COMPOSITIO MATHEMATICA

Geometrically rational real conic bundles and very transitive actions

Jérémy Blanc and Frédéric Mangolte

Compositio Math. 147 (2011), 161-187.
doi:10.1112/S0010437X10004835

Geometrically rational real conic bundles and very transitive actions

Jérémy Blanc and Frédéric Mangolte

Abstract

In this article we study the transitivity of the group of automorphisms of real algebraic surfaces. We characterize real algebraic surfaces with very transitive automorphism groups. We give applications to the classification of real algebraic models of compact surfaces: these applications yield new insight into the geometry of the real locus, proving several surprising facts on this geometry. This geometry can be thought of as a half-way point between the biregular and birational geometries.

1. Introduction

The group of automorphisms of a complex algebraic variety is small: indeed, it is finite in general. Moreover, the group of automorphisms is 3 -transitive only if the variety is $\mathbb{P}_{\mathbb{C}}^{1}$. On the other hand, it was recently proved that for a surface $X(\mathbb{R})$ birational to $\mathbb{P}_{\mathbb{R}}^{2}$, its group of automorphisms acts n-transitively on $X(\mathbb{R})$ for any n. The main goal of this paper is to determine all real algebraic surfaces $X(\mathbb{R})$ having a group of automorphisms which acts very transitively on $X(\mathbb{R})$. For precise definitions and statements, see below.

The aim of this paper is to study the action of birational maps on the set of real points of a real algebraic variety. Let us emphasize a common terminological source of confusion about the meaning of what is a real algebraic variety (see also the enlightening introduction of [Kol01]). From the point of view of general algebraic geometry, a real variety X is a variety defined over the real numbers, and a morphism is understood as being defined over all the geometric points. In most real algebraic geometry texts, however, the algebraic structure considered corresponds to the algebraic structure of a neighbourhood of the real points $X(\mathbb{R})$ in the whole complex variety; or, in other words, the structure of a germ of an algebraic variety defined over \mathbb{R}.

From this point of view it is natural to view $X(\mathbb{R})$ as a compact submanifold of \mathbb{R}^{n} defined by real polynomial equations, where n is some natural integer. Likewise, it is natural to say that a map $\psi: X(\mathbb{R}) \rightarrow Y(\mathbb{R})$ is an isomorphism if ψ is induced by a birational map $\Psi: X \rightarrow Y$ such that Ψ (respectively Ψ^{-1}) is regular at any point of $X(\mathbb{R})$ (respectively of $Y(\mathbb{R})$). In particular, $\psi: X(\mathbb{R}) \rightarrow Y(\mathbb{R})$ is a diffeomorphism. This notion corresponds to the notion of biregular maps defined in [BCR98, 3.2.6] for the structure of real algebraic variety commonly used in the context of real algebraic geometry. To distinguish between the Zariski topology and the topology induced by the embedding of $X(\mathbb{R})$ as a topological submanifold of \mathbb{R}^{n}, we will call the latter the Euclidean topology. Throughout what follows, topological notions like connectedness or compactness will always refer to the Euclidean topology.

[^0]
J. Blanc and F. Mangolte

Recall that a real projective surface is rational if it is birationally equivalent to the real projective plane, and that it is geometrically rational if its complexification is birationally equivalent to the complex projective plane. The number of connected components is a birational invariant. In particular, if X is a rational projective surface, then $X(\mathbb{R})$ is connected.

The paper [HM09] proves that the group of automorphisms $\operatorname{Aut}(X(\mathbb{R}))$ acts n-transitively on $X(\mathbb{R})$ for any n and any rational real algebraic surface X. To study the case where $X(\mathbb{R})$ is not connected, we have to refine the notion of n-transitivity. Indeed, if $X(\mathbb{R})$ has nonhomeomorphic connected components, then even the group of self-homeomorphisms does not act 2-transitively.

Definition 0 . Let G be a topological group acting continuously on a topological space M. We say that two n-tuples of distinct points $\left(p_{1}, \ldots, p_{n}\right)$ and $\left(q_{1}, \ldots, q_{n}\right)$ are compatible if there exists an homeomorphism $\psi: M \rightarrow M$ such that $\psi\left(p_{i}\right)=q_{i}$ for each i. The action of G on M is then said to be very transitive if, for any pair of compatible n-tuples of points $\left(p_{1}, \ldots, p_{n}\right)$ and $\left(q_{1}, \ldots, q_{n}\right)$ of M, there exists an element $g \in G$ such that $g\left(p_{i}\right)=q_{i}$ for each i. More generally, the action of G is said to be very transitive on each connected component if we require the above condition only in the case when, for each i, p_{i} and q_{i} belong to the same connected component of M.

Up until now, it has not been known when the automorphism group of a real algebraic surface is big. We give a complete answer to this question: this is one of the main results of this paper. Let $\# M$ be the number of connected components of a compact manifold M.

Theorem 1. Let X be a non-singular real projective surface. The group $\operatorname{Aut}(X(\mathbb{R}))$ is then very transitive on each connected component if and only if X is geometrically rational and $\# X(\mathbb{R}) \leqslant 3$.

In the three component case, Theorem 2 below says that the very transitivity of $\operatorname{Aut}(X(\mathbb{R}))$ can be determined by examining the set of possible permutations of connected components.

Theorem 2. Let X be a non-singular real projective surface. The group $\operatorname{Aut}(X(\mathbb{R}))$ then has a very transitive action on $X(\mathbb{R})$ if and only if the following hold:
(i) X is geometrically rational; and
(ii) (a) $\# X(\mathbb{R}) \leqslant 2$; or
(b) $\# X(\mathbb{R})=3$, and there is no pair of homeomorphic connected components; or
(c) $\# X(\mathbb{R})=M_{1} \sqcup M_{2} \sqcup M_{3}, M_{1} \sim M_{2} \nsim M_{3}$, and there is a morphism $\pi: X \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ whose general fibres are rational curves, and an automorphism of $\mathbb{P}_{\mathbb{R}}^{1}$ which fixes $\pi\left(M_{3}\right)$ and exchanges $\pi\left(M_{1}\right), \pi\left(M_{2}\right)$; or
(d) $\# X(\mathbb{R})=M_{1} \sqcup M_{2} \sqcup M_{3}, M_{1} \sim M_{2} \sim M_{3}$, and there is a morphism $\pi: X \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ whose general fibres are rational curves, such that any permutation of the set of intervals $\left\{\pi\left(M_{1}\right), \pi\left(M_{2}\right), \pi\left(M_{3}\right)\right\}$ is realised by an automorphism of $\mathbb{P}_{\mathbb{R}}^{1}$.

Furthermore, when $\operatorname{Aut}(X(\mathbb{R}))$ is not very transitive, it is not even 2-transitive.
This theorem will be proved in $\S 9$. Note that, when $\# X(\mathbb{R})>3$, either any element of $\operatorname{Aut}(X(\mathbb{R})$) preserves a conic bundle structure (Theorem 25), or $\operatorname{Aut}(X(\mathbb{R})$) is countable (Corollary 11): in either case $\operatorname{Aut}(X(\mathbb{R}))$ is not 1-transitive.

These two theorems apply to the classification of algebraic models of real surfaces. Up to this point in the paper $X(\mathbb{R})$ is considered as a submanifold of some \mathbb{R}^{n}. Conversely, let M be a compact \mathcal{C}^{∞}-manifold. By the Nash-Tognoli theorem [Tog73], every such M is diffeomorphic to a non-singular real algebraic subset of \mathbb{R}^{m} for some m. Taking the Zariski closure in \mathbb{P}^{m} and
applying Hironaka's resolution of singularities [Hir64], it follows that M is in fact diffeomorphic to the set of real points $X(\mathbb{R})$ of a non-singular projective algebraic variety X defined over \mathbb{R}. Such a variety X is called an algebraic model of M. A natural question is to classify the algebraic models of M up to isomorphism for a given manifold M.

There are several recent results about algebraic models and their automorphism groups [BH07, HM09, HM10, KM09]. For example, when M is two-dimensional, and admits a real rational algebraic model, this rational algebraic model is unique [BH07]. In other words, if X and Y are two rational real algebraic surfaces, then $X(\mathbb{R})$ and $Y(\mathbb{R})$ are isomorphic if and only if they are homeomorphic. We extend the classification of real algebraic models to geometrically rational surfaces.

Theorem 3. Let X, Y be two non-singular geometrically rational real projective surfaces, and assume that $\# X(\mathbb{R}) \leqslant 2$. The surface $X(\mathbb{R})$ is then isomorphic to $Y(\mathbb{R})$ if and only if X is birational to Y and $X(\mathbb{R})$ is homeomorphic to $Y(\mathbb{R})$. This is false in general when $\# X(\mathbb{R}) \geqslant 3$.

Recall that a non-singular projective surface is minimal if any birational morphism to a nonsingular surface is an isomorphism. We have the following rigidity result on minimal geometrically rational real surfaces.

Theorem 4. Let X and Y be two minimal geometrically rational real projective surfaces, and assume that either X or Y is non-rational. The following are then equivalent.
(i) X and Y are birational.
(ii) $X(\mathbb{R})$ and $Y(\mathbb{R})$ are isomorphic.

In this work, we classify the birational classes of real conic bundles and correct an error contained in the literature (Theorem 25). It follows that the only geometrically rational surfaces $X(\mathbb{R})$ for which equivalence by homeomorphism implies equivalence by isomorphism are the connected ones. In particular, this yields a converse to [BH07, Corollary 8.1].
Corollary 5. Let M be a compact \mathcal{C}^{∞}-surface. The surface M then admits a unique geometrically rational model if and only if the following two conditions hold:
(i) M is connected; and
(ii) M is non-orientable or M is orientable with genus $g(M) \leqslant 1$.

For M orientable with $g(M)>1$, no uniqueness result, even a very weak one, holds. We can therefore ask what the simplest algebraic model for such an M should be. This question will be studied in a forthcoming paper by J. Huisman and F. Mangolte.

Another way of measuring the size of $\operatorname{Aut}(X(\mathbb{R}))$ was used in [KM09], where it was proved that, for any rational surface $X, \operatorname{Aut}(X(\mathbb{R})) \subset \operatorname{Diff}(X(\mathbb{R}))$ is dense for the strong topology. For non-geometrically rational surfaces and for most of the non-rational geometrically rational surfaces the group $\operatorname{Aut}(X(\mathbb{R}))$ cannot be dense. The above paper left the question of density open only for certain geometrically rational surfaces with two, three, four or five connected components. One by-product of our results is the non-density of $\operatorname{Aut}(X(\mathbb{R}))$ for most surfaces with at least three connected components; see Proposition 41.

Let us mention some other papers on automorphisms of real projective surfaces. In [RV05], it is proved that $\operatorname{Aut}\left(\mathbb{P}^{2}(\mathbb{R})\right)$ is generated by linear automorphisms and certain real algebraic automorphisms of degree five. The paper [HM10] is devoted to the study of very transitive actions and uniqueness of models for some kinds of singular rational surfaces.

J. Blanc and F. Mangolte

1.1 Strategy of the proof

In the proof of Theorem 1, the main part concerns minimal conic bundles. We first prove that two minimal conic bundles are isomorphic if they induce the same intervals on the basis. Given a set of intervals, one can choose the most special conic bundle, the so-called exceptional conic bundle, to write explicitly the automorphisms and to obtain a fibrewise transitivity. We then use the most general conic bundles which come with distinct foliations on the same surface. The foliations being transversal, this yields the very transivity of the automorphism group in the minimal case.

1.2 Outline of the article

In $\S 2$ we fix the notation and in $\S 3$ we recall the classification of minimal geometrically rational real surfaces.

Section 4, which constitutes the technical heart of the paper, is devoted to conic bundles, especially minimal ones. We give representative elements of isomorphism classes, and explain the links between the various conic bundles.

In §5, we investigate real surfaces which admit two conic bundle structures. In particular, we show that these are del Pezzo surfaces, and give descriptions of the possible conic bundles on these surfaces. Section 6 is devoted to the proof of Theorem 4. We firstly correct an inaccuracy in the literature, by proving that if two surfaces admitting a conic bundle structure are birational, then the birational map may be chosen so that it preserves the conic bundle structures. We then strengthen this result to isomorphisms between real parts when the surfaces are minimal, before proving Theorem 4.

In §7, we prove that if the real part of a minimal geometrically rational surface has two or three connected components, then its automorphism group is very transitive on each connected component. In § 8, we prove the same result for non-minimal surfaces. We show how to separate infinitely close points, which is certainly one of the most counter-intuitive aspects of our geometry, and was first observed in [BH07] for rational surfaces. We also prove the uniqueness of models in many cases.

In § 9, we then use all the results of the preceding sections to prove the main results stated in the introduction (except Theorem 4, which is proved in §6).

2. Notation

Throughout what follows, by a variety we will mean an algebraic variety, which may be real or complex (i.e. defined over \mathbb{R} or \mathbb{C}). If the converse is not expressly stated all our varieties will be projective and all our surfaces will be non-singular and geometrically rational (i.e. rational over \mathbb{C}).

Recall that a real variety X may be identified with a pair (S, σ), where S is a complex variety and σ is an anti-holomorphic involution on S; by abuse of notation we will write $X=(S, \sigma)$. Then, $S(\mathbb{C})=X(\mathbb{C})$ denotes the set of complex points of the variety, and $X(\mathbb{R})=S(\mathbb{C})^{\sigma}$ is the set of real points. A point $p \in X$ may be real (if it belongs to $X(\mathbb{R})$), or imaginary (if it belongs to $X(\mathbb{C}) \backslash X(\mathbb{R})$). If $X(\mathbb{R})$ is non-empty (which will be the case for all our surfaces), then $\operatorname{Pic}(X) \cong \operatorname{Pic}(S)^{\sigma}$ (see [Sil89, I.(4.5)]). As we only work with regular surfaces (i.e. $q(X)=q(S)=0$), the Picard group is isomorphic to the Néron-Severi group, and $\rho(S)$ and $\rho(X)$ will denote the rank of $\operatorname{Pic}(S)$ and $\operatorname{Pic}(X)$, respectively. Recall that $\rho(X) \leqslant \rho(S)$.

We denote by $K_{X} \in \operatorname{Pic}(X)$ the canonical class, which may be identified with K_{S}. The intersection of two divisors of $\operatorname{Pic}(S)$ or $\operatorname{Pic}(X)$ will always denote the usual intersection in $\operatorname{Pic}(S)$.

We will use the classical notions of morphisms, rational maps, isomorphisms and automorphisms between real or complex varieties. Moreover, if X_{1} and X_{2} are two real varieties, an isomorphism between real parts $X_{1}(\mathbb{R}) \xrightarrow{\psi} X_{2}(\mathbb{R})$ is a birational map $\psi: X_{1} \rightarrow X_{2}$ such that ψ (respectively ψ^{-1}) is regular at any point of $X_{1}(\mathbb{R})$ (respectively of $X_{2}(\mathbb{R})$). This endows $X_{1}(\mathbb{R})$ with a structure of a germ of algebraic variety defined over \mathbb{R} (as in [BCR98, 3.2.6]), whereas the structure of X_{1} is that of an algebraic variety.

This notion of isomorphism between real parts gives rise to a geometry with rather unexpected properties compared to those of the biregular geometry or the birational geometry. For example, let $\alpha: X_{1}(\mathbb{R}) \rightarrow X_{2}(\mathbb{R})$ be an isomorphism, and $\varepsilon: Y_{1} \rightarrow X_{1}, \eta: Y_{2} \rightarrow X_{2}$ be two birational maps; the map $\psi:=\varepsilon^{-1} \alpha \eta$ is a well-defined birational map. Then ψ can be an isomorphism $Y_{1}(\mathbb{R}) \rightarrow Y_{2}(\mathbb{R})$ even if neither ε nor η is an isomorphism between real parts. In the same vein, let $\alpha: X_{1}(\mathbb{R}) \rightarrow X_{2}(\mathbb{R})$ be an isomorphism, and let $\eta_{1}: Y_{1} \rightarrow X_{1}$ and $\eta_{2}: Y_{2} \rightarrow X_{2}$ be two birational morphisms which are the blow-ups of only real points (which may be proper or infinitely near points of X_{1} and X_{2}). If α sends the points blown-up by η_{1} to the points blown-up by η_{2}, then $\beta=\left(\eta_{2}\right)^{-1} \alpha \eta_{1}: Y_{1}(\mathbb{R}) \rightarrow Y_{2}(\mathbb{R})$ is an isomorphism.

Using Aut and Bir to denote respectively the group of automorphisms and birational selfmaps of a variety, we have the following inclusions for the groups associated to $X=(S, \sigma)$:

By \mathbb{P}^{n} we mean the projective n-space, which may be complex or real depending on the context. It is unique as a complex variety, written as $\mathbb{P}_{\mathbb{C}}^{n}$. However, as a real variety, \mathbb{P}^{n} may either be $\mathbb{P}_{\mathbb{C}}^{n}$ endowed with the standard anti-holomorphic involution, written $\mathbb{P}_{\mathbb{R}}^{n}$, or, only when n is odd, $\mathbb{P}_{\mathbb{C}}^{n}$ with a special involution with no real points, written as $\left(\mathbb{P}^{n}, \emptyset\right)$. To lighten notation, and since we never speak about $\left(\mathbb{P}^{1}, \emptyset\right)(\mathbb{R})$, we write $\mathbb{P}^{1}(\mathbb{R})$ for $\mathbb{P}_{\mathbb{R}}^{1}(\mathbb{R})$.

3. Minimal surfaces and minimal conic bundles

The aim of this section is to reduce our study of geometrically rational surfaces to surfaces which admit a minimal conic bundle structure. We first recall the classification of geometrically rational surfaces (see [Sil89] for an introduction). The proofs of Theorems 2 and 4 will then split into three cases: rational, del Pezzo with $\rho=1$, and minimal conic bundle. The rational case is treated in [HM09] and Proposition 10 below states the case of a del Pezzo surface with $\rho=1$.
Definition 6. A conic bundle is a pair (X, π) where X is a surface and π is a morphism $X \rightarrow \mathbb{P}^{1}$, where any fibre of π is isomorphic to a plane conic. If (X, π) and $\left(X^{\prime}, \pi^{\prime}\right)$ are two conic bundles, a birational map of conic bundles $\psi:(X, \pi) \rightarrow\left(X^{\prime}, \pi^{\prime}\right)$ is a birational map $\psi: X \rightarrow X^{\prime}$ such that there exists an automorphism α of \mathbb{P}^{1} with $\pi^{\prime} \circ \phi=\pi \circ \alpha$.

We will assume throughout what follows that if X is real, then the basis is $\mathbb{P}_{\mathbb{R}}^{1}\left(\operatorname{and} \operatorname{not}\left(\mathbb{P}^{1}, \emptyset\right)\right)$. This avoids certain conic bundles with no real points. We denote by $\operatorname{Aut}(X, \pi)$ (respectively $\operatorname{Bir}(X, \pi))$ the group of automorphisms (respectively birational self-maps) of the conic bundle (X, π). Observe that $\operatorname{Aut}(X, \pi)=\operatorname{Aut}(X) \cap \operatorname{Bir}(X, \pi)$. Similarly, when (X, π) is real we denote by $\operatorname{Aut}(X(\mathbb{R}), \pi)$ the $\operatorname{group} \operatorname{Aut}(X(\mathbb{R})) \cap \operatorname{Bir}(X, \pi)$.

J. Blanc and F. Mangolte

Recall that a real algebraic surface X is minimal if and only if there is no real (-1)-curve and no pair of disjoint conjugate imaginary (-1)-curves on X, and that a real conic bundle (X, π) is minimal if and only if the two irreducible components of any real singular fibre of π are imaginary. Compare this to the complex case where (X, π) is minimal if and only if there is no singular fibre.

The following two results follow from the work of Comessatti [Com12] (see also [Isk79, Man67], [Sil89, ch. V], or [Kol]). Recall that a surface X is a del Pezzo surface if the anti-canonical divisor $-K_{X}$ is ample. The same definition applies for X real or complex.

Theorem 7. If X is a minimal geometrically rational real surface such that $X(\mathbb{R}) \neq \emptyset$, then one and exactly one of the following holds:
(i) X is rational: it is isomorphic to $\mathbb{P}_{\mathbb{R}}^{2}$, to the quadric $Q_{0}:=\left\{(x: y: z: t) \in \mathbb{P}_{\mathbb{R}}^{3} \mid x^{2}+y^{2}+z^{2}=\right.$ $\left.t^{2}\right\}$, or to a real Hirzebruch surface $\mathbb{F}_{n}, n \neq 1$;
(ii) X is a del Pezzo surface of degree one or two with $\rho(X)=1$;
(iii) there exists a minimal conic bundle structure $\pi: X \rightarrow \mathbb{P}^{1}$ with an even number of singular fibres $2 r \geqslant 4$; moreover, $\rho(X)=2$.

Remark 8. If (S, σ) is a minimal geometrically rational real surface such that $S(\mathbb{C})^{\sigma}=\emptyset$, then S is an Hirzebruch surface of even index.

Proposition 9 (Topology of the real part). In each case of the former theorem, we have:
(i) X is rational if and only if $X(\mathbb{R})$ is connected. When X is moreover minimal, then $X(\mathbb{R})$ is homeomorphic to one of the following: the real projective plane, the sphere, the torus, or the Klein bottle;
(ii) when X is a minimal del Pezzo surface of degree one, it satisfies $\rho(X)=1$, and $X(\mathbb{R})$ is the disjoint union of one real projective plane and four spheres. If X is a minimal del Pezzo surface of degree two with $\rho(X)=1$, then $X(\mathbb{R})$ is the disjoint union of four spheres;
(iii) if X is non-rational and is endowed with a minimal conic bundle with $2 r$ singular fibres, then $X(\mathbb{R})$ is the disjoint union of r spheres, $r \geqslant 2$.

Proposition 10. Let X, Y be two minimal geometrically rational real surfaces. Assume that X is not rational and satisfies $\rho(X)=1$ (but $\rho(Y)$ may be equal to 1 or 2).
(i) If X is a del Pezzo surface of degree one, then any birational map $X \rightarrow Y$ is an isomorphism. In particular,

$$
\operatorname{Aut}(X)=\operatorname{Aut}(X(\mathbb{R}))=\operatorname{Bir}(X)
$$

(ii) If X is a del Pezzo surface of degree two, X is birational to Y if and only if X is isomorphic to Y. Moreover, all the base-points of the elements of $\operatorname{Bir}(X)$ are real, and

$$
\operatorname{Aut}(X)=\operatorname{Aut}(X(\mathbb{R})) \subsetneq \operatorname{Bir}(X) .
$$

Proof. Assume the existence of a birational map $\psi: X \rightarrow Y$. If ψ is not an isomorphism, we decompose ψ into elementary links

$$
X=X_{0} \xrightarrow{\psi_{1}} X_{1} \xrightarrow{\psi_{2}} \cdots \xrightarrow{\psi_{n-1}} X_{n-1} \xrightarrow{\psi_{n}} X_{n}=Y
$$

as in [Isk96, Theorem 2.5]. It follows from the description of the links of [Isk96, Theorem 2.6] that, for any link $\psi_{i}: X_{i-1} \rightarrow X_{i}, X_{i-1}$ and X_{i} are isomorphic del Pezzo surfaces of degree two, and that ψ_{i} is equal to $\beta \eta \alpha \eta^{-1}$, where η is the blow-up $X^{\prime} \rightarrow X_{i-1}$ of a real point of X_{i-1}, X^{\prime}
is a del Pezzo surface of degree one, $\alpha \in \operatorname{Aut}\left(X^{\prime}\right)$ is the Bertini involution of the surface, and $\beta: X_{i+1} \rightarrow X_{i}$ is an isomorphism.

Therefore, Y is isomorphic to X. Moreover, if X has degree one, then ψ is an isomorphism. If X has degree two, then ψ is decomposed into conjugates of Bertini involutions, so each of its basepoints is real. This proves that if $\psi \in \operatorname{Aut}(X(\mathbb{R}))$, then $\psi \in \operatorname{Aut}(X)$. Furthermore, conjugates of Bertini involutions belong to $\operatorname{Bir}(X)$ but not to $\operatorname{Aut}(X)=\operatorname{Aut}(X(\mathbb{R}))$.

Corollary 11. Let X_{0} be a minimal non-rational geometrically rational real surface with $\rho\left(X_{0}\right)=1$, and let $\eta: X \rightarrow X_{0}$ be a birational morphism.

Then, $\operatorname{Aut}(X(\mathbb{R}))$ is countable. Moreover, if X_{0} is a del Pezzo surface of degree one, then $\operatorname{Aut}(X(\mathbb{R}))$ is finite.

Proof. Without changing the isomorphism class of $X(\mathbb{R})$ we may assume that η is the blow-up of only real points (which may belong to X_{0} as proper or infinitely near points). Since any base-point of any element of $\operatorname{Bir}\left(X_{0}\right)$ is real (Proposition 10), the same is true for any element of $\operatorname{Bir}(X)$. In particular, $\operatorname{Aut}(X(\mathbb{R}))=\operatorname{Aut}(X)$. The group $\operatorname{Aut}(X)$ acts on $\operatorname{Pic}(X) \cong \mathbb{Z}^{n}$, where $n=\rho(X) \geqslant 1$. This action gives rise to an homomorphism $\theta: \operatorname{Aut}(X) \rightarrow \mathrm{GL}(n, \mathbb{Z})$. Let us prove that θ is injective. Indeed, if $\alpha \in \operatorname{Ker}(\theta)$, then α is conjugate by η to an element of $\alpha_{0} \in \operatorname{Aut}\left(X_{0}\right)$ which acts trivially on $\operatorname{Pic}\left(X_{0}\right)$. Writing S_{0} as the complex surface obtaining by forgetting the real structure of X_{0}, S_{0} is the blow-up of seven or eight points in the general position of $\mathbb{P}_{\mathbb{C}}^{2}$. Thus $\alpha_{0} \in \operatorname{Aut}\left(X_{0}\right) \subset \operatorname{Aut}\left(S_{0}\right)$ is the lift of an automorphism of $\mathbb{P}_{\mathbb{C}}^{2}$ which fixes seven or eight points, with no three collinear, and hence is the identity.

The morphism θ is injective, and this shows that $\operatorname{Aut}(X(\mathbb{R}))=\operatorname{Aut}(X)$ is countable. Moreover, if X_{0} is a del Pezzo surface of degree one, then $\operatorname{Bir}\left(X_{0}\right)=\operatorname{Aut}\left(X_{0}\right)$ (by Proposition 10). Since $\operatorname{Aut}\left(X_{0}\right)$ is finite, $\operatorname{Aut}(X(\mathbb{R})) \subset \operatorname{Bir}(X)$ is also finite.

4. Minimal and exceptional conic bundles

Definition 12. If (X, π) is a real conic bundle, $I(X, \pi) \subset \mathbb{P}^{1}(\mathbb{R})$ denotes the image by π of the set $X(\mathbb{R})$ of real points of X.

The set $I(X, \pi)$ is the union of a finite number of intervals (which may be \emptyset or $\mathbb{P}^{1}(\mathbb{R})$), and it is well-known that it determines the birational class of (X, π). We prove that $I(X, \pi)$ also determines the equivalence class of $(X(\mathbb{R}), \pi)$ among the minimal conic bundles, and give the proof of Theorem 4 in the case of conic bundles (Corollary 20).

Lemma and Definition 13. Let (X, π) be a real minimal conic bundle. The following conditions are equivalent.
(i) There exists a section s such that s and \bar{s} do not intersect.
(ii) There exists a section s such that $s^{2}=-r$, where $2 r$ is the number of singular fibres.

If any of these conditions occur, we say that (X, π) is exceptional.
Proof. Let s be a section satisfying one of the two conditions. Denote by (S, π) the complex conic bundle obtained by forgetting the real structure of (X, π), and by $\eta: X \rightarrow \mathbb{F}_{m}$ the birational map which contracts in any singular fibre of π the irreducible component which does not intersect s. If s satisfies condition (i), $\eta(\bar{s})$ and $\eta(s)$ are two sections of \mathbb{F}_{m} which do not intersect,

J. Blanc and F. Mangolte

so they have self-intersections $-m$ and m. This means that $s^{2}=\bar{s}^{2}=-m$ and that the number of singular fibres is $2 m$, and implies (ii). Conversely, if s satisfies (ii), $\eta(s)$ and $\eta(\bar{s})$ are sections of \mathbb{F}_{m} of self-intersection $-r$ and r. If these two sections are distinct, they do not intersect, which means that s and \bar{s} do not intersect. If $\eta(s)=\eta(\bar{s})$, we have $r=0$, and $X=\left(\mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}, \sigma\right)$ for a certain anti-holomorphic involution σ. We may thus choose another section s^{\prime} of self-intersection 0 which is imaginary.

Remark 14. The definition of exceptional conic bundles was introduced in [Bla09b, DI09] for complex conic bundles endowed with an holomorphic involution. If (S, π) is an exceptional complex conic bundle with at least four singular fibres, then $\operatorname{Aut}(S, \pi)=\operatorname{Aut}(S)$ is a maximal algebraic subgroup of $\operatorname{Bir}(S)$ [Bla09b].

Lemma 15. Let $\left(Y, \pi_{Y}\right)$ be a minimal real conic bundle such that π_{Y} has at least one singular fibre. There exists an exceptional real conic bundle $\left(X, \pi_{X}\right)$ and an isomorphism $\psi: Y(\mathbb{R}) \rightarrow$ $X(\mathbb{R})$ such that $\pi_{X} \circ \psi=\pi_{Y}$.

Remark 16. The result is false without the assumption on the number of singular fibres. Consider for example $Y=\mathbb{F}_{3}(\mathbb{R})$, whose real part is homeomorphic to the Klein bottle. Indeed, any exceptional conic bundle with no singular fibres is a real form of $\left(\mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}, \mathrm{pr}_{1}\right)$, and thus has a real part either empty or homeomorphic to the torus $S^{1} \times S^{1}$.

Before proving Lemma 15, we associate to any given exceptional conic bundle X an explicit circle bundle isomorphic to it. The following improves [Sil89, Corollary VI.3.1] where the model is only assumed to be birational to X.

Lemma 17. Let (X, π) be an exceptional real conic bundle. Then, there exists an affine real variety $A \subset X$ isomorphic to the affine surface of \mathbb{R}^{3} given by

$$
y^{2}+z^{2}=Q(x),
$$

where Q is a real polynomial with only simple roots, all real. Moreover, $\left.\pi\right|_{A}: A \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ is the projection $(x, y, z) \mapsto(x: 1)$, and $I(X, \pi)$ is the closure of $\left\{(x: 1) \in \mathbb{P}_{\mathbb{R}}^{1} \mid Q(x) \geqslant 0\right\}$.

Furthermore, if $f=\pi^{-1}((1: 0)) \subset X$ is a non-singular fibre, then the singular fibres of π are those of the points $\{(x: 1) \mid Q(x)=0\}$ and the inclusion $A \rightarrow X$ is an isomorphism $A(\mathbb{R}) \rightarrow(X \backslash f)(\mathbb{R})$. In particular, if $(1: 0) \notin I(X, \pi)$, then the inclusion yields an isomorphism $A(\mathbb{R}) \rightarrow X(\mathbb{R})$.

Proof. Denote by $2 r$ the number of singular fibres of π (which is even, see Lemma 13).
Assume first that $r=0$, which implies that (X, π) is a real form of $\left(\mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}, \mathrm{pr}_{1}\right)$, and hence is isomorphic to $\left(\mathbb{P}_{\mathbb{R}}^{1} \times \mathbb{P}_{\mathbb{R}}^{1}, \operatorname{pr}_{1}\right)$ or to $\left(\mathbb{P}_{\mathbb{R}}^{1} \times\left(\mathbb{P}^{1}, \emptyset\right), \mathrm{pr}_{1}\right)$; see the convention after Definition 6. Taking $Q(x)=1$ or $Q(x)=-1$ gives the result.

Assume now that $r>0$, and denote by s and \bar{s} two conjugate imaginary sections of π of selfintersection $-r$. Changing π by an automorphism of \mathbb{P}^{1}, we can assume that ($1: 0$). The singular fibres of π are above the points $\left(a_{1}: 1\right), \ldots,\left(a_{2 r}: 1\right)$, where the a_{i} are distinct real numbers. Let $J=\left(J_{1}, J_{2}\right)$ be a partition of $\left\{a_{1}, \ldots, a_{2 r}\right\}$ into two sets of r points. Let η be the birational morphism (not defined over \mathbb{R}) which contracts the irreducible component of $\pi^{-1}\left(\left(a_{i}: 1\right)\right)$ which intersects s if $a_{i} \in J_{1}$ and the component which intersects \bar{s} if $a_{i} \in J_{2}$. Then, the images of s and \bar{s} are two sections of self-intersection 0 . Thus we may assume that η is a birational morphism of conic bundles $(S, \pi) \rightarrow\left(\mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}, \operatorname{pr}_{1}\right)$, where S is the complex surface obtained by forgetting
the real structure of X and pr_{1} is the projection on the first factor, and where $\eta(s)$ and $\eta(\bar{s})$ are equal to $\mathbb{P}_{\mathbb{C}}^{1} \times(0: 1)$ and $\mathbb{P}_{\mathbb{C}}^{1} \times(1: 0)$.

We write $P_{1}\left(x_{1}, x_{2}\right)=\prod_{a \in J_{1}}\left(x_{1}-a x_{2}\right)$ and $P_{2}\left(x_{1}, x_{2}\right)=\prod_{a \in J_{2}}\left(x_{1}-a x_{2}\right)$, and denote by α and σ the self-maps of S, which are the lifts by η of the following self-maps of $\mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}$:

$$
\begin{aligned}
& \alpha^{\prime}:\left(\left(x_{1}: x_{2}\right),\left(y_{1}: y_{2}\right)\right) \rightarrow\left(\left(x_{1}: x_{2}\right),\left(-y_{2} \cdot P_{1}\left(x_{1}, x_{2}\right): y_{1} \cdot P_{2}\left(x_{1}, x_{2}\right)\right)\right), \\
& \sigma^{\prime}:\left(\left(x_{1}: x_{2}\right),\left(y_{1}: y_{2}\right)\right) \rightarrow\left(\left(\overline{x_{1}}: \overline{x_{2}}\right),\left(-\overline{y_{2}} \cdot P_{1}\left(\overline{x_{1}}, \overline{x_{2}}\right): \overline{y_{1}} \cdot P_{2}\left(\overline{x_{1}}, \overline{x_{2}}\right)\right)\right) .
\end{aligned}
$$

The map α^{\prime} is a birational involution of $\mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}$, which is defined over \mathbb{R}, and whose basepoints are precisely the $2 r$ points $\left\{((x: 1),(0: 1)) \mid x \in J_{1}\right\} \cup\left\{((x: 1),(1: 0)) \mid x \in J_{2}\right\}$ blown-up by η. Since α^{\prime} is an involution and η is the blow-up of all of its base-points, $\alpha=\eta^{-1} \alpha^{\prime} \eta$ is an automorphism of S, which belongs to $\operatorname{Aut}(S, \pi)$. In consequence, σ is an anti-holomorphic involution of S.

Denote by σ_{X} the anti-holomorphic involution on S which gives the real structure of X. The map $\sigma_{X} \circ \sigma^{-1}$ belongs to $\operatorname{Aut}(S, \pi)$ and acts trivially on the basis, since σ and σ_{X} have the same action on the basis. Moreover, since both σ_{X} and σ exchange the irreducible components of each singular fibre, $\sigma_{X} \circ \sigma^{-1}$ preserves any curve contracted by η and is therefore the lift by η of $\beta:\left(\left(x_{1}: x_{2}\right),\left(y_{1}: y_{2}\right)\right) \mapsto\left(\left(x_{1}: x_{2}\right),\left(\mu y_{1}: y_{2}\right)\right)$ for some $\mu \in \mathbb{C}^{*}$. It follows that $\sigma_{X}^{\prime}=\eta \circ \sigma_{X} \circ \eta^{-1}=\beta \circ \sigma^{\prime}$ is the map

$$
\sigma_{X}^{\prime}:\left(\left(x_{1}: x_{2}\right),\left(y_{1}: y_{2}\right)\right) \rightarrow\left(\left(\overline{x_{1}}: \overline{x_{2}}\right),\left(-\mu \cdot \overline{y_{2}} P_{1}\left(\overline{x_{1}}, \overline{x_{2}}\right): \overline{y_{1}} P_{2}\left(\overline{x_{1}}, \overline{x_{2}}\right)\right)\right) .
$$

Let us write $Q(x)=-\mu P_{1}(x, 1) P_{2}(x, 1)$, and denote by $B \subset \mathbb{C}^{3}$ the affine hypersurface of equation $y^{2}+z^{2}=Q(x)$, and by $\pi_{B}: B \rightarrow \mathbb{P}^{1}$ the map $(x, y, z) \mapsto(x: 1)$. Let $A=\left(B, \sigma_{B}\right)$, where σ_{B} sends (x, y, z) onto $(\bar{x}, \bar{y}, \bar{z})$. Denote by $\theta: B \rightarrow \mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}$ the map that sends (x, y, z) onto $\left((x: 1),\left(y-\mathbf{i} z: P_{2}(x, 1)\right)\right)$ if $P_{2}(x, 1) \neq 0$ and onto $\left((x: 1),\left(-\mu P_{1}(x, 1): y+\mathbf{i} z\right)\right)$ if $P_{1}(x, 1) \neq 0$. Then θ is a birational morphism, and θ^{-1} sends $\left(\left(x_{1}: x_{2}\right),\left(y_{1}: y_{2}\right)\right)$ on

$$
\left(\frac{x_{1}}{x_{2}}, \frac{1}{2}\left(\frac{y_{1}}{y_{2}} P_{2}\left(x_{1}, x_{2}\right)-\frac{y_{2}}{y_{1}} \mu P_{1}\left(x_{1}, x_{2}\right)\right), \frac{\mathbf{i}}{2}\left(\frac{y_{1}}{y_{2}} P_{2}\left(x_{1}, x_{2}\right)+\frac{y_{2}}{y_{1}} \mu P_{1}\left(x_{1}, x_{2}\right)\right)\right) .
$$

Observe that $\sigma_{X}^{\prime} \theta=\sigma_{B} \theta$. In consequence, $\psi=\eta^{-1} \circ \theta$ is a real birational map $A \rightarrow X$.
Moreover, ψ is an isomorphism from B to the complement in S of the union of $\pi^{-1}((1: 0))$ and the pull-back by η of $\mathbb{P}^{1} \times(0: 1)$ and $\mathbb{P}^{1} \times(1: 0)$. Indeed let $x_{0} \in \mathbb{C}$. If $x_{0} \in \mathbb{C}$ is such that $Q\left(x_{0}\right) \neq 0$, then θ restricts to an isomorphism from $\pi_{B}^{-1}\left(\left(x_{0}: 1\right)\right)$ to $\left\{\left(\left(x_{0}: 1\right),\left(y_{1}: y_{2}\right)\right) \in\right.$ $\left.\mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1} \mid y_{1} y_{2} \neq 0\right\} \cong \mathbb{C}^{*}$. If $Q\left(x_{0}\right)=0$, then $x_{0} \in J_{1} \cup J_{2}$, and the fibre $\pi_{B}^{-1}\left(\left(x_{0}: 1\right)\right)$ consists of two lines of \mathbb{C}^{2} which intersect, given by $y=\mathbf{i} z$ and $y=-\mathbf{i} z$. If $x_{0} \in J_{1}$, then the line $y+\mathbf{i} z=0$ is sent isomorphically by θ onto the fibre $\left\{\left(\left(x_{0}: 1\right),\left(y_{1}: y_{2}\right)\right) \in \mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1} \mid y_{2} \neq 0\right\} \cong \mathbb{C}^{*}$, and the line $y-\mathbf{i} z$ is contracted on the point $\left(\left(x_{0}: 1\right),(0: 1)\right)$. The map ψ thus sends isomorphically $\pi_{B}^{-1}\left(\left(x_{0}: 1\right)\right)$ onto the fibre $\pi^{-1}\left(\left(x_{0}: 1\right)\right)$ minus the two points corresponding to the two sections whose self-intersection is $-r$. The situation when $x_{0} \in J_{2}$ is similar.

The map ψ is therefore an inclusion $A \rightarrow X$ and, by construction, it satisfies all the properties stated in the lemma.

Proof of Lemma 15. Take a section s of π_{Y}. If s intersects its conjugate \bar{s} at a real point p (respectively into a pair of imaginary points q_{1} and q_{2}), then blow-up the point p (respectively q_{1} and q_{2}), and contract the strict transform of the fibre of the blown-up point(s). Repeating this process, we obtain a minimal real conic bundle $\left(Z, \pi_{Z}\right)$ and a birational map $\phi: Y \rightarrow Z$ such that $\pi_{Z} \circ \phi=\pi_{Y}$ and $\phi(s)$ does not intersect its conjugate.

J. Blanc and F. Mangolte

If all the base-points of ϕ are imaginary, we set $\psi=\phi$ and $\left(X, \pi_{X}\right)=\left(Z, \pi_{Z}\right)$. Otherwise, by induction on the number of real base-points of ϕ, it suffices to prove the existence of ψ when ϕ is an elementary link centred at only one real point.

Denote by $q \in Z$ the real point which is the base-point of ϕ^{-1}. Since π_{Y} has at least one singular fibre, this is also the case for π_{Z}, and thus $I\left(Z, \pi_{Z}\right)$ is not the whole $\mathbb{P}^{1}(\mathbb{R})$ (by Lemma 17). We may thus assume that $(1: 0) \notin I\left(Z, \pi_{Z}\right)$, that $\pi_{Z}(q)=(1: 1)$, and that the interval of $I\left(Z, \pi_{Z}\right)$ which contains $\pi_{Z}(q)$ is $\left\{(x: 1) \in \mathbb{P}_{\mathbb{R}}^{1} \mid 0 \leqslant x \leqslant a\right\}$ for some $a \in \mathbb{R}, a>1$. Take the affine surface $A \subset Z$ given by Lemma 17 , which is isomorphic to $y^{2}+z^{2}=Q(x)$ for some polynomial Q. Then, $Q(0)=Q(a)=0$ and $Q(x)>0$ for $0<x<a$, and we may assume that $Q(1)=1$. Denote by s the section of $\pi_{Z}: Z \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ given locally by $y+\mathbf{i} z=\mathbf{i} x^{n}$, for some positive integer n. Its conjugate is given by $y-\mathbf{i} z=-\mathbf{i} x^{n}$, or $y+\mathbf{i} z=Q(x) /\left(-\mathbf{i} x^{n}\right)$. Thus, s intersects \bar{s} at some real point $p \in Z$, its image $x=\pi_{Z}(p)$ satisfies $Q(x) /\left(-\mathbf{i} x^{n}\right)=\mathbf{i} x^{n}$, or $Q(x)=x^{2 n}$. Taking n large enough, this can only happen when $x=0$ or $x=1$. The first possibility cannot occur since a section does not pass through the singular point of a singular fibre. Thus, s intersects \bar{s} at only one real point, which is q. In consequence, the strict pull-back by ϕ of s is a section of Y which intersects its conjugate at only imaginary points. This shows that $\left(Y(\mathbb{R}), \pi_{Y}\right)$ is isomorphic to an exceptional real conic bundle $\left(X, \pi_{X}\right)$.

Corollary 18. Let $\left(X, \pi_{X}\right)$ and $\left(Y, \pi_{Y}\right)$ be two minimal real conic bundles, and assume that either π_{X} or π_{Y} has at least one singular fibre. Then, the following are equivalent:
(i) $I\left(X, \pi_{X}\right)=I\left(Y, \pi_{Y}\right)$;
(ii) there exists an isomorphism $\varphi: X(\mathbb{R}) \rightarrow Y(\mathbb{R})$ such that $\pi_{Y} \circ \varphi=\pi_{X}$.

Proof. It suffices to prove (i) \Rightarrow (ii). By Lemma 15 , we may assume that both $\left(X, \pi_{X}\right)$ and $\left(Y, \pi_{Y}\right)$ are exceptional. We may now assume that the fibre over ($1: 0$) is not singular and use Lemma 17: let $A_{X} \subset X$ and $B_{X} \subset Y$ be the affine surfaces given by the lemma, with equations $y^{2}+z^{2}=$ $Q_{X}(x)$ and $y^{2}+z^{2}=Q_{Y}(x)$ respectively. Since $I\left(X, \pi_{X}\right)=I\left(Y, \pi_{Y}\right), Q_{Y}(x)=\lambda Q_{X}(x)$ for some positive $\lambda \in \mathbb{R}$. The map $(x, y, z) \mapsto(x, \sqrt{\lambda} y, \sqrt{\lambda} z)$ then yields an isomorphism $\left(X(\mathbb{R}), \pi_{X}\right) \rightarrow$ $\left(Y(\mathbb{R}), \pi_{Y}\right)$.

The above result implies the next two corollaries. The first one strengthens a result of Comessatti [Com12] (see also [Kol, Theorem 4.5]).
Corollary 19. Let (X, π) and $\left(X^{\prime}, \pi^{\prime}\right)$ be two real conic bundles. Assume that (X, π) and $\left(X, \pi^{\prime}\right)$ are minimal. Then $(X(\mathbb{R}), \pi)$ and $\left(X^{\prime}(\mathbb{R}), \pi^{\prime}\right)$ are isomorphic if and only if there exists an automorphism of $\mathbb{P}_{\mathbb{R}}^{1}$ that sends $I(X, \pi)$ onto $I\left(X^{\prime}, \pi^{\prime}\right)$.
Corollary 20. Let $\left(X, \pi_{X}\right)$ and $\left(Y, \pi_{Y}\right)$ be two minimal conic bundles. Then, the following are equivalent:
(i) $\left(X(\mathbb{R}), \pi_{X}\right)$ and $\left(Y(\mathbb{R}), \pi_{Y}\right)$ are isomorphic;
(ii) $\left(X, \pi_{X}\right)$ is birational to $\left(Y, \pi_{Y}\right)$ and $X(\mathbb{R})$ is isomorphic to $Y(\mathbb{R})$.

Proof. The implication (i) \Rightarrow (ii) is evident. Let us prove the converse.
Since $\left(X, \pi_{X}\right)$ is birational to $\left(Y, \pi_{Y}\right)$ and both of them are minimal, the number of singular fibres of π_{X} and π_{Y} is the same, being equal to $2 r$ for some non-negative integer r.

Assume that $r=0$, which means that X is an Hirzebruch surfaces \mathbb{F}_{m} for some m and that $Y=\mathbb{F}_{n}$ for some n. Since $X(\mathbb{R})$ is isomorphic to $Y(\mathbb{R})$, we have $m \equiv n \bmod 2$. It is easy to
prove that $(X(\mathbb{R}), \pi)$ and $(Y(\mathbb{R}), \pi)$ are isomorphic, by taking elementary links at two imaginary distinct fibres (see for example [Man06, Proof of Theorem 6.1]).

When $r>0$, already the fact that $\left(X, \pi_{X}\right)$ is birational to $\left(Y, \pi_{Y}\right)$ implies that $\left(X(\mathbb{R}), \pi_{X}\right)$ is isomorphic to $\left(Y(\mathbb{R}), \pi_{Y}\right)$ (Corollary 18).

5. Conic bundles on del Pezzo surfaces

In this section, we focus on surfaces admitting distinct minimal conic bundles. We will see that these surfaces are necessarily del Pezzo surfaces (Lemma 23). We begin by the description of all possible minimal real conic bundles occurring on del Pezzo surfaces.
Lemma 21. Let V be a subset of $\mathbb{P}^{1}(\mathbb{R})$; then the following are equivalent:
(i) there exists a minimal real conic bundle (X, π) with $I(X, \pi)=V$ such that X is a del Pezzo surface;
(ii) the set V is a union of closed intervals, and $\# V \leqslant 3$.

Proof. The implication (i) \Rightarrow (ii) is easy. Indeed, if (X, π) is minimal, it is well-known that the number of singular fibres of π is even, denoted $2 r$, and that $2 r=8-\left(K_{X}\right)^{2}$. Since $-K_{X}$ is ample, $K_{X}^{2} \geqslant 1$, and thus $r \leqslant 3$. The conclusion follows as $I(X, \pi)$ is the union of r closed intervals.

Let us prove the converse. If $V=\mathbb{P}^{1}(\mathbb{R})$ or $V=\emptyset$, we take (X, π) to be $\left(\mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}, \mathrm{pr}_{1}\right)$, where pr_{1} is the projection on the first factor, endowed with the anti-holomorphic map that sends $\left(\left(x_{1}: x_{2}\right),\left(y_{1}: y_{2}\right)\right)$ onto $\left(\left(\overline{x_{1}}: \overline{x_{2}}\right),\left(\pm \overline{y_{2}}: \overline{y_{1}}\right)\right)$.

Now we can assume that V consists of k closed intervals I_{1}, \ldots, I_{k}, with $1 \leqslant k \leqslant 3$. For $j=1, \ldots, 3$, we denote by m_{j} an homogenous form of degree two. If $j \leqslant k$, we choose that m_{j} vanishes at the boundary of the interval I_{j}, and is non-negative on I_{j}. If $j>k$, we choose m_{j} such that m_{j} is positive on $\mathbb{P}^{1}(\mathbb{R})$. In any case, we choose that $m_{1} \cdot m_{2} \cdot m_{3}$ has six distinct roots. We consider the real surface given by

$$
X:=\left\{((x: y: z),(a: b)) \in \mathbb{P}_{\mathbb{R}}^{2} \times \mathbb{P}_{\mathbb{R}}^{1} \mid x^{2} m_{1}(a, b)+y^{2} m_{2}(a, b)+z^{2} m_{3}(a, b)=0\right\}
$$

The projection on $\mathbb{P}_{\mathbb{R}}^{2}$ is a double covering. A straightforward calculation shows that this covering is ramified over a smooth quartic. In consequence, X is a smooth surface, and precisely a del Pezzo surface of degree two. Taking $\pi: X \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ as the second projection, we obtain a conic bundle (X, π) on the del Pezzo surface X such that $I(X, \pi)=V$. If $k=3$, the conic bundle is minimal. Otherwise, we contract components in the imaginary singular fibres (corresponding to the roots of m_{j} for $j>k$) to obtain the result.

Recall the following classical result, which will be useful throughout what follows.
Lemma 22. Let $\pi: S \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ be a complex conic bundle, and assume that S is a del Pezzo surface, with $\left(K_{S}\right)^{2}=9-m \leqslant 7$. Then, there exists a birational morphism $\eta: S \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ which is a blow-up of m points p_{1}, \ldots, p_{m} and which sends the fibres of π onto the lines passing through p_{1}. The curves of self-intersection -1 of S are:

- the exceptional curves $\eta^{-1}\left(p_{1}\right), \ldots, \eta^{-1}\left(p_{m}\right)$;
- the strict transforms of the lines passing through two of the p_{i};
- the conics passing through five of the p_{i};
- the cubics passing through seven of the p_{i} and being singular at one of these.

J. Blanc and F. Mangolte

Proof. Denote by ε the contraction of one component in each singular fibre of π. Then, ε is a birational morphism of conic bundles, not defined over \mathbb{R}, from S to a del Pezzo surface which is also an Hirzebruch surface. Changing the contracted components, we may assume that ε is a $\operatorname{map} S \rightarrow \mathbb{F}_{1}$. Contracting the exceptional section onto a point $p_{1} \in \mathbb{P}_{\mathbb{C}}^{2}$, we get a birational map $\eta: S \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ which is the blow-up of m points p_{1}, \ldots, p_{m} of $\mathbb{P}_{\mathbb{C}}^{2}$, and which sends the fibres of π_{1} onto the lines passing through p_{1}. The description of the (-1)-curves is well-known and may be found for example in [Dem80].

Lemma 23. Let $\pi_{1}: X \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ be a minimal real conic bundle. Then, the following conditions are equivalent.
(i) There exist a real conic bundle $\pi_{2}: X \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$, such that π_{1} and π_{2} induce distinct foliations on $X(\mathbb{C})$.
(ii) Either X is isomorphic to $\mathbb{P}_{\mathbb{R}}^{1} \times \mathbb{P}_{\mathbb{R}}^{1}$, or X is a del Pezzo surface of degree two or four.

Moreover, if the conditions are satisfied, then the following occur.
(a) The map π_{2} is unique, up to an automorphism of $\mathbb{P}_{\mathbb{R}}^{1}$.
(b) There exist $\alpha \in \operatorname{Aut}(X)$ and $\beta \in \operatorname{Aut}\left(\mathbb{P}_{\mathbb{R}}^{1}\right)$ such that $\pi_{1} \alpha=\beta \pi_{2}$. Moreover, if X is a del Pezzo surface of degree two, then α may be chosen to be the Geiser involution.
(c) Denoting by $f_{1}, f_{2} \subset \operatorname{Pic}(X)$ the divisors of the general fibre of respectively π_{1} and π_{2}, we have $f_{1}+f_{2}=-c K_{X}$ where $c=4 /\left(K_{X}\right)^{2} \in \mathbb{N} \cdot \frac{1}{2}$.

Proof. We now prove that condition (i) implies condition (ii), (a) and (c). Assuming the existence of π_{2}, we denote by f_{i} the divisor of the fibre of π_{i} for $i=1,2$. We have $\left(f_{1}\right)^{2}=\left(f_{2}\right)^{2}=0$ and by the adjunction formula $f_{1} \cdot K_{X}=f_{2} \cdot K_{X}=-2$, where K_{X} is the canonical divisor. Let us write $d=\left(K_{X}\right)^{2}$.

Since $\left(X, \pi_{1}\right)$ is minimal, $\operatorname{Pic}(X)$ has rank two, and hence $f_{1}=a K_{X}+b f_{2}$, for some $a, b \in \mathbb{Q}$. Computing $\left(f_{1}\right)^{2}$ and $f_{1} \cdot K_{X}$ we find respectively $0=a^{2} d-4 a b=a(a d-4 b)$ and $-2=a d-2 b$. If $a=0$, we find $f_{1}=f_{2}$, a contradiction. Thus, $4 b=a d$ and $2 b=a d+2$, which yields $b=-1$ and $a d=-4$, so $f_{1}+f_{2}=-4 / d \cdot K_{X}$. This shows that f_{2} is uniquely determined by f_{1}, which is the assertion (a).

Denote as usual by S the complex surface associated to X. Let $C \in \operatorname{Pic}(S)$ be an effective divisor, with reduced support, and let us prove that $C \cdot\left(f_{1}+f_{2}\right)>0$. Since C is effective, $C \cdot f_{1} \geqslant 0$ and $C \cdot f_{2} \geqslant 0$. If $C \cdot f_{1}=0$, then the support of C is contained in one fibre of π_{1}. If C is a multiple of f_{1}, then $C \cdot f_{2}>0$; otherwise, C is a multiple of a (-1)-curve contained in a singular fibre of f_{1}, and the orbit of C by the anti-holomorphic involution is equal to a multiple of f_{1}, whence $C \cdot f_{2}>0$.

Since $f_{1}+f_{2}$ is ample, and $f_{1}+f_{2}=-4 / d \cdot K_{X}$, either K_{X} or $-K_{X}$ is ample. The surface X being geometrically rational, the former cannot occur, whence $d>0$.

If S is isomorphic to $\mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}$, the existence of π_{1}, π_{2} shows that X is isomorphic to $\mathbb{P}_{\mathbb{R}}^{1} \times \mathbb{P}_{\mathbb{R}}^{1}$. Otherwise, K_{X} is not a multiple in $\operatorname{Pic}\left(X_{\mathbb{C}}\right)$ and thus d is equal to 1,2 or 4 . The number of singular fibres being even and equal to $8-\left(K_{X}\right)^{2}$, the only possibilities are then 2 and 4 .

We have proved that condition (i) implies condition (ii), (a) and (c).
Assume now that $X=(S, \sigma)$ is $\mathbb{P}_{\mathbb{R}}^{1} \times \mathbb{P}_{\mathbb{R}}^{1}$ or a del Pezzo surface of degree two or four. We construct an automorphism α of X which does not belong to $\operatorname{Aut}(X, \pi)$. Then, by taking $\pi_{2}=\pi_{1} \alpha$, we get assertion (i). Taking into account the unicity of π_{2}, we get assertion (b).

If X is $\mathbb{P}_{\mathbb{R}}^{1} \times \mathbb{P}_{\mathbb{R}}^{1}$, the two conic bundles are given by the projections on each factor, and we can get for α the swap of the factors.

If X is a del Pezzo surface of degree two, the anti-canonical map $\zeta: X \rightarrow \mathbb{P}^{2}$ is a double covering ramified along a smooth quartic, cf. for example [Dem80]. Let α be the involution associated to the double covering; α is classically called the Geiser involution. It fixes a smooth quartic, and hence cannot preserve any conic bundle.

The remaining case is when X is a del Pezzo surface of degree four. By Lemma 22, there is a birational map $\eta: S \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ which is the blow-up of five points p_{1}, \ldots, p_{5} of $\mathbb{P}_{\mathbb{C}}^{2}$, no three being collinear, and which sends the fibres of π_{1} on the lines passing through p_{1}. There are 16 exceptional curves (curves isomorphic to $\mathbb{P}_{\mathbb{C}}^{1}$ of self-intersection (-1)) on S :

- $E_{1}=\eta^{-1}\left(p_{1}\right), \ldots, E_{5}=\eta^{-1}\left(p_{5}\right)$ (five curves);
- the strict transforms of the lines passing through p_{i} and p_{j}, denoted by $L_{i j}$ (10 curves);
- the strict transform of the conic passing through the five points, denoted by Γ.

Note that the four singular fibres of π_{1} are $E_{i} \cup L_{i j}, i=2, \ldots, 5$, and that σ exchanges thus E_{i} and $L_{i j}$ for $i=1, \ldots, 5$. The intersection form being preserved, this implies that σ acts on the 16 exceptional curves as

$$
\left(E_{2} L_{12}\right)\left(E_{3} L_{13}\right)\left(E_{4} L_{14}\right)\left(E_{5} L_{15}\right)\left(E_{1} \Gamma\right)\left(L_{23} L_{45}\right)\left(L_{24} L_{35}\right)\left(L_{25} L_{34}\right) .
$$

After a linear change of coordinates, we may assume that $p_{1}=(1: 1: 1), p_{2}=(1: 0: 0)$, $p_{3}=(0: 1: 0), p_{4}=(0: 0: 1)$ and $p_{5}=(a: b: c)$ for some $a, b, c \in \mathbb{C}^{*}$. Denote by ϕ the birational involution $(x: y: z) \rightarrow(a y z: b x z: c x y)$ of $\mathbb{P}_{\mathbb{C}}^{2}$. Since the base-points of ϕ are p_{2}, p_{3}, p_{4} and since ϕ exchanges p_{1} and p_{5}, the map $\alpha=\eta^{-1} \phi \eta$ is an automorphism of S. Its action on the 16 exceptional curves is given by the permutation

$$
\left(L_{23} E_{4}\right)\left(L_{24} E_{3}\right)\left(L_{34} E_{2}\right)\left(L_{12} L_{25}\right)\left(L_{13} L_{35}\right)\left(L_{14} L_{45}\right)\left(\Gamma L_{15}\right)\left(E_{1} E_{5}\right) .
$$

Observe that the actions of α and σ on the set of 16 exceptional curves commute. This means that $\alpha \sigma \alpha^{-1} \sigma^{-1}$ is an holomorphic automorphism of S which preserves any of the 16 curves. It is the lift of an automorphism of $\mathbb{P}_{\mathbb{C}}^{2}$ that fixes the five points p_{1}, \ldots, p_{5} and hence is the identity. Consequently, α and σ commute, so $\alpha \in \operatorname{Aut}(X)$. Since ϕ sends a general line passing though p_{1} onto a conic passing through $p_{2}, \ldots, p_{5}, \alpha$ belongs to $\operatorname{Aut}(X) \backslash \operatorname{Aut}(X, \pi)$.

Corollary 24. Let X be a minimal geometrically rational real surface, which is not rational. Then, the following are equivalent.
(i) $\# X(\mathbb{R})=2$ or $\# X(\mathbb{R})=3$.
(ii) There exists a geometrically rational real surface $Y(\mathbb{R})$ isomorphic to $X(\mathbb{R})$, and such that Y admits two minimal conic bundles $\pi_{1}: Y \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ and $\pi_{2}: Y \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ inducing distinct foliations on $Y(\mathbb{C})$.

Proof. (ii) \Rightarrow (i). By Lemma 23, Y is then a del Pezzo surface, which has degree two or four since Y is not rational. This implies that $\# Y(\mathbb{R})=2$ or $\# Y(\mathbb{R})=3$ by Proposition 9 .
(i) \Rightarrow (ii). According to Theorem 7, Proposition 9 implies the existence of a minimal real conic bundle structure $\pi_{X}: X \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ with four or six singular fibres. This condition is equivalent to the fact that $I\left(X, \pi_{X}\right)$ is the union of two or three intervals. According to Lemma 21, there exists a minimal real conic bundle $\left(Y, \pi_{1}\right)$ such that Y is a del Pezzo surface and $I\left(Y, \pi_{1}\right)=I\left(X, \pi_{X}\right)$.

J. Blanc and F. Mangolte

Corollary 19 shows that $\left(X(\mathbb{R}), \pi_{X}\right)$ and $\left(Y, \pi_{1}\right)$ are isomorphic. Moreover, Lemma 23 yields the existence of π_{2}.

6. Equivalence of surfaces versus equivalence of conic bundles

This section is devoted to the proof of Theorem 4. From Theorem 7 and Proposition 10, it remains to solve the conic bundle case, which is done in Theorem 27. First of all, we correct an existing inaccuracy in the literature; in [Kol, Exercice 5.8] or [Sil89, VI.3.5], it is asserted that all minimal real conic bundles with four singular fibres belong to a unique birational equivalence class. To the contrary, the following general result, which includes the case with four singular fibres, occurs.

Theorem 25. Let $\pi_{X}: X \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ and $\pi_{Y}: Y \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ be two real conic bundles, and suppose that either X or Y is non-rational. Then, the following are equivalent.
(i) The two real surfaces X and Y are birational.
(ii) The two real conic bundles $\left(X, \pi_{X}\right)$ and $\left(Y, \pi_{Y}\right)$ are birational.
(iii) There exists an automorphism of \mathbb{P}^{1} which sends $I\left(X, \pi_{X}\right)$ onto $I\left(Y, \pi_{Y}\right)$.

Moreover, if the number of singular fibres of π_{X} is at least eight, then $\operatorname{Bir}(X)=\operatorname{Bir}\left(X, \pi_{X}\right)$.
Remark 26. It is well-known that this result is false when X and Y are rational. Indeed, consider $\left(X, \pi_{X}\right)=\left(\mathbb{P}_{\mathbb{R}}^{1} \times \mathbb{P}_{\mathbb{R}}^{1}, \operatorname{pr}_{1}\right)$ and let $\left(Y, \pi_{Y}\right)$ be a real conic bundle with two singular fibres. The surfaces X and Y are birational, but the conic bundles $\left(X, \pi_{X}\right)$ and $\left(Y, \pi_{Y}\right)$ are not.

Proof. The equivalence (iii) \Leftrightarrow (ii) was proved in Corollary 19 and (ii) \Rightarrow (i) is evident.
Let us now prove the equivalence (i) \Leftrightarrow (ii). We may assume that $\left(X, \pi_{X}\right)$ and $\left(Y, \pi_{Y}\right)$ are minimal and that X is not rational; hence π_{X} has at least four singular fibres. Let $\psi: X \rightarrow Y$ be a birational map, and decompose ψ into elementary links: $\psi=\psi_{n} \circ \cdots \circ \psi_{1}$ (see [Isk96, Theorem 2.5]). Consider the first link $\psi_{1}: X \rightarrow X_{1}$, which may be of type (II) or (IV) only, by [Isk96, Theorem 2.6]. If ψ_{1} is of type (II), then ψ_{1} is a birational map of conic bundles $\left(X, \pi_{X}\right) \rightarrow\left(X_{1}, \pi_{1}\right)$ for some conic bundle structure $\pi_{1}: X_{1} \rightarrow \mathbb{P}^{1}$. If ψ_{1} is of type (IV), then ψ_{1} is an isomorphism $X \rightarrow X_{1}$ and the link is precisely a change of conic bundle structure from π_{X} to $\pi_{1}: X_{1} \rightarrow \mathbb{P}^{1}$, which induces distinct foliations on $X(\mathbb{R})$. Applying Lemma $23, X$ is a del Pezzo surface of degree two or four, and there exist automorphisms $\alpha \in \operatorname{Aut}(X)$ and $\beta \in \operatorname{Aut}\left(\mathbb{P}_{\mathbb{R}}^{1}\right)$ such that $\pi_{1} \psi_{1} \alpha=\beta \pi_{2}$, whence (X, π) is isomorphic to (X_{1}, π_{1}). We proceed by induction on the number of elementary links to conclude that $\left(X, \pi_{X}\right)$ is birational to $\left(Y, \pi_{Y}\right)$. Moreover, if π_{X} has at least eight singular fibres, then no link of type (IV) may occur, so ψ is a birational map of conic bundles $\left(X, \pi_{X}\right) \rightarrow\left(Y, \pi_{Y}\right)$.

When the conic bundles are minimal, we can strengthen Theorem 25 to get an isomorphism between the real parts.

Theorem 27. Let $\pi_{X}: X \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ and $\pi_{Y}: Y \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ be two minimal real conic bundles, and suppose that either X or Y is non-rational. Then, the following are equivalent.
(i) X and Y are birational.
(ii) $X(\mathbb{R})$ and $Y(\mathbb{R})$ are isomorphic.
(iii) $\left(X(\mathbb{R}), \pi_{X}\right)$ and $\left(Y(\mathbb{R}), \pi_{Y}\right)$ are isomorphic.

Proof. The implications (iii) \Rightarrow (ii) \Rightarrow (i) being evident, it suffices to prove (i) \Rightarrow (iii). Since X and Y are not rational, both π_{X} and π_{Y} have at least one singular fibre. Applying Lemma 15, we may assume that both $\left(X, \pi_{X}\right)$ and $\left(Y, \pi_{Y}\right)$ are exceptional real conic bundles. Then, since $\left(X, \pi_{X}\right)$ and $\left(Y, \pi_{Y}\right)$ are birational (Theorem 25), we may assume that $I\left(X, \pi_{X}\right)=I\left(Y, \pi_{Y}\right)$, up to an automorphism of $\mathbb{P}_{\mathbb{R}}^{1}$. Then Corollary 19 shows that $\left(X, \pi_{X}\right)$ is isomorphic to $\left(Y, \pi_{Y}\right)$.

We are now able to prove Theorem 4 concerning minimal surfaces.
Proof of Theorem 4. Let X and Y be two minimal geometrically rational real surfaces, and assume that either X or Y is non-rational.

If $X(\mathbb{R})$ and $Y(\mathbb{R})$ are isomorphic, it is clear that X and Y are birational. Let us prove the converse.

Theorem 7 lists all the possibilities for X. If $\rho(X)=1$ or $\rho(Y)=1$, Proposition 10 shows that X is isomorphic to Y. Otherwise, since neither X nor Y is rational, there exist minimal conic bundle structures on X and on Y. From Theorem 27, we conclude that $X(\mathbb{R})$ is isomorphic to $Y(\mathbb{R})$.

To go further with non-minimal surfaces, we need to know when the group $\operatorname{Aut}(X(\mathbb{R}))$ is very transitive for X minimal. This is done in the following sections.

7. Very transitive actions

Thanks to the work done in $\S 4$, it is easy to apply the techniques of [HM09] to prove that $\operatorname{Aut}(X(\mathbb{R}))$ is fibrewise very transitive on a real conic bundle. After describing the transitivity of $\operatorname{Aut}(X(\mathbb{R}))$ on the tangent space of a general point, we set the main result of this section: $\operatorname{Aut}(X(\mathbb{R}))$ is very transitive on each connected component when X is minimal and admits two conic bundle structures (Proposition 33). We end the section by giving a characterisation of surfaces X for which $\operatorname{Aut}(X(\mathbb{R}))$ is able to mix the connected components of $X(\mathbb{R})$.

Lemma 28. Let (X, π) be a minimal real conic bundle over $\mathbb{P}_{\mathbb{R}}^{1}$ with at least one singular fibre. Let $\left(p_{1}, \ldots, p_{n}\right)$ and $\left(q_{1}, \ldots, q_{n}\right)$ be two n-tuples of distinct points of $X(\mathbb{R})$, and let $\left(b_{1}, \ldots, b_{m}\right)$ be m points of $I(X, \pi)$. Assume that $\pi\left(p_{i}\right)=\pi\left(q_{i}\right)$ for each i, that $\pi\left(p_{i}\right) \neq \pi\left(p_{j}\right)$ for $i \neq j$ and that $\pi\left(p_{i}\right) \neq b_{j}$ for any i and any j.

Then, there exists $\alpha \in \operatorname{Aut}(X(\mathbb{R}))$ such that $\alpha\left(p_{i}\right)=q_{i}$ for every $i, \pi \alpha=\pi$ and $\left.\alpha\right|_{\pi^{-1}\left(b_{i}\right)}$ is the identity for every i.

Remark 29. The same result holds for minimal real conic bundles with no singular fibre, see [$\mathrm{BH} 07,5.4]$. The following proof uses twisting maps, see below, which were introduced in [HM09] to prove that the action of the group of automorphisms $\operatorname{Aut}\left(S^{2}\right)$ on the quadric sphere $S^{2}:=\left\{(x: y: z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}$ is very transitive.

Proof. By Lemma 15, we may assume that (X, π) is exceptional. Moreover, Lemma 17 yields the existence of an affine real surface $A \subset X$ isomorphic to the hypersurface of \mathbb{R}^{3} given by

$$
y^{2}+z^{2}=-\prod_{i=1}^{2 r}\left(x-a_{i}\right)
$$

for some $a_{1}, \ldots, a_{2 r} \in \mathbb{R}$ with $a_{1}<a_{2}<\cdots<a_{2 r}$, where $\left.\pi\right|_{A}$ corresponds to the projection $(x, y, z) \mapsto x$, and where the inclusion $A \subset X$ induces an isomorphism $A(\mathbb{R}) \rightarrow X(\mathbb{R})$.

J. Blanc and F. Mangolte

For $i=1, \ldots, n$, let us denote by $\left(x_{i}, y_{i}, z_{i}\right)$ the coordinates of p_{i} in $A \subset \mathbb{R}^{3}$ and by $\left(u_{i}, v_{i}, w_{i}\right)$ those of q_{i}. From the hypothesis, we have $x_{i}=u_{i}$ for all i; thus we get $y_{i}^{2}+z_{i}^{2}=v_{i}^{2}+w_{i}^{2}$ for all i. Let $\Phi_{i} \in \mathrm{SO}_{2}(\mathbb{R})$ be the rotation sending $\left(x_{i}, y_{i}\right)$ to $\left(u_{i}, v_{i}\right)$. Then, by [HM09, Lemma 2.2], there exists an algebraic map $\Phi:\left[a_{1}, a_{2 r}\right] \rightarrow \mathrm{SO}_{2}(\mathbb{R})$ such that $\Phi\left(x_{i}\right)=\Phi_{i}$ for $i=1, \ldots, n$ and $\Phi\left(b_{i}\right)$ is the identity for $i=1, \ldots, m$. Let us recall the proof; since $\mathrm{SO}_{2}(\mathbb{R})$ is isomorphic to the unit circle $S^{1}:=\left\{(x: y: z) \in \mathbb{P}^{2}(\mathbb{R}) \mid x^{2}+y^{2}=z^{2}\right\}$, it suffices to prove the statement for S^{1} instead of $\mathrm{SO}_{2}(\mathbb{R})$. Let Φ_{0} be a point of S^{1} distinct from $\Phi_{1}, \ldots, \Phi_{n}$ and from the identity. Since $S^{1} \backslash\left\{\Phi_{0}\right\}$ is isomorphic to \mathbb{R}, it suffices, finally, to prove the statement for \mathbb{R} instead of $\mathrm{SO}_{2}(\mathbb{R})$. The latter statement is an easy consequence of Lagrange polynomial interpolation.

Then the map defined by $\alpha:(x, y, z) \mapsto(x,(y, z) \cdot \Phi(x))$ induces an automorphism $A(\mathbb{R}) \rightarrow$ $A(\mathbb{R})$ called the twisting map of π associated to Φ. Moreover, $\alpha\left(p_{i}\right)=q_{i}$, for all $i, \pi \alpha=\pi,\left.\alpha\right|_{\pi^{-1}\left(b_{i}\right)}$ is the identity for every i, and π induces an automorphism $X(\mathbb{R}) \rightarrow X(\mathbb{R})$.

Lemma 30. Let (X, π) be a minimal real conic bundle over $\mathbb{P}_{\mathbb{R}}^{1}$ with at least one singular fibre. Let $p \in X$ be a real point in a non-singular fibre of π, and let $\Sigma \subset I(X, \pi)$ be a finite subset, with $\pi(p) \in \Sigma$. Denote by $\eta: Y \rightarrow X$ the blow-up of p, and by $E \subset Y$ the exceptional curve. Let $q \in E$ be the point corresponding to the direction of the fibre of π passing through p.

Then, the lift of the group

$$
G=\left\{\alpha \in \operatorname{Aut}(X(\mathbb{R})), \pi \alpha=\pi|\alpha|_{\pi^{-1}(\Sigma)} \text { is the identity }\right\}
$$

by η is a subgroup $\eta^{-1} G \eta \subset \operatorname{Aut}(Y(\mathbb{R}))$ which fixes the point q, and acts transitively on $E \backslash q \cong \mathbb{A}_{\mathbb{R}}^{1}$.

Proof. Since G acts identically on $\pi^{-1}(\Sigma)$, it fixes p, and therefore lifts to $H=\eta^{-1} G \eta \subset$ $\operatorname{Aut}(Y(\mathbb{R}), \pi \eta)$, which preserves E. Moreover, G preserves the fibre of π passing through p, so H preserves its strict transform, which intersects transversally E at q, so q is fixed.

Let us prove now that the action of $\eta^{-1} G \eta$ on $E \backslash q$ is transitive. By Lemma 15, we may assume that (X, π) is exceptional. Then, we take an affine surface $A \subset X$, isomorphic to the hypersurface $y^{2}+z^{2}=P(x)$ of \mathbb{R}^{3} for some polynomial P, such that $\left.A\right|_{\pi}$ is the projection $\operatorname{pr}_{x}:(x, y, z) \mapsto x$ and the inclusion $A \subset X$ gives an isomorphism $A(\mathbb{R}) \rightarrow X(\mathbb{R})$ (Lemma 17). Let us write $\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{R}^{3}$ as the coordinates of p. Since x is on a non-singular fibre of π, then $P\left(x_{0}\right)>0$. Up to an affine automorphism of \mathbb{R}^{3}, and up to multiplication of P by some constant, we may assume that $x_{0}=0, P(0)=1, y_{0}=0$, and $z_{0}=0$.

To any real polynomial $\lambda \in \mathbb{R}[X]$, we associate the matrix

$$
\left(\begin{array}{rr}
\alpha(X) & \beta(X) \\
-\beta(X) & \alpha(X)
\end{array}\right) \in \mathrm{SO}_{2}(\mathbb{R}(X)),
$$

where $\alpha=\left(1-\lambda^{2}\right) /\left(1+\lambda^{2}\right) \in \mathbb{R}(X)$ and $\beta=2 \lambda /\left(1+\lambda^{2}\right) \in \mathbb{R}(X)$. Moreover, corresponding to this matrix, we associate the map

$$
\psi_{\lambda}:(x, y, z) \mapsto(x, \alpha(x) \cdot y-\beta(x) \cdot z, \beta(x) \cdot y+\alpha(x) \cdot z),
$$

which belongs to $\operatorname{Aut}\left(A(\mathbb{R}), \operatorname{pr}_{x}\right)$. To impose that ψ_{λ} is the identity on $\left(\operatorname{pr}_{x}\right)^{-1}(\Sigma)$ is the same as asking that $\lambda(x)=0$ for each $(x: 1) \in \Sigma \subset \mathbb{P}^{1}(\mathbb{R})$, and in particular for $x=0$.

Denote by $\mathcal{O}=\mathbb{R}[x, y, z] /\left(y^{2}+z^{2}-P(x)\right)$ the ring of functions of A, by $\mathfrak{p} \subset \mathcal{O}$ the ideal of functions vanishing at p, by $\mathcal{O}_{\mathfrak{p}}$ the localisation, and by $\mathfrak{m} \subset \mathcal{O}_{\mathfrak{p}}$ the maximal ideal of $\mathcal{O}_{\mathfrak{p}}$. Then, the cotangent ring $T_{p, A}^{*}$ of p in A is equal to $\mathfrak{m} / \mathfrak{m}^{2}$, and is generated by the images $[x],[y],[z-1]$

Real conic bundles and very transitive actions

of $x, y, z-1 \in \mathbb{R}[x, y, z]$. Since $P(0)=1$, we may write $P(x)=1+x Q(x)$, for some real polynomial Q. We compute

$$
[0]=\left[y^{2}+z^{2}-P(x)\right]=\left[y^{2}+(z-1)^{2}+2(z-1)-x Q(x)\right]=[2(z-1)-x Q(0)] \in \mathfrak{m} / \mathfrak{m}^{2} .
$$

We see that $[z-1]=[x Q(0) / 2]$, and thus $\mathfrak{m} / \mathfrak{m}^{2}$ is generated by $[x]$ and $[y]$ as an \mathbb{R}-module. Since $\lambda(0)=0$, we can write $\lambda(x)=x \mu(x)$, for some real polynomial μ. The linear action of ψ_{λ} on the cotangent space $T_{p, A}^{*}$ fixes $[x]$ and sends $[y]$ onto

$$
\begin{aligned}
{[\alpha(x) \cdot y-\beta(x) \cdot z] } & =\left[\frac{\left(1-\lambda(x)^{2}\right) y-2 \lambda(x) z}{\lambda(x)^{2}+1}\right]=[y-2 \lambda(x)(1+x Q(0) / 2)] \\
& =[y-2 \mu(0) x] .
\end{aligned}
$$

It suffices to change the derivative of λ at 0 (which is equal to $\mu(0)$), which may be any real number. Therefore, the action of G on the projectivisation of $T_{p, A}^{*}$ fixes a point (corresponding to $[x]$) but acts transitively on the complement of this point. Since E corresponds to the projectivisation of $T_{p, A}, G$ acts transitively on $E \backslash q$.

Lemma 31. Let X be a real projective surface endowed with two minimal conic bundles $\pi_{1}: X \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ and $\pi_{2}: X \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ inducing distinct foliations on $X(\mathbb{C})$. There exists a real projective surface X^{\prime} such that $X^{\prime}(\mathbb{R})$ and $X(\mathbb{R})$ are isomorphic, X is endowed with two minimal conic bundles $\pi_{1}^{\prime}: X \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ and $\pi_{2}^{\prime}: X \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ inducing distinct foliations on $X^{\prime}(\mathbb{C})$ and the following condition holds.
(\star Let F_{j} be a real fibre of $\pi_{j}^{\prime}, j=1$, 2. If $F_{1}(\mathbb{R}) \cap F_{2}(\mathbb{R}) \neq \emptyset$, then at most one of the curves F_{j} can be singular.

Remark 32. It is possible that the condition ($*$) above does not hold for (X, π_{1}, π_{2}), taking, for example, for X the del Pezzo surface of degree two given in the proof of Lemma 21 for $k=3$:

$$
X:=\left\{((x: y: z),(a: b)) \in \mathbb{P}_{\mathbb{R}}^{2} \times \mathbb{P}_{\mathbb{R}}^{1} \mid x^{2} m_{1}(a, b)+y^{2} m_{2}(a, b)+z^{2} m_{3}(a, b)=0\right\} .
$$

The map $\pi_{1}: X \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ is given by the second projection, and the 6 singular points of its singular fibres correspond to only three points of $\mathbb{P}_{\mathbb{R}}^{2}$, namely $(1: 0: 0),(0: 1: 0)$ and $(0: 0: 1)$. This shows that the Geiser involution preserves the set of the six points, so each of these points is the singular point of a singular fibre of π_{2}.

Proof. Suppose that the condition (\star) does not hold for (X, π_{1}, π_{2}) (otherwise, the result is obvious). Then F_{i} is the union of two (-1)-curves $E_{i, 1}$ and $E_{i, 2}$, intersecting transversally at some point p_{i}. Since p_{i} is the only real point of F_{i}, we have $p_{1}=p_{2}$. Hence, $F_{1} \cdot E_{2, i} \geqslant 2$ for $i=1,2$, which implies that $F_{1} \cdot F_{2} \geqslant 4$. According to Lemma 23, X is a del Pezzo surface of degree two or four, and we have $F_{1}+F_{2}=-c K_{X}$ with $c=4 /\left(K_{X}\right)^{2}$. Computing $16 /\left(K_{X}\right)^{2}=$ $\left(F_{1}+F_{2}\right)^{2}=2 F_{1} \cdot F_{2} \geqslant 8$, we see that $\left(K_{X}\right)^{2}=2$.

Let $q \in X(\mathbb{R})$ be a real point, let $\eta: Y \rightarrow X$ be the blow-up of q, and let $\varepsilon: Y \rightarrow X^{\prime}$ be the contraction of the strict transform of the fibre of π_{1} passing through q. Let $\psi: X \rightarrow X^{\prime}$ be the composition $\psi=\varepsilon \circ \eta^{-1}$. We prove now that if q is general enough, then X^{\prime} is a del Pezzo surface of degree two, and $\pi_{1}^{\prime}=\pi_{1} \circ \psi$ and $\pi_{2}^{\prime}=\sigma_{X^{\prime}} \circ \pi_{1}^{\prime}$ (where $\sigma_{X^{\prime}} \in \operatorname{Aut}\left(X^{\prime}\right)$ is the Geiser involution of X^{\prime}) satisfy the condition (\star).

Firstly, it is well-known that blowing-up a general point of a del Pezzo surface of degree two yields a del Pezzo surface of degree one (it suffices that q does not belong to any of the

J. Blanc and F. Mangolte

(-1)-curves of X and to the ramification curve of the double covering $\left.X \rightarrow \mathbb{P}^{2}\right)$; then a contraction from a del Pezzo surface of degree one yields a del Pezzo surface of degree two.

Secondly, we denote respectively by S, S^{\prime}, T the complex surfaces obtained by forgetting the real structures of X, X^{\prime}, Y and study condition (\star) by working now in the Picard groups of these surfaces, identifying a curve with its equivalence class. We choose a (-1)-curve (not defined over \mathbb{R}) in any of the six singular fibres of π_{1}^{\prime}, and denote these by C_{1}, \ldots, C_{6}, and denote by p_{1}, \ldots, p_{6} the singular points of the six singular fibres, so that $p_{i} \in C_{i}$. Condition (\star) amounts to prove that $D_{i}:=\psi^{-1} \sigma_{X^{\prime}} \psi\left(C_{i}\right) \subset S$ does not pass through p_{j} for any i and any j. Fixing i and j, we will see that this yields a curve of X where q should not lie. Note that the action of the Geiser involution $\sigma_{X^{\prime}} \in \operatorname{Aut}\left(X^{\prime}\right) \subset \operatorname{Aut}\left(S^{\prime}\right)$ on $\operatorname{Pic}\left(S^{\prime}\right)$ is given by $\sigma_{X^{\prime}}(D)=\left(D \cdot K_{X^{\prime}}\right) K_{X^{\prime}}-D$ (this follows directly from the fact that the invariant part of $\operatorname{Pic}\left(S^{\prime}\right)$ has rank one). In consequence, the (-1)-curve $D_{i}^{\prime}:=\sigma_{X^{\prime}} \psi\left(C_{i}\right) \subset S^{\prime}$ is equal to $-K_{X^{\prime}}-\psi\left(C_{i}\right)$, and thus $\varepsilon^{*}\left(D_{i}\right)=-\varepsilon^{*}\left(K_{X^{\prime}}\right)-\eta^{*}\left(C_{i}\right)$. Writing E_{q} as the (-1)-curve contracted by η, and f as a general fibre of π_{1}, the (-1)-curve contracted by ε is equivalent to $\eta^{*}(f)-E_{q}$. We have $K_{Y}=\eta^{*}\left(K_{X}\right)+E_{q}=\varepsilon^{*}\left(K_{X^{\prime}}\right)+\eta^{*}(f)-E_{q}$ in $\operatorname{Pic}(Y)$. This implies that

$$
\eta^{*}\left(D_{i}\right)=\varepsilon^{*}\left(D_{i}^{\prime}\right)=-\eta^{*}\left(K_{X}\right)+\eta^{*}(f)-\eta^{*}\left(C_{i}\right)-2 E_{q} \in \operatorname{Pic}(Y) .
$$

This means that D_{i} is a curve with a double point at q, is equivalent to $-K_{X}+f-C_{i} \in$ $\operatorname{Pic}(S)$ and has self-intersection 3. Moreover, the linear system Λ_{i} of curves in $\operatorname{Pic}(S)$ equivalent to $-K_{X}+f-C_{i}$ has dimension three. Note that Λ_{i} does not depend on q, but only on i. Denote by $\Lambda_{i, j} \subset \Lambda_{i}$ the sublinear system of curves of Λ_{i} passing through p_{j}. This system has dimension two; after blowing-up p_{j}, the system $\Lambda_{i, j}$ yields a ramified double covering of \mathbb{P}^{2}. If D_{i} passes through p_{j}, then D_{i} corresponds to a member of $\Lambda_{i, j}$, singular at q, and this implies that q belongs to the ramified locus of the double covering induced by $\Lambda_{i, j}$. It suffices to choose q outside of all these loci to obtain condition (\star).

We now use the above lemmas to show that the action of $\operatorname{Aut}(X(\mathbb{R}))$ is very transitive on each connected component when X is a surface with two conic bundles.

Proposition 33. Let X be a real projective surface, which admits two minimal conic bundles $\pi_{1}: X \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ and $\pi_{2}: X \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ inducing distinct foliations on $X(\mathbb{C})$.

Let $\left(p_{1}, \ldots, p_{n}\right)$ and $\left(q_{1}, \ldots, q_{n}\right)$ be two n-tuples of distinct points of $X(\mathbb{R})$ such that p_{i} and q_{i} belong to the same connected component for each i. Then, there exists an element of $\operatorname{Aut}(X(\mathbb{R}))$ which sends p_{i} onto q_{i} for each i, and which sends each connected component of $X(\mathbb{R})$ onto itself.

Proof. When X is rational, the result follows from [HM09, Theorem 1.4]. Thus we assume that X is non-rational, and in particular that $X(\mathbb{R})$ is non-connected.

From Lemma 31, we can assume that any real point which is critical for one fibration is not critical for the second fibration. Otherwise (recall that the fibrations are minimal), a real intersection point of a fibre F_{1} of π_{1} with a fibre F_{2} of π_{2} cannot be a singular point of F_{1} and of F_{2} at the same time. By Lemma 28 applied to (X, π_{1}), and to (X, π_{2}), we may assume without loss of generality that all points $p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{n}$ belong to smooth fibres of π_{1} and to smooth fibres of π_{2}. We now use Lemma 28 to obtain an automorphism α of $\left(X(\mathbb{R}), \pi_{1}\right)$ such that $\pi_{2}\left(\alpha\left(p_{i}\right)\right) \neq \pi_{2}\left(\alpha\left(p_{j}\right)\right)$ and $\pi_{2}\left(\alpha\left(q_{i}\right)\right) \neq \pi_{2}\left(\alpha\left(q_{j}\right)\right)$ for $i \neq j$. Hence, we may suppose that $\pi_{2}\left(p_{i}\right) \neq \pi_{2}\left(p_{j}\right)$ and $\pi_{2}\left(q_{i}\right) \neq \pi_{2}\left(q_{j}\right)$ for $i \neq j$.

Likewise, using an automorphism of $\left(X(\mathbb{R}), \pi_{2}\right)$ we may suppose that $\pi_{1}\left(p_{i}\right) \neq \pi_{1}\left(p_{j}\right)$ and $\pi_{1}\left(q_{i}\right) \neq \pi_{1}\left(q_{j}\right)$ for $i \neq j$.

We now show that for $i=1, \ldots, m$ there exists an element $\alpha_{i} \in \operatorname{Aut}(X(\mathbb{R}))$ that sends p_{i} on q_{i} and that restricts to the identity on the sets $\bigcup_{j \neq i}\left\{p_{j}\right\}$ and $\bigcup_{j \neq i}\left\{q_{j}\right\}$. Then, the composition of the α_{i} will achieve the proof. Observe that $\zeta=\pi_{1} \times \pi_{2}$ gives a finite surjective morphism $X \rightarrow \mathbb{P}_{\mathbb{R}}^{1} \times \mathbb{P}_{\mathbb{R}}^{1}$ which is two-to-one or four-to-one depending on the degree of X (this follows from assertion (c) of Lemma 23). Denote by W the image of $X(\mathbb{R})$. The map $X(\mathbb{R}) \rightarrow W$ is a differential map, which has topological finite degree. Denote by W_{i} the connected component of W which contains both $\zeta\left(p_{i}\right)$ and $\zeta\left(q_{i}\right)$. Observe that W_{i} is contained in the square $I\left(X, \pi_{1}\right) \times I\left(X, \pi_{2}\right)$, and that, for each point $x \in W_{i}$, the intersection of the horizontal and vertical lines (fibres of the two projections of $\mathbb{P}_{\mathbb{R}}^{1} \times \mathbb{P}_{\mathbb{R}}^{1}$) passing through x with W_{i} is either only $\{x\}$, when x is on the boundary of W_{i}, or is a bounded interval. Moreover, W_{i} is connected. Then, there exists a path from $\zeta\left(p_{i}\right)$ to $\zeta\left(q_{i}\right)$ which is a sequence of vertical or horizontal segments contained in W_{i}. We may furthermore assume that none of the segments is contained in $\left(\operatorname{pr}_{1}\right)^{-1}\left(\pi_{1}(a)\right)$ or $\left(\operatorname{pr}_{2}\right)^{-1}\left(\pi_{2}(a)\right)$ for any $a \in\left(\bigcup_{j \neq i}\left\{p_{j}\right\}\right) \cup\left(\bigcup_{j \neq i}\left\{q_{j}\right\}\right)$. Denote by r_{1}, \ldots, r_{l} the points of U that are sent on the singular points or ending points of the path, and by s_{1}, \ldots, s_{l} some points of $X(\mathbb{R})$ which are sent by ζ on r_{1}, \ldots, r_{l} respectively. Up to renumbering, $s_{1}=p_{i}, s_{l}=q_{i}$ and two consecutive points s_{j} and s_{j+1} are such that $\pi_{1}\left(s_{j}\right)=\pi_{1}\left(s_{j+1}\right)$ or $\pi_{2}\left(s_{j}\right)=\pi_{2}\left(s_{j+1}\right)$. We then construct α_{i} as a composition of $l-1$ maps, each one belonging either to $\operatorname{Aut}\left(X(\mathbb{R}), \pi_{1}\right)$ or $\operatorname{Aut}\left(X(\mathbb{R}), \pi_{2}\right)$ and sending s_{j} on s_{j+1}, and fixing the points $\left(\bigcup_{j \neq i}\left\{p_{j}\right\}\right) \cup\left(\bigcup_{j \neq i}\left\{q_{j}\right\}\right)$.

The following proposition describes the possible mixes of connected components.
Proposition 34. Let (X, π) be a minimal real conic bundle. Denote by I_{1}, \ldots, I_{r} the r connected components of $I(X, \pi)$, and by M_{1}, \ldots, M_{r} the r connected components of $X(\mathbb{R})$, where $I_{i}=\pi\left(M_{i}\right), M_{i}=\pi^{-1}\left(I_{i}\right) \cap X(\mathbb{R})$. If $\nu \in \operatorname{Sym}_{r}$ is a permutation of $\{1, \ldots, r\}$, the following are equivalent:
(i) there exists $\alpha \in \operatorname{Aut}\left(\mathbb{P}_{\mathbb{R}}^{1}\right)$ such that $\alpha\left(I_{i}\right)=I_{\nu(i)}$ for each i;
(ii) there exists $\beta \in \operatorname{Aut}(X(\mathbb{R}), \pi)$ such that $\beta\left(M_{i}\right)=M_{\nu(i)}$ for each i;
(iii) there exists $\beta \in \operatorname{Aut}(X(\mathbb{R}))$ such that $\beta\left(M_{i}\right)=M_{\nu(i)}$ for each i;
(iv) there exist two real Zariski open sets $V, W \subset X$, and $\beta \in \operatorname{Bir}(X)$, inducing an isomorphism $V \rightarrow W$, such that $\beta\left(V(\mathbb{R}) \cap M_{i}\right)=W(\mathbb{R}) \cap M_{\nu(i)}$ for each i.
Moreover, the conditions are always satisfied when $r \leqslant 2$, and are in general not satisfied when $r \geqslant 3$.

Proof. The implications (ii) \Rightarrow (i) and (ii) \Rightarrow (iii) \Rightarrow (iv) are obvious.
The implication (i) \Rightarrow (ii) is a direct consequence of Corollary 19.
We now prove that if $r \leqslant 2$, then assertion (i) is always satisfied, and hence all the conditions are equivalent (since all are true). When $r \leqslant 1$, take α to be the identity. When $r=2$, we make a linear change of coordinates to the effect that $I_{1}=\{(x: 1) \mid 0 \leqslant x \leqslant 1\}$ and I_{2} is bounded by ($1: 0$) and $(\lambda: 1)$, for some $\lambda \in \mathbb{R}, \lambda>1$ or $\lambda<0$. Then, $\alpha:\left(x_{1}: x_{2}\right) \mapsto\left(\lambda x_{2}: x_{1}\right)$ is an involution which exchanges I_{1} and I_{2}.

It remains to prove the implication (iv) \Rightarrow (i) for $r \geqslant 3$. We decompose β into elementary links

$$
X=X_{0} \xrightarrow{\beta_{1}} X_{1} \xrightarrow{\beta_{2}} \cdots \xrightarrow{\beta_{n-1}} X_{n-1} \xrightarrow{\beta_{n}} X_{n}=X
$$

J. Blanc and F. Mangolte

as in [Isk96, Theorem 2.5]. It follows from the description of the links of [Isk96, Theorem 2.6] that each of the links is of type (II) or (IV), and that the links of type (II) are birational maps of conic bundles and the links of type (IV) occur on del Pezzo surfaces of degree two.

In consequence, each of the X_{i} admits a conic bundle structure given by $\pi_{i}: X_{i} \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$, where $\pi_{0}=\pi_{n}=\pi$, and if β_{i} has type (II), then it is a birational map of conic bundles $\left(X_{i-1}, \pi_{i-1}\right) \rightarrow\left(X_{i}, \pi_{i}\right)$, and if it has type (IV), then it is an isomorphism $X_{i-1} \rightarrow X_{i}$ which does not send the general fibre of π_{i-1} on those of π_{i}. In this latter case, since π_{i} and $\pi_{i-1} \beta_{i}$ have distinct general fibres, X_{i-1} and X_{i} are del Pezzo surfaces of degree two, and the Geiser involution $\iota_{i-1} \in \operatorname{Aut}\left(X_{i-1}\right)$ exchanges the two general fibres (this follows from [Isk96, Theorem 2.6], but also from Lemma 23). This means that the map $\beta_{i} \circ \iota_{i-1}$, that we denote by γ_{i}, is an isomorphism of conic bundles $\left(X_{i-1}, \pi_{i-1}\right) \rightarrow\left(X_{i}, \pi_{i}\right)$.

Now, we prove by induction on the number of links of type (IV) that β may be decomposed into compositions of elements of $\operatorname{Bir}(X, \pi)$ and maps of the form $\psi \iota \psi^{-1}$ where ψ is a birational map of conic bundles $(X, \pi) \rightarrow\left(X^{\prime}, \pi^{\prime}\right),\left(X^{\prime}, \pi^{\prime}\right)$ is a del Pezzo surface of degree two and $\iota \in \operatorname{Aut}\left(X^{\prime}\right)$ is the Geiser involution. If there is no link of type (IV), β preserves the conic bundle structure given by π. Otherwise, denote by β_{i} the first link of type (IV), which is an isomorphism $\beta_{i}: X_{i} \rightarrow X_{i+1}$, and write $\beta_{i}=\gamma_{i} \circ \iota_{i-1}$ as before. We write $\psi=\beta_{i-1} \circ \cdots \circ \beta_{1}$, which is a birational map of conic bundles $\psi:(X, \pi) \rightarrow\left(X_{i}, \pi_{i}\right)$. Then, $\beta=\left(\beta_{n} \circ \cdots \circ \beta_{i+1} \circ \gamma_{i} \circ\right.$ $\psi)\left(\psi^{-1} \iota_{i-1} \psi\right)$. Applying the induction hypothesis on the map $\left(\beta_{n} \circ \cdots \circ \beta_{i+1} \circ \gamma_{i} \circ \psi\right) \in \operatorname{Bir}(X)$, we are done.

Now, observe that when $\left(X^{\prime}, \pi^{\prime}\right)$ is a minimal real conic bundle and X^{\prime} is a del Pezzo surface of degree two, the map $\zeta: X^{\prime} \rightarrow \mathbb{P}_{\mathbb{R}}^{2}$ given by $\left|-K_{X^{\prime}}\right|$ is a double covering, ramified over a smooth quartic curve $\Gamma \subset \mathbb{P}_{\mathbb{R}}^{2}$ (see e.g. [Dem80]). Since (X, π) is minimal, $\left(K_{X}\right)^{2}=8-2 r$ and thus π has $r=6$ singular fibres, so $I(X, \pi)$ is the union of three intervals and $X(\mathbb{R})$ is the union of three connected components. This implies that $\Gamma(\mathbb{R})$ is the union of three disjoint ovals. A connected component M of $X(\mathbb{R})$ is homeomorphic to a sphere, and surjects by ζ to the interior of one of the three ovals. The Geiser involution (induced by the double covering) induces an involution on M, which fixes the preimage of the oval. This means that the Geiser involution sends any connected component of $X(\mathbb{R})$ on itself. Thus, in the decomposition of β into elements of $\operatorname{Bir}(X, \pi)$ and conjugate elements of Geiser involutions, the only relevant elements are those of $\operatorname{Bir}(X, \pi)$. There thus exists $\beta^{\prime} \in \operatorname{Bir}(X, \pi)$ which acts on the connected components of $X(\mathbb{R})$ in the same way as β. This shows that assertion (iv) implies (i).

We finish by proving that assertion (i) is false in general, when $r \geqslant 3$. This follows from the fact that if Σ is a general finite subset of $2 r$ distinct points of $\mathbb{P}_{\mathbb{R}}^{1}$, then the group $\left\{\alpha \in \operatorname{Aut}\left(\mathbb{P}_{\mathbb{R}}^{1}\right) \mid \alpha(\Sigma)=\Sigma\right\}$ is trivial. Supposing this fact to be true, we obtain the result by applying it to the $2 r$ boundary points of $I(X, \pi)$. Let us prove the fact. The set of $2 r$-tuples of $\mathbb{P}_{\mathbb{R}}^{1}$ is an open subset W of $\left(\mathbb{P}_{\mathbb{R}}^{1}\right)^{2 r}$. For any non-trivial permutation $v \in \operatorname{Sym}_{2 r}$, we denote by $W_{v} \subset W$ the set of points $a=\left(a_{1}, \ldots, a_{2 r}\right) \in W$ such that there exists $\alpha \in \operatorname{Aut}\left(\mathbb{P}_{\mathbb{R}}^{1}\right)$ with $\alpha\left(a_{i}\right)=a_{v(i)}$ for each i. Let $a \in W_{v}$, and take two 4 -tuples Σ_{1}, Σ_{2} of a_{i} with $\Sigma_{1} \neq \Sigma_{2}$ and $\Sigma_{2}=v\left(\Sigma_{1}\right)$ (this is possible since v is non-trivial). Then, the cross-ratios of the a_{i} in Σ_{1} and in Σ_{2} are the same. This implies a non-trivial condition on W. Consequently, W_{v} is contained in a closed subset of W. Doing this for all non-trivial permutations v, we obtain the result.

8. Real algebraic models

The aim of this section is to go further with non-minimal surfaces with two or three connected components. We begin by showing how to separate infinitely near points to the effect that
any such a surface $Y(\mathbb{R})$ is isomorphic to a blow-up $B_{a_{1}, \ldots, a_{m}} X(\mathbb{R})$ where X is minimal and a_{1}, \ldots, a_{m} are distinct proper points of $X(\mathbb{R})$. Then, we replace $X(\mathbb{R})$ by an isomorphic del Pezzo model (Corollary 24) and we use the fact that $\operatorname{Aut}(X(\mathbb{R}))$ is very transitive on each connected component for such an X (Proposition 33) to prove that in many cases, if two birational surfaces Y and Z have homeomorphic real parts, then $Y(\mathbb{R})$ and $Z(\mathbb{R})$ are isomorphic. As a corollary, we get that in any case $\operatorname{Aut}(Y(\mathbb{R}))$ is very transitive on each connected component.

Proposition 35. Let X be a minimal geometrically rational real surface, with $\# X(\mathbb{R})=2$ or $\# X(\mathbb{R})=3$, and let $\eta: Y \rightarrow X$ be a birational morphism.

Then there exists a blow-up $\eta^{\prime}: Y^{\prime} \rightarrow X$, whose centre is a finite number of distinct real proper points of X, and such that $Y^{\prime}(\mathbb{R})$ is isomorphic to $Y(\mathbb{R})$.

Moreover, we can assume that the isomorphism $Y(\mathbb{R}) \rightarrow Y^{\prime}(\mathbb{R})$ induces an homeomorphism $\eta^{-1}(M) \rightarrow\left(\eta^{\prime}\right)^{-1}(M)$ for each connected component M of $X(\mathbb{R})$.

Proof. According to Corollary 24, we may assume that X admits two minimal conic bundles $\pi_{1}: X \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ and $\pi_{2}: X \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ inducing distinct foliations on $X(\mathbb{C})$. Preserving the isomorphism class of $Y(\mathbb{R})$, we may assume that the points in the centre of η are all real (such a point may be a proper point of $X(\mathbb{R})$ or an infinitely near point). Let us denote by $m\left(=K_{X}^{2}-K_{Y}^{2}\right)$ the number of those points. We prove the result by induction on m.

The cases $m=0$ and $m=1$ being obvious (take $\eta^{\prime}=\eta$), we assume that $m \geqslant 2$. We decompose η as $\eta=\theta \circ \varepsilon$, where $\varepsilon: Y \rightarrow Z$ is the blow-up of one real point $q \in Z$, and $\theta: Z \rightarrow Y$ is the blowup of $m-1$ real points. By the induction hypothesis, we may assume that θ is the blow-up of $m-1$ proper points of X, namely $a_{1}, \ldots, a_{m-1} \in X(\mathbb{R})$. Moreover, applying Proposition 33 , we may move the points by an element of $\operatorname{Aut}(X(\mathbb{R}))$, and assume that $\pi_{1}\left(a_{i}\right) \neq \pi_{1}\left(a_{j}\right)$ and $\pi_{2}\left(a_{i}\right) \neq \pi_{2}\left(a_{j}\right)$ for $i \neq j$, and that the fibre of π_{1} passing through a_{i} and the fibre of π_{2} passing through a_{i} are non-singular and transverse at a_{i}, for each i.

If $\theta(q) \notin\left\{a_{1}, \ldots, a_{m-1}\right\}$, then η is the blow-up of m distinct proper points of X, and hence we are done. Otherwise, assume that $\theta(q)=a_{1}$. We write $E=\theta^{-1}\left(a_{1}\right) \subset Z$, and denote by $F_{i} \subset Z$ the strict pull-back by η of the fibre of π_{i} passing through a_{1}, for $i=1,2$. Then, F_{1} and F_{2} are two (-1)-curves which do not intersect. Hence, the point $q \in E$ belongs to at most one of the two curves, so we may assume that $q \notin F_{1}$. Denote by $\theta_{2}: Z \rightarrow X_{2}$ the contraction of the $m-1$ disjoint (-1)-curves $F_{1}, \theta^{-1}\left(a_{2}\right), \ldots, \theta^{-1}\left(a_{m-1}\right)$. Since q does not belong to any of these curves, $\eta_{2}=\theta_{2} \circ \varepsilon$ is the blow-up of $m-1$ distinct proper points of X_{2}. It remains to find an isomorphism $\gamma: X_{2}(\mathbb{R}) \rightarrow X(\mathbb{R})$ such that, for each connected component M of $X(\mathbb{R}), \gamma \eta_{2}$ sends $\eta^{-1}(M)$ on M.

Denoting $\pi^{\prime}=\pi_{1} \circ \theta \circ \theta_{2}^{-1}$, the map $\psi=\theta_{2} \circ \theta^{-1}$ is a birational map of conic bundles $\left(X, \pi_{1}\right) \rightarrow\left(X_{2}, \pi^{\prime}\right)$, which factorizes as the blow-up of a_{1}, followed by the contraction of the strict transform of the fibre passing through a_{1}. Therefore, the conic bundle (X_{2}, π^{\prime}) is minimal. Since $\# X(\mathbb{R})>1$ and $\pi^{\prime} \psi=\pi_{1}$, Corollary 18 yields the existence of an isomorphism $\gamma: X_{2}(\mathbb{R}) \rightarrow X(\mathbb{R})$ such that $\pi_{1} \gamma=\pi^{\prime}$. Observe that $\gamma \eta_{2} \circ \eta^{-1}=\gamma \theta_{2} \circ \theta^{-1}=\gamma \psi$ is a birational map $X \rightarrow X$ which satisfies $\pi \circ\left(\gamma \eta_{2} \circ \eta^{-1}\right)=\pi$. Consequently, for any connected component M of $X(\mathbb{R})$, which corresponds to $\pi^{-1}(V) \cap X(\mathbb{R})$, for some interval $V \subset \mathbb{P}_{\mathbb{R}}^{1}$, we find $\pi\left(\gamma \eta_{2} \eta^{-1}(M)\right)=$ $\pi(M)=V$; thus $\gamma \eta_{2}$ sends $\eta^{-1}(M)$ on M.

Corollary 36. Let X be a minimal geometrically rational real surface, such that $\# X(\mathbb{R})=2$ or $\# X(\mathbb{R})=3$, and let $\eta: Y \rightarrow X, \varepsilon: Z \rightarrow X$ be two birational morphisms. Denote by M_{1}, \ldots, M_{r} the connected components of $X(\mathbb{R})(r=2,3)$. Then, the following are equivalent:
(i) $\eta^{-1}\left(M_{i}\right) \subset Y(\mathbb{R})$ and $\varepsilon^{-1}\left(M_{i}\right) \subset Z(\mathbb{R})$ are homeomorphic for each i;
(ii) there exists an isomorphism $Y(\mathbb{R}) \rightarrow Z(\mathbb{R})$ which induces an homeomorphism $\eta^{-1}\left(M_{i}\right) \rightarrow$ $\varepsilon^{-1}\left(M_{i}\right)$ for each i.

Proof. With the equivalence $(2) \Rightarrow(1)$ being obvious, let us prove the converse. According to Proposition 35, we may assume that η and ε are the blow-ups of a finite number of distinct real proper points of X. Denote by Σ_{η} and Σ_{ε} these two finite sets. For each i, the fact that $\eta^{-1}\left(M_{i}\right) \subset Y(\mathbb{R})$ and $\varepsilon^{-1}\left(M_{i}\right) \subset Z(\mathbb{R})$ are homeomorphic implies that the numbers of points of $\Sigma_{\eta} \cap M_{i}$ and $\Sigma_{\varepsilon} \cap M_{i}$ coincide.

By Corollary 24 and Proposition 33, $\operatorname{Aut}(X(\mathbb{R}))$ is very transitive on each connected component of $X(\mathbb{R})$. In particular, there exists an element $\alpha \in \operatorname{Aut}(X(\mathbb{R}))$ such that $\alpha\left(M_{i}\right)=M_{i}$ for each i and $\alpha\left(\Sigma_{\eta}\right)=\Sigma_{\varepsilon}$. Then, $\psi=\varepsilon^{-1} \alpha \eta: Y(\mathbb{R}) \rightarrow Z(\mathbb{R})$ is the wanted isomorphism.

Corollary 37. Let Y be a geometrically rational real surface with $\# Y(\mathbb{R})=2$ or $\# Y(\mathbb{R})=3$. Let $\left(p_{1}, \ldots, p_{n}\right)$ and $\left(q_{1}, \ldots, q_{n}\right)$ be two n-tuples of distinct points of $Y(\mathbb{R})$ such that p_{i} and q_{i} belong to the same connected component for each i.

Then, there exists an element $\alpha \in \operatorname{Aut}(Y(\mathbb{R}))$ which leaves each connected component of $Y(\mathbb{R})$ invariant and such that $\alpha\left(p_{i}\right)=q_{i}$ for each i.

Proof. Let $\eta: Y \rightarrow X$ be a birational morphism to a minimal real surface X; observe that $\# X(\mathbb{R})=\# Y(\mathbb{R})$. According to Corollary 24, we may assume that X admits two minimal conic bundles $\pi_{1}: X \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ and $\pi_{2}: X \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ inducing distinct foliations on $X(\mathbb{C})$. By Proposition 35 , we can suppose that η is the blow-up of m distinct real proper points $a_{1}, \ldots, a_{m} \in X$. We prove the result by induction on m.

If $m=0$, which means that $X=Y$, the result follows from Proposition 33 .
If $m>0$, denote by $\eta_{0}: Z \rightarrow X$ the blow-up of $a_{1}, \ldots, a_{m-1}\left(\eta_{0}\right.$ is the identity if $m=1$), and by $\eta_{1}: Y \rightarrow Z$ the blow-up of $b=\eta_{0}^{-1}\left(a_{r}\right)$.

Applying Proposition 33, we may assume that $\pi_{1}\left(a_{i}\right) \neq \pi_{1}\left(a_{j}\right)$ and $\pi_{2}\left(a_{i}\right) \neq \pi_{2}\left(a_{j}\right)$ for $i \neq j$, and that the fibre of π_{1} passing through a_{i} and the fibre of π_{2} passing through a_{i} are nonsingular and transverse at a_{i}, for each i. Let us denote by $E \subset Y$ the exceptional curve $\eta_{1}^{-1}(b)$ of η_{1} and by F_{i} the strict transform on Y of the fibre of π_{i} passing through a_{m}, for $i=1,2$. Then E, F_{1} and F_{2} are three (-1)-curves, F_{1} and F_{2} do not intersect, and E intersects transversally each of the F_{i}. By the induction hypothesis, we may use the lift of an element of $\operatorname{Aut}(Z(\mathbb{R}))$ which fixes b to assume that none of the points p_{i} belongs to $F_{1} \backslash E, F_{2} \backslash E$ or to $\eta^{-1}\left(a_{i}\right)$ for $i=1, \ldots, m-1$. Then the group $G=\left\{\alpha \in \operatorname{Aut}(X(\mathbb{R})) \mid \pi_{1} \alpha=\pi_{1}, \alpha\right.$ fixes $\left.a_{1}, \ldots, a_{m}, \eta\left(p_{1}\right), \ldots, \eta\left(p_{n}\right)\right\}$, acts transitively on $E \backslash F_{1}$ (Lemma 30). Lifting a well-chosen element of this group in $\operatorname{Aut}(Y(\mathbb{R})$), we may move the points p_{i} and assume that no one of the p_{i} belongs to F_{2} (i.e. we can avoid $F_{2} \cap E$). Denote by $\eta^{\prime}: Y \rightarrow X^{\prime}$ the contraction of the disjoint (-1)-curves $F_{2}, \eta^{-1}\left(a_{1}\right), \ldots \eta^{-1}\left(a_{m-1}\right)$.

Then, the birational map $\psi=\eta^{\prime} \eta^{-1}: X \rightarrow X^{\prime}$ is a birational map of conic bundles $\left(X, \pi_{2}\right) \rightarrow\left(X^{\prime}, \pi^{\prime}\right)$, where $\pi^{\prime}=\pi_{2} \psi^{-1}$, which consists of the blow-up of a_{m}, followed by the contraction of the strict transform of the fibre passing through a_{m}. Therefore, the conic bundle $\left(X^{\prime}, \pi^{\prime}\right)$ is minimal. Since $\# X(\mathbb{R})>1$, Corollary 18 yields the existence of an isomorphism $\gamma: X^{\prime}(\mathbb{R}) \rightarrow X(\mathbb{R})$ such that $\pi_{2} \gamma=\pi^{\prime}$. Therefore, there exists an element $\beta \in \operatorname{Aut}\left(X^{\prime}(\mathbb{R})\right)$ which fixes all the points blown-up by η^{\prime}, which fixes all the points $\left\{\eta^{\prime}\left(p_{i}\right), p_{i} \notin E\right\}$, and which sends the points $\left\{\eta^{\prime}\left(p_{i}\right), p_{i} \in E\right\}$ outside of $\eta^{\prime}(E)$. Applying the lift of β on $\operatorname{Aut}(Y(\mathbb{R}))$, we may assume
that none of the points p_{i} belongs to E. Doing the same manipulation with the q_{i}, it remains to use the lift of an element of $\operatorname{Aut}(Z(\mathbb{R}))$ which fixes b and sends $\eta_{1}\left(p_{i}\right)$ on $\eta_{1}\left(q_{i}\right)$ for each i.

9. Proof of the main results

The proof of Theorem 4 was given at the end of $\S 5$. Now, we deduce the other results stated in the introduction from the results of $\S \S 7$ and 8 . The following lemma serves to prove most of them.

Lemma 38. Let (X, π) be a minimal real conic bundle, such that $I(X, \pi)$ is the union of r intervals I_{1}, \ldots, I_{r}, with $r=2$ or $r=3$.

Let $\eta_{Y}: Y \rightarrow X$ and $\eta_{Z}: Z \rightarrow X$ be two birational morphisms. For $i=1, \ldots, r$, we write $X_{i}=\pi^{-1}\left(I_{i}\right) \cap X(\mathbb{R}), \quad Y_{i}=\eta_{Y}^{-1}\left(X_{i}\right) \cap Y(\mathbb{R})$ and $Z_{i}=\eta_{Z}^{-1}\left(X_{i}\right) \cap Z(\mathbb{R})$.

Let $p_{1}, \ldots, p_{n} \in Y(\mathbb{R}), q_{1}, \ldots, q_{n} \in Z(\mathbb{R})$ be two n-tuples of distinct points, and assume the existence of an homeomorphism $h: Y(\mathbb{R}) \rightarrow Z(\mathbb{R})$ which sends p_{i} on q_{i} for each i, and sends Y_{i} on $Z_{\nu(i)}$, where $\nu \in \operatorname{Sym}_{r}$ is a permutation of $\{1, \ldots, r\}$. Then, the following are equivalent.
(i) There exists an isomorphism $\beta: Y(\mathbb{R}) \rightarrow Z(\mathbb{R})$ which sends Y_{i} on $Z_{\nu(i)}$ for each $i \in\{1, \ldots, r\}$ and sends p_{j} on q_{j} for each $j \in\{1, \ldots, n\}$.
(ii) There exists an automorphism $\alpha \in \operatorname{Aut}\left(\mathbb{P}_{\mathbb{R}}^{1}\right)$ which sends I_{i} on $I_{\nu(i)}$ for each $i \in\{1, \ldots, r\}$.

Moreover, both assertions are true if $r=2$, and false in general when $r=3$.
Proof. Observe that the X_{i} (respectively the Y_{i}, Z_{i}) are the connected components of $X(\mathbb{R})$ (respectively of $Y(\mathbb{R}), Z(\mathbb{R})$).
(i) \Rightarrow (ii). The map $\eta_{Z} \beta \eta_{Y}^{-1}$ is a birational self-map of X, which restricts to an isomorphism $\varphi: V \rightarrow W$, where V and W are two real Zariski open subsets of X. Moreover, the hypothesis on β implies that $\varphi\left(V(\mathbb{R}) \cap X_{i}\right)=W(\mathbb{R}) \cap X_{\nu(i)}$. The existence of α is provided by Proposition 34 .
(ii) \Rightarrow (i). Proposition 34 yields the existence of $\gamma \in \operatorname{Aut}(X(\mathbb{R}), \pi)$ such that $\gamma\left(X_{i}\right)=X_{\nu(i)}$. We may thus assume that ν is the identity. According to Proposition 35, we may moreover suppose that η_{Y} and η_{Z} are the blow-ups of a finite set of disjoint real proper points of X. Since Y_{i} is homeomorphic to Z_{i} for each i, η_{Y} is the blow-up of a_{1}, \ldots, a_{m} and η_{Z} is the blow-up of b_{1}, \ldots, b_{m}, where a_{j} and b_{j} belong to the same connected component of $X(\mathbb{R})$ for each j. Then, there exists an element of $\operatorname{Aut}(X(\mathbb{R}))$ which preserves each connected component of X and sends a_{j} on b_{j} for each j (Corollary 37). We may thus assume that $Y=Z$, and conclude by applying Corollary 37 to Y.

The fact that assertion (ii) is true when $r=2$ and false in general when $r=3$ was proved in Proposition 34.

The following case shares many features with the rational case.
Theorem 39. Let X be a non-singular geometrically rational real projective surface, and assume that $\# X(\mathbb{R})=2$. Then the action of the group $\operatorname{Aut}(X(\mathbb{R}))$ on $X(\mathbb{R})$ is very transitive.

Proof. Let Y be a non-singular geometrically rational real projective surface, with $\# Y(\mathbb{R})=2$. Let $\left(p_{1}, \ldots, p_{n}\right)$ and $\left(q_{1}, \ldots, q_{n}\right)$ be two n-tuples of points which are compatible. We want to prove the existence of $\alpha \in \operatorname{Aut}(Y(\mathbb{R}))$ such that $\alpha\left(p_{i}\right)=q_{i}$ for each i.

If p_{i} and q_{i} are in the same connected component of $Y(\mathbb{R})$, the result follows from Corollary 37.

J. Blanc and F. Mangolte

Otherwise, the compatibility means that the two components of $X(\mathbb{R})$ are homeomorphic and that p_{i} and q_{i} are in a distinct component for each i. Lemma 38 provides the existence of an element of $\operatorname{Aut}(Y(\mathbb{R}))$ which permutes the two connected components of $Y(\mathbb{R})$. This reduces the situation to the previous case.

Before proving Theorems 1 and 2, we describe the cases where the group of automorphisms is not very transitive.

Lemma 40. Let X be a non-singular real projective surface, and assume that either X is not geometrically rational or $\# X(\mathbb{R})>3$. The group $\operatorname{Aut}(X(\mathbb{R}))$ is then not very transitive on each connected component, and is neither 2-transitive.

Proof. If X has Kodaira dimension two (surface of general type), then it has only finitely many birational self-maps (see e.g. [Uen75]). If X has Kodaira dimension one, then every birational self-map of X preserves the elliptic fibration induced by $\left|K_{X}\right|$. If X has Kodaira dimension zero, and X is minimal, then $\operatorname{Bir}(X)=\operatorname{Aut}(X)$. The group $\operatorname{Aut}(X)$ is an algebraic group of dimension one or two (its neutral component is an elliptic curve or an Abelian surface). Thus, $\operatorname{Bir}(X)$ cannot be 2-transitive. The case when X is not minimal is deduced from this case.

If X is a surface with Kodaira dimension $-\infty$, then X is uniruled. If, furthermore, X is not geometrically rational and $X(\mathbb{R})$ is non-empty, then the Albanese map $X \rightarrow C$ is a real ruling over a curve with genus $g(C)>0$, (see, e.g., [Sil89, V.(1.8)]) and the Albanese map is preserved by any birational self-map.

The remaining case is when X is geometrically rational and $\# X(\mathbb{R})>3$; we now prove that the group $\operatorname{Aut}(X(\mathbb{R}))$ is not transitive. Denote by $\eta: X \rightarrow X_{0}$ a birational morphism to a minimal real surface, and observe that $\# X_{0}(\mathbb{R})=\# X(\mathbb{R})>3$. Let us discuss the two cases for X_{0} given by Theorem 7. If X_{0} is a del Pezzo surface with $\rho\left(X_{0}\right)=1$, then $\operatorname{Aut}(X(\mathbb{R}))$ is countable (Corollary 11), and thus $\operatorname{Aut}(X(\mathbb{R}))$ cannot be transitive. The other case is when $\rho\left(X_{0}\right)=2$. Then, X_{0} endows a real conic bundle structure $\left(X_{0}, \pi_{0}\right)$, and $\operatorname{Bir}\left(X_{0}\right)=\operatorname{Bir}\left(X_{0}, \pi_{0}\right)$ (Theorem 25). Since the action of $\operatorname{Bir}\left(X_{0}, \pi_{0}\right)$ on the basis of the conic bundle is finite (there are too much boundary points), neither $\operatorname{Aut}\left(X_{0}(\mathbb{R})\right)$ nor $\operatorname{Aut}(X(\mathbb{R}))$ may be transitive.

Proof of Theorem 1. When X is not geometrically rational or $\# X(\mathbb{R})>3, \operatorname{Aut}(X(\mathbb{R}))$ is not very transitive on connected components by Lemma 40. In the remaining cases, $\operatorname{Aut}(X(\mathbb{R}))$ is very transitive on connected components. When $\# X(\mathbb{R})=2,3$, this is Corollary 37 . When $\# X(\mathbb{R})=1$, this is the main result of [HM09].

Proof of Theorem 2. According to Lemma 40, we can assume from now on that X is a geometrically rational surface with $\# X(\mathbb{R}) \leqslant 3$. When $\# X(\mathbb{R})=1, X$ is rational; the fact that Aut $(X(\mathbb{R})$) is n-transitive for every n (and thus very transitive) is the main result of [HM09]. When $\# X(\mathbb{R})=2, \operatorname{Aut}(X(\mathbb{R}))$ is very transitive by Theorem 39 .

When $\# X(\mathbb{R})=3, \operatorname{Aut}(X(\mathbb{R}))$ is very transitive on each connected component (Theorem 1$)$. Thus, $\operatorname{Aut}(X(\mathbb{R}))$ is very transitive if and only if, for any homeomorphism $h: X(\mathbb{R}) \rightarrow X(\mathbb{R})$, there exists $\beta \in \operatorname{Aut}(X(\mathbb{R}))$ which permutes the components of $X(\mathbb{R})$ in the same way that h does. When these conditions are not satisfied, $\operatorname{Aut}(X(\mathbb{R}))$ is not 2-transitive.

Let $X(\mathbb{R})=M_{1} \sqcup M_{2} \sqcup M_{3}$ be the decomposition into connected components. If there is no pair (i, j) such that $M_{i} \sim M_{j}$, then there is no non-trivial such h, and hence $\operatorname{Aut}(X(\mathbb{R}))$ is very transitive. If $M_{1} \sim M_{2} \nsim M_{3}$ or $M_{1} \sim M_{2} \sim M_{3}$, the possibilities when this occurs follow from Lemma 38.

For example, when X is minimal (therefore $M_{1} \sim M_{2} \sim M_{3} \sim S^{2}$), it admits a minimal real conic bundle structure (X, π) (Theorem 7 and Proposition 9), where π has six singular fibres. Then, $\operatorname{Aut}(X(\mathbb{R}))$ is very transitive if and only if $\left\{\alpha \in \operatorname{Aut}\left(\mathbb{P}_{\mathbb{R}}^{1}\right) \mid \alpha(I(X, \pi))=I(X, \pi)\right\}$ acts transitively on the three intervals of $I(X, \pi)$. This is true in some special cases, but false in general. When X is not minimal, $\operatorname{Aut}(X(\mathbb{R}))$ is very transitive for example when there is no pair of homeomorphic connected components of $X(\mathbb{R})$, or when X is the blow-up of a minimal surface Y with a very transitive group $\operatorname{Aut}(Y(\mathbb{R}))$.
Proof of Theorem 3. Let X, Y be two geometrically rational real surfaces, and assume that $\# X(\mathbb{R}) \leqslant 2$. We assume that X is birational to Y and that $X(\mathbb{R})$ is homeomorphic to $Y(\mathbb{R})$, and prove that $X(\mathbb{R})$ is isomorphic to $Y(\mathbb{R})$.

Note that all geometrically rational surfaces with connected real part are birational to each other, and thus in this case the statement follows from the unicity of rational models [BH07]. We may thus assume that $\# X(\mathbb{R})=2$. Denote by $\eta_{X}: X \rightarrow X_{0}$ and $\eta_{Y}: Y \rightarrow Y_{0}$ birational morphisms to minimal real surfaces.

Since X_{0} and Y_{0} are birational, $X_{0}(\mathbb{R})$ and $Y_{0}(\mathbb{R})$ are isomorphic (Theorem 4), so we may assume that $X_{0}=Y_{0}$. The result now follows from Lemma 38.
Proof of Corollary 5. If M is connected, and M is non-orientable or M is orientable with genus $g(M) \leqslant 1$, then it admits a unique geometrically rational model by [BH07, Corollary 8.1]. Moreover, this model is in fact rational.

Conversely let M be a compact \mathcal{C}^{∞}-surface and assume that M admits a unique geometrically rational model X. The existence of such a model implies, by Comessatti's theorem [Com14], that any connected component of M is non-orientable or is orientable with genus $g \leqslant 1$. The unicity means that, for any geometrically rational model Y of $M, Y(\mathbb{R})$ is isomorphic to $X(\mathbb{R})$. In particular, this implies that all geometrically rational models of M belong to a unique birational class. From Theorem 25 and Proposition 10, this means that X is rational. It remains to observe that, when X is rational, $X(\mathbb{R})$ is connected, and is either non-orientable or orientable of genus $\leqslant 1$. When X is minimal, this follows from Proposition 9. Then, blowing-up points on a surface either does nothing on the topology of the real part (if the points blown-up are imaginary), or it gives a non-orientable real part (if the points blown-up are real).

We finish by a result on non-density. In [KM09], it is proved that $\operatorname{Aut}(X(\mathbb{R}))$ is dense in $\operatorname{Diff}(X(\mathbb{R}))$ when X is a geometrically rational surface with $\# X(\mathbb{R})=1$ (or equivalently when X is rational). In the cited paper, it is said that $\# X(\mathbb{R})=2$ is probably the only other case where the density holds. The following collect the known results in this direction. The first two of them are new.

Proposition 41. Let X be a geometrically rational surface.

- If $\# X(\mathbb{R}) \geqslant 5$, then $\operatorname{Aut}(X(\mathbb{R}))$ is not dense in $\operatorname{Diff}(X(\mathbb{R}))$.
- If $\# X(\mathbb{R})=4$, and either X is the blow-up of a minimal conic bundle or $\rho(X)=1$, then $\operatorname{Aut}(X(\mathbb{R}))$ is not dense in $\operatorname{Diff}(X(\mathbb{R}))$.
- If $\# X(\mathbb{R})=3$ and X is minimal, then $\operatorname{Aut}(X(\mathbb{R}))$ is not dense in $\operatorname{Diff}(X(\mathbb{R}))$ for a general X.
- If $\# X(\mathbb{R})=1$, then $\operatorname{Aut}(X(\mathbb{R}))$ is dense in $\operatorname{Diff}(X(\mathbb{R}))$.

Proof. The case $\# X(\mathbb{R})=1$ is the main result of $[\mathrm{KM} 09]$. Assume from now on that $\# X(\mathbb{R}) \geqslant 3$, denote by $\eta: X \rightarrow X_{0}$ a birational morphism to a minimal real surface, and observe that $\# X_{0}(\mathbb{R})=\# X(\mathbb{R}) \geqslant 3$. Let us discuss the two cases for X_{0} given by Theorem 7 .

J. Blanc and F. Mangolte

Assume that X_{0} is a del Pezzo surface with $\rho\left(X_{0}\right)=1$. If the degree of X_{0} is one, then $\operatorname{Bir}\left(X_{0}\right)$ is finite (Corollary 11), and thus $\operatorname{Aut}(X(\mathbb{R}))$ cannot be dense. If X_{0} has degree two, then $\# X_{0}(\mathbb{R})=4($ Proposition 9$)$, so $\# X(\mathbb{R})=4$ too. Since $\operatorname{Aut}\left(X_{0}(\mathbb{R})\right)=\operatorname{Aut}\left(X_{0}\right)$ is finite, $\operatorname{Aut}\left(X_{0}(\mathbb{R})\right)$ cannot be dense (but maybe $\operatorname{Aut}(X(\mathbb{R}))$ could be).

The other case is when $\rho\left(X_{0}\right)=2$. Then, X_{0} endows a real conic bundle structure (X_{0}, π_{0}). If $\# X(\mathbb{R})=\# X_{0}(\mathbb{R}) \geqslant 4$, then $\operatorname{Bir}\left(X_{0}\right)=\operatorname{Bir}\left(X_{0}, \pi_{0}\right)$ (Theorem 25), so $\operatorname{Aut}(X(\mathbb{R}))$ is not dense. If $\# X_{0}(\mathbb{R})=3$, then in general $\operatorname{Aut}\left(X_{0}(\mathbb{R})\right)$ does not exchanges the connected component of $X_{0}(\mathbb{R})$. Consequently, $\operatorname{Aut}\left(X_{0}(\mathbb{R})\right.$) is not dense (but maybe $\operatorname{Aut}(X(\mathbb{R}))$ could be, if the connected components of $X(\mathbb{R})$ are not homeomorphic).

Acknowledgement

We are grateful to the referee for helpful remarks that enabled us to shorten several proofs and improve the presentation of this article.

References

BH07 I. Biswas and J. Huisman, Rational real algebraic models of topological surfaces, Doc. Math. 12 (2007), 549-567.

Bla09a J. Blanc, Linearisation of finite Abelian subgroups of the Cremona group of the plane, Groups Geom. Dyn. 3 (2009), 215-266.
Bla09b J. Blanc, Sous-groupes algébriques du groupe de Cremona, Transform. Groups 14 (2009), 249-285.
BCR98 J. Bochnak, M. Coste and M.-F. Roy, Real algebraic geometry, Ergeb. Math. Grenzgeb. (3), vol. 36 (Springer, Berlin, 1998).
Com12 A. Comessatti, Fondamenti per la geometria sopra superfizie razionali dal punto di vista reale, Math. Ann. 73 (1912), 1-72.
Com14 A. Comessatti, Sulla connessione delle superfizie razionali reali, Ann. Math. 23 (1914), 215-283.
Dem80 M. Demazure, Surfaces de Del Pezzo II. Séminaire sur les singularités des surfaces, Palaiseau, France, 1976-1977, Lecture Notes in Mathematics, vol. 777 (Springer, Berlin, 1980), 22-70.
DI09 I. V. Dolgachev and V. A. Iskovskikh, Finite subgroups of the plane Cremona group, in Algebra, arithmetic and geometry, Vol. 1: in honor of Yu. I. Manin, Progress in Mathematics, vol. 269 (Birkhäuser, Boston, MA, 2009), 443-548.
Hir64 H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109-203; ibid., 205-326.
HM09 J. Huisman and F. Mangolte, The group of automorphisms of a real rational surface is n-transitive, Bull. Lond. Math. Soc. 41 (2009), 563-568.
HM10 J. Huisman and F. Mangolte, Automorphisms of real rational surfaces and weighted blow-up singularities, Manuscripta Math. 132 (2010), 1-17.
Isk79 V. A. Iskovskikh, Minimal models of rational surfaces over arbitrary fields, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), 19-43 237.
Isk96 V. A. Iskovskikh, Factorization of birational mappings of rational surfaces from the point of view of Mori theory, Uspekhi Mat. Nauk 51 (1996), 3-72.
Kol J. Kollár, Real algebraic surfaces, arXiv:alg-geom/9712003v1.
Kol01 J. Kollár, The topology of real algebraic varieties, in Current developments in mathematics 2000 (International Press, Somerville, MA, 2001), 197-231.
KM09 J. Kollár and F. Mangolte, Cremona transformations and diffeomorphisms of surfaces, Adv. Math. 222 (2009), 44-61.

REAL CONIC BUNDLES AND VERY TRANSITIVE ACTIONS

Man06 F. Mangolte, Real algebraic morphisms on 2-dimensional conic bundles, Adv. Geom. 6 (2006), 199-213.
Man67 Yu. Manin, Rational surfaces over perfect fields, II, Math. USSR - Sbornik 1 (1967), 141-168.
RV05 F. Ronga and T. Vust, Diffeomorfismi birazionali del piano proiettivo reale, Comm. Math. Helv. 80 (2005), 517-540.
Sil89 R. Silhol, Real algebraic surfaces, Lecture Notes in Mathematics, vol. 1392 (Springer, Berlin, 1989).

Tog73 A. Tognoli, Su una congettura di Nash, Ann. Sc. Norm. Super. Pisa (3) 27 (1973), 167-185.
Uen75 K. Ueno, Classification theory of algebraic varieties and compact complex spaces, Lecture Notes in Mathematics, vol. 439 (Springer, Berlin, 1975).

Jérémy Blanc Jeremy.Blanc@unibas.ch
Mathematisches Institut, Universität Basel, Rheinsprung 21, CH-4051 Basel, Schweiz

Frédéric Mangolte mangolte@univ-savoie.fr
Laboratoire de Mathématiques, Université de Savoie, 73376 Le Bourget du Lac Cedex, France

[^0]: Received 19 June 2009, accepted in final form 2 March 2010, published online 13 September 2010.
 2000 Mathematics Subject Classification 14E07 (primary), 14P25, 14J26 (secondary).
 Keywords: real algebraic surfaces, rational surfaces, geometrically rational surfaces, birational geometry, algebraic automorphisms, very transitive actions, Cremona transformations.
 This journal is © Foundation Compositio Mathematica 2010.

