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S U M M A R Y
The purpose of this study is to evaluate the resolution potential of current finite-frequency
approaches to tomography, and to do that in a framework similar to that of global scale
seismology. According to our current knowledge and understanding, the only way to do this
is by constructing a large set of ‘ground-truth’ synthetic data computed numerically (spectral
elements, finite differences, etc.), and then to invert them using the various available linearized
techniques. Specifically, we address the problem of using surface wave data to map phase-
velocity distributions. Our investigation is strictly valid for the propagation of elastic waves
on a spherical, heterogeneous membrane, and a good analogue for the propagation of surface
waves within the outermost layers of the Earth. This amounts to drastically reducing the
computational expense, with a certain loss of accuracy if very short-wavelength features of a
strongly heterogeneous Earth are to be modelled. Our analysis suggests that a single-scattering
finite-frequency approach to tomography, with sensitivity kernels computed via the adjoint
method, is significantly more powerful than ray-theoretical methods, as a tool to image the fine
structure of the Earth.

Key words: Surface waves and free oscillations; Seismic tomography; Wave scattering and
diffraction.

1 I N T RO D U C T I O N

Surface waves propagate within the outermost shells of the Earth.
While earthquakes and seismic stations are non-uniformly dis-
tributed all over the globe, surface waves travel through remote
regions where no stations can be placed. They sample the Earth’s
upper mantle relatively uniformly. Depending upon their frequency,
surface waves are sensitive to different depth ranges in the man-
tle. For these reasons, observations of surface waves are a valuable
source of information on the global structure of the Earth. Many
studies have been conducted to measure phase anomalies of sur-
face waves with respect to an a priori reference Earth (Laske 1995;
Trampert & Woodhouse 1995, 1996, 2001; Laske & Masters 1996;
Ekström et al. 1997; van Heijst & Woodhouse 1999). They lead
to excellent databases of phase anomalies for surface waves with
periods down to approximately 35 s. The measurement techniques
differ in the details (Trampert & Woodhouse 2001), but share the
main principle, which consists of filtering the seismograms around
a period of interest within a narrow frequency band. The signal can
also be decomposed into fundamental-mode and overtones as well
as arrivals for multiple orbits. Synthetic seismograms are computed
in a chosen, usually spherically symmetric, reference model. The
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phase anomalies are determined with respect to such synthetic seis-
mograms by cross-correlation or other procedures (e.g. a downhill-
simplex algorithm as in Ekström et al. 1997).

Once a number of source–station average dispersion curves have
been measured, an inverse problem can be formulated, to deter-
mine the structure through which the surfaces waves travelled. Very
large databases of phase-anomaly measurements are usually in-
verted for local phase velocities, leading to global phase-velocity
distributions—which are, to first order, a linear combination of the
underlying 3-D velocity structure. Before a seismic image is used
for geodynamical interpretation or other applications, its resolu-
tion must be known. The resolving power of tomographic imag-
ing is influenced by many factors, for example, by data cover-
age and measurement quality. It is often investigated by so-called
checkerboard tests (Lévêque et al. 1993), solving for resolution
radii (e.g. Trampert & Woodhouse 1996) or by examining the full
resolution matrices (e.g. Boschi 2003; Boschi et al. 2007). All these
studies are limited, in that the approximate theory used to formulate
the inverse problem (ray theory) coincides with the theory used to
compute synthetic data: inaccuracies in model resolutions resulting
from inaccuracies in the approximate formulations of wave prop-
agation cannot be estimated (Lévêque et al. 1993). In principle,
one can overcome this problem by computing synthetic data with
a completely numerical forward approach. Numerical forward sim-
ulations using different solution models can also identify model
errors independent of their employed inversion methods, and thus
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Tomographic resolution of ray and finite-frequency methods 625

objectively discriminate between the found solution models. Un-
fortunately, for a fully realistic 3-D earth model, this is extremely
expensive (Qin et al. 2008), resulting in a very limited amount of
available synthetic data.

Concerning the theories involved in the formulation of the inverse
problem, global tomography has mostly relied on ray theory due to
its intuitive physical interpretation and computational efficiency.
When inverting for a phase-velocity model, ray theory requires the
assumption that any perturbation of phase is due to a perturbation
in phase velocity somewhere along the ray path of the consid-
ered phase. Especially for surface waves at longer periods, further
away from the regime where ray theory is valid, this approximation
might limit significantly tomographic resolution. Single scattering
of surface waves causes phase-anomaly measurements made over a
finite-frequency band to be sensitive to phase-velocity perturbations
distributed over large areas on the globe, and not only on the ray
(Woodhouse & Girnius 1982; Meier et al. 1997; Marquering et al.
1998; Spetzler et al. 2002; Zhou et al. 2004; Yoshizawa & Kennett
2005; Boschi 2006; Peter et al. 2007). These sensitivity areas, some-
times referred to as Born kernels (Marquering et al. 1998; Dahlen
et al. 2000; Hung et al. 2000), are unique for every single measure-
ment. In the presence of adequate data coverage, finite-frequency
theory is expected potentially to reveal phase-velocity struc-
tures with spatial scalelengths smaller than the wavelength under
consideration.

In the past, comparisons made between ray and finite-frequency
theory have not decisively determined whether or not current formu-
lations of finite-frequency theory improve the resolution of tomo-
graphic images. Zhou et al. (2005) showed an improvement when
analytical finite-frequency theory was employed in 3-D inversions
for seismic velocities. They also concluded that the 2-D problem
of deriving phase-velocity maps was limited due to fact that it
inherently uses ray-theoretical assumptions for the description of
scattering, especially when simplifying its dependence upon depth.
However, the statistical significance of such improvements remains
to be determined. Concerning the inversion of phase-anomaly obser-
vations, Spetzler et al. (2002), Trampert & Spetzler (2006), Boschi
(2006) and Peter et al. (2007) found that phase-anomaly observa-
tions for Love waves at intermediate to long periods were equally
well inverted by rays and by Born kernels. The same can be deduced
from Sieminski et al. (2004) at the regional scale, where a test with
synthetically computed fundamental Rayleigh-wave data and a re-
alistic distribution of events and stations suggested no improvement
when using finite-frequency sensitivity kernels. On the other hand,
Ritzwoller et al. (2002) inverted surface wave group-velocity mea-
surements for group velocity models and found a clear difference at
all periods between ray-theoretically and finite-frequency derived
maps.

In this study, we compare different tomographic algorithms based
on ray versus single-scattering finite-frequency theory. In Sections 2
and 3, we first consider the forward problem of predicting phase
anomalies for a given phase-velocity model. In the first part of this
study, we derive an asymptotic expression for membrane waves
travelling on a sphere. This analytical expression can further be
used to calculate waveforms for heterogeneous background mod-
els, once the ray path between source and station is found. We
validate phase-anomaly predictions made by exact ray and finite-
frequency theories, comparing them with numerical ‘membrane-
wave’ results. In the second part of this study, we measure the accu-
racy of tomographic algorithms based on linearized ray-theory and
finite-frequency tomography. The effects of scalelength, amplitude,
noise and wavelength upon the imaging process are all specifically

evaluated. To calculate synthetic data, we simplify the numerical
approach by employing the membrane-wave method to simulate
non-linear surface wave propagation effects for a laterally hetero-
geneous Earth. The synthetic databases are comparable in size to
existing ones. We invert Love waves at intermediate to long periods
with a realistic source–station distribution. Additionally, we inves-
tigate the effects of realistic noise in the data upon the inversion
solutions and show to which extent they complicate comparisons
between ray and finite-frequency theories.

2 A S Y M P T O T I C T H E O RY F O R
M E M B R A N E WAV E S

To obtain the asymptotic, monochromatic waveforms of waves
propagating on a heterogeneous membrane (Tanimoto 1990; Tape
2003; Peter et al. 2007), we first derive a travelling-wave expression
of membrane waves for a homogeneous model. To then account
for lateral heterogeneities, we calculate the phase and amplitude
anomalies for a laterally heterogeneous phase-velocity distribution
by a ray tracing algorithm. We use them to correct the homogeneous
waveforms.

2.1 From standing waves to travelling waves

The idea is to start from a standing-wave representation of mem-
brane waves and derive an analytical, asymptotic formulation in
terms of travelling waves. Following the work of Gilbert (1976), we
will conduct here a simplified treatment for waves propagating on
a zero-thickness, spherical membrane (Tanimoto 1990). Motion on
a membrane with wave velocity c is described by the equation[

1

c2 (θ, φ)
∂2

t − ∇2
1

]
u (θ, φ, t) = f (θ, φ, t) , (1)

(e.g. Peter et al. 2007), where the displacement u(θ, φ, t) depends
on colatitude θ , longitude φ and time t, while ∂t and ∇2

1 denote
time derivation and surface Laplacian on the sphere, respectively.
We prescribe a forcing term

f (θ, φ, t) = e−�2/2μ2

μ2

−t

σ 2

e−t2/2σ 2

√
2πσ

, (2)

with arc-distance from the source � ∈ [0, π ]. The source param-
eters σ and μ govern the characteristic frequency content of the
source. An analytical solution u(θ, φ, t) is available for a constant
velocity c0 (Tape 2003, eq. 3.34):

u(θ, φ, t) = c2
0

∞∑
l=0

(
l + 1

2

)
Il (μ) cos(ωl t) e−ω2

l
σ2
2 Pl (cos θ ), (3)

with Pl denoting the Legendre polynomials of degree l. The angular
frequency ωl at degrees l = 0, 1, 2, . . . is given by

ωl = c0

√
l(l + 1)

a
(4)

for a given surface radius a. The integrals

Il (μ) =
∫ π

0
Pl (cos(α))

e
− α2

2μ2

μ2
sin(α) dα (5)

can be evaluated numerically. Note that the waveform u(θ, φ, t)
due to this initial source and given by eq. (3) is represented as a
standing-wave summation.
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2.1.1 Asymptotic approach and orbit separation

We rewrite eq. (3) with an asymptotic expression for the Legendre
polynomials Pl (Gilbert 1976, eq. 9), valid for large degrees l.
Additionally, we substitute λ = l + 1

2 and separate even from odd
orbits, following the derivation of Ferreira (2005, appendix B1).
Hence, we can rewrite

u(θ, φ, t) =
∞∑

λ= 1
2 , 3

2 ,...

[
f+(λ)eiλθ + f−(λ)e−iλθ )

]
cos(ωλt), (6)

where

f+(λ) = 1

2
c2

0 λ Iλ(μ)

{
2

πλ sin(θ )

} 1
2

e−ω2
λ

σ2
2 e−i π

4 , (7)

f−(λ) = f ∗
+(λ), (8)

with ∗ denoting a complex conjugate. The coefficients f+ belong
to waves for even orbits while the coefficients f− to those for odd
orbits. From the standing-wave solution (6), applying Poisson’s for-
mula and transforming to frequency domain, we find the expression

u(θ, φ, ω) =
∞∑

s=−∞
(−1)s

∫ ∞

0

[
f+(λ)e−iλ(2πs−θ)

+ f−(λ)e−iλ(2πs+θ)
] ω

i
(
ω2 − ω2

λ

) dλ, (9)

which has single poles at ω = ±ωλ. Taking advantage of the gen-
eral dispersion relation ω(λ), which for the membrane-wave model
becomes

ωλ ≈ c0 λ

a
, (10)

we apply Cauchy’s residue theorem to obtain

u(θ, φ, ω) ≈
∞∑

s=−∞
(−1)s

[
f+(λ(ω))e−iλ(ω)(2πs−θ)

+ f−(λ(ω))e−iλ(ω)(2πs+θ)
]2πa

c0
,

(11)

where terms f±(−λ(ω)) are ignored. Finally, eq. (11) is Fourier-
transformed back to time domain to find the travelling-wave solution

u(θ, φ, t) ≈ 1

2π

∫ ∞

∞

∞∑
s=−∞

(−1)s
[

f+(λ(ω))e−iλ(ω)(2πs−θ)

+ f−(λ(ω))e−iλ(ω)(2πs+θ)
]2πa

c0
eiωt dω.

(12)

2.2 Travelling waves on a homogeneous membrane

The travelling-wave solutions for different orbits follow from the
expression (12). For example, for odd orbits we set f+(λ(ω)) ≡ 0
and use s = 0, 1, 2, . . . for the first, third, fifth and so on orbit. The
corresponding expressions for the first and third orbits are

R1: u(θ, φ, t) ≈ a

c0

∫ ∞

−∞
f−(λ(ω))e−iλ(ω)θ eiωt dω, (13)

R3: u(θ, φ, t) ≈ − a

c0

∫ ∞

−∞
f−(λ(ω))e−iλ(ω)(2π+θ)eiωt dω. (14)

For even orbits, we set f−(λ(ω)) ≡ 0 and use s = 1, 2, 3, . . . for
the second, forth, sixth and so on orbits. The following expressions
are for the second and fourth orbits:

R2: u(θ, φ, t) ≈ − a

c0

∫ ∞

−∞
f+(λ(ω))e−iλ(ω)(2π−θ)eiωt dω, (15)

R4: u(θ, φ, t) ≈ a

c0

∫ ∞

−∞
f+(λ(ω))e−iλ(ω)(4π−θ)eiωt dω. (16)

To plot the corresponding waveform solutions, we calculate the
integrands of eqs (13) to (16) at each ω explicitly, and use a nu-
merical integration to find u(θ, φ, t). The Legendre polynomials Pl

for non-integer values of the angular degree l(ω) = λ(ω) − 1
2 , with

λ(ω) =
√

ω2a2

c2
0

+ 1
4 , are found numerically by spline interpolation.

Similarly, the integrals Il (μ), given by eq. (5), were interpolated by
splines for non-integer values of the angular degree l(ω).

2.2.1 Waveform example

We choose an initial source–station pair with epicentral distance of
about 90◦ and compare the asymptotic solution against the numer-
ical one. Fig. 1 shows the waveform for the fourth orbit obtained
by the asymptotic approach of eq. (16) together with the numerical
solution, calculated by finite-differences integration on a spherical
membrane (Peter et al. 2007). Note that the numerical solution pro-
vides all orbits up to the end time of the computation. The asymptotic
waveform has a slightly smaller amplitude at maximum displace-
ment than the numerical one. The phase offset between the two is
small. The agreement in this homogeneous case is good enough to
proceed and obtain an asymptotic trace for a laterally heterogeneous
model.

2.3 Ray theory on a heterogeneous membrane

The asymptotic approach provides us with a waveform for a ho-
mogeneous membrane-wave model. To extend the treatment of
Section 2.2 to the heterogeneous case, we first use the laws of
optics to determine the ray path travelled by a wave (Woodhouse &
Wong 1986; Boschi & Woodhouse 2006), then compute the phase
by integration along such a ray.

2.3.1 Ray tracing

To calculate the phase ψhet for a heterogeneous background model

ψhet =
∫

ray

ω

c(θ, φ)
ds (17)

with local phase velocities c(θ, φ), we need to compute the corre-
sponding ray between the seismic source and a receiver station, a
problem treated by Woodhouse & Wong (1986) for the sphere. For
brevity, we just give the two equations which relate to our case here.
We simultaneously solve for γ (φ) ≡ cot θ and γ ′(φ) = dγ

dφ
(φ) in

eqs (33) and (38) of Woodhouse & Wong (1986):

d2γ

dφ2
+ γ =

(
ν2

1 + γ 2

)
(∂θ − ν∂φ) ln c(θ, φ), (18)
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Figure 1. Waveform solutions on a spherical membrane by the asymptotic approach for the fourth orbit (green), or calculated numerically (red) with the
finite-differences membrane-wave model of Peter et al. (2007).

d2γ ′

dφ2
+ γ ′ = 2ν

1 + γ 2

(
ν ′ − νγ γ ′

1 + γ 2

)
(∂θ − ν∂φ) ln c(θ, φ)

−
(

ν2

1 + γ 2
+ 1

)
γ ′

1 + γ 2

(
∂2

θ − ν∂θ∂φ

)
ln c(θ, φ)

−
(

ν2

1 + γ 2
+ 1

)
ν ′∂φ ln c(θ, φ), (19)

where ν(φ) ≡ −γ ′(φ) = − dγ

dφ
(φ) and ′ denotes differentiation

with respect to the initial value of ν, at constant φ. The boundary
conditions are γ ′(0) = 0 and ν ′(0) = 1. It should be clear that
in this formulation the colatitude θ is a function of longitude φ,
describing the ray.

2.3.2 Ray-theoretical traveltime anomalies

Let us rotate the reference frame such that source and receiver are
located on the equator. φk becomes the epicentral distance between
source and receiver. For a homogeneous reference model, the phase
ψhom(φk) can be written as

ψhom(φk) =
∫

ray

ωa

c0
dφ = ωaφk

c0
, (20)

where a is the Earth’s radius and c0 the constant phase velocity for
the reference model. The phase anomaly δψ is defined as the differ-
ence in phase from that in the reference model, that is (Woodhouse
& Wong 1986, eq. 42)

δψ(φk) ≡ ψhet(φk) − ψhom(φk) (21)

= ωa

c0

∫ φk

0

⎡
⎣ c0

c(θ, φ)

{
ν(φ)2[

1 + γ 2(φ)
]2

+ 1

1 + γ 2(φ)

} 1
2

− 1

⎤
⎦dφ.

(22)

Note that the phase anomaly δψ is calculated for a single frequency
ω = 2π

T̂
at a certain reference period T̂ .

We use local phase velocities c(θ, φ) which are derived from
maps of relative phase-velocity perturbations δc(θ,φ)

c0
= c(θ,φ)−c0

c0
at

given T̂ taken from Trampert & Woodhouse (1995). We can define

y(φk) =
∫ φk

0

⎡
⎣ c0

c(θ, φ)

{
ν(φ)2[

1 + γ 2(φ)
]2

+ 1

1 + γ 2(φ)

} 1
2

− 1

⎤
⎦ dφ,

(23)

so that

dy

dφ
= c0

c(θ, φ)

{
ν(φ)2[

1 + γ 2(φ)
]2

+ 1

1 + γ 2(φ)

} 1
2

− 1. (24)

This can be solved simultaneously with the other eqs (18) and (19)
from above. We prefer working with traveltime anomalies, thus
we make use of the identity between relative phase anomalies and
relative traveltime anomalies δψ

ψhom
= δT

T0
, where T0 denotes the

traveltime for the reference model. From eq. (20), we find

δψ = ψhom
δT

T0
= ωaφk

c0

δT c0

aφk
= ωδT . (25)

3 C O M PA R I S O N O F D I F F E R E N T
A P P ROA C H E S T O T H E F O RWA R D
P RO B L E M

To compare predictions of traveltime anomalies, we model an ar-
ray of 38 receivers located at about 90◦ epicentral distance from
one source at 0◦N, 0◦E. The heterogeneous phase-velocity model
for Love waves at about 150 s period is taken from Trampert &
Woodhouse (1995). We conduct a series of independent experi-
ments, where we expand the model up to degrees 4, 8, 12 or 20,
respectively. The setup is similar to the one used in Tape (2003). For
each source–station pair, we consider arrivals up to the fourth orbit,
thus at least 152 prediction values are compared for each of the
four different models. The numerically derived values, which are
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628 D. Peter, L. Boschi and J. H. Woodhouse

Figure 2. Ray-theoretical predictions of traveltime anomalies δT (RAY) using exact rays (exact) given by eqs (18) and (19) and linear/great-circle rays (linear)
are plotted in blue and green, respectively, against the numerically calculated, ground-truth ones (numerical traveltime anomaly) for 38 source–station pairs
with about 90◦ epicentral distance. The source is located at 0◦N/0◦E. The phase-velocity map is taken from Trampert & Woodhouse (1995) filtered to maximum
harmonic degrees (a) 4, (b) 8, (c) 12 and (d) 20. δT predictions for the first orbit are plotted as squares, second orbit as diamonds, third orbit as triangles
and fourth orbit as circles. The grey shaded area around the diagonal indicates the standard deviation of 5.7 s for traveltime measurement errors estimated by
Ekström et al. (1997) for Love waves at 150 s period.

recalculated for each model with different degrees of complexity,
can be seen as the ‘true’ values, which the predicted ones should
match in an ideal case.

3.1 Evaluation of ray theory

We first compare the ray-theoretical predictions of traveltime
anomalies against numerically calculated traveltime anomalies. A
reference trace for the homogeneous model and a second trace
for the heterogeneous model are computed numerically with the
finite-differences approach of Peter et al. (2007). We bandpass-
filter the two numerical traces around an angular frequency ω, for
which we have also determined ray-theoretical traveltime anoma-
lies δT according to eq. (25). The ray-theoretical predictions are
calculated for both exact rays as are given by eqs (18) and (19), and
great-circle rays corresponding to the first-order approximation. The
bandpass-filter uses a half-bandwidth of 2.5 mHz around the centre
frequency ω. Following Ekström et al. (1997), we then determine
the corresponding numerical traveltime anomaly by a non-linear
downhill-simplex algorithm (Nelder & Mead 1965). We checked
this algorithm against a cross-correlation measurement technique
and found almost identical results for the phase anomalies.

Fig. 2 compares the traveltime anomalies δT calculated by
eq. (25) for exact and linear ray theory with the corresponding mea-
surements derived from the numerical simulation. Values on the di-
agonal correspond to perfect agreement. We see that ray theory pre-
dicts the first-orbit anomalies accurately; for higher orbits (shown
with different symbols), the values are more scattered around the
diagonal, particularly for models with energy at increasingly high
harmonic degrees (compare Fig. 2a with Figs 2b–d). In general, the
plots of Fig. 2 are in agreement with the results of Tape (2003).
Particularly large differences between the ray-theoretical prediction

and the ground-truth value for higher orbits and expansions are ob-
served when multiple ray paths between source and receiver location
exist (in such cases, we plot in Fig. 2 the traveltime anomaly calcu-
lated from the phase-anomaly associated with the first ray found by
our ray tracing algorithm).

As expected, predictions from linearized ray-theory using only
great-circle rays degrade faster than predictions from exact ray the-
ory, particularly for higher-orbits and higher-degree heterogeneity.
However, for 150 s Love waves at least, differences between ex-
act and linear predictions for first- (and second) orbit arrivals are
smaller than the phase-anomaly measurement error as estimated by
Ekström et al. (1997). Interestingly, traveltimes for both linearized
and exact rays appear to be slightly biased towards earlier (negative)
traveltime anomalies in our study. This is explained by the distri-
bution of our sources and stations, which for the 150 s Love-wave
phase-velocity map of Trampert & Woodhouse (1995) results in
waves travelling mostly through faster-than-average regions.

3.2 Evaluation of finite-frequency theory

We also consider the traveltime anomalies δT predicted on the
basis of the finite-frequency kernels derived by the single-scattering
approximation, specifically the numerical kernels Knum(θ, φ) from
Peter et al. (2007). These kernels were derived by the adjoint method
(Tromp et al. 2005, and references therein) and computed for both
homogeneous and heterogeneous background models. We calculate
the corresponding traveltime anomaly δT by integrating

δT

T0
=

∫
�

Knum(θ, φ)
δv

v0
d� (26)

over the surface � of the membrane, and multiplying with the
reference traveltime T0 of the homogeneous case. δv

v0
denotes
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Tomographic resolution of ray and finite-frequency methods 629

Figure 3. Finite-frequency predictions of traveltime anomalies δT (FF) calculated via eq. (26) are plotted versus the numerically calculated ones (numerical
traveltime anomaly), employing sensitivity kernels computed for both homogeneous (hom) and the corresponding heterogeneous (het) background phase-
velocity maps. Source, stations and earth model are the same as in Fig. 2. The phase-velocity map from Trampert & Woodhouse (1995) is filtered to maximum
harmonic degrees (a) 4, (b) 8, (c) 12 and (d) 20. δT predictions for the first orbit are plotted as squares, second orbit as diamonds, third orbit as triangles and
fourth orbit as circles.

Figure 4. Example of numerical sensitivity kernels (Peter et al. 2007), based on the adjoint method, used for the predictions of traveltime anomalies (FF, hom)
in Fig. 3 for the source located at 0◦N/0◦E and a receiver at 0◦N/90◦E. Plotted are the relative traveltime kernels for the (a) first, (b) second, (c) third and (d)
fourth orbits.

relative phase-velocity perturbations in the model of Trampert &
Woodhouse (1995) expanded up to degrees 4, 8, 12 or 20. Fig. 3
compares the traveltime anomalies δT calculated this way, with
the corresponding ground-truth ones. The kernels Knum(θ, φ) are
computed for every orbit separately. An example of the numerical
kernels based on the homogeneous background model for a partic-
ular source–station pair for all four orbits is given in Fig. 4. Note

that the shape of the kernels is strongly affected by the filtering at
150 s period (corresponding to the measurement technique) with a
half-bandwidth of 2.5 mHz.

Analysing the scatter in Figs 2 and 3, we find that finite-frequency
predictions are more accurate than the ray-theoretical ones of Fig. 2
only for the first orbit. As a quantitative measure of scatter, we used
a linear regression to calculate the rms of the residuals shown in
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630 D. Peter, L. Boschi and J. H. Woodhouse

Table 1. rms values of the residuals for a linear regression through the predicted traveltimes anomalies
δT versus the ‘ground-truth’ numerical ones shown in Figs 2, 3 and 5.

(s) 1. orbit 2. orbit 3. orbit 4. orbit

lmax 4 RAY exact/linear 0.1 / 0.1 0.2 / 0.9 0.3 / 1.5 0.3 / 3.2
FF het/hom(/ana) 0.1 / 0.1 / 0.1 0.7 / 1.0 / 0.8 1.3 / 1.6 2.9 / 3.7

lmax 8 RAY exact/linear 0.2 / 0.4 1.2 / 4.8 2.0 / 4.6 3.4 / 12.9
FF het/hom(/ana) 0.3 / 0.3 / 0.4 5.3 / 4.9 / 4.6 4.7 / 4.3 13.6 / 13.5

lmax 12 RAY exact/linear 0.7 / 0.7 3.2 / 7.5 5.0 / 8.3 7.9 / 19.3
FF het/hom(/ana) 0.4 / 0.5 / 0.5 7.6 / 7.4 / 7.0 9.5 / 7.9 19.3 / 19.2

lmax 20 RAY exact/linear 1.3 / 1.1 7.1 / 10.4 9.4 / 10.8 27.2 / 31.6
FF het/hom(/ana) 0.5 / 0.6 / 0.7 9.9 / 8.6 / 8.8 17.4 / 9.1 42.8 / 29.8

Note: Values are given for exact (exact) and linearized (linear) ray theory (RAY), numerical
finite-frequency sensitivity kernels (FF) computed with homogeneous (hom) and heterogeneous (het)
phase-velocity maps of the corresponding different background phase-velocity maps filtered to degree
(lmax) 4, 8, 12 and 20 for all orbits. rms values for analytical finite-frequency kernels (ana) are given for
1. and 2. orbits. Grey-coloured fields indicate an rms value for linearized ray-theory greater than the
standard deviation of 5.7 s estimated by Ekström et al. (1997).

Table 1, which for linear ray-theoretical predictions of first-orbit ar-
rivals range between 0.1 and 1.1 s for the background phase-velocity
map filtered to degrees 4, 8, 12 and 20 (Figs 2a–d). The corre-
sponding rms ranges for residuals of the finite-frequency predic-
tions using homogeneous background kernels of first-orbit arrivals
shown in Figs 3(a)–(d) are between 0.1 and 0.6 s. At higher orbits,
the situation is reversed, with exact ray theory predicting ground-
truth traveltime anomalies more accurately than the finite-frequency
kernels. We tested also predictions from analytical kernels for the
first and second orbit, calculated as in Spetzler et al. (2002). Their
analytical kernels are computed with ray theory, like the ones from
Zhou et al. (2004) or Ritzwoller et al. (2002). The scatterplot results
shown in Figs 5(a)–(d) are analogous to those found from numer-
ical kernels. The rms residuals for numerical (heterogeneous and
homogeneous) and analytical finite-frequency predictions shown in
Table 1 follow in general the values associated with linearized ray
theory. Finite-frequency kernels suffer, especially for higher orbits,
from their inherent linearity. A similar effect has been noted in
attempts to compute higher-orbit waveforms by the Born approxi-
mation (Capdeville 2005, see fig. 8), demonstrating that non-linear
effects become significant for longer travel distances.

In general, the accuracy of prediction depends upon the ratio
of the scalelength � of heterogeneities to the width W of the first
Fresnel zone. Baig et al. (2003) and Dahlen (2004) define a dimen-
sionless ‘doughnut-hole’ parameter D valid for their 3-D sensitivity
kernels in a cartesian box model

D3-D = �

W
= �√

λL
(3-D cartesian), (27)

where L denotes the travelled distance and λ the wavelength.

Spetzler & Snieder (2001) adapted the width W =
√

3
2 λ tan( L

2 )

to spherical geometry, limited to the 2-D (surface wave phase ve-
locity) case, thus

D2-D = �

W
= �√

3
2 λ tan( L

2 )
(sphere). (28)

Theoretically, it is assumed that for D → ∞, ray-theoretical pre-
dictions would become perfectly accurate.

For wave propagation in a weakly heterogeneous, 3-D carte-
sian box, Baig et al. (2003) found that finite-frequency predic-
tions are accurate for D3-D ≥ 0.1, and ray-theoretical ones only
for D3-D ≥ 0.5. Yang & Hung (2005) found that for analytical

finite-frequency sensitivity kernels, in a similar 3-D case, travel-
time predictions are only accurate for weakly heterogeneous media
with perturbations ≤3 per cent. Their Fig. 2 shows that ‘Born’
theory predictions are less accurate than those of exact (general)
ray theory for 1.1 ≤ D3-D ≤ 1.5. In our heterogeneous models,
phase-velocity perturbations can amount to about ±6 per cent, and
depending upon the maximum degree of harmonic expansion, �

varies between 1953 and 8896 km, with corresponding doughnut-
hole parameters 0.7 ≤ D2-D ≤ 3.4 (for our first-orbit kernels with
90◦ epicentral distances). Only for first-orbit arrivals, we found
finite-frequency kernels to perform similarly to or better than exact
ray theory as a solution to the forward problem. Finite-frequency
predictions otherwise follow the same error trend as linearized
ray-theory.

3.3 Multiple ray path example

For higher-orbit arrivals and higher maximum degree phase-
velocity maps, there are cases where multiple rays are found (see
also Tape 2003; Ferreira & Woodhouse 2007). A reference case
shown in Fig. 6 is chosen here for a source–station pair such that
we obtain three ray paths, for the fourth orbit, which arrive at the
same station location (source at equator 0◦N/0◦W, station at about
25◦N/90◦W). Rays are traced, and phase calculated in the 150 s
Love-wave phase-velocity map of Trampert & Woodhouse (1995),
with a spherical harmonics expansion up to degree 10. The con-
sidered case is the only multipathing occurrence found for this
phase-velocity map and maximum harmonic degree, among 38 in-
vestigated source–station pairs with about 90◦ epicentral distance.
If the model is filtered to lower harmonic degree, no multiple ray
paths are found for the same source–station pairs; at higher har-
monic degrees, multipathing becomes increasingly frequent.

The ray tracing algorithm calculates for each ray, denoted by
i = 1, 2, 3, the corresponding phase anomaly δψi , which is further
divided by the angular frequency to obtain the corresponding travel-
time anomaly δTi for monochromatic waves with a period of about
150 s. To obtain the waveform, the amplitude anomaly for each
ray is considered as well. The cumulative travelled epicentral dis-
tance from source to receiver is 630◦. The ray-theoretical predicted
values are applied to the monochromatic trace ũ(θ, φ, t) obtained
by filtering first the asymptotic waveform for the fourth orbit (see
Section 2.2). We further corrected the traveltime and amplitude
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Figure 5. Finite-frequency predictions of traveltime anomalies δT using analytical sensitivity kernels for minor- and major-arcs as described by Spetzler
et al. (2002). Source, stations and earth model are the same as in Fig. 3. The phase-velocity map from Trampert & Woodhouse (1995) is filtered to maximum
harmonic degrees (a) 4, (b) 8, (c) 12 and (d) 20. δT predictions are shown for the first (squares) and second orbits (diamonds). An example, similar to Fig. 4,
of the analytical sensitivity kernels for the source located at 0◦N/0◦E and a receiver at 0◦N/90◦E is given for the (e) first and (f) second orbits.

of the monochromatic waveform for all three rays separately by
the predicted traveltime anomaly δTi and amplitude anomaly Ai to
obtain three single waveforms

ũi (θ, φ, t) = Ai ũ(θ, φ, t + δTi ). (29)

Finally, all three waveforms are summed up to obtain the resulting
one

ũres(θ, φ, t) =
∑

i

ũi (θ, φ, t). (30)

Note that ũres(θ, φ, t) is now valid for the heterogeneous model.
Eq. (30) is also implemented via the harmonic addition theorem,

expressing the sum of n harmonic waves as

n∑
i=1

Ai cos(ωt + δψi ) = A cos(ωt + δψ), (31)

where

A2 ≡
n∑

i=1

n∑
j=1

Ai A j cos(δψi − δψ j ), (32)

tan(δψ) =
∑n

i=1 Ai sin(δψi )∑n
i=1 Ai cos(δψi )

. (33)

Hence, the resulting phase anomaly δψ , resp. traveltime anomaly
δT , and amplitude anomaly A of ũres(θ, φ, t) as defined by eq. (30)
can be calculated directly from the single predictions δψi and Ai .
We compare all values with the traveltime and amplitude anomaly
obtained by the numerical algorithm in Table 2.

We observed that the resulting, asymptotic waveform, given by
eq. (30), was shifted by about 17s and exhibited a slightly larger
amplitude of about 5 per cent with respect to the numerical, ground-
truth trace. Note that the discrepancy of these observed anomalies to
the analytical, harmonic values from Table 2 might be found in the
finite bandwidth of the single traces ũi (θ, φ, t) used for the summed
waveforms of eq. (30), while the analytical values are valid only for
monochromatic waves. Still, the traveltime anomaly of the resulting
trace ũres(θ, φ, t) is closer to the numerical, ground-truth prediction
than the single predictions for the second and third rays, but worse
than the prediction of the first ray. It is therefore crucial to find all
rays to properly account for the predicted anomalies.

Our study differs with respect to the work on synthetic seis-
mograms of a more realistic case by Wang & Dahlen (1994, see
fig. 21). We consider only the monochromatic (or very narrowly fil-
tered) waveform for an analytical source, instead of an integration
over a complete frequency range. Such an integration becomes more
expensive as for each frequency the corresponding, ray-theoretical
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Figure 6. Multiple ray paths for a reference case with the fourth-orbit arrival in a heterogeneous background phase-velocity distribution (Trampert &
Woodhouse 1995). All three rays solve the same ray tracing equations from Woodhouse & Wong (1986) leading to different phase- and amplitude-anomaly
predictions shown in Table 2.

phase and amplitude anomalies must be found first. Additionally,
we investigated especially a multiple ray path example where Wang
& Dahlen (1994) only consider single ray examples. A more sys-
tematic investigation of multipathing effects as done here could in
principle be conducted with the membrane-wave model (Tanimoto
1990; Tape 2003; Peter et al. 2007).

4 C O M PA R I S O N O F D I F F E R E N T
A P P ROA C H E S T O T H E I N V E R S E
P RO B L E M

To compare the performance of different tomographic methods in
different scenarios, we construct a number of independent databases
of ground-truth, numerically computed phase anomalies of 150 s
Love waves, and invert them either by a ray-theoretical or a finite-
frequency algorithm. Differences in the solution maps can then be
ascribed to the effects of different theoretical descriptions of seismic
wave propagation. Databases are derived from three ‘checkerboard’
phase-velocity maps of different spatial frequency, as well as from
the model of Trampert & Woodhouse (1996). We also experiment
with the amplitude of ‘input’ anomalies, and with realistic random
noise added to the synthetics. We invert each ground-truth data set
on a grid of approximately equal-area pixels, of extent 3◦ × 3◦ at
the equator. Linearized ray-theory and numerical finite-frequency
kernels (computed on a homogeneous background phase-velocity
map by Peter et al. 2007) are used independently to construct the
corresponding matrices relating phase-velocity perturbations to the
data.

Table 2. Example of multipathing, with three fourth-orbit rays joining source and receiver.

Traveltime Amplitude
anomaly s anomaly

Numerical −97.1 Numerical 1.90

ray 1 −123.6 Ray 1 0.71
ray 2 −134.4 Ray 2 0.81
ray 3 −90.2 Ray 3 1.17

harmonic −113.0 Harmonic 1.85

Note: The ground-truth value of traveltime anomaly, based on the traces computed numerically with the
membrane-wave model, is compared with the ray-theoretical predictions and the resulting values by the
harmonic addition theorem. Traveltimes and amplitudes are based on the 150 s Love-wave phase-velocity
model of Trampert & Woodhouse (1995), filtered to include only harmonic degrees 10 and lower.

In both cases, a least-squares algorithm (Paige & Saunders 1982;
implemented as in Boschi 2006) finds the phase-velocity solution
to the inverse problem, with only roughness-damping and no norm-
damping applied. We repeat the inversions with different roughness-
damping coefficients (Boschi 2006; Boschi et al. 2006; Peter et al.
2007) and visualize the ‘L-curves’, where the misfit to the data
is plotted versus the normalized model roughness (as defined by
Boschi 2006) on a log–log scale. As explained by Boschi (2006)
in his section 4 and fig. 3, if different formulations of the inverse
problem are applied, equal numerical values of the damping param-
eter do not lead to equally regularized solutions from the different
approaches: we therefore need to (1) compare entire families of
solutions and/or (2) identify an equivalent criterion to select the
damping parameter values in the two formulations. (1) We sys-
tematically visualize how solution models change as a function of
damping parameter value, merging in a single animation the se-
quence of solutions corresponding to a given surface wave mode
and a given theoretical formulation. We provide the animations
on line at www.princeton.edu/∼dpeter/inversions.html. From the
comparison of ray-theory versus finite-frequency animations, it is
apparent that the latter is performing better than the former: of the
ray-theory results, even the most similar to the input model are visi-
bly less well correlated with it than the finite-frequency ones. (2) We
choose the criterion of maximum curvature of the L-curve (Hansen
1992; Hansen & O’Leary 1993) to identify equivalently regularized
solutions from ray-theory and finite-frequency inversions. Given
the impossibility of including animated images in a traditional pub-
lication, in the following we limit ourselves to comparing specific
solutions resulting from the maximum curvature criterion.
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Figure 7. The synthetic data sets use the global distribution of sources (red stars) and stations (green triangles) taken from Ekström et al. (1997) for Love
waves at 150 s periods. They include 16 624 measurements. For each measurement, the great-circle ray is plotted between the corresponding source and station.

4.1 Data coverage

We employ the same source–station pairs as in the database
of Ekström et al. (1997), updated as described by Boschi &
Ekström (2002), for minor-arc Love waves at 150 s period. For
each source–station pair, we construct a synthetic measurement by
cross-correlation between the trace obtained for a homogeneous
background model, and the trace calculated for a corresponding
laterally heterogeneous input model. The number of synthetic mea-
surements (∼104) is therefore equal to the number of observations
in the real data set at this period. Fig. 7 shows the great-circle rays
for all measurements with the chosen source–station distribution.
The data coverage defined by the number of rays passing through
each single pixel of the inversion grid coincides with that of Pe-
ter et al. (2007, fig. 12). Regions with the highest number of ray
counts are distributed over Asia and North America. The Southern
Hemisphere in general has relatively poor data coverage.

4.2 Scalelength test

We compare the inversions of synthetic data computed from as-
sumed velocity distributions of different spatial frequencies, each
coinciding with a single spherical harmonic function (similar to
a global checkerboard). To illustrate the effect of different scale-
lengths of heterogeneities upon the performance of the inverse
method, we can either (1) change the spatial extent of the perturba-
tions in the input models or (2) consider smaller wavelengths/wave
periods.

Figs 8 and 9 show the results of experiment (1), Fig. 10 those
of experiment (2) respectively. The L-curves (defined as in Hansen
2001, eqs 12 and 13) for ray-theoretical and finite-frequency inver-
sions, with different strengths of roughness damping, are shown in
Fig. 8. For each L-curve, we calculate its curvature and select the
solution corresponding to the maximum curvature as our preferred
solution. In our synthetic test, we can calculate, for each solution, the
rms difference between solution and input phase-velocity models.
As can be seen in Fig. 8, the curvature maxima for finite-frequency
inversions are close but not necessarily identical to the solutions
with minimal rms error. The same is true in the ray-theory case.

Still, we consider solutions found by this criterion to be sufficiently
close to the optimal ones. Importantly, damping parameters cor-
responding to optimal solutions are different in the ray-theoretical
versus finite-frequency cases. In the rest of this study, we will adhere
to this maximum-curvature criterion to find equivalently regularized
solutions in ray-theoretical and finite-frequency inversions.

Fig. 8 shows the solution models that correspond to the max-
imum curvatures of the L-curves. The selected ray-theoretically
derived solutions start differing from finite-frequency solutions for
the higher-degree input models. The lengthscale of the perturbations
for the chosen input models vary in a range of ∼2000–4000 km,
that is, about three to six times the wavelength under consideration.
Fig. 10 follows the idea (2) and changes the wave period down to
100 s to derive the synthetic data sets for the two higher-degree
checkerboards of the previous example. In this case, at the highest-
degree model, the lengthscale of perturbations is about four times
the wavelength. Especially for regions with good data coverage, the
inversions can retrieve the input model fairly accurately.

From a comparison of Fig. 9(a) with Fig. 9(b) or (c), or of
Fig. 10(a) with Fig. 10(b), we infer that finite-frequency meth-
ods, applied to minor-arc phase-velocity data at the periods under
consideration, perform significantly better at smaller scalelengths
of heterogeneity than ray-theoretical methods. Differences between
ray-theoretical and finite-frequency solutions are small for low-
degree ‘input’ models (<10: Fig. 9a), but start to become signif-
icant for higher degrees (≥13: Figs 9b, c and 10b). Considering
shorter wavelengths, this effect shifts to higher spherical harmonic
degrees (compare Fig. 9b with Fig. 10a). The finite-frequency so-
lutions clearly retrieve the input structures with higher accuracy.
Differences are most prominent in regions with lower data coverage
(oceans, Southern Hemisphere), where ray theory is systematically
less accurate. As a general rule, in this ideal case without any noise
in the data, finite-frequency solutions achieve a much better datafit
than ray-theoretical ones.

4.3 Noise test

The goal here is to investigate the effect of measurement errors
on the tomographic images. Adding realistic noise to a synthetic
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Figure 8. L-curves (misfit versus normalized model roughness) for the suites of ray-theoretical (triangles) and finite-frequency (squares) synthetic inversions
described in Section 4.2. Plots from left- to right-hand side correspond to different input models, namely: (a) a single spherical harmonic of degree l = 9 and
order m = 5, (b) l = 13 and m = 7 and (c) l = 20 and m = 10. Top: L-curves shown on a log–log scale. Bottom: curvature of the L-curves, and rms of the
difference between input and output models. Vertical dashed lines mark finite-frequency solutions corresponding to the minimum difference between input and
output: importantly, they are close to the points of maximum curvature on the L-curve.

Figure 9. Inversions for Love waves at 150 s period and input models of 2 per cent perturbations and different scalelengths of heterogeneities: (a) checkerboard
defined as a single spherical harmonic of degree l = 9 and order m = 5, (b) checkerboard with l = 13 and m = 7 and (c) checkerboard with l = 20 and
m = 10. The input models are shown in the left-hand column, solutions corresponding to the maximum curvature in Fig. 8 for the ray-theoretical inversions in
the middle and finite-frequency inversions on the right-hand column.
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Figure 10. Inversions for Love waves at 100 s period and input models of 2 per cent perturbations and different scalelengths of heterogeneities: (a) checkerboard
with spherical harmonic degree l = 13 and m = 7 and (b) checkerboard with l = 20 and m = 10. The input models are shown in the left-hand column,
solutions of the ray-theoretical inversions in the middle and finite-frequency inversions on the right-hand column.

Figure 11. Using statistical noise in the synthetic data set, solutions for Love waves at 150 s period and an input model of 2 per cent perturbations are shown:
(a) with a checkerboard with l = 13 and m = 7 and (b) with a checkerboard with l = 20 and m = 10. The input models are shown in the left-hand column,
solutions of the ray-theoretical inversions in the middle and finite-frequency inversions on the right-hand column.

database is difficult, because there can be sources of systematic
errors, which are not known a priori, in the real databases. Ekström
et al. (1997) estimate the quality of their observations by comparing
measurements from pairs of nearby source–station pairs. In this,
they are able to derive a Gaussian distribution of possible errors of
the data set. The standard deviation of this Gaussian distribution
is then an estimate of the accuracy of the measurement technique.
We add Gaussian random noise to the synthetic data. The standard
deviation has the same size as that found by Ekström et al. (1997)
as described above, for the same wave period. This is about 5.7 s in
terms of traveltime shift. The error in the synthetic data set is also
checked by the same searching algorithm of pairs of source–station
pairs that are within a 3◦ radius from source and receiver location.

We show in Fig. 11 the results of inverting the noise-added,
ground-truth database constructed from the degree 13 (Fig. 11a)
and degree 20 (Fig. 11b) checkerboards (left-hand panels), using
the ray-theory (middle panels) and finite-frequency-theory based
(right-hand panels) inverse algorithms. By comparing with the op-
timal rms solutions for this case here, we noticed that the maximum
curvature criterion leads to solutions that are slightly overdamped.
In contrast to Figs 9(b) and (c), the statistical noise degrades the so-
lutions and diminishes the differences between the two approaches
in question. This is in agreement with what suggested Sieminski
et al. (2004). Still, even in the presence of noise, our solutions from
finite-frequency inversions are somewhat closer to input models
than those found from ray-theory ones.
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These results are somewhat different from those obtained for
global scale inversions by Zhou et al. (2005, see fig. 19). There are,
however, a few important differences between their study and ours:
(1) unlike Zhou et al. (2005), we construct the synthetic database by
means of a non-linearized numerical method, so that the accuracy
of the synthetics is not hindered by the same approximations used in
the inversion, as is the case in classical checkerboard tests conducted
by Zhou et al. (2005). (2) While Zhou et al. (2005) adds Gaussian-
distributed, random noise with an rms error of about 50 per cent of
the ‘structural signal’, we apply the same kind of statistical noise
but with the same standard deviation as found in the real data
set of Ekström et al. (1997). The amplitude of noise is therefore
different. Additionally, the effects of noise strongly depend on the
data coverage of the data set, which is also different between the
two studies. (3) Zhou et al. (2005) calculate analytical sensitivity
kernels based upon a far-field approximation, while our kernels are
computed strictly numerically. We also use a different coarseness of
the inverse grid, which leads to different resolution of the kernels
actually used by the inverse algorithm. As we use a slightly finer
parametrization, our kernels will be represented in more detail thus
exhibiting a bigger difference to rays, which itself can be assumed
to lead to bigger differences in the inverse solutions found between
the two theories.

4.4 Amplitude test

Both ray and single-scattering finite-frequency theories are lin-
earized theories, whose performance is contingent on the extent
and amplitude of perturbations with respect to a reference model,
that is they fail when applied to (very) rough media. We next explore
the specific non-linear effects of the amplitude of Earth’s structure
heterogeneities in an example case with amplitude perturbations as
high as ±10 per cent. The input model pattern is a checkerboard,
coinciding with the spherical harmonic function of degree 9 and or-
der 5 as in the previous Section 4.2. The synthetic database is then

Figure 12. Influence of large amplitude of heterogeneities. Solutions are shown for Love waves at 150 s period and an input model of (a) 10 per cent
perturbations with a checkerboard with l = 9 and m = 5. On the left-hand side, the input model is shown, while in the middle and on the right-hand side the
ray-theoretical and finite-frequency solutions, respectively, are plotted. The power spectrum up to spherical harmonic degree 25 is shown of the ray-theoretical
solution image in (b) as red bars, the corresponding one of the finite-frequency solution image in (c), both plotted against the initial power spectrum of the
input model (black box).

constructed for Love waves at 150 s period without any statistical
noise.

Images resulting from the inversion of the corresponding syn-
thetic data set are shown in Fig. 12(a). Comparing them with the
solutions plotted in Fig. 9(a), we see that both theories suffer from
their inherent linearization. The power spectra of the ray-theoretical
solution in Fig. 12(b) and of the finite-frequency solution in 12(c)
both reveal the initial power spectrum of the 10 per cent checker-
board input model with a strong peak at spherical harmonic degree 9,
the finite-frequency solution achieving a slightly higher peak. Both
power spectra show further aliasing of energy towards surrounding
harmonic degrees. Note that non-linear effects are not only degrad-
ing the performance of both inverse methods, but they also tend to
affect the stability of the solutions, so that maximum curvature of
the L-curve is achieved for values of the damping parameters higher
than in the experiments described above.

To overcome such limitations, a non-linear solution could be
found iteratively, using the solution of a previous inversion as a new
starting model to reconstruct the matrices for a new inversion. We
tested this approach in the finite-frequency case, computing all sen-
sitivity kernels again in the new starting model (Peter et al. 2007).
Even after three iterations, the solution (not shown here) did not
improve significantly. Starting each iteration with a highly damped
model (and, consequently, a relatively poor datafit) increases the
total number of iterations needed to find a sufficiently good result.
On the other hand, starting with a rougher model like the output
models of Fig. 12, the solution is perturbed very little at each iter-
ation. This suggests that the inverse scheme might be trapped at a
local minimum of the misfit function.

4.5 Realistic input model test

While the checkerboard test provides a useful measure of resolu-
tion, it is still of interest to determine the way in which imperfect
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Figure 13. Realistic input model TW96 solved for Love waves at 150 s period. (a) The input model is shown on the left-hand side, the ray-theoretical inversion
in the middle and the finite-frequency inversion solution on the right-hand side. The corresponding power spectra up to spherical harmonic degree 25 of (b) the
ray-theoretical solution image (red bars) and (c) the finite-frequency solution image (red bars) are plotted against the initial power spectrum of the input model
(black boxes).

resolution reflects itself on the tomographic inversion of a realistic
phase-velocity distribution. We choose as input model the phase-
velocity map originally derived by Trampert & Woodhouse (1996)
for Love waves at 150 s period. The source–station distribution of
Trampert & Woodhouse (1996) differs from the distribution as-
sumed here (Section 4.1). We conducted ∼104 synthetic measure-
ments based on the source–station distribution of Ekström et al.
(1997) and added statistical noise as described in Section 4.3, to ob-
tain the synthetic database. Fig. 13(a) shows the preferred solutions
for the ray-theoretical and finite-frequency inversion methods. The
power spectra of both solutions are plotted against the power spec-
trum of the input model in Figs 13(b) and (c); the power spectrum
of both the ray-theoretical and finite-frequency inversion results is
slightly overpredicting the lowest harmonic degrees while losing
energy at higher degrees (>8).

As explained above, solutions compared in Fig. 13 were selected
after an L-curve analysis with the criterion of maximum curvature
proposed by Hansen (1992) and Hansen & O’Leary (1993). Those
authors concluded that the misfit to the data is an effect of both
regularization and measurement errors, and that the ‘corner’ of
the L-curve corresponds to a balance between the two. They also
showed that the maximum-curvature solution corresponds to the
solution also found by the quasi-optimality criterion as well as
the generalized cross-correlation, but that especially in presence of
noisy data the L-curve criterion remains more stable. We observe
that employing this criterion slightly overregularizes the solution in
presence of noise. As a result, Fig. 13 shows smooth ray-theoretical
and finite-frequency solutions. This might somewhat reduce the
discrepancy between the results of the two approaches.

5 C O N C LU S I O N S

Using the asymptotic approach, we derived an analytical description
for the propagation of elastic waves on a zero-thickness membrane

in terms of travelling waves, consistent with the more general treat-
ments of Gilbert (1976) and Ferreira (2005). We used this formu-
lation of ray theory on a membrane in a comparison to the forward
predictions of finite-frequency kernels (analytical and numerical:
see Peter et al. 2007), and a ground-truth database of numerical,
membrane-wave synthetics. Our work extends the investigations
made for 3-D sensitivity kernels within 3-D cartesian boxes (Baig
et al. 2003; Baig & Dahlen 2004; Dahlen 2004; Yang & Hung 2005)
to a 2-D spherical geometry. We further employed finite-frequency
sensitivity kernels for higher orbits. While predictions made by
finite-frequency theory for first-orbit arrivals are more precise than
those of ray theory, we found that finite-frequency sensitivity kernels
cannot predict phase anomalies accurately enough for higher orbits
and even weakly heterogeneous phase-velocity models (spherical
degree expansions >4).

We also compared the tomographic inverse method based on ray
theory, against the finite-frequency tomographic algorithm of Peter
et al. (2007), based on the adjoint method. Both approaches were ap-
plied independently to invert the same synthetic database of phase-
anomaly measurements based on a realistic source/receiver distri-
bution (Ekström et al. 1997) for global phase-velocity perturbations
(implications for 3-D tomography were not explored). The results of
the latter experiment, limited to first-orbit data, indicate that finite-
frequency theory performs significantly better than linearized ray
theory. We infer this by comparing ray-theory and finite-frequency
solutions derived from an equivalent criterion to select the value
of the damping parameter, or, equivalently, by analysing the whole
spectra of possible solutions in the two formulations. The reader can
repeat this analysis by means of the animation files that we provide
online at www.princeton.edu/∼dpeter/inversions.html. In regions
with poor data coverage, noise in the data can strongly affect the
tomographic solution. This complicates comparisons between ray
and finite-frequency theories based on real (noisy) phase-anomaly
measurements. Nevertheless, one can expect that, in a regime of
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very good data coverage and quality, accounting for single scat-
tering of intermediate- to long-period surface waves will improve
significantly the resolution of tomographic imaging.
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