the
others, and can be treated as constant.

4. The linearized coupled equations
In various situations, one deals with a strong, externally-imposed electro-

magnetic field in a plasma. The field will change the behaviour of the plasma with
respect to small disturbances. The problem then is to know how these distur-
bances will develop in the medium, and whether they can be driven unstable.

Here we consider the case of a large amplitude Alfven wave bv acting as a
pump of constant power. Using the coupled equations derived in §3, we shall
determine the conditions under which some initially small perturbation grows
in the form of an Alfven and a sound wave. Within this approximation (constant
pump power), (16) reduces to a simple set of linear equations describing the para-
metric coupling of A± and Bf:

^ ^ t}], (17a)

29 PLA 12
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450 N. T. Hung

]. (176)

(17c)

(18)

On substituting these new variables in (17), and assuming solutions of the form
exp { — icot}, we obtain

_B± = const.

Equations (17a-c) can readily be solved using the transformation

X+ = A+, X- = A- exp {2iws t},

Y+ = B£exY>{-i(S-(os)t}, Y~ = B^ exp

0) U

0 o) + 2(DS

h r2 R~+ ^ ^ />2
2 A. 1 1 2 *A.

k%Br
1677W's

167TOJ s

Kl
C( °

x+

x-

Y+

Y-

= 0, (19)

which yields the dispersion law

j + d)(o) + ws-8)

"-1 "-2 ^S &A r I -8)]. (20)

A first view of this equation suggests that one consider separately the two cases
of the standing and the propagating pump.

4.1. Standing pump
In this case, we have

and (20) takes the form

where £}

if we separate the real and imaginary parts of Qs, and write

,, K = ^

(21)

(22a)

(226, c)

(23)

then Q.r and y represent the frequency and growth (y > 0) or damping (y < 0)
rate of the sound wave, respectively. Physically, one should distinguish the two
cases: (i) Qr 4= 0, y > 0, corresponding to an oscillating instability; and (ii)
Clr = 0, y > 0, corresponding to a purely growing instability. From its structure,
it is easily shown that (22a) can admit either purely growing or oscillating solu-
tions, depending on the sign of KS.
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Parametric excitation 451

4.1.1. K8 > 0. In this case, there can only exist purely growing solutions
given by

Qr = 0, y2 = i{[(<4 - 52)2 + iKS]i - (<o% + 8% (24a, b)

The threshold pump intensity for excitation of this wave is

Km = w%8, (25 a)

or, in terms of the pump field Hf,

For a given pump intensity, the maximum growth rate is attained at

* (K

Avhich reduces to ^ = (\K)% (266)

in the case of a 'strong' pump (|Z| > o)%). For a 'weak' pump (\K\ <̂  w|) one has

8M = KI(2OJ%). (26 c)

The maximum growth rates are given by (strong pump)

yi/ = (iW. (27 o)

and (weak pump) yM = |Z|/(2w|). (276)

From these equations, it is noticeable that the maximum growth rate increases
much more sensitively with the pump power in the weak pump regime than it
does for strong pumps.

4.1.2. K8 < 0. As not in the previous case, (22a) now has only oscillating
solutions. The frequency and growth rate of the sound wave are given by

(28a)

and y2 = -&(D2
s + 82) + i((o%82-K8)i. (28b)

The threshold power for excitation of this wave is

* m = - ( < 4 - * W * ) - (29)

In the weak pump regime, the growth rate attains its maximum value

yM = [|Z|/(4ws)]i (30a)

at the perfect matching frequency

8M = o)s. (306)

Then, the frequency of the sound wave becomes

- ( 3 0 c )

29-z
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452 N. T. Hung

For a strong pump, one obtains

In both cases (!£<£ > 0 and K8 < 0), K is allowed to be either positive or negative
corresponding to the forward or backward scattering of the Alfven wave, respec-
tively.

4.2. Propagating pump
This is the case where

Bi = 0. (32)

From (176) and (20), one sees that the backward mode 6f is not excited, while
the three modes a+, a~ and b£ are coupled according to the dispersion relation

-8)-\K = 0, (33a)

or Q.%-SD.%-w% £ls + dw1s-%K = 0, (336)

which can admit unstable solutions if the pump intensity exceeds the threshold
value

Km = M ~ $* + 9*4 + (3*4 + <*¥]• (34)

For \K\ > \Km\, the frequency and growth rate of the (unstable) sound wave
are given by

where

± [(-S> + M(4-Y-^)2-(3w| + «J2)W (35c)

In the low threshold region, (35) yields the values

8
3

and v - P ^ - * ^ - * & - * * ( 9 * 4 - * ) ] *
and 7 -
Putting 5 = o)s in (36), one obtains

S a n d y-i(-|)*-
This can be compared with the results of Sagdeev & Galeev (1969) in the same

situation (i.e. propagating pump under perfect matching conditions), written in
our notation

nr = <»s> y = ( - * H ) * , (38a, b)

where one notices that the frequency shift is zero, and the growth rate is twice
that given by (376). While the first discrepancy stems from the space and time
averaging process used in their theory, the second is due to the fact that they have
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Parametric excitation 453

not accounted for the ' slow-time' dependence of the fluid density in the mass
conservation equation. Also their theory, using the space and time averaging,
does not allow for any frequency mismatch; neither does it allow for any in-
fluence of the backward sound wave.

5. Conclusion
From the foregoing analysis, it appears that (i) a standing pump can excite

both oscillating and non-oscillating sound waves ; (ii) a propagating pump can
excite only propagating waves; (iii) owing to its low frequency (compared with
the Alfve"n wave), the backward sound wave can couple efficiently with the
Alfven waves; (iv) the growth rates of the excited waves depend on the pump
intensity in a characteristic way (K, Ki or K$), according to the pump regime
(weak or strong). Finally, in §4 we assumed that the pump amplitude
remains constant during the coupling process. Although this is a very good
approximation in the case of parametric excitation, it can be easily avoided.
In fact, solutions to the nonlinear system (16) can be expressed exactly in terms
of elliptic integrals (Amstrong et al. 1962).

The author thanks Dr F Hofmann and Professor E. S. Weibel for reading the
manuscript and commenting on it. This work was performed under the auspices
of the Fonds National Suisse de la Recherche Scientifique.
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