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Geometrically rational real conic bundles and

very transitive actions

Jérémy Blanc and Frédéric Mangolte

Abstract

In this article we study the transitivity of the group of automorphisms of real algebraic
surfaces. We characterize real algebraic surfaces with very transitive automorphism
groups. We give applications to the classification of real algebraic models of compact
surfaces: these applications yield new insight into the geometry of the real locus, proving
several surprising facts on this geometry. This geometry can be thought of as a half-way
point between the biregular and birational geometries.

1. Introduction

The group of automorphisms of a complex algebraic variety is small: indeed, it is finite in general.
Moreover, the group of automorphisms is 3-transitive only if the variety is P1

C. On the other hand,
it was recently proved that for a surface X(R) birational to P2

R, its group of automorphisms acts
n-transitively on X(R) for any n. The main goal of this paper is to determine all real algebraic
surfaces X(R) having a group of automorphisms which acts very transitively on X(R). For precise
definitions and statements, see below.

The aim of this paper is to study the action of birational maps on the set of real points of a
real algebraic variety. Let us emphasize a common terminological source of confusion about the
meaning of what is a real algebraic variety (see also the enlightening introduction of [Kol01]).
From the point of view of general algebraic geometry, a real variety X is a variety defined over
the real numbers, and a morphism is understood as being defined over all the geometric points.
In most real algebraic geometry texts, however, the algebraic structure considered corresponds
to the algebraic structure of a neighbourhood of the real points X(R) in the whole complex
variety; or, in other words, the structure of a germ of an algebraic variety defined over R.

From this point of view it is natural to view X(R) as a compact submanifold of Rn defined
by real polynomial equations, where n is some natural integer. Likewise, it is natural to say that
a map ψ :X(R)→ Y (R) is an isomorphism if ψ is induced by a birational map Ψ :X 99K Y such
that Ψ (respectively Ψ−1) is regular at any point of X(R) (respectively of Y (R)). In particular,
ψ :X(R)→ Y (R) is a diffeomorphism. This notion corresponds to the notion of biregular maps
defined in [BCR98, 3.2.6] for the structure of real algebraic variety commonly used in the context
of real algebraic geometry. To distinguish between the Zariski topology and the topology induced
by the embedding of X(R) as a topological submanifold of Rn, we will call the latter the Euclidean
topology. Throughout what follows, topological notions like connectedness or compactness will
always refer to the Euclidean topology.
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Recall that a real projective surface is rational if it is birationally equivalent to the real
projective plane, and that it is geometrically rational if its complexification is birationally
equivalent to the complex projective plane. The number of connected components is a birational
invariant. In particular, if X is a rational projective surface, then X(R) is connected.

The paper [HM09] proves that the group of automorphisms Aut(X(R)) acts n-transitively on
X(R) for any n and any rational real algebraic surface X. To study the case where X(R)
is not connected, we have to refine the notion of n-transitivity. Indeed, if X(R) has non-
homeomorphic connected components, then even the group of self-homeomorphisms does not
act 2-transitively.

Definition 0. Let G be a topological group acting continuously on a topological space M . We
say that two n-tuples of distinct points (p1, . . . , pn) and (q1, . . . , qn) are compatible if there exists
an homeomorphism ψ :M →M such that ψ(pi) = qi for each i. The action of G on M is then said
to be very transitive if, for any pair of compatible n-tuples of points (p1, . . . , pn) and (q1, . . . , qn)
of M , there exists an element g ∈G such that g(pi) = qi for each i. More generally, the action of
G is said to be very transitive on each connected component if we require the above condition
only in the case when, for each i, pi and qi belong to the same connected component of M .

Up until now, it has not been known when the automorphism group of a real algebraic surface
is big. We give a complete answer to this question: this is one of the main results of this paper.
Let #M be the number of connected components of a compact manifold M .

Theorem 1. Let X be a non-singular real projective surface. The group Aut(X(R)) is then
very transitive on each connected component if and only if X is geometrically rational and
#X(R) 6 3.

In the three component case, Theorem 2 below says that the very transitivity of Aut(X(R))
can be determined by examining the set of possible permutations of connected components.

Theorem 2. Let X be a non-singular real projective surface. The group Aut(X(R)) then has
a very transitive action on X(R) if and only if the following hold:

(i) X is geometrically rational; and

(ii) (a) #X(R) 6 2; or
(b) #X(R) = 3, and there is no pair of homeomorphic connected components; or
(c) #X(R) =M1 tM2 tM3, M1 ∼M2 6∼M3, and there is a morphism π :X → P1

R whose
general fibres are rational curves, and an automorphism of P1

R which fixes π(M3) and
exchanges π(M1), π(M2); or

(d) #X(R) =M1 tM2 tM3, M1 ∼M2 ∼M3, and there is a morphism π :X → P1
R whose

general fibres are rational curves, such that any permutation of the set of intervals
{π(M1), π(M2), π(M3)} is realised by an automorphism of P1

R.

Furthermore, when Aut(X(R)) is not very transitive, it is not even 2-transitive.

This theorem will be proved in § 9. Note that, when #X(R)> 3, either any element
of Aut(X(R)) preserves a conic bundle structure (Theorem 25), or Aut(X(R)) is countable
(Corollary 11): in either case Aut(X(R)) is not 1-transitive.

These two theorems apply to the classification of algebraic models of real surfaces. Up to
this point in the paper X(R) is considered as a submanifold of some Rn. Conversely, let M be
a compact C∞-manifold. By the Nash–Tognoli theorem [Tog73], every such M is diffeomorphic
to a non-singular real algebraic subset of Rm for some m. Taking the Zariski closure in Pm and
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Real conic bundles and very transitive actions

applying Hironaka’s resolution of singularities [Hir64], it follows that M is in fact diffeomorphic
to the set of real points X(R) of a non-singular projective algebraic variety X defined over R.
Such a variety X is called an algebraic model of M . A natural question is to classify the algebraic
models of M up to isomorphism for a given manifold M .

There are several recent results about algebraic models and their automorphism
groups [BH07, HM09, HM10, KM09]. For example, when M is two-dimensional, and admits
a real rational algebraic model, this rational algebraic model is unique [BH07]. In other words, if
X and Y are two rational real algebraic surfaces, then X(R) and Y (R) are isomorphic if and only
if they are homeomorphic. We extend the classification of real algebraic models to geometrically
rational surfaces.

Theorem 3. Let X, Y be two non-singular geometrically rational real projective surfaces, and
assume that #X(R) 6 2. The surface X(R) is then isomorphic to Y (R) if and only if X is
birational to Y and X(R) is homeomorphic to Y (R). This is false in general when #X(R) > 3.

Recall that a non-singular projective surface is minimal if any birational morphism to a non-
singular surface is an isomorphism. We have the following rigidity result on minimal geometrically
rational real surfaces.

Theorem 4. Let X and Y be two minimal geometrically rational real projective surfaces, and
assume that either X or Y is non-rational. The following are then equivalent.

(i) X and Y are birational.

(ii) X(R) and Y (R) are isomorphic.

In this work, we classify the birational classes of real conic bundles and correct an error
contained in the literature (Theorem 25). It follows that the only geometrically rational surfaces
X(R) for which equivalence by homeomorphism implies equivalence by isomorphism are the
connected ones. In particular, this yields a converse to [BH07, Corollary 8.1].

Corollary 5. Let M be a compact C∞-surface. The surface M then admits a unique
geometrically rational model if and only if the following two conditions hold:

(i) M is connected; and

(ii) M is non-orientable or M is orientable with genus g(M) 6 1.

For M orientable with g(M)> 1, no uniqueness result, even a very weak one, holds. We can
therefore ask what the simplest algebraic model for such an M should be. This question will be
studied in a forthcoming paper by J. Huisman and F. Mangolte.

Another way of measuring the size of Aut(X(R)) was used in [KM09], where it was proved
that, for any rational surface X, Aut(X(R))⊂Diff(X(R)) is dense for the strong topology.
For non-geometrically rational surfaces and for most of the non-rational geometrically rational
surfaces the group Aut(X(R)) cannot be dense. The above paper left the question of density
open only for certain geometrically rational surfaces with two, three, four or five connected
components. One by-product of our results is the non-density of Aut(X(R)) for most surfaces
with at least three connected components; see Proposition 41.

Let us mention some other papers on automorphisms of real projective surfaces. In [RV05],
it is proved that Aut(P2(R)) is generated by linear automorphisms and certain real algebraic
automorphisms of degree five. The paper [HM10] is devoted to the study of very transitive
actions and uniqueness of models for some kinds of singular rational surfaces.
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1.1 Strategy of the proof

In the proof of Theorem 1, the main part concerns minimal conic bundles. We first prove that
two minimal conic bundles are isomorphic if they induce the same intervals on the basis. Given
a set of intervals, one can choose the most special conic bundle, the so-called exceptional conic
bundle, to write explicitly the automorphisms and to obtain a fibrewise transitivity. We then
use the most general conic bundles which come with distinct foliations on the same surface. The
foliations being transversal, this yields the very transivity of the automorphism group in the
minimal case.

1.2 Outline of the article

In § 2 we fix the notation and in § 3 we recall the classification of minimal geometrically rational
real surfaces.

Section 4, which constitutes the technical heart of the paper, is devoted to conic bundles,
especially minimal ones. We give representative elements of isomorphism classes, and explain the
links between the various conic bundles.

In § 5, we investigate real surfaces which admit two conic bundle structures. In particular,
we show that these are del Pezzo surfaces, and give descriptions of the possible conic bundles on
these surfaces. Section 6 is devoted to the proof of Theorem 4. We firstly correct an inaccuracy in
the literature, by proving that if two surfaces admitting a conic bundle structure are birational,
then the birational map may be chosen so that it preserves the conic bundle structures. We then
strengthen this result to isomorphisms between real parts when the surfaces are minimal, before
proving Theorem 4.

In § 7, we prove that if the real part of a minimal geometrically rational surface has two or
three connected components, then its automorphism group is very transitive on each connected
component. In § 8, we prove the same result for non-minimal surfaces. We show how to separate
infinitely close points, which is certainly one of the most counter-intuitive aspects of our geometry,
and was first observed in [BH07] for rational surfaces. We also prove the uniqueness of models
in many cases.

In § 9, we then use all the results of the preceding sections to prove the main results stated
in the introduction (except Theorem 4, which is proved in § 6).

2. Notation

Throughout what follows, by a variety we will mean an algebraic variety, which may be real or
complex (i.e. defined over R or C). If the converse is not expressly stated all our varieties will
be projective and all our surfaces will be non-singular and geometrically rational (i.e. rational
over C).

Recall that a real variety X may be identified with a pair (S, σ), where S is a complex variety
and σ is an anti-holomorphic involution on S; by abuse of notation we will write X = (S, σ).
Then, S(C) =X(C) denotes the set of complex points of the variety, and X(R) = S(C)σ is
the set of real points. A point p ∈X may be real (if it belongs to X(R)), or imaginary
(if it belongs to X(C)\X(R)). If X(R) is non-empty (which will be the case for all our
surfaces), then Pic(X)∼= Pic(S)σ (see [Sil89, I.(4.5)]). As we only work with regular surfaces
(i.e. q(X) = q(S) = 0), the Picard group is isomorphic to the Néron–Severi group, and ρ(S)
and ρ(X) will denote the rank of Pic(S) and Pic(X), respectively. Recall that ρ(X) 6 ρ(S).
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Real conic bundles and very transitive actions

We denote by KX ∈ Pic(X) the canonical class, which may be identified with KS . The
intersection of two divisors of Pic(S) or Pic(X) will always denote the usual intersection in Pic(S).

We will use the classical notions of morphisms, rational maps, isomorphisms and
automorphisms between real or complex varieties. Moreover, if X1 and X2 are two real varieties,
an isomorphism between real parts X1(R)

ψ→X2(R) is a birational map ψ :X1 99KX2 such that ψ
(respectively ψ−1) is regular at any point of X1(R) (respectively of X2(R)). This endows X1(R)
with a structure of a germ of algebraic variety defined over R (as in [BCR98, 3.2.6]), whereas
the structure of X1 is that of an algebraic variety.

This notion of isomorphism between real parts gives rise to a geometry with rather unexpected
properties compared to those of the biregular geometry or the birational geometry. For example,
let α :X1(R)→X2(R) be an isomorphism, and ε : Y1 99KX1, η : Y2 99KX2 be two birational
maps; the map ψ := ε−1αη is a well-defined birational map. Then ψ can be an isomorphism
Y1(R)→ Y2(R) even if neither ε nor η is an isomorphism between real parts. In the same vein, let
α :X1(R)→X2(R) be an isomorphism, and let η1 : Y1→X1 and η2 : Y2→X2 be two birational
morphisms which are the blow-ups of only real points (which may be proper or infinitely near
points of X1 and X2). If α sends the points blown-up by η1 to the points blown-up by η2, then
β = (η2)−1αη1 : Y1(R)→ Y2(R) is an isomorphism.

Using Aut and Bir to denote respectively the group of automorphisms and birational self-
maps of a variety, we have the following inclusions for the groups associated to X = (S, σ):

Aut(S) ⊂ Bir(S)
∪ ∪

Aut(X) ⊂ Aut(X(R)) ⊂ Bir(X).

By Pn we mean the projective n-space, which may be complex or real depending on the
context. It is unique as a complex variety, written as PnC. However, as a real variety, Pn may
either be PnC endowed with the standard anti-holomorphic involution, written PnR, or, only when
n is odd, PnC with a special involution with no real points, written as (Pn, ∅). To lighten notation,
and since we never speak about (P1, ∅)(R), we write P1(R) for P1

R(R).

3. Minimal surfaces and minimal conic bundles

The aim of this section is to reduce our study of geometrically rational surfaces to surfaces
which admit a minimal conic bundle structure. We first recall the classification of geometrically
rational surfaces (see [Sil89] for an introduction). The proofs of Theorems 2 and 4 will then split
into three cases: rational, del Pezzo with ρ= 1, and minimal conic bundle. The rational case is
treated in [HM09] and Proposition 10 below states the case of a del Pezzo surface with ρ= 1.

Definition 6. A conic bundle is a pair (X, π) where X is a surface and π is a morphism X → P1,
where any fibre of π is isomorphic to a plane conic. If (X, π) and (X ′, π′) are two conic bundles,
a birational map of conic bundles ψ : (X, π) 99K (X ′, π′) is a birational map ψ :X 99KX ′ such
that there exists an automorphism α of P1 with π′ ◦ φ= π ◦ α.

We will assume throughout what follows that ifX is real, then the basis is P1
R (and not (P1, ∅)).

This avoids certain conic bundles with no real points. We denote by Aut(X, π) (respectively
Bir(X, π)) the group of automorphisms (respectively birational self-maps) of the conic bundle
(X, π). Observe that Aut(X, π) = Aut(X) ∩ Bir(X, π). Similarly, when (X, π) is real we denote
by Aut(X(R), π) the group Aut(X(R)) ∩ Bir(X, π).
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Recall that a real algebraic surface X is minimal if and only if there is no real (−1)-curve
and no pair of disjoint conjugate imaginary (−1)-curves on X, and that a real conic bundle
(X, π) is minimal if and only if the two irreducible components of any real singular fibre of π
are imaginary. Compare this to the complex case where (X, π) is minimal if and only if there is
no singular fibre.

The following two results follow from the work of Comessatti [Com12] (see also [Isk79, Man67],
[Sil89, ch. V], or [Kol]). Recall that a surface X is a del Pezzo surface if the anti-canonical divisor
−KX is ample. The same definition applies for X real or complex.

Theorem 7. If X is a minimal geometrically rational real surface such that X(R) 6= ∅, then one
and exactly one of the following holds:

(i) X is rational: it is isomorphic to P2
R, to the quadric Q0 := {(x : y : z : t) ∈ P3

R | x2 + y2 + z2 =
t2}, or to a real Hirzebruch surface Fn, n 6= 1;

(ii) X is a del Pezzo surface of degree one or two with ρ(X) = 1;

(iii) there exists a minimal conic bundle structure π :X → P1 with an even number of singular
fibres 2r > 4; moreover, ρ(X) = 2.

Remark 8. If (S, σ) is a minimal geometrically rational real surface such that S(C)σ = ∅, then
S is an Hirzebruch surface of even index.

Proposition 9 (Topology of the real part). In each case of the former theorem, we have:

(i) X is rational if and only if X(R) is connected. When X is moreover minimal, then X(R) is
homeomorphic to one of the following: the real projective plane, the sphere, the torus, or
the Klein bottle;

(ii) when X is a minimal del Pezzo surface of degree one, it satisfies ρ(X) = 1, and X(R) is the
disjoint union of one real projective plane and four spheres. If X is a minimal del Pezzo
surface of degree two with ρ(X) = 1, then X(R) is the disjoint union of four spheres;

(iii) if X is non-rational and is endowed with a minimal conic bundle with 2r singular fibres,
then X(R) is the disjoint union of r spheres, r > 2.

Proposition 10. Let X, Y be two minimal geometrically rational real surfaces. Assume that
X is not rational and satisfies ρ(X) = 1 (but ρ(Y ) may be equal to 1 or 2).

(i) IfX is a del Pezzo surface of degree one, then any birational mapX 99K Y is an isomorphism.
In particular,

Aut(X) = Aut(X(R)) = Bir(X).

(ii) If X is a del Pezzo surface of degree two, X is birational to Y if and only if X is isomorphic
to Y . Moreover, all the base-points of the elements of Bir(X) are real, and

Aut(X) = Aut(X(R)) ( Bir(X).

Proof. Assume the existence of a birational map ψ :X 99K Y . If ψ is not an isomorphism, we
decompose ψ into elementary links

X =X0
ψ1
99KX1

ψ2
99K · · ·

ψn−1
99K Xn−1

ψn
99KXn = Y

as in [Isk96, Theorem 2.5]. It follows from the description of the links of [Isk96, Theorem 2.6]
that, for any link ψi :Xi−1 99KXi, Xi−1 and Xi are isomorphic del Pezzo surfaces of degree two,
and that ψi is equal to βηαη−1, where η is the blow-up X ′→Xi−1 of a real point of Xi−1, X ′
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is a del Pezzo surface of degree one, α ∈Aut(X ′) is the Bertini involution of the surface, and
β :Xi+1→Xi is an isomorphism.

Therefore, Y is isomorphic to X. Moreover, if X has degree one, then ψ is an isomorphism. If
X has degree two, then ψ is decomposed into conjugates of Bertini involutions, so each of its base-
points is real. This proves that if ψ ∈Aut(X(R)), then ψ ∈Aut(X). Furthermore, conjugates of
Bertini involutions belong to Bir(X) but not to Aut(X) = Aut(X(R)). 2

Corollary 11. Let X0 be a minimal non-rational geometrically rational real surface with
ρ(X0) = 1, and let η :X →X0 be a birational morphism.

Then, Aut(X(R)) is countable. Moreover, if X0 is a del Pezzo surface of degree one, then
Aut(X(R)) is finite.

Proof. Without changing the isomorphism class of X(R) we may assume that η is the blow-up
of only real points (which may belong to X0 as proper or infinitely near points). Since any
base-point of any element of Bir(X0) is real (Proposition 10), the same is true for any element
of Bir(X). In particular, Aut(X(R)) = Aut(X). The group Aut(X) acts on Pic(X)∼= Zn, where
n= ρ(X) > 1. This action gives rise to an homomorphism θ : Aut(X)→GL(n, Z). Let us prove
that θ is injective. Indeed, if α ∈Ker(θ), then α is conjugate by η to an element of α0 ∈Aut(X0)
which acts trivially on Pic(X0). Writing S0 as the complex surface obtaining by forgetting the
real structure of X0, S0 is the blow-up of seven or eight points in the general position of P2

C.
Thus α0 ∈Aut(X0)⊂Aut(S0) is the lift of an automorphism of P2

C which fixes seven or eight
points, with no three collinear, and hence is the identity.

The morphism θ is injective, and this shows that Aut(X(R)) = Aut(X) is countable.
Moreover, if X0 is a del Pezzo surface of degree one, then Bir(X0) = Aut(X0) (by Proposition 10).
Since Aut(X0) is finite, Aut(X(R))⊂ Bir(X) is also finite. 2

4. Minimal and exceptional conic bundles

Definition 12. If (X, π) is a real conic bundle, I(X, π)⊂ P1(R) denotes the image by π of the
set X(R) of real points of X.

The set I(X, π) is the union of a finite number of intervals (which may be ∅ or P1(R)), and
it is well-known that it determines the birational class of (X, π). We prove that I(X, π) also
determines the equivalence class of (X(R), π) among the minimal conic bundles, and give the
proof of Theorem 4 in the case of conic bundles (Corollary 20).

Lemma and Definition 13. Let (X, π) be a real minimal conic bundle. The following
conditions are equivalent.

(i) There exists a section s such that s and s̄ do not intersect.

(ii) There exists a section s such that s2 =−r, where 2r is the number of singular fibres.

If any of these conditions occur, we say that (X, π) is exceptional.

Proof. Let s be a section satisfying one of the two conditions. Denote by (S, π) the complex conic
bundle obtained by forgetting the real structure of (X, π), and by η :X → Fm the birational
map which contracts in any singular fibre of π the irreducible component which does not
intersect s. If s satisfies condition (i), η(s̄) and η(s) are two sections of Fm which do not intersect,
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so they have self-intersections −m and m. This means that s2 = s̄2 =−m and that the number
of singular fibres is 2m, and implies (ii). Conversely, if s satisfies (ii), η(s) and η(s̄) are sections of
Fm of self-intersection −r and r. If these two sections are distinct, they do not intersect, which
means that s and s̄ do not intersect. If η(s) = η(s̄), we have r = 0, and X = (P1

C × P1
C, σ) for a

certain anti-holomorphic involution σ. We may thus choose another section s′ of self-intersection
0 which is imaginary. 2

Remark 14. The definition of exceptional conic bundles was introduced in [Bla09b, DI09] for
complex conic bundles endowed with an holomorphic involution. If (S, π) is an exceptional
complex conic bundle with at least four singular fibres, then Aut(S, π) = Aut(S) is a maximal
algebraic subgroup of Bir(S) [Bla09b].

Lemma 15. Let (Y, πY ) be a minimal real conic bundle such that πY has at least one singular
fibre. There exists an exceptional real conic bundle (X, πX) and an isomorphism ψ : Y (R)→
X(R) such that πX ◦ ψ = πY .

Remark 16. The result is false without the assumption on the number of singular fibres. Consider
for example Y = F3(R), whose real part is homeomorphic to the Klein bottle. Indeed, any
exceptional conic bundle with no singular fibres is a real form of (P1

C × P1
C, pr1), and thus has a

real part either empty or homeomorphic to the torus S1 × S1.

Before proving Lemma 15, we associate to any given exceptional conic bundle X an explicit
circle bundle isomorphic to it. The following improves [Sil89, Corollary VI.3.1] where the model
is only assumed to be birational to X.

Lemma 17. Let (X, π) be an exceptional real conic bundle. Then, there exists an affine real
variety A⊂X isomorphic to the affine surface of R3 given by

y2 + z2 =Q(x),

where Q is a real polynomial with only simple roots, all real. Moreover, π|A :A→ P1
R is the

projection (x, y, z) 7→ (x : 1), and I(X, π) is the closure of {(x : 1) ∈ P1
R | Q(x) > 0}.

Furthermore, if f = π−1((1 : 0))⊂X is a non-singular fibre, then the singular fibres
of π are those of the points {(x : 1) | Q(x) = 0} and the inclusion A→X is an iso-
morphism A(R)→ (X\f) (R). In particular, if (1 : 0) /∈ I(X, π), then the inclusion yields an
isomorphism A(R)→X(R).

Proof. Denote by 2r the number of singular fibres of π (which is even, see Lemma 13).
Assume first that r = 0, which implies that (X, π) is a real form of (P1

C × P1
C, pr1), and hence

is isomorphic to (P1
R × P1

R, pr1) or to (P1
R × (P1, ∅), pr1); see the convention after Definition 6.

Taking Q(x) = 1 or Q(x) =−1 gives the result.
Assume now that r > 0, and denote by s and s̄ two conjugate imaginary sections of π of self-

intersection −r. Changing π by an automorphism of P1, we can assume that (1 : 0). The singular
fibres of π are above the points (a1 : 1), . . . , (a2r : 1), where the ai are distinct real numbers.
Let J = (J1, J2) be a partition of {a1, . . . , a2r} into two sets of r points. Let η be the birational
morphism (not defined over R) which contracts the irreducible component of π−1((ai : 1)) which
intersects s if ai ∈ J1 and the component which intersects s̄ if ai ∈ J2. Then, the images of s and
s̄ are two sections of self-intersection 0. Thus we may assume that η is a birational morphism
of conic bundles (S, π)→ (P1

C × P1
C, pr1), where S is the complex surface obtained by forgetting
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Real conic bundles and very transitive actions

the real structure of X and pr1 is the projection on the first factor, and where η(s) and η(s̄) are
equal to P1

C × (0 : 1) and P1
C × (1 : 0).

We write P1(x1, x2) =
∏
a∈J1

(x1 − ax2) and P2(x1, x2) =
∏
a∈J2

(x1 − ax2), and denote by α
and σ the self-maps of S, which are the lifts by η of the following self-maps of P1

C × P1
C:

α′ : ((x1 : x2), (y1 : y2)) 99K ((x1 : x2), (−y2 · P1(x1, x2) : y1 · P2(x1, x2))),
σ′ : ((x1 : x2), (y1 : y2)) 99K ((x1 : x2), (−y2 · P1(x1, x2) : y1 · P2(x1, x2))).

The map α′ is a birational involution of P1
C × P1

C, which is defined over R, and whose base-
points are precisely the 2r points {((x : 1), (0 : 1)) | x ∈ J1} ∪ {((x : 1), (1 : 0)) | x ∈ J2} blown-up
by η. Since α′ is an involution and η is the blow-up of all of its base-points, α= η−1α′η is
an automorphism of S, which belongs to Aut(S, π). In consequence, σ is an anti-holomorphic
involution of S.

Denote by σX the anti-holomorphic involution on S which gives the real structure of X.
The map σX ◦ σ−1 belongs to Aut(S, π) and acts trivially on the basis, since σ and σX
have the same action on the basis. Moreover, since both σX and σ exchange the irreducible
components of each singular fibre, σX ◦ σ−1 preserves any curve contracted by η and is therefore
the lift by η of β : ((x1 : x2), (y1 : y2)) 7→ ((x1 : x2), (µy1 : y2)) for some µ ∈ C∗. It follows that
σ′X = η ◦ σX ◦ η−1 = β ◦ σ′ is the map

σ′X : ((x1 : x2), (y1 : y2)) 99K ((x1 : x2), (−µ·y2P1(x1, x2) : y1P2(x1, x2))).

Let us write Q(x) =−µP1(x, 1)P2(x, 1), and denote by B ⊂ C3 the affine hypersurface of
equation y2 + z2 =Q(x), and by πB :B→ P1 the map (x, y, z) 7→ (x : 1). Let A= (B, σB), where
σB sends (x, y, z) onto (x̄, ȳ, z̄). Denote by θ :B 99K P1

C × P1
C the map that sends (x, y, z) onto

((x : 1), (y − iz : P2(x, 1))) if P2(x, 1) 6= 0 and onto ((x : 1), (−µP1(x, 1) : y + iz)) if P1(x, 1) 6= 0.
Then θ is a birational morphism, and θ−1 sends ((x1 : x2), (y1 : y2)) on(

x1

x2
,

1
2

(
y1

y2
P2(x1, x2)− y2

y1
µP1(x1, x2)

)
,
i
2

(
y1

y2
P2(x1, x2) +

y2

y1
µP1(x1, x2)

))
.

Observe that σ′Xθ = σBθ. In consequence, ψ = η−1 ◦ θ is a real birational map A 99KX.
Moreover, ψ is an isomorphism from B to the complement in S of the union of π−1((1 : 0))

and the pull-back by η of P1 × (0 : 1) and P1 × (1 : 0). Indeed let x0 ∈ C. If x0 ∈ C is such
that Q(x0) 6= 0, then θ restricts to an isomorphism from π−1

B ((x0 : 1)) to {((x0 : 1), (y1 : y2)) ∈
P1

C × P1
C | y1y2 6= 0} ∼= C∗. If Q(x0) = 0, then x0 ∈ J1 ∪ J2, and the fibre π−1

B ((x0 : 1)) consists of
two lines of C2 which intersect, given by y = iz and y =−iz. If x0 ∈ J1, then the line y + iz = 0
is sent isomorphically by θ onto the fibre {((x0 : 1), (y1 : y2)) ∈ P1

C × P1
C | y2 6= 0} ∼= C∗, and the

line y − iz is contracted on the point ((x0 : 1), (0 : 1)). The map ψ thus sends isomorphically
π−1
B ((x0 : 1)) onto the fibre π−1((x0 : 1)) minus the two points corresponding to the two sections

whose self-intersection is −r. The situation when x0 ∈ J2 is similar.
The map ψ is therefore an inclusion A→X and, by construction, it satisfies all the properties

stated in the lemma. 2

Proof of Lemma 15. Take a section s of πY . If s intersects its conjugate s̄ at a real point p
(respectively into a pair of imaginary points q1 and q2), then blow-up the point p (respectively
q1 and q2), and contract the strict transform of the fibre of the blown-up point(s). Repeating
this process, we obtain a minimal real conic bundle (Z, πZ) and a birational map φ : Y 99K Z
such that πZ ◦ φ= πY and φ(s) does not intersect its conjugate.
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J. Blanc and F. Mangolte

If all the base-points of φ are imaginary, we set ψ = φ and (X, πX) = (Z, πZ). Otherwise, by
induction on the number of real base-points of φ, it suffices to prove the existence of ψ when φ
is an elementary link centred at only one real point.

Denote by q ∈ Z the real point which is the base-point of φ−1. Since πY has at least one
singular fibre, this is also the case for πZ , and thus I(Z, πZ) is not the whole P1(R) (by
Lemma 17). We may thus assume that (1 : 0) /∈ I(Z, πZ), that πZ(q) = (1 : 1), and that the
interval of I(Z, πZ) which contains πZ(q) is {(x : 1) ∈ P1

R | 0 6 x6 a} for some a ∈ R, a > 1.
Take the affine surface A⊂ Z given by Lemma 17, which is isomorphic to y2 + z2 =Q(x) for
some polynomial Q. Then, Q(0) =Q(a) = 0 and Q(x)> 0 for 0< x < a, and we may assume that
Q(1) = 1. Denote by s the section of πZ : Z→ P1

R given locally by y + iz = ixn, for some positive
integer n. Its conjugate is given by y − iz =−ixn, or y + iz =Q(x)/(−ixn). Thus, s intersects s̄
at some real point p ∈ Z, its image x= πZ(p) satisfies Q(x)/(−ixn) = ixn, or Q(x) = x2n. Taking
n large enough, this can only happen when x= 0 or x= 1. The first possibility cannot occur since
a section does not pass through the singular point of a singular fibre. Thus, s intersects s̄ at only
one real point, which is q. In consequence, the strict pull-back by φ of s is a section of Y which
intersects its conjugate at only imaginary points. This shows that (Y (R), πY ) is isomorphic to
an exceptional real conic bundle (X, πX). 2

Corollary 18. Let (X, πX) and (Y, πY ) be two minimal real conic bundles, and assume that
either πX or πY has at least one singular fibre. Then, the following are equivalent:

(i) I(X, πX) = I(Y, πY );

(ii) there exists an isomorphism ϕ :X(R)→ Y (R) such that πY ◦ ϕ= πX .

Proof. It suffices to prove (i)⇒ (ii). By Lemma 15, we may assume that both (X, πX) and (Y, πY )
are exceptional. We may now assume that the fibre over (1 : 0) is not singular and use Lemma 17:
let AX ⊂X and BX ⊂ Y be the affine surfaces given by the lemma, with equations y2 + z2 =
QX(x) and y2 + z2 =QY (x) respectively. Since I(X, πX) = I(Y, πY ), QY (x) = λQX(x) for some
positive λ ∈ R. The map (x, y, z) 7→ (x,

√
λy,
√
λz) then yields an isomorphism (X(R), πX)→

(Y (R), πY ). 2

The above result implies the next two corollaries. The first one strengthens a result of
Comessatti [Com12] (see also [Kol, Theorem 4.5]).

Corollary 19. Let (X, π) and (X ′, π′) be two real conic bundles. Assume that (X, π) and
(X, π′) are minimal. Then (X(R), π) and (X ′(R), π′) are isomorphic if and only if there exists
an automorphism of P1

R that sends I(X, π) onto I(X ′, π′). 2

Corollary 20. Let (X, πX) and (Y, πY ) be two minimal conic bundles. Then, the following
are equivalent:

(i) (X(R), πX) and (Y (R), πY ) are isomorphic;

(ii) (X, πX) is birational to (Y, πY ) and X(R) is isomorphic to Y (R).

Proof. The implication (i) ⇒ (ii) is evident. Let us prove the converse.
Since (X, πX) is birational to (Y, πY ) and both of them are minimal, the number of singular

fibres of πX and πY is the same, being equal to 2r for some non-negative integer r.
Assume that r = 0, which means that X is an Hirzebruch surfaces Fm for some m and that

Y = Fn for some n. Since X(R) is isomorphic to Y (R), we have m≡ n mod 2. It is easy to
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Real conic bundles and very transitive actions

prove that (X(R), π) and (Y (R), π) are isomorphic, by taking elementary links at two imaginary
distinct fibres (see for example [Man06, Proof of Theorem 6.1]).

When r > 0, already the fact that (X, πX) is birational to (Y, πY ) implies that (X(R), πX)
is isomorphic to (Y (R), πY ) (Corollary 18). 2

5. Conic bundles on del Pezzo surfaces

In this section, we focus on surfaces admitting distinct minimal conic bundles. We will see that
these surfaces are necessarily del Pezzo surfaces (Lemma 23). We begin by the description of all
possible minimal real conic bundles occurring on del Pezzo surfaces.

Lemma 21. Let V be a subset of P1(R); then the following are equivalent:

(i) there exists a minimal real conic bundle (X, π) with I(X, π) = V such that X is a del Pezzo
surface;

(ii) the set V is a union of closed intervals, and #V 6 3.

Proof. The implication (i) ⇒ (ii) is easy. Indeed, if (X, π) is minimal, it is well-known that the
number of singular fibres of π is even, denoted 2r, and that 2r = 8− (KX)2. Since −KX is ample,
K2
X > 1, and thus r 6 3. The conclusion follows as I(X, π) is the union of r closed intervals.

Let us prove the converse. If V = P1(R) or V = ∅, we take (X, π) to be (P1
C × P1

C, pr1), where
pr1 is the projection on the first factor, endowed with the anti-holomorphic map that sends
((x1 : x2), (y1 : y2)) onto ((x1 : x2), (±y2 : y1)).

Now we can assume that V consists of k closed intervals I1, . . . , Ik, with 1 6 k 6 3. For
j = 1, . . . , 3, we denote by mj an homogenous form of degree two. If j 6 k, we choose that mj

vanishes at the boundary of the interval Ij , and is non-negative on Ij . If j > k, we choose mj

such that mj is positive on P1(R). In any case, we choose that m1 ·m2 ·m3 has six distinct roots.
We consider the real surface given by

X := {((x : y : z), (a : b)) ∈ P2
R × P1

R | x2m1(a, b) + y2m2(a, b) + z2m3(a, b) = 0}.

The projection on P2
R is a double covering. A straightforward calculation shows that this covering

is ramified over a smooth quartic. In consequence, X is a smooth surface, and precisely a del
Pezzo surface of degree two. Taking π :X → P1

R as the second projection, we obtain a conic
bundle (X, π) on the del Pezzo surface X such that I(X, π) = V . If k = 3, the conic bundle is
minimal. Otherwise, we contract components in the imaginary singular fibres (corresponding to
the roots of mj for j > k) to obtain the result. 2

Recall the following classical result, which will be useful throughout what follows.

Lemma 22. Let π : S→ P1
C be a complex conic bundle, and assume that S is a del Pezzo surface,

with (KS)2 = 9−m6 7. Then, there exists a birational morphism η : S→ P2
C which is a blow-up

of m points p1, . . . , pm and which sends the fibres of π onto the lines passing through p1. The
curves of self-intersection −1 of S are:

– the exceptional curves η−1(p1), . . . , η−1(pm);

– the strict transforms of the lines passing through two of the pi;

– the conics passing through five of the pi;

– the cubics passing through seven of the pi and being singular at one of these.
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Proof. Denote by ε the contraction of one component in each singular fibre of π. Then, ε is a
birational morphism of conic bundles, not defined over R, from S to a del Pezzo surface which
is also an Hirzebruch surface. Changing the contracted components, we may assume that ε is a
map S→ F1. Contracting the exceptional section onto a point p1 ∈ P2

C, we get a birational map
η : S→ P2

C which is the blow-up of m points p1, . . . , pm of P2
C, and which sends the fibres of π1

onto the lines passing through p1. The description of the (−1)-curves is well-known and may be
found for example in [Dem80]. 2

Lemma 23. Let π1 :X → P1
R be a minimal real conic bundle. Then, the following conditions are

equivalent.

(i) There exist a real conic bundle π2 :X → P1
R, such that π1 and π2 induce distinct foliations

on X(C).

(ii) Either X is isomorphic to P1
R × P1

R, or X is a del Pezzo surface of degree two or four.

Moreover, if the conditions are satisfied, then the following occur.

(a) The map π2 is unique, up to an automorphism of P1
R.

(b) There exist α ∈Aut(X) and β ∈Aut(P1
R) such that π1α= βπ2. Moreover, if X is a del Pezzo

surface of degree two, then α may be chosen to be the Geiser involution.

(c) Denoting by f1, f2 ⊂ Pic(X) the divisors of the general fibre of respectively π1 and π2, we
have f1 + f2 =−cKX where c= 4/(KX)2 ∈ N · 1

2 .

Proof. We now prove that condition (i) implies condition (ii), (a) and (c). Assuming the existence
of π2, we denote by fi the divisor of the fibre of πi for i= 1, 2. We have (f1)2 = (f2)2 = 0 and by
the adjunction formula f1 ·KX = f2 ·KX =−2, where KX is the canonical divisor. Let us write
d= (KX)2.

Since (X, π1) is minimal, Pic(X) has rank two, and hence f1 = aKX + bf2, for some a, b ∈Q.
Computing (f1)2 and f1 ·KX we find respectively 0 = a2d− 4ab= a(ad− 4b) and −2 = ad− 2b.
If a= 0, we find f1 = f2, a contradiction. Thus, 4b= ad and 2b= ad+ 2, which yields b=−1
and ad=−4, so f1 + f2 =−4/d ·KX . This shows that f2 is uniquely determined by f1, which is
the assertion (a).

Denote as usual by S the complex surface associated to X. Let C ∈ Pic(S) be an effective
divisor, with reduced support, and let us prove that C · (f1 + f2)> 0. Since C is effective,
C · f1 > 0 and C · f2 > 0. If C · f1 = 0, then the support of C is contained in one fibre of π1.
If C is a multiple of f1, then C · f2 > 0; otherwise, C is a multiple of a (−1)-curve contained in a
singular fibre of f1, and the orbit of C by the anti-holomorphic involution is equal to a multiple
of f1, whence C · f2 > 0.

Since f1 + f2 is ample, and f1 + f2 =−4/d ·KX , either KX or −KX is ample. The surface
X being geometrically rational, the former cannot occur, whence d > 0.

If S is isomorphic to P1
C × P1

C, the existence of π1, π2 shows that X is isomorphic to P1
R × P1

R.
Otherwise, KX is not a multiple in Pic(XC) and thus d is equal to 1, 2 or 4. The number of
singular fibres being even and equal to 8− (KX)2, the only possibilities are then 2 and 4.

We have proved that condition (i) implies condition (ii), (a) and (c).
Assume now that X = (S, σ) is P1

R × P1
R or a del Pezzo surface of degree two or four. We

construct an automorphism α of X which does not belong to Aut(X, π). Then, by taking
π2 = π1α, we get assertion (i). Taking into account the unicity of π2, we get assertion (b).
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If X is P1
R × P1

R, the two conic bundles are given by the projections on each factor, and we
can get for α the swap of the factors.

If X is a del Pezzo surface of degree two, the anti-canonical map ζ :X → P2 is a double
covering ramified along a smooth quartic, cf. for example [Dem80]. Let α be the involution
associated to the double covering; α is classically called the Geiser involution. It fixes a smooth
quartic, and hence cannot preserve any conic bundle.

The remaining case is when X is a del Pezzo surface of degree four. By Lemma 22, there
is a birational map η : S→ P2

C which is the blow-up of five points p1, . . . , p5 of P2
C, no three

being collinear, and which sends the fibres of π1 on the lines passing through p1 . There are 16
exceptional curves (curves isomorphic to P1

C of self-intersection (−1)) on S:

– E1 = η−1(p1), . . . , E5 = η−1(p5) (five curves);

– the strict transforms of the lines passing through pi and pj , denoted by Lij (10 curves);

– the strict transform of the conic passing through the five points, denoted by Γ.

Note that the four singular fibres of π1 are Ei ∪ Lij , i= 2, . . . , 5, and that σ exchanges thus
Ei and Lij for i= 1, . . . , 5. The intersection form being preserved, this implies that σ acts on
the 16 exceptional curves as

(E2L12)(E3L13)(E4L14)(E5L15)(E1Γ)(L23L45)(L24L35)(L25L34).

After a linear change of coordinates, we may assume that p1 = (1 : 1 : 1), p2 = (1 : 0 : 0),
p3 = (0 : 1 : 0), p4 = (0 : 0 : 1) and p5 = (a : b : c) for some a, b, c ∈ C∗. Denote by φ the birational
involution (x : y : z) 99K (ayz : bxz : cxy) of P2

C. Since the base-points of φ are p2, p3, p4 and since
φ exchanges p1 and p5, the map α= η−1φη is an automorphism of S. Its action on the 16
exceptional curves is given by the permutation

(L23E4)(L24E3)(L34E2)(L12L25)(L13L35)(L14L45)(ΓL15)(E1E5).

Observe that the actions of α and σ on the set of 16 exceptional curves commute. This means
that ασα−1σ−1 is an holomorphic automorphism of S which preserves any of the 16 curves. It is
the lift of an automorphism of P2

C that fixes the five points p1, . . . , p5 and hence is the identity.
Consequently, α and σ commute, so α ∈Aut(X). Since φ sends a general line passing though p1

onto a conic passing through p2, . . . , p5, α belongs to Aut(X)\Aut(X, π). 2

Corollary 24. Let X be a minimal geometrically rational real surface, which is not rational.
Then, the following are equivalent.

(i) #X(R) = 2 or #X(R) = 3.

(ii) There exists a geometrically rational real surface Y (R) isomorphic to X(R), and such that Y
admits two minimal conic bundles π1 : Y → P1

R and π2 : Y → P1
R inducing distinct foliations

on Y (C).

Proof. (ii) ⇒ (i). By Lemma 23, Y is then a del Pezzo surface, which has degree two or four
since Y is not rational. This implies that #Y (R) = 2 or #Y (R) = 3 by Proposition 9.

(i)⇒ (ii). According to Theorem 7, Proposition 9 implies the existence of a minimal real conic
bundle structure πX :X → P1

R with four or six singular fibres. This condition is equivalent to the
fact that I(X, πX) is the union of two or three intervals. According to Lemma 21, there exists
a minimal real conic bundle (Y, π1) such that Y is a del Pezzo surface and I(Y, π1) = I(X, πX).
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Corollary 19 shows that (X(R), πX) and (Y, π1) are isomorphic. Moreover, Lemma 23 yields the
existence of π2. 2

6. Equivalence of surfaces versus equivalence of conic bundles

This section is devoted to the proof of Theorem 4. From Theorem 7 and Proposition 10, it
remains to solve the conic bundle case, which is done in Theorem 27. First of all, we correct an
existing inaccuracy in the literature; in [Kol, Exercice 5.8] or [Sil89, VI.3.5], it is asserted that
all minimal real conic bundles with four singular fibres belong to a unique birational equivalence
class. To the contrary, the following general result, which includes the case with four singular
fibres, occurs.

Theorem 25. Let πX :X → P1
R and πY : Y → P1

R be two real conic bundles, and suppose that
either X or Y is non-rational. Then, the following are equivalent.

(i) The two real surfaces X and Y are birational.

(ii) The two real conic bundles (X, πX) and (Y, πY ) are birational.

(iii) There exists an automorphism of P1 which sends I(X, πX) onto I(Y, πY ).

Moreover, if the number of singular fibres of πX is at least eight, then Bir(X) = Bir(X, πX).

Remark 26. It is well-known that this result is false when X and Y are rational. Indeed, consider
(X, πX) = (P1

R × P1
R, pr1) and let (Y, πY ) be a real conic bundle with two singular fibres. The

surfaces X and Y are birational, but the conic bundles (X, πX) and (Y, πY ) are not.

Proof. The equivalence (iii) ⇔ (ii) was proved in Corollary 19 and (ii) ⇒ (i) is evident.
Let us now prove the equivalence (i) ⇔ (ii). We may assume that (X, πX) and (Y, πY ) are

minimal and that X is not rational; hence πX has at least four singular fibres. Let ψ :X 99K Y
be a birational map, and decompose ψ into elementary links: ψ = ψn ◦ · · · ◦ ψ1 (see [Isk96,
Theorem 2.5]). Consider the first link ψ1 :X 99KX1, which may be of type (II) or (IV) only,
by [Isk96, Theorem 2.6]. If ψ1 is of type (II), then ψ1 is a birational map of conic bundles
(X, πX) 99K (X1, π1) for some conic bundle structure π1 :X1→ P1. If ψ1 is of type (IV), then
ψ1 is an isomorphism X →X1 and the link is precisely a change of conic bundle structure from
πX to π1 :X1→ P1, which induces distinct foliations on X(R). Applying Lemma 23, X is a del
Pezzo surface of degree two or four, and there exist automorphisms α ∈Aut(X) and β ∈Aut(P1

R)
such that π1ψ1α= βπ2, whence (X, π) is isomorphic to (X1, π1). We proceed by induction on
the number of elementary links to conclude that (X, πX) is birational to (Y, πY ). Moreover, if
πX has at least eight singular fibres, then no link of type (IV) may occur, so ψ is a birational
map of conic bundles (X, πX) 99K (Y, πY ). 2

When the conic bundles are minimal, we can strengthen Theorem 25 to get an isomorphism
between the real parts.

Theorem 27. Let πX :X → P1
R and πY : Y → P1

R be two minimal real conic bundles, and
suppose that either X or Y is non-rational. Then, the following are equivalent.

(i) X and Y are birational.

(ii) X(R) and Y (R) are isomorphic.

(iii) (X(R), πX) and (Y (R), πY ) are isomorphic.
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Proof. The implications (iii) ⇒ (ii) ⇒ (i) being evident, it suffices to prove (i) ⇒ (iii). Since X
and Y are not rational, both πX and πY have at least one singular fibre. Applying Lemma 15,
we may assume that both (X, πX) and (Y, πY ) are exceptional real conic bundles. Then, since
(X, πX) and (Y, πY ) are birational (Theorem 25), we may assume that I(X, πX) = I(Y, πY ), up
to an automorphism of P1

R. Then Corollary 19 shows that (X, πX) is isomorphic to (Y, πY ). 2

We are now able to prove Theorem 4 concerning minimal surfaces.

Proof of Theorem 4. Let X and Y be two minimal geometrically rational real surfaces, and
assume that either X or Y is non-rational.

If X(R) and Y (R) are isomorphic, it is clear that X and Y are birational. Let us prove the
converse.

Theorem 7 lists all the possibilities for X. If ρ(X) = 1 or ρ(Y ) = 1, Proposition 10 shows that
X is isomorphic to Y . Otherwise, since neither X nor Y is rational, there exist minimal conic
bundle structures on X and on Y . From Theorem 27, we conclude that X(R) is isomorphic to
Y (R). 2

To go further with non-minimal surfaces, we need to know when the group Aut(X(R)) is
very transitive for X minimal. This is done in the following sections.

7. Very transitive actions

Thanks to the work done in § 4, it is easy to apply the techniques of [HM09] to prove that
Aut(X(R)) is fibrewise very transitive on a real conic bundle. After describing the transitivity
of Aut(X(R)) on the tangent space of a general point, we set the main result of this section:
Aut(X(R)) is very transitive on each connected component when X is minimal and admits two
conic bundle structures (Proposition 33). We end the section by giving a characterisation of
surfaces X for which Aut(X(R)) is able to mix the connected components of X(R).

Lemma 28. Let (X, π) be a minimal real conic bundle over P1
R with at least one singular fibre.

Let (p1, . . . , pn) and (q1, . . . , qn) be two n-tuples of distinct points of X(R), and let (b1, . . . , bm)
be m points of I(X, π). Assume that π(pi) = π(qi) for each i, that π(pi) 6= π(pj) for i 6= j and
that π(pi) 6= bj for any i and any j.

Then, there exists α ∈Aut(X(R)) such that α(pi) = qi for every i, πα= π and α|π−1(bi) is the
identity for every i.

Remark 29. The same result holds for minimal real conic bundles with no singular fibre,
see [BH07, 5.4]. The following proof uses twisting maps, see below, which were introduced
in [HM09] to prove that the action of the group of automorphisms Aut(S2) on the quadric
sphere S2 := {(x : y : z) ∈ R3 | x2 + y2 + z2 = 1} is very transitive.

Proof. By Lemma 15, we may assume that (X, π) is exceptional. Moreover, Lemma 17 yields the
existence of an affine real surface A⊂X isomorphic to the hypersurface of R3 given by

y2 + z2 =−
2r∏
i=1

(x− ai),

for some a1, . . . , a2r ∈ R with a1 < a2 < · · ·< a2r, where π|A corresponds to the projection
(x, y, z) 7→ x, and where the inclusion A⊂X induces an isomorphism A(R)→X(R).
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J. Blanc and F. Mangolte

For i= 1, . . . , n, let us denote by (xi, yi, zi) the coordinates of pi in A⊂ R3 and by (ui, vi, wi)
those of qi. From the hypothesis, we have xi = ui for all i; thus we get y2

i + z2
i = v2

i + w2
i for all i.

Let Φi ∈ SO2(R) be the rotation sending (xi, yi) to (ui, vi). Then, by [HM09, Lemma 2.2], there
exists an algebraic map Φ : [a1, a2r]→ SO2(R) such that Φ(xi) = Φi for i= 1, . . . , n and Φ(bi)
is the identity for i= 1, . . . , m. Let us recall the proof; since SO2(R) is isomorphic to the unit
circle S1 := {(x : y : z) ∈ P2(R) | x2 + y2 = z2}, it suffices to prove the statement for S1 instead of
SO2(R). Let Φ0 be a point of S1 distinct from Φ1, . . . , Φn and from the identity. Since S1\{Φ0}
is isomorphic to R, it suffices, finally, to prove the statement for R instead of SO2(R). The latter
statement is an easy consequence of Lagrange polynomial interpolation.

Then the map defined by α : (x, y, z) 7→ (x, (y, z) · Φ(x)) induces an automorphism A(R)→
A(R) called the twisting map of π associated to Φ. Moreover, α(pi) = qi, for all i, πα= π, α|π−1(bi)

is the identity for every i, and π induces an automorphism X(R)→X(R). 2

Lemma 30. Let (X, π) be a minimal real conic bundle over P1
R with at least one singular fibre.

Let p ∈X be a real point in a non-singular fibre of π, and let Σ⊂ I(X, π) be a finite subset,
with π(p) ∈ Σ. Denote by η : Y →X the blow-up of p, and by E ⊂ Y the exceptional curve. Let
q ∈ E be the point corresponding to the direction of the fibre of π passing through p.

Then, the lift of the group

G= {α ∈Aut(X(R)), πα= π | α|π−1(Σ) is the identity}

by η is a subgroup η−1Gη ⊂Aut(Y (R)) which fixes the point q, and acts transitively on
E\q ∼= A1

R.

Proof. Since G acts identically on π−1(Σ), it fixes p, and therefore lifts to H = η−1Gη ⊂
Aut(Y (R), πη), which preserves E. Moreover, G preserves the fibre of π passing through p,
so H preserves its strict transform, which intersects transversally E at q, so q is fixed.

Let us prove now that the action of η−1Gη on E\q is transitive. By Lemma 15, we may
assume that (X, π) is exceptional. Then, we take an affine surface A⊂X, isomorphic to the
hypersurface y2 + z2 = P (x) of R3 for some polynomial P , such that A|π is the projection
prx : (x, y, z) 7→ x and the inclusion A⊂X gives an isomorphism A(R)→X(R) (Lemma 17).
Let us write (x0, y0, z0) ∈ R3 as the coordinates of p. Since x is on a non-singular fibre of π, then
P (x0)> 0. Up to an affine automorphism of R3, and up to multiplication of P by some constant,
we may assume that x0 = 0, P (0) = 1, y0 = 0, and z0 = 0.

To any real polynomial λ ∈ R[X], we associate the matrix(
α(X) β(X)
−β(X) α(X)

)
∈ SO2(R(X)),

where α= (1− λ2)/(1 + λ2) ∈ R(X) and β = 2λ/(1 + λ2) ∈ R(X). Moreover, corresponding to
this matrix, we associate the map

ψλ : (x, y, z) 7→ (x, α(x) · y − β(x) · z, β(x) · y + α(x) · z),

which belongs to Aut(A(R), prx). To impose that ψλ is the identity on (prx)−1(Σ) is the same
as asking that λ(x) = 0 for each (x : 1) ∈ Σ⊂ P1(R), and in particular for x= 0.

Denote by O = R[x, y, z]/(y2 + z2 − P (x)) the ring of functions of A, by p⊂O the ideal of
functions vanishing at p, by Op the localisation, and by m⊂Op the maximal ideal of Op . Then,
the cotangent ring T ∗p,A of p in A is equal to m/m2, and is generated by the images [x], [y], [z − 1]
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of x, y, z − 1 ∈ R[x, y, z]. Since P (0) = 1, we may write P (x) = 1 + xQ(x), for some real poly-
nomial Q. We compute

[0] = [y2 + z2 − P (x)] = [y2 + (z − 1)2 + 2(z − 1)− xQ(x)] = [2(z − 1)− xQ(0)] ∈m/m2.

We see that [z − 1] = [xQ(0)/2], and thus m/m2 is generated by [x] and [y] as an R-module.
Since λ(0) = 0, we can write λ(x) = xµ(x), for some real polynomial µ. The linear action of ψλ
on the cotangent space T ∗p,A fixes [x] and sends [y] onto

[α(x) · y − β(x) · z] =
[

(1− λ(x)2)y − 2λ(x)z
λ(x)2 + 1

]
= [y − 2λ(x)(1 + xQ(0)/2)]

= [y − 2µ(0)x].

It suffices to change the derivative of λ at 0 (which is equal to µ(0)), which may be any real
number. Therefore, the action of G on the projectivisation of T ∗p,A fixes a point (corresponding
to [x]) but acts transitively on the complement of this point. Since E corresponds to the
projectivisation of Tp,A, G acts transitively on E\q. 2

Lemma 31. Let X be a real projective surface endowed with two minimal conic bundles
π1 :X → P1

R and π2 :X → P1
R inducing distinct foliations on X(C). There exists a real projective

surface X ′ such that X ′(R) and X(R) are isomorphic, X is endowed with two minimal conic
bundles π′1 :X → P1

R and π′2 :X → P1
R inducing distinct foliations on X ′(C) and the following

condition holds.

(?) Let Fj be a real fibre of π′j , j = 1, 2. If F1(R) ∩ F2(R) 6= ∅, then at most one of the curves
Fj can be singular.

Remark 32. It is possible that the condition (?) above does not hold for (X, π1, π2), taking, for
example, for X the del Pezzo surface of degree two given in the proof of Lemma 21 for k = 3:

X := {((x : y : z), (a : b)) ∈ P2
R × P1

R | x2m1(a, b) + y2m2(a, b) + z2m3(a, b) = 0}.

The map π1 :X → P1
R is given by the second projection, and the 6 singular points of its singular

fibres correspond to only three points of P2
R, namely (1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1). This shows

that the Geiser involution preserves the set of the six points, so each of these points is the singular
point of a singular fibre of π2.

Proof. Suppose that the condition (?) does not hold for (X, π1, π2) (otherwise, the result is
obvious). Then Fi is the union of two (−1)-curves Ei,1 and Ei,2, intersecting transversally at
some point pi. Since pi is the only real point of Fi, we have p1 = p2. Hence, F1 · E2,i > 2 for
i= 1, 2, which implies that F1 · F2 > 4. According to Lemma 23, X is a del Pezzo surface of
degree two or four, and we have F1 + F2 =−cKX with c= 4/(KX)2. Computing 16/(KX)2 =
(F1 + F2)2 = 2F1 · F2 > 8, we see that (KX)2 = 2.

Let q ∈X(R) be a real point, let η : Y →X be the blow-up of q, and let ε : Y →X ′ be the
contraction of the strict transform of the fibre of π1 passing through q. Let ψ :X 99KX ′ be
the composition ψ = ε ◦ η−1. We prove now that if q is general enough, then X ′ is a del Pezzo
surface of degree two, and π′1 = π1 ◦ ψ and π′2 = σX′ ◦ π′1 (where σX′ ∈Aut(X ′) is the Geiser
involution of X ′) satisfy the condition (?).

Firstly, it is well-known that blowing-up a general point of a del Pezzo surface of degree
two yields a del Pezzo surface of degree one (it suffices that q does not belong to any of the
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(−1)-curves ofX and to the ramification curve of the double coveringX → P2); then a contraction
from a del Pezzo surface of degree one yields a del Pezzo surface of degree two.

Secondly, we denote respectively by S, S′, T the complex surfaces obtained by forgetting
the real structures of X, X ′, Y and study condition (?) by working now in the Picard groups
of these surfaces, identifying a curve with its equivalence class. We choose a (−1)-curve (not
defined over R) in any of the six singular fibres of π′1, and denote these by C1, . . . , C6, and
denote by p1, . . . , p6 the singular points of the six singular fibres, so that pi ∈ Ci. Condition
(?) amounts to prove that Di := ψ−1σX′ψ(Ci)⊂ S does not pass through pj for any i and
any j. Fixing i and j, we will see that this yields a curve of X where q should not lie.
Note that the action of the Geiser involution σX′ ∈Aut(X ′)⊂Aut(S′) on Pic(S′) is given by
σX′(D) = (D ·KX′)KX′ −D (this follows directly from the fact that the invariant part of Pic(S′)
has rank one). In consequence, the (−1)-curve D′i := σX′ψ(Ci)⊂ S′ is equal to −KX′ − ψ(Ci),
and thus ε∗(Di) =−ε∗(KX′)− η∗(Ci). Writing Eq as the (−1)-curve contracted by η, and f
as a general fibre of π1, the (−1)-curve contracted by ε is equivalent to η∗(f)− Eq. We have
KY = η∗(KX) + Eq = ε∗(KX′) + η∗(f)− Eq in Pic(Y ). This implies that

η∗(Di) = ε∗(D′i) =−η∗(KX) + η∗(f)− η∗(Ci)− 2Eq ∈ Pic(Y ).

This means that Di is a curve with a double point at q, is equivalent to −KX + f − Ci ∈
Pic(S) and has self-intersection 3. Moreover, the linear system Λi of curves in Pic(S) equivalent
to −KX + f − Ci has dimension three. Note that Λi does not depend on q, but only on i. Denote
by Λi,j ⊂ Λi the sublinear system of curves of Λi passing through pj . This system has dimension
two; after blowing-up pj , the system Λi,j yields a ramified double covering of P2. If Di passes
through pj , then Di corresponds to a member of Λi,j , singular at q, and this implies that q belongs
to the ramified locus of the double covering induced by Λi,j . It suffices to choose q outside of all
these loci to obtain condition (?). 2

We now use the above lemmas to show that the action of Aut(X(R)) is very transitive on
each connected component when X is a surface with two conic bundles.

Proposition 33. Let X be a real projective surface, which admits two minimal conic bundles
π1 :X → P1

R and π2 :X → P1
R inducing distinct foliations on X(C).

Let (p1, . . . , pn) and (q1, . . . , qn) be two n-tuples of distinct points of X(R) such that pi
and qi belong to the same connected component for each i. Then, there exists an element of
Aut(X(R)) which sends pi onto qi for each i, and which sends each connected component
of X(R) onto itself.

Proof. When X is rational, the result follows from [HM09, Theorem 1.4]. Thus we assume that
X is non-rational, and in particular that X(R) is non-connected.

From Lemma 31, we can assume that any real point which is critical for one fibration is
not critical for the second fibration. Otherwise (recall that the fibrations are minimal), a real
intersection point of a fibre F1 of π1 with a fibre F2 of π2 cannot be a singular point of F1

and of F2 at the same time. By Lemma 28 applied to (X, π1), and to (X, π2), we may assume
without loss of generality that all points p1, . . . , pn, q1, . . . , qn belong to smooth fibres of π1

and to smooth fibres of π2. We now use Lemma 28 to obtain an automorphism α of (X(R), π1)
such that π2(α(pi)) 6= π2(α(pj)) and π2(α(qi)) 6= π2(α(qj)) for i 6= j. Hence, we may suppose that
π2(pi) 6= π2(pj) and π2(qi) 6= π2(qj) for i 6= j.
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Likewise, using an automorphism of (X(R), π2) we may suppose that π1(pi) 6= π1(pj) and
π1(qi) 6= π1(qj) for i 6= j.

We now show that for i= 1, . . . , m there exists an element αi ∈Aut(X(R)) that sends pi on
qi and that restricts to the identity on the sets

⋃
j 6=i{pj} and

⋃
j 6=i{qj}. Then, the composition

of the αi will achieve the proof. Observe that ζ = π1 × π2 gives a finite surjective morphism
X → P1

R × P1
R which is two-to-one or four-to-one depending on the degree of X (this follows from

assertion (c) of Lemma 23). Denote byW the image ofX(R). The mapX(R)→W is a differential
map, which has topological finite degree. Denote by Wi the connected component of W which
contains both ζ(pi) and ζ(qi). Observe that Wi is contained in the square I(X, π1)× I(X, π2),
and that, for each point x ∈Wi, the intersection of the horizontal and vertical lines (fibres of
the two projections of P1

R × P1
R) passing through x with Wi is either only {x}, when x is on the

boundary of Wi, or is a bounded interval. Moreover, Wi is connected. Then, there exists a path
from ζ(pi) to ζ(qi) which is a sequence of vertical or horizontal segments contained in Wi. We may
furthermore assume that none of the segments is contained in (pr1)−1(π1(a)) or (pr2)−1(π2(a))
for any a ∈ (

⋃
j 6=i{pj}) ∪ (

⋃
j 6=i{qj}). Denote by r1, . . . , rl the points of U that are sent on the

singular points or ending points of the path, and by s1, . . . , sl some points of X(R) which are
sent by ζ on r1, . . . , rl respectively. Up to renumbering, s1 = pi, sl = qi and two consecutive
points sj and sj+1 are such that π1(sj) = π1(sj+1) or π2(sj) = π2(sj+1). We then construct αi as
a composition of l − 1 maps, each one belonging either to Aut(X(R), π1) or Aut(X(R), π2) and
sending sj on sj+1, and fixing the points (

⋃
j 6=i{pj}) ∪ (

⋃
j 6=i{qj}). 2

The following proposition describes the possible mixes of connected components.

Proposition 34. Let (X, π) be a minimal real conic bundle. Denote by I1, . . . , Ir the r
connected components of I(X, π), and by M1, . . . , Mr the r connected components of X(R),
where Ii = π(Mi), Mi = π−1(Ii) ∩X(R). If ν ∈ Symr is a permutation of {1, . . . , r}, the following
are equivalent:

(i) there exists α ∈Aut(P1
R) such that α(Ii) = Iν(i) for each i;

(ii) there exists β ∈Aut(X(R), π) such that β(Mi) =Mν(i) for each i;

(iii) there exists β ∈Aut(X(R)) such that β(Mi) =Mν(i) for each i;

(iv) there exist two real Zariski open sets V, W ⊂X, and β ∈ Bir(X), inducing an isomorphism
V →W , such that β(V (R) ∩Mi) =W (R) ∩Mν(i) for each i.

Moreover, the conditions are always satisfied when r 6 2, and are in general not satisfied when
r > 3.

Proof. The implications (ii) ⇒ (i) and (ii) ⇒ (iii) ⇒ (iv) are obvious.
The implication (i) ⇒ (ii) is a direct consequence of Corollary 19.
We now prove that if r 6 2, then assertion (i) is always satisfied, and hence all the conditions

are equivalent (since all are true). When r 6 1, take α to be the identity. When r = 2, we make
a linear change of coordinates to the effect that I1 = {(x : 1) | 0 6 x6 1} and I2 is bounded by
(1 : 0) and (λ : 1), for some λ ∈ R, λ > 1 or λ < 0. Then, α : (x1 : x2) 7→ (λx2 : x1) is an involution
which exchanges I1 and I2.

It remains to prove the implication (iv) ⇒ (i) for r > 3. We decompose β into elementary
links

X =X0
β1

99KX1
β2

99K · · ·
βn−1
99K Xn−1

βn
99KXn =X
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as in [Isk96, Theorem 2.5]. It follows from the description of the links of [Isk96, Theorem 2.6]
that each of the links is of type (II) or (IV), and that the links of type (II) are birational maps
of conic bundles and the links of type (IV) occur on del Pezzo surfaces of degree two.

In consequence, each of the Xi admits a conic bundle structure given by πi :Xi→ P1
R,

where π0 = πn = π, and if βi has type (II), then it is a birational map of conic bundles
(Xi−1, πi−1) 99K (Xi, πi), and if it has type (IV), then it is an isomorphism Xi−1→Xi which
does not send the general fibre of πi−1 on those of πi. In this latter case, since πi and πi−1βi have
distinct general fibres, Xi−1 and Xi are del Pezzo surfaces of degree two, and the Geiser involution
ιi−1 ∈Aut(Xi−1) exchanges the two general fibres (this follows from [Isk96, Theorem 2.6], but
also from Lemma 23). This means that the map βi ◦ ιi−1, that we denote by γi, is an isomorphism
of conic bundles (Xi−1, πi−1)→ (Xi, πi).

Now, we prove by induction on the number of links of type (IV) that β may be decomposed
into compositions of elements of Bir(X, π) and maps of the form ψιψ−1 where ψ is a birational
map of conic bundles (X, π) 99K (X ′, π′), (X ′, π′) is a del Pezzo surface of degree two and
ι ∈Aut(X ′) is the Geiser involution. If there is no link of type (IV), β preserves the conic
bundle structure given by π. Otherwise, denote by βi the first link of type (IV), which is an
isomorphism βi :Xi→Xi+1, and write βi = γi ◦ ιi−1 as before. We write ψ = βi−1 ◦ · · · ◦ β1,
which is a birational map of conic bundles ψ : (X, π) 99K (Xi, πi). Then, β = (βn ◦ · · · ◦ βi+1 ◦ γi ◦
ψ)(ψ−1ιi−1ψ). Applying the induction hypothesis on the map (βn ◦ · · · ◦ βi+1 ◦ γi ◦ ψ) ∈ Bir(X),
we are done.

Now, observe that when (X ′, π′) is a minimal real conic bundle and X ′ is a del Pezzo surface
of degree two, the map ζ :X ′→ P2

R given by |−KX′ | is a double covering, ramified over a smooth
quartic curve Γ⊂ P2

R (see e.g. [Dem80]). Since (X, π) is minimal, (KX)2 = 8− 2r and thus π has
r = 6 singular fibres , so I(X, π) is the union of three intervals and X(R) is the union of three
connected components. This implies that Γ(R) is the union of three disjoint ovals. A connected
component M of X(R) is homeomorphic to a sphere, and surjects by ζ to the interior of one of the
three ovals. The Geiser involution (induced by the double covering) induces an involution on M ,
which fixes the preimage of the oval. This means that the Geiser involution sends any connected
component of X(R) on itself. Thus, in the decomposition of β into elements of Bir(X, π) and
conjugate elements of Geiser involutions, the only relevant elements are those of Bir(X, π). There
thus exists β′ ∈ Bir(X, π) which acts on the connected components of X(R) in the same way
as β. This shows that assertion (iv) implies (i).

We finish by proving that assertion (i) is false in general, when r > 3. This follows from
the fact that if Σ is a general finite subset of 2r distinct points of P1

R, then the group
{α ∈Aut(P1

R) | α(Σ) = Σ} is trivial. Supposing this fact to be true, we obtain the result by
applying it to the 2r boundary points of I(X, π). Let us prove the fact. The set of 2r-tuples of P1

R
is an open subset W of (P1

R)2r. For any non-trivial permutation υ ∈ Sym2r, we denote by Wυ ⊂W
the set of points a= (a1, . . . , a2r) ∈W such that there exists α ∈Aut(P1

R) with α(ai) = aυ(i) for
each i. Let a ∈Wυ, and take two 4-tuples Σ1, Σ2 of ai with Σ1 6= Σ2 and Σ2 = υ(Σ1) (this is
possible since υ is non-trivial). Then, the cross-ratios of the ai in Σ1 and in Σ2 are the same.
This implies a non-trivial condition on W . Consequently, Wυ is contained in a closed subset
of W . Doing this for all non-trivial permutations υ, we obtain the result. 2

8. Real algebraic models

The aim of this section is to go further with non-minimal surfaces with two or three connected
components. We begin by showing how to separate infinitely near points to the effect that
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any such a surface Y (R) is isomorphic to a blow-up Ba1,...,amX(R) where X is minimal and
a1, . . . , am are distinct proper points of X(R). Then, we replace X(R) by an isomorphic del Pezzo
model (Corollary 24) and we use the fact that Aut(X(R)) is very transitive on each connected
component for such an X (Proposition 33) to prove that in many cases, if two birational surfaces
Y and Z have homeomorphic real parts, then Y (R) and Z(R) are isomorphic. As a corollary, we
get that in any case Aut(Y (R)) is very transitive on each connected component.

Proposition 35. Let X be a minimal geometrically rational real surface, with #X(R) = 2 or
#X(R) = 3, and let η : Y →X be a birational morphism.

Then there exists a blow-up η′ : Y ′→X, whose centre is a finite number of distinct real
proper points of X, and such that Y ′(R) is isomorphic to Y (R).

Moreover, we can assume that the isomorphism Y (R)→ Y ′(R) induces an homeomorphism
η−1(M)→ (η′)−1(M) for each connected component M of X(R).

Proof. According to Corollary 24, we may assume that X admits two minimal conic bundles
π1 :X → P1

R and π2 :X → P1
R inducing distinct foliations on X(C). Preserving the isomorphism

class of Y (R), we may assume that the points in the centre of η are all real (such a point may
be a proper point of X(R) or an infinitely near point). Let us denote by m (=K2

X −K2
Y ) the

number of those points. We prove the result by induction on m.
The cases m= 0 and m= 1 being obvious (take η′ = η), we assume that m> 2. We decompose

η as η = θ ◦ ε, where ε : Y → Z is the blow-up of one real point q ∈ Z, and θ : Z→ Y is the blow-
up of m− 1 real points. By the induction hypothesis, we may assume that θ is the blow-up
of m− 1 proper points of X, namely a1, . . . , am−1 ∈X(R). Moreover, applying Proposition 33,
we may move the points by an element of Aut(X(R)), and assume that π1(ai) 6= π1(aj) and
π2(ai) 6= π2(aj) for i 6= j, and that the fibre of π1 passing through ai and the fibre of π2 passing
through ai are non-singular and transverse at ai, for each i.

If θ(q) /∈ {a1, . . . , am−1}, then η is the blow-up of m distinct proper points of X, and hence we
are done. Otherwise, assume that θ(q) = a1. We write E = θ−1(a1)⊂ Z, and denote by Fi ⊂ Z
the strict pull-back by η of the fibre of πi passing through a1, for i= 1, 2. Then, F1 and F2

are two (−1)-curves which do not intersect. Hence, the point q ∈ E belongs to at most one of
the two curves, so we may assume that q /∈ F1. Denote by θ2 : Z→X2 the contraction of the
m− 1 disjoint (−1)-curves F1, θ

−1(a2), . . . , θ−1(am−1). Since q does not belong to any of these
curves, η2 = θ2 ◦ ε is the blow-up of m− 1 distinct proper points of X2. It remains to find an
isomorphism γ :X2(R)→X(R) such that, for each connected component M of X(R), γη2 sends
η−1(M) on M .

Denoting π′ = π1 ◦ θ ◦ θ−1
2 , the map ψ = θ2 ◦ θ−1 is a birational map of conic bundles

(X, π1) 99K (X2, π
′), which factorizes as the blow-up of a1, followed by the contraction of the strict

transform of the fibre passing through a1. Therefore, the conic bundle (X2, π
′) is minimal. Since

#X(R)> 1 and π′ψ = π1, Corollary 18 yields the existence of an isomorphism γ :X2(R)→X(R)
such that π1γ = π′. Observe that γη2 ◦ η−1 = γθ2 ◦ θ−1 = γψ is a birational map X 99KX which
satisfies π ◦ (γη2 ◦ η−1) = π. Consequently, for any connected component M of X(R),
which corresponds to π−1(V ) ∩X(R), for some interval V ⊂ P1

R, we find π(γη2η
−1(M)) =

π(M) = V ; thus γη2 sends η−1(M) on M . 2

Corollary 36. LetX be a minimal geometrically rational real surface, such that #X(R) = 2 or
#X(R) = 3, and let η : Y →X, ε : Z→X be two birational morphisms. Denote by M1, . . . , Mr

the connected components of X(R) (r = 2, 3). Then, the following are equivalent:
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(i) η−1(Mi)⊂ Y (R) and ε−1(Mi)⊂ Z(R) are homeomorphic for each i;

(ii) there exists an isomorphism Y (R)→ Z(R) which induces an homeomorphism η−1(Mi)→
ε−1(Mi) for each i.

Proof. With the equivalence (2)⇒ (1) being obvious, let us prove the converse. According to
Proposition 35, we may assume that η and ε are the blow-ups of a finite number of distinct
real proper points of X. Denote by Ση and Σε these two finite sets. For each i, the fact that
η−1(Mi)⊂ Y (R) and ε−1(Mi)⊂ Z(R) are homeomorphic implies that the numbers of points of
Ση ∩Mi and Σε ∩Mi coincide.

By Corollary 24 and Proposition 33, Aut(X(R)) is very transitive on each connected
component of X(R). In particular, there exists an element α ∈Aut(X(R)) such that α(Mi) =Mi

for each i and α(Ση) = Σε. Then, ψ = ε−1αη : Y (R)→ Z(R) is the wanted isomorphism. 2

Corollary 37. Let Y be a geometrically rational real surface with #Y (R) = 2 or #Y (R) = 3.
Let (p1, . . . , pn) and (q1, . . . , qn) be two n-tuples of distinct points of Y (R) such that pi and qi
belong to the same connected component for each i.

Then, there exists an element α ∈Aut(Y (R)) which leaves each connected component of
Y (R) invariant and such that α(pi) = qi for each i.

Proof. Let η : Y →X be a birational morphism to a minimal real surface X; observe that
#X(R) = #Y (R). According to Corollary 24, we may assume that X admits two minimal conic
bundles π1 :X → P1

R and π2 :X → P1
R inducing distinct foliations on X(C). By Proposition 35,

we can suppose that η is the blow-up of m distinct real proper points a1, . . . , am ∈X. We prove
the result by induction on m.

If m= 0, which means that X = Y , the result follows from Proposition 33.

If m> 0, denote by η0 : Z→X the blow-up of a1, . . . , am−1 (η0 is the identity if m= 1), and
by η1 : Y → Z the blow-up of b= η−1

0 (ar).

Applying Proposition 33, we may assume that π1(ai) 6= π1(aj) and π2(ai) 6= π2(aj) for i 6= j,
and that the fibre of π1 passing through ai and the fibre of π2 passing through ai are non-
singular and transverse at ai, for each i. Let us denote by E ⊂ Y the exceptional curve η−1

1 (b) of
η1 and by Fi the strict transform on Y of the fibre of πi passing through am, for i= 1, 2. Then E,
F1 and F2 are three (−1)-curves, F1 and F2 do not intersect, and E intersects transversally each
of the Fi. By the induction hypothesis, we may use the lift of an element of Aut(Z(R)) which fixes
b to assume that none of the points pi belongs to F1\E, F2\E or to η−1(ai) for i= 1, . . . , m− 1.
Then the group G= {α ∈Aut(X(R)) | π1α= π1, α fixes a1, . . . , am, η(p1), . . . , η(pn)}, acts
transitively on E\F1 (Lemma 30). Lifting a well-chosen element of this group in Aut(Y (R)), we
may move the points pi and assume that no one of the pi belongs to F2 (i.e. we can avoid F2 ∩ E).
Denote by η′ : Y →X ′ the contraction of the disjoint (−1)-curves F2, η

−1(a1), . . . η−1(am−1).

Then, the birational map ψ = η′η−1 :X 99KX ′ is a birational map of conic bundles
(X, π2) 99K (X ′, π′), where π′ = π2ψ

−1, which consists of the blow-up of am, followed by the
contraction of the strict transform of the fibre passing through am. Therefore, the conic bundle
(X ′, π′) is minimal. Since #X(R)> 1, Corollary 18 yields the existence of an isomorphism
γ :X ′(R)→X(R) such that π2γ = π′. Therefore, there exists an element β ∈Aut(X ′(R)) which
fixes all the points blown-up by η′, which fixes all the points {η′(pi), pi /∈ E}, and which sends
the points {η′(pi), pi ∈ E} outside of η′(E). Applying the lift of β on Aut(Y (R)), we may assume
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that none of the points pi belongs to E. Doing the same manipulation with the qi, it remains to
use the lift of an element of Aut(Z(R)) which fixes b and sends η1(pi) on η1(qi) for each i. 2

9. Proof of the main results

The proof of Theorem 4 was given at the end of § 5. Now, we deduce the other results stated
in the introduction from the results of §§ 7 and 8. The following lemma serves to prove most of
them.

Lemma 38. Let (X, π) be a minimal real conic bundle, such that I(X, π) is the union of r
intervals I1, . . . , Ir, with r = 2 or r = 3.

Let ηY : Y →X and ηZ : Z→X be two birational morphisms. For i= 1, . . . , r, we write
Xi = π−1(Ii) ∩X(R), Yi = η−1

Y (Xi) ∩ Y (R) and Zi = η−1
Z (Xi) ∩ Z(R).

Let p1, . . . , pn ∈ Y (R), q1, . . . , qn ∈ Z(R) be two n-tuples of distinct points, and assume the
existence of an homeomorphism h : Y (R)→ Z(R) which sends pi on qi for each i, and sends Yi
on Zν(i), where ν ∈ Symr is a permutation of {1, . . . , r}. Then, the following are equivalent.

(i) There exists an isomorphism β : Y (R)→ Z(R) which sends Yi on Zν(i) for each i ∈ {1, . . . , r}
and sends pj on qj for each j ∈ {1, . . . , n}.

(ii) There exists an automorphism α ∈Aut(P1
R) which sends Ii on Iν(i) for each i ∈ {1, . . . , r}.

Moreover, both assertions are true if r = 2, and false in general when r = 3.

Proof. Observe that the Xi (respectively the Yi, Zi) are the connected components of X(R)
(respectively of Y (R), Z(R)).

(i) ⇒ (ii). The map ηZβη−1
Y is a birational self-map of X, which restricts to an isomorphism

ϕ : V →W , where V and W are two real Zariski open subsets of X. Moreover, the hypothesis on
β implies that ϕ(V (R) ∩Xi) =W (R) ∩Xν(i). The existence of α is provided by Proposition 34.

(ii) ⇒ (i). Proposition 34 yields the existence of γ ∈Aut(X(R), π) such that γ(Xi) =Xν(i).
We may thus assume that ν is the identity. According to Proposition 35, we may moreover
suppose that ηY and ηZ are the blow-ups of a finite set of disjoint real proper points of X. Since
Yi is homeomorphic to Zi for each i, ηY is the blow-up of a1, . . . , am and ηZ is the blow-up of
b1, . . . , bm, where aj and bj belong to the same connected component of X(R) for each j. Then,
there exists an element of Aut(X(R)) which preserves each connected component of X and sends
aj on bj for each j (Corollary 37). We may thus assume that Y = Z, and conclude by applying
Corollary 37 to Y .

The fact that assertion (ii) is true when r = 2 and false in general when r = 3 was proved in
Proposition 34. 2

The following case shares many features with the rational case.

Theorem 39. Let X be a non-singular geometrically rational real projective surface, and
assume that #X(R) = 2. Then the action of the group Aut(X(R)) on X(R) is very transitive.

Proof. Let Y be a non-singular geometrically rational real projective surface, with #Y (R) = 2.
Let (p1, . . . , pn) and (q1, . . . , qn) be two n-tuples of points which are compatible. We want to
prove the existence of α ∈Aut(Y (R)) such that α(pi) = qi for each i.

If pi and qi are in the same connected component of Y (R), the result follows from Corollary 37.
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Otherwise, the compatibility means that the two components of X(R) are homeomorphic
and that pi and qi are in a distinct component for each i. Lemma 38 provides the existence of
an element of Aut(Y (R)) which permutes the two connected components of Y (R). This reduces
the situation to the previous case. 2

Before proving Theorems 1 and 2, we describe the cases where the group of automorphisms
is not very transitive.

Lemma 40. Let X be a non-singular real projective surface, and assume that either X is not
geometrically rational or #X(R)> 3. The group Aut(X(R)) is then not very transitive on each
connected component, and is neither 2-transitive.

Proof. If X has Kodaira dimension two (surface of general type), then it has only finitely many
birational self-maps (see e.g. [Uen75]). If X has Kodaira dimension one, then every birational
self-map of X preserves the elliptic fibration induced by |KX |. If X has Kodaira dimension zero,
and X is minimal, then Bir(X) = Aut(X). The group Aut(X) is an algebraic group of dimension
one or two (its neutral component is an elliptic curve or an Abelian surface). Thus, Bir(X)
cannot be 2-transitive. The case when X is not minimal is deduced from this case.

If X is a surface with Kodaira dimension −∞, then X is uniruled. If, furthermore, X is not
geometrically rational and X(R) is non-empty, then the Albanese map X → C is a real ruling
over a curve with genus g(C)> 0, (see, e.g., [Sil89, V.(1.8)]) and the Albanese map is preserved
by any birational self-map.

The remaining case is when X is geometrically rational and #X(R)> 3; we now prove
that the group Aut(X(R)) is not transitive. Denote by η :X →X0 a birational morphism to
a minimal real surface, and observe that #X0(R) = #X(R)> 3. Let us discuss the two cases
for X0 given by Theorem 7. If X0 is a del Pezzo surface with ρ(X0) = 1, then Aut(X(R)) is
countable (Corollary 11), and thus Aut(X(R)) cannot be transitive. The other case is when
ρ(X0) = 2. Then, X0 endows a real conic bundle structure (X0, π0), and Bir(X0) = Bir(X0, π0)
(Theorem 25). Since the action of Bir(X0, π0) on the basis of the conic bundle is finite (there are
too much boundary points), neither Aut(X0(R)) nor Aut(X(R)) may be transitive. 2

Proof of Theorem 1. When X is not geometrically rational or #X(R)> 3, Aut(X(R)) is not
very transitive on connected components by Lemma 40. In the remaining cases, Aut(X(R))
is very transitive on connected components. When #X(R) = 2, 3, this is Corollary 37. When
#X(R) = 1, this is the main result of [HM09]. 2

Proof of Theorem 2. According to Lemma 40, we can assume from now on that X is a
geometrically rational surface with #X(R) 6 3. When #X(R) = 1, X is rational; the fact that
Aut(X(R)) is n-transitive for every n (and thus very transitive) is the main result of [HM09].
When #X(R) = 2, Aut(X(R)) is very transitive by Theorem 39.

When #X(R) = 3, Aut(X(R)) is very transitive on each connected component (Theorem 1).
Thus, Aut(X(R)) is very transitive if and only if, for any homeomorphism h :X(R)→X(R),
there exists β ∈Aut(X(R)) which permutes the components of X(R) in the same way that h
does. When these conditions are not satisfied, Aut(X(R)) is not 2-transitive.

Let X(R) =M1 tM2 tM3 be the decomposition into connected components. If there is no
pair (i, j) such that Mi ∼Mj , then there is no non-trivial such h, and hence Aut(X(R)) is very
transitive. If M1 ∼M2 6∼M3 or M1 ∼M2 ∼M3, the possibilities when this occurs follow from
Lemma 38.
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For example, when X is minimal (therefore M1 ∼M2 ∼M3 ∼ S2), it admits a minimal real
conic bundle structure (X, π) (Theorem 7 and Proposition 9), where π has six singular fibres.
Then, Aut(X(R)) is very transitive if and only if {α ∈Aut(P1

R) | α(I(X, π)) = I(X, π)} acts
transitively on the three intervals of I(X, π). This is true in some special cases, but false in
general. When X is not minimal, Aut(X(R)) is very transitive for example when there is no
pair of homeomorphic connected components of X(R), or when X is the blow-up of a minimal
surface Y with a very transitive group Aut(Y (R)). 2

Proof of Theorem 3. Let X, Y be two geometrically rational real surfaces, and assume that
#X(R) 6 2. We assume that X is birational to Y and that X(R) is homeomorphic to Y (R),
and prove that X(R) is isomorphic to Y (R).

Note that all geometrically rational surfaces with connected real part are birational to each
other, and thus in this case the statement follows from the unicity of rational models [BH07].
We may thus assume that #X(R) = 2. Denote by ηX :X →X0 and ηY : Y → Y0 birational
morphisms to minimal real surfaces.

Since X0 and Y0 are birational, X0(R) and Y0(R) are isomorphic (Theorem 4), so we may
assume that X0 = Y0. The result now follows from Lemma 38. 2

Proof of Corollary 5. If M is connected, and M is non-orientable or M is orientable with
genus g(M) 6 1, then it admits a unique geometrically rational model by [BH07, Corollary 8.1].
Moreover, this model is in fact rational.

Conversely let M be a compact C∞-surface and assume that M admits a unique geometrically
rational model X. The existence of such a model implies, by Comessatti’s theorem [Com14], that
any connected component of M is non-orientable or is orientable with genus g 6 1. The unicity
means that, for any geometrically rational model Y of M , Y (R) is isomorphic to X(R). In
particular, this implies that all geometrically rational models of M belong to a unique birational
class. From Theorem 25 and Proposition 10, this means that X is rational. It remains to observe
that, when X is rational, X(R) is connected, and is either non-orientable or orientable of genus
61. When X is minimal, this follows from Proposition 9. Then, blowing-up points on a surface
either does nothing on the topology of the real part (if the points blown-up are imaginary), or
it gives a non-orientable real part (if the points blown-up are real). 2

We finish by a result on non-density. In [KM09], it is proved that Aut(X(R)) is dense in
Diff(X(R)) when X is a geometrically rational surface with #X(R) = 1 (or equivalently when X
is rational). In the cited paper, it is said that #X(R) = 2 is probably the only other case where
the density holds. The following collect the known results in this direction. The first two of them
are new.

Proposition 41. Let X be a geometrically rational surface.

– If #X(R) > 5, then Aut(X(R)) is not dense in Diff(X(R)).
– If #X(R) = 4, and either X is the blow-up of a minimal conic bundle or ρ(X) = 1, then

Aut(X(R)) is not dense in Diff(X(R)).
– If #X(R) = 3 and X is minimal, then Aut(X(R)) is not dense in Diff(X(R)) for a general X.

– If #X(R) = 1, then Aut(X(R)) is dense in Diff(X(R)).

Proof. The case #X(R) = 1 is the main result of [KM09]. Assume from now on that #X(R) > 3,
denote by η :X →X0 a birational morphism to a minimal real surface, and observe that
#X0(R) = #X(R) > 3. Let us discuss the two cases for X0 given by Theorem 7.
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Assume that X0 is a del Pezzo surface with ρ(X0) = 1. If the degree of X0 is one, then
Bir(X0) is finite (Corollary 11), and thus Aut(X(R)) cannot be dense. If X0 has degree two,
then #X0(R) = 4 (Proposition 9), so #X(R) = 4 too. Since Aut(X0(R)) = Aut(X0) is finite,
Aut(X0(R)) cannot be dense (but maybe Aut(X(R)) could be).

The other case is when ρ(X0) = 2. Then, X0 endows a real conic bundle structure (X0, π0).
If #X(R) = #X0(R) > 4, then Bir(X0) = Bir(X0, π0) (Theorem 25), so Aut(X(R)) is not
dense. If #X0(R) = 3, then in general Aut(X0(R)) does not exchanges the connected component
of X0(R). Consequently, Aut(X0(R)) is not dense (but maybe Aut(X(R)) could be, if the
connected components of X(R) are not homeomorphic). 2
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