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S U M M A R Y
Theoretical work and modelling studies have led to the hypothesis that the ambient seismic
wave field on the surface can be affected by hydrocarbon reservoirs (>800 m depth). Several
field studies have linked spectral features on the vertical component between 1 and 10 Hz
to reservoir locations. However, such evidence has been criticized due to concerns that sur-
face recordings typically contain a large amount of surface wave noise and correlations to
hydrocarbon targets could be caused by non-hydrocarbon variables such as topography or
weathering layer thickness. In this paper, we suggest a two-step analysis strategy to address
such issues. First, spectral power is only averaged over time periods and frequencies where
the distribution of polarization attributes show no obvious dominance of a few surface wave
sources. An interferometric test reveals differences in the wave field composition between the
filtered and unfiltered data. Second, the residual seismic power is correlated to hydrocarbon
as well as non-hydrocarbon targets. The correlations are quantitatively compared using rank
correlation and bootstrap confidence intervals. The method is illustrated on a passive seismic
data set acquired with three-component, broad-band seismometers at the tight-gas Jonah field
in Wyoming, USA. We find evidence that the wave field was dominated by a small number of
surface sources in all of the data except for the quietest time periods in the low-frequency range
1.5–3.0 Hz. Seismic power within this subset significantly correlates to a published reservoir
map but not with a digital elevation model and less so with an infrastructure density map. The
investigated hypothesis can thus not be rejected with this data.

Key words: Fourier analysis; Spatial analysis; Interferometry; Probability distributions;
Body waves; Surface waves and free oscillations.

1 I N T RO D U C T I O N

The continuous ambient seismic wave field is a function of its dis-
tributed, uncontrolled sources as well as the earth medium through
which their vibrations travel. The source component can in theory
be separated from the medium information if the source distribu-
tion and source types have certain statistical properties. For uniform
source distributions ensemble averages of noise cross-correlations
between two signals can be interpreted as the Green’s function
between those receivers (Wapenaar 2004; Draganov et al. 2006).
This is used in applications such as crustal tomography (Shapiro
et al. 2005) or reflector mapping (Draganov et al. 2007; Ruigrok
et al. 2011). Another approach to approximately separate medium
effects is the division of spectra from different components. The
horizontal-to-vertical spectral ratio (HVSR) technique is a single-
station method and therefore not constrained by receiver geometry.
It is routinely used in earthquake engineering to characterize the
near surface weathering layer (Bard 1999; D’Amico et al. 2008;
Fah et al. 2003; Bard 2010).

Based on previous empirical observations and theoretical stud-
ies by different investigators, Lambert et al. (2011) recently for-
mulated an explicit hypothesis that the ambient seismic wavefield
can be modified by hydrocarbon reservoirs at depth and that these
modifications can be detected at the surface. Plausibility for this
hypothesis is provided by two observations. First, there is ample
evidence for continuous body waves reaching the surface (Roux
et al. 2005; Gerstoft et al. 2008; Koper & de Foy 2008; Koper
et al. 2009, 2010; Zhang et al. 2009; Landes et al. 2010; Poli et al.
2012) which would have passed the reservoir. Second, hydrocar-
bon reservoirs are particular inhomogeneities at low-frequencies:
active seismic experiments show evidence of increased attenuation
(Chapman et al. 2006) as well as increased reflectivity (Goloshubin
et al. 2006) and these phenomena might in fact be linked (Korneev
et al. 2004; Quintal et al. 2011). In a modelling study that com-
bined small-scale poroelastic theory with large-scale viscoelastic
simulation, Lambert et al. (2012) propagate upward travelling in-
coherent seismic energy through a hydrocarbon-saturated inclusion
and observe that it correlates with spectral attributes on the surface.
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Saenger et al. (2009) suggest an alternative explanation where non-
linear pore effects produce a secondary wavefield of p waves. Both
explanations predict a change in body wave energy at the surface
in an a priori unknown frequency band. Whether these mechanisms
would lead to an increase or decrease in ambient seismic amplitudes
in the vicinity of a hydrocarbon reservoir is not obvious a priori.

A body of empirical evidence collected over the last decade seems
to support the hypothesis. Some case studies describe observations
of foci at depth obtained by applying the time-reversal principle to
array observations of seismic noise (Steiner et al. 2008; Witten &
Artman 2011; Goertz et al. 2012). Most other observations focus on
simpler single-station analyses that correlate lateral spectroscopic
features with reservoir locations (Dangel et al. 2003; van Mastrigt &
Al-Dulaijan 2008; Saenger et al. 2009; Birkelo et al. 2010; Goertz
et al. 2012). However, such empirical studies have been subject to
considerable controversy (Lambert et al. 2009a,b; Green & Green-
halgh 2009a,b). Two concerns are commonly brought forth: first,
surface waves often dominate the wavefield and it has been sug-
gested that they might completely mask potential body waves (Ali
et al. 2010). Second, correlations to a reservoir do not confirm the
hypothesis if they are in fact caused by non-hydrocarbon variables
that are collocated with the reservoir. For instance, in a modelling
study Hestholm et al. (2006) found that seismic energy can get
trapped in topographic ridges and Hanssen & Bussat (2008) ob-
served a correlation between vertical seismic amplitudes and dune
height in a passive seismic data set from the Libyan Desert. Shallow
geology also affects seismic surface recordings, a phenomenon ex-
ploited by the HVSR technique (Fah et al. 2003; Bonnefoy-Claudet
et al. 2006). Yet another factor is the potential effect that the data
acquisition schedule can have: certain areas might have been mea-
sured during a period where natural or manmade sources were more
energetic, leading to an imprint of the acquisition pattern on the seis-
mic attribute map. Weather conditions, in particular wind speed, are
also relevant variables to consider in the 1–10 Hz frequency range
(Withers et al. 1996).

The principal contribution of this paper is to suggest a spectro-
scopic analysis strategy for passive seismic data sets that objectively
addresses the surface wave problem and the risk of correlations to
non-hydrocarbon variables. In the first part we reject time peri-
ods and frequencies that exhibit relatively high seismic power and
laterally anisotropic polarization since these are considered strong
indicators for a few surface sources dominating the signal. The im-
pact of surface waves on the analysis is thus reduced. This single
receiver analysis does not aim to identify all surface waves but it is
easily implementable and poses few processing related constraints
on the survey design. An interferometric test confirms that surface
waves from a dominating source were removed this way. In the
second part the residual seismic power is spatially correlated to a
hydrocarbon as well as to several non-hydrocarbon targets. We will
test if the correlation to the hydrocarbon target is significant and
stronger than to the non-hydrocarbon targets. Since a linear relation
cannot be assumed, and to avoid strong sensitivity to outliers, we use
the non-parametric rank correlation in combination with bootstrap
confidence intervals.

A first data example is given for a passive seismic data set ac-
quired with three-component broad-band seismometers at the tight-
gas Jonah field in Wyoming, USA. Seismic power from appropriate
sections of the ambient wavefield recordings is first qualitatively
compared to the acquisition pattern and then quantitatively corre-
lated to a reservoir parameter map published by DuBois et al. (2004),
elevation from the National Elevation Data set (Gesch 2007), and an
estimated infrastructure-density map. We find that the hypothesis as

formulated by Lambert et al. (2011) cannot be empirically rejected
with the available data.

2 DATA E X A M P L E

The tight-gas Jonah field in Wyoming, USA, was discovered in
1977 and has since been well studied, with a large body of knowl-
edge available in Robinson & Shanley (2004). The principal hy-
drocarbon reservoir is the Lance formation, which is comprised of
meandering fluvial sandstones intercalated with overbank siltstones
and mudstones. The field is bounded by shear faults on the West
and South sides and these faults form the updip and lateral trap
for the field. The top of the formation lies at 2.4 km depth and
dips down towards the Northeast to 2.8 km. The gross thickness
increases downdip from 610 to 915 m (DuBois et al. 2004). Faults
inside the field compartmentalize the reservoir, leading to an overall
heterogeneous distribution of hydrocarbons and pressures. Porosity
ranges from 8 to 12 per cent and permeability from 0.01 to 0.9 mD.
The Jonah field is being actively developed and produced. Opera-
tion and production noise in the area include truck traffic, drilling,
well-fracture stimulations and compressors. The treeless area has a
relatively flat topography and is partly covered with low-growing
sagebrush. The surface geology in the survey area is uniform with
shales and marlstones of Eocene age (Love & Christiansen 1985).
Statics from active seismic surveys in the area typically show small
lateral variation, which are often correlated to elevation.

In a passive seismic survey in 2009 December, three-component,
broad-band particle velocity seismometers (Nanometrics Trillium
T40) were deployed at 235 sites over the Jonah and the neighbour-
ing Pinedale gas fields. The instruments were chosen because they
are able to resolve ground velocity below the low-noise model of
Peterson (1993) in the frequency range between ocean microseisms
and anthropogenic noise. Since the ocean microseism amplitudes
vary smoothly within the survey area they can be used to detect sen-
sors, which deviate significantly from their neighbours, either due
to coupling issues or bad instrument settings. Three-component
geophones could be used as well, provided that their noise floor is
sufficiently low after instrument correction.

The survey was acquired in a roll-along fashion with about 60
seismometers operating synchronously for about 2 d per location, set
at a sampling rate of 100 Hz. A total of 88 measurement locations
were collocated with data points from reservoir parameter maps
published by DuBois et al. (2004). Fig. 1 shows an aerial map
of the survey area with the measurement locations. Temperatures
during the survey were below freezing point and did not allow for
a thawing of the top soil. There was no notable precipitation and
wind speeds remained below 3 m s−1 during more than 95 per cent
of the acquisition period. The same data set has previously been
investigated by Birkelo et al. (2011).

3 A NA LY S I S S T R AT E G Y

For the purpose of this paper we formulate the hypothesis to be
tested as follows: ‘the ambient seismic wavefield at the Jonah field
surface exhibits variations in body wave power that are due to the
subsurface hydrocarbon reservoir’. The objective of this paper is
to present a statistical approach with which this hypothesis can be
tested.

The hypothesis explicitly considers body waves because only
they have the potential to carry information on the deeper subsur-
face (>800 m) above 1 Hz. The analysis of such potential body
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Figure 1. Aerial map of the survey area above the Jonah reservoir. The triangles show the sites where the broad-band seismometers were deployed. The
acquisition period is indicated by the colour of the symbols. Recordings from the highlighted locations (1218,818) will be referred to later. The black lines
show the transit roads in the survey area.

wave power can be strongly biased by surface wave energy which
often dominates the wavefield during a significant fraction or per-
haps even all of the recording period. In general, the explicit and
unambiguous removal of such surface wave energy requires a full
description of the wavefield which in turn necessitates synchronous
and non-aliased spatial sampling. Such acquisition designs are hard
to implement in a broad-band passive survey for practical reasons.
Requirements on spatial sampling can be somewhat relaxed when
analysing moveout in cross-correlated receiver gathers. However,
this happens at the cost of assuming an isotropic and/or stationary
wavefield, which cannot always be guaranteed.

A less ambitious, but more readily implementable solution is to
analyse single station polarization statistics to detect and reject time
periods and frequencies where one or only a few surface sources
dominate the signal. Under reasonable scattering conditions, the
vibrations from a surface source seen by a surface receiver at a
distance are bound to exhibit a degree of azimuthal directionality,
independent of the mixture of wave types and modes involved.
Even in the presence of a little more than one dominating source the
distribution of polarization produced is likely to remain anisotropic.
Because we deployed seismometers in a producing and developing
gas field, it can be expected that there are time periods at each
recording site where such a small number of surface sources will
dominate, either by well pad activity or occasionally passing trucks.
Clearly identifiable modes of the distribution of polarization angles
over time are therefore a signature of time periods affected by one
or a few dominant surface sources and should be rejected.

In the first step of the strategy, we thus identify and select time
periods and frequencies where the dominant polarization exhibits
lateral isotropy, which is found to be the case for the quietest time
periods of the recordings and at low frequencies. This data selection
strategy does not strictly achieve a complete removal of surface
waves. However, by rejecting time periods and frequencies of high
power and obvious azimuthal directivity, we preferentially reject
surface waves from nearby surface noise sources and consequently

increase the relative likelihood for the detection of body waves
from other distant sources in the remaining data. Also, selecting
the lowest power time periods of the wavefield preferentially rejects
transients (e.g. truck traffic) resulting in less time variability of
the residual wavefield. The seismic power density on the vertical
component is then averaged over those time periods and frequencies
only. Repeating the process for every measured location gives a
map of seismic power density during the quiet time periods with no
clearly distinguishable polarization. The concept of focusing on the
quietest time periods was also applied by Hanssen & Bussat (2008)
and has here been extended to additionally include the requirement
for isotropic polarization.

In a second step, this seismic power density is now correlated to
a hydrocarbon and as many non-hydrocarbon targets as are avail-
able for the measured locations. Correlations are quantified using
a rank correlation that only measures monotonic trends without
particular assumptions about the type of the relationship (linear
or otherwise) and is also more robust against outliers compared
to the linear correlation coefficient. Those correlations and their
estimated uncertainties are then compared. The non-hydrocarbon
variables considered are elevation, well density, and the acquisition
pattern.

We test if the correlation to the hydrocarbon target is significant
and also whether it is significantly stronger compared to correlations
to non-hydrocarbon targets. If this is not the case, the hypothesis as
stated above is rejected. Otherwise, the confidence in the hypothesis
is increased. Note that empirical studies on observational data alone,
which the ambient wavefield inevitably is, cannot be used to verify
the causality as stated in the hypothesis.

3.1 Rejection of dominant surface waves

The entire three-component recording is split into non-overlapping
small time segments of fixed length, as is usual for the Short-Time
Fourier Transform (STFT Gabor 1946). We found a segment length
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of T = 20.48 s to be short enough to ensure that the stationarity
assumption is met within most of those segments, yet long enough
to provide reasonable estimates for frequencies down to 0.1 Hz. A
42.5 hr recording thus results in about 7500 time segments. Each of
the three components of a segment starting at time t is made to have
zero mean, has any linear trend removed (detrending), is tapered
with a hanning taper of the same length as the segment, and finally
transformed into the complex Fourier domain with the fast Fourier
transform (Press 2007)

U( f, t) = [UE ( f, t),UN ( f, t),UV ( f, t)]T , (1)

where UE, N, V( f) is the Fourier amplitude as a function of frequency,
f, for the east, north and vertical seismometer component, respec-
tively. The segment size of 20.48 s affords a frequency resolution of
1/T = 0.049 Hz from 0 to 50 Hz. From the Fourier vector U( f, t)
we now estimate the cross-spectral density (CSD) matrix,

Ŝ( f, t) = k · U( f, t) · U†( f, t) (2)

k = 2

fs · ∑n−1
τ=0 |w(τ )|2 , (3)

where fs = 100 Hz is the sampling rate and w(τ ) is the hanning
taper applied before the Fourier transform. In this normalization the
diagonal elements of Ŝ are estimated power spectral densities (PSD)
of the three components and the off-diagonal elements are their cross
spectral densities. To reduce the statistical noise inherited from the

Fourier amplitudes we compute a weighted time average of eleven
adjacent spectral density matrices, with maximum weight for the
centre segment, t, and gradually decreasing weights to the flanks.
This approach is similar to the commonly used block-averaging
technique (Press 2007).

The dominant particle motion at a given frequency and time
segment is extracted by the eigenvector of Ŝ( f, t) with the largest
eigenvalue (Samson 1983; Park et al. 1987)

Ŝ( f, t) · zmax( f, t) = λmax( f, t) · zmax( f, t) . (4)

For a normalized eigenvector the eigenvalue λmax is an estimate
of the seismic power density of the dominant polarization. Fig. 2(a)
shows λmax as a function of frequency, f, and time, t, for site 1218
(location highlighted in Fig. 1). From acquisition reports as well as
from a more detailed analysis of the data (not shown) we know that
the recording contains truck traffic, an M4.1 earthquake in the Gulf
of California, and stationary and non-stationary noise from well op-
erations at less than 120 m distance (hydraulic fracturing, perhaps
also well drilling, fluid production or injection). Fig. 2(b) gives the
time-series of λmax at f = 2.15 Hz for this site. The visible power
density variations arise because the above-mentioned sources may
contribute different amounts of energy at different times into the
2.15 Hz bin. Fig. 2(c) compares the power spectral density during
hand-picked periods where different noise sources were active in
the 1218 recording. The large dynamics (power variations up to
50 dB) and frequency dependence of the ambient wavefield are

Figure 2. (a) Seismic power density of the dominant polarization, λmax, as a function of frequency and time for the entire recording at site 1218, which was
highlighted in Fig. 1 (dark shades indicate higher power). Dashed boxes from left to right identify truck traffic, stationary industrial noise, a M4.1 earthquake
from the Gulf of California, and industrial well pad activity. (b) Time-series of λmax at the single frequency bin 2.15 Hz. (c) Comparison of power spectral
density during hand-picked time periods where different sources dominated.
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Figure 3. Five minute seismograms of the processes highlighted in Fig. 2(a). V, E and N refer to the vertical, east and north components, respectively. A
bandpass filter from 1 to 10 Hz was applied to all signals. (a) Wave train generated by a truck passing outside the local surroundings. (b) Stationary background
noise generated by machinery. (c) Stationary background noise generated by well pad activities probably within a 300 m perimeter. (d) Unidentified stationary
background noise. Note the different scales of the vertical axes.

illustrated. Nearby road traffic clearly dominates other noise
sources. Fig. 3 gives 5 min examples of the three-component seis-
mograms for some of the features highlighted in Fig. 2(a). The
shown seismograms are typical for the measurements on the Jonah
field. Visual inspection of the seismograms in Figs 3(b)–(d) con-
firms the stationarity assumption to the first order. The truck traffic
shown in Fig. 3(a) is clearly non-stationary on a minute-scale, but
the transient nature of such sources makes them relatively easy to
identify.

The three complex elements of zmax( f, t) give the amplitudes and
phases of three sinusoidal oscillations in the E, N and V directions
with the same frequency. A sketch of the resulting elliptical motion
is shown in Fig. 4. The semi-major axis, a, and the semi-minor axis,

b, are found by maximizing the length of Re[z · eiξ ] using a grid
search over ξ ∈ [0, π )

ξ0 = maxξ∈[0 π ) Re [z · exp(iξ )] (5)

and then setting (Vidale 1986)

a = Re[z · eiξ0 ] , (6)

b = Re[z · ei(ξ0+π/2)] . (7)

We now define three features of the polarization. The azimuth,
φ ∈ [−180◦, 180◦], as the angle between north and the projection
of the upward pointing semi-major axis, a, to the horizontal plane,
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Figure 4. The dominant particle motion is estimated at each frequency by a
polarization ellipse. This plot shows the semi-major axis, a, the semi-minor
axis, b, the azimuth angle, φ, and the dip angle, θ .

measured clockwise. The dip, θ ∈ [0◦, 90◦], is defined as the angle
that the upward pointing semi-major axis spans with the horizontal
plane (see Fig. 4). Finally, the reciprocal ellipticity ρ ∈ [0, 1] is
defined as |b|/|a|. Linear and circular polarization are represented
by ρ = 0 and ρ = 1, respectively, while values in between imply el-
liptic motion. These three features are computed for all frequencies
and all time segments.

For each frequency bin, f0, we now take the 10 per cent of time seg-
ments with the weakest seismic power density. This means that from
the power density estimates at f0 of the full recording we only con-
sider those below the 10th percentile, which for the Jonah recordings
corresponds to an effective duration of 4.2–4.8 hr. Based on these
segments we compute a histogram of the azimuth with equal-sized
bins from −180◦ to 180◦. The histogram values are normalized such
that they integrate to one, whereby we get the empirical probability
density function (PDF) of φ at frequency f0 for the quietest time
periods. Repeating this process for all frequencies gives a spectrum
of such PDFs. Fig. 5(a) shows the result for the frequency range 0–
20 Hz. For frequencies above 3 Hz the plot reveals a mostly bimodal
distribution of azimuth which changes slowly with frequency (note
that the PDFs are periodic in azimuth). The modes are separated by
about 180◦, as would be expected for surface waves from a distinct
direction. This laterally anisotropic polarization property strongly
suggests that most of the frequency band above 3 Hz is dominated
by surface waves from one or only a few sources. Below 3 Hz these
modes disappear and give way to a flat distribution, making this
band very unlikely to be dominated by a few sources. Fig. 5(b)
gives the same visualization for polarization dip. Dark shades at
low angles indicate dominant horizontal particle motion. Frequen-
cies below 0.8 Hz show such dominant horizontal motion, probably
due to oceanic microseisms. A concentration of low dips is also
visible over most of the frequency band from 4 to 16 Hz, but less
so for the frequency range 1–3 Hz. Fig. 5(c) gives the same visu-
alization for reciprocal ellipticity. Except for some narrow-bands,
the frequency range from 4 to 14 Hz exhibits polarizations far from
linear. Between about 1 and 3 Hz, however, the ellipticites indicate
a more isotropic particle motion. Finally, Fig. 5(d) shows the vi-
sualization for power density. There is a low-power regime in the
frequency range bounded by the oceanic microseisms around 1 Hz
and noise processes above 5 Hz.

The above features are specific to the low-power time segments.
Fig. 6 gives PDF spectra of polarization parameters and seismic
power density when considering time periods with λmax values be-
low the 50th percentile level. Note how the azimuth PDFs for this

segment group have stronger modes which now extend down to
0.5 Hz, indicating that also the low frequencies are now dominated
by a small number of surface sources even though we still reject
50 per cent of the data. Dominant horizontal motion is observed up
to 15 Hz, including the frequency band 0.8–4 Hz, which showed
considerably lower probability density values during the quietest
10 per cent of the data, indicating that the signal now contains more
horizontally polarized energy. Also, the reciprocal ellipticity in the
band 1–3 Hz is less random than for the quiet subset of the data
with a bias towards circular polarization.

Using a random number generator we produced three indepen-
dent time-series of 48 hr of Gaussian, white noise and used them
jointly as an isotropic three-component test signal. Fig. 7 gives the
polarization PDFs of this synthetic noise. Comparing this plot with
Figs 5(a)–(c) qualitatively confirms that the wavefield is roughly
isotropic between 0.5 and 3 Hz, and anisotropic almost everywhere
else.

Plots as in Figs 5 and 6 were analysed for all 85 measurement
locations with valid three-component data within the survey area.
We consistently observe such a pattern in the Jonah field: during the
10 per cent quietest time periods the ambient wavefield polarization
below 3 Hz exhibits lateral isotropy. For less quiet time periods this
observation did not hold reliably. Note that the value of 10 per cent is
data-driven and should be re-evaluated for other data sets. For some
receivers, the microseism energy visible at the lower end of the
spectrum in Fig. 5(d) occasionally extended up to 1.5 Hz. To avoid
such interference we therefore compute the average seismic power
density between 1.5 and 3.0 Hz, considering only the 10 per cent
quietest time periods at every frequency bin. The resulting power
density is denoted by P̄ and computed for every location.

The focus on quiet time periods with lateral isotropy is a nec-
essary precaution to avoid obvious surface waves but will not nec-
essarily guarantee an increase of body wave energy relative to sur-
face wave energy. Nevertheless, we tried to qualitatively assess
the effect of the procedure on surface wave energy by analysing a
line of receivers stretching northwestwards from station 1218 us-
ing the noise cross-correlation technique (Wapenaar 2004; Snieder
et al. 2010). An active well pad is located along that line, close
to station 1218. Therefore, the line can be considered to have
a source in its stationary zone, ensuring an incident wavefield
coverage suitable for interferometry despite the anisotropy in the
wavefield.

We compute average cross-correlations of the vertical component
of receiver 1218 with itself and all northwestward receivers, up to
a distance of 7 km. A two-pole, zero-phase bandpass filter between
1 and 3.5 Hz was applied to the raw data, which was then split
into segments of 13 s duration for cross-correlation. Fig. 8(a) shows
the averaged trace-normalized cross-correlations during a day time
period. A coherent wave train with linear moveout at apparent ve-
locity of 1.0 km s−1 is detected. This is consistent with a surface
wave that is travelling through station 1218 to all other stations. The
fact that this wave train has no correspondence at negative times
confirms that the well pad behind station 1218 is the main source
of the energy and that there is no energy arriving from the oppo-
site side of the line where also no infrastructure is found. Fig. 8(b)
shows an identical analysis on a quiet night time period where the
1–3.5 Hz range showed isotropic polarization. No coherent surface
wave train is visible. It is therefore clear that the selection of the qui-
etest 10 per cent of the data can provide a means to reduce surface
waves from the data.

The presented cross correlation test merely serves as an indepen-
dent confirmation of the effectiveness of the data selection strategy



154 N. Riahi et al.

Figure 5. (a) Spectrum of azimuth PDFs from 0 to 20 Hz from site 1218, based on time segments with power density below the 10th percentile of all estimates.
Below 3 Hz the PDFs are almost flat. (b) Same visualization for polarization dip. Below 1 Hz there is an increase in horizontal motion (dip < 30◦), probably
due to oceanic microseisms. (c) Same visualization for reciprocal ellipticity (0: linear polarization, 1: circular polarization). (d) Same visualization for the
power density.

with respect to reducing the influence of surface waves on our data.
Owing to the observed anisotropy of the incident wavefield over the
used time span, it does not provide any additional discriminant be-
tween surface and body waves. Indeed, noise cross-correlations in
Jonah often did not converge within the available recording period.
A coherent event with near zero lag is visible up to about 4.5 km
in Fig. 5(a). It might have been generated by broad-side arrivals
of surface waves, although a clear polarization from that direction
is missing in Fig. 5(a). An alternative explanation would be near-
vertically travelling teleseismic body waves, e.g. of oceanic origin
(Gerstoft et al. 2008; Zhang et al. 2009; Landes et al. 2010; Poli
et al. 2012).

Furthermore, the data selection method by means of the power
percentile does not ensure synchronous time windows over sev-

eral locations and operates on a per-frequency basis. The cross-
correlations of the quiet 4 hr nighttime window shown in Fig. 8(b)
are therefore only approximating the actual data that is used to
compute P̄ .

3.2 Quantitative comparison of correlations

Fig. 10 shows the average seismic power density, P̄ , as computed
in the previous section (shaded circles). The measured P̄ does not
correlate qualitatively to the acquisition schedule indicated in Fig. 1.
The sites with high P̄ values where the north–south line and the three
east–west lines to the South cross were acquired within a time span
of 7 d. Sites in the southwest corner of the area where the lowest
values of P̄ occur were acquired over a time span of 5 d including
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Figure 6. (a) Spectrum of azimuth PDFs from 0 to 20 Hz from site 1218, based on time segments with power density below the 50th percentile of all estimates.
The PDFs show distinct modes down to almost 0.5 Hz. (b) Same visualization for polarization dip. Horizontal motion dominates up to about 15 Hz. (c) Same
visualization for reciprocal ellipticity (0: linear polarization, 1: circular polarization). The readings vary strongly but there is a trend towards more circular-like
polarization. (d) Same visualization for the power density.

both a weekend and the beginning of a workweek. On the north–
south line there are two station pairs that are separated by 60 m
(northern part) and 85 m (southern part) which show seismic power
variations of 2 and 1.7 dB, respectively. Fig. 1 shows the location
of reference station 818, which recorded during 9 d. We computed
the average seismic power during the 10 per cent quietest periods
for each day individually and plot the resulting time-series in Fig. 9.
The power variations are contained within a range of about 2 dB,
which is of the same order of differences observed at the station
pairs near the line crossings. It is unclear to what extent the observed
variations between the lines are a short-range phenomenon or a day-
to-day effect. However, in relation with the total attribute dynamics
of over 10 dB, this variation is modest. The spatial consistency of P̄

is another indication that the natural background wavefield during
the acquisition period did not change significantly over time.

We now correlate P̄ with one hydrocarbon and two non-
hydrocarbon targets and compare those correlations. The first tar-
get is a reservoir hydrocarbon pore thickness (SgφH) map in feet
adapted from DuBois et al. (2004), also shown in Fig. 10. This
variable is a multiplication of estimated porosity, thickness, and hy-
drocarbon saturation of the reservoir layer and represents a relevant
hydrocarbon target. The second target is an elevation map in meters
retrieved from the National Elevation Dataset of the U.S. Geological
Survey (Gesch 2007), shown in Fig. 11. This map will be used to
test for near-surface geology influence. The rationale behind this
choice is given in the discussion. Third, a well pad density map
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Figure 7. (a) Spectrum of azimuth PDFs from 0 to 20 Hz from Gaussian, white, isotropic noise based on data of equal length as in Fig. 5. (b) Same visualization
for polarization dip. Note that the PDF scales as cos (θ ). (c) Same visualization for reciprocal ellipticity. The isotropic PDF is slightly skewed towards 1, with
a mean value of ρ = 0.57.

shown in Fig. 12 is used. The latter target is unitless and used as an
infrastructure noise proxy where we considered well pads as poten-
tial surface wave sources that could radiate seismic energy within a
range of about 500 m at about 2 Hz. The radius of 500 m is based
on approximate observations of noise decay from machinery noise
and the interferometry test. The map was modelled by placing 2-D
Gaussian functions with standard deviation 250 m at all well loca-
tions and summing them up. Well pad locations as of 2009 were
provided by field operators. Strictly speaking, the radius is a func-
tion of well pad type, noise environment, and near surface geology,
among other factors. The map we use here is therefore primarily in-
terpreted as representing a well density rather than expected seismic
noise power due to the wells.

Fig. 13(a) shows P̄ plotted against total hydrocarbon pore thick-
ness, SgφH. The crossplot exhibits some degree of non-linearity, per-
haps two separate trends (dashed lines). Quantifying the relationship
with the conventional linear Pearson correlation coefficient might
thus give misleading results. Instead, we use the non-parametric
Spearman rank correlation coefficient ρrank (Spearman 1904). This
coefficient quantifies to what degree a monotonic relationship exists
between two variables, independent of the type of that relationship.
It is also more robust with respect to outliers. It ranges from −1
(monotonically decreasing) to +1 (monotonically increasing) with
values close to zero indicating no monotonic relation between the
variables. To compute this measure the values of a variable are re-

placed by their rank relative to the other values in that variable: the
lowest value is replaced by 1, the second lowest by 2, and so on.
In Fig. 14(a) (left-hand panel) the such transformed versions of P̄
and SgφH are plotted against each other. The rank correlation is
the conventional correlation coefficient computed on the ranks. The
grey line in the panel shows the corresponding trend.

To include the uncertainty in the analysis, we do not estimate
a single coefficient, but rather a confidence interval within which
ρrank lies. This is attained by repeatedly estimating ρrank based on
1000 bootstrap resamples of the scatter points. From this resampling
distribution a bias-corrected and accelerated 90 per cent bootstrap
confidence interval is computed (Efron & Tibshirani 1993).

Fig. 14(a) (right-hand panel) shows the resulting distribution of
ρrank. There exists a significant positive relation between SgφH
and P̄ , as testified by the 90 per cent confidence interval ρrank ∈
[0.43, 0.67]. Fig. 14(b) gives the same plots for P̄ and elevation,
with ρrank ∈ [−0.16, 0.24]. Note that the confidence interval con-
tains zero and therefore no significant monotonic relation can be
claimed at the 90 per cent level. Fig. 14(c) shows the plots for P̄
and well density, with ρrank ∈ [0.06, 0.38]. There is a weak rela-
tionship, but one that is significantly weaker than the one to the
hydrocarbon target.

Since the hydrocarbons in Jonah are mined we expect a certain
correlation between the hydrocarbon target and infrastructure. In
our data example the 90 per cent confidence interval of the rank
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Figure 8. (a) Average noise cross-correlations of the vertical component of
receiver 1218 with 18 receivers stretching out 7 km northwestwards from
station 1218. All traces were normalized to unity. This panel shows daytime
recordings (1500h–1700h local time) which were bandpass filtered between
1 and 3.5 Hz. The traces are normalized and centred at the distance of the
receiver to station 1218. The dotted lines highlight a coherent wave train
with a linear moveout at apparent velocity 1.0 km s−1, most probably caused
by a surface wave. (b) Same as (a) but using night time recordings (0100h–
0500h local time) where polarization was laterally isotropic. No coherent
moveout can be detected.

correlation between SgφH and well density is ρrank ∈ [0.31, 0.62].
The fact that the attribute correlates better to the reservoir than it
does to the confounder, while the confounder itself correlates well to
the reservoir suggests that there is a different nature between these

Figure 9. Average seismic power during the quietest 10 per cent of time
periods during consecutive 24-hr segments of the recording from reference
station 818. The temporal variations are within a range of roughly 2 dB.

Figure 10. Contoured map of hydrocarbon pore thickness, SgφH, of the
Jonah reservoir adapted from DuBois et al. (2004). The shaded circles show
P̄ , the average seismic power density within 1.5–3.0 Hz during the quietest
10 per cent of the recording [dB w.r.t. (m s−1)2 Hz−1].

Figure 11. Elevation map at the Jonah field from the National Elevation
Dataset (Gesch 2007). The shaded circles show P̄ , the average seismic
power density within 1.5–3.0 Hz during the quietest 10 per cent of the
recording [dB w.r.t. (m s−1)2 Hz−1].

correlations. Specifically, the low SgφH values in the Southwest
corner are captured better by the attribute, while contrasting with
existing well pads there.

The above analysis was restricted to the quietest 10 per cent
of the recording durations. We also investigated how the rank
correlations change as we used different amounts of data, from
2 per cent to 100 per cent. Fig. 15(a) shows the resulting rank
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Figure 12. Well pad density map at the Jonah field. This map is used as
a proxy for anthropogenic noise. The shaded circles show P̄ , the average
seismic power density within 1.5–3.0 Hz during the quietest 10 per cent of
the recording [dB w.r.t. (m s−1)2 Hz−1].

correlations colour-coded as a function of frequency and percent
of data used. The colour-scale is white for insignificant correla-
tion at the 90 per cent significance level, which for 85 data points
corresponds to |ρrank| < 0.18, and gradually saturates to blue or
red for ρrank ≥ 0.55 and ρrank ≤ −0.55, respectively (strongest ob-
served absolute correlations). Strongest correlations exist in the
frequency range 1.5–3.0 Hz for up to about 50 per cent of the data
being used. Note that when using more than 10 per cent of the data
the necessary isotropy is not present. Weaker correlations also oc-
cur between 6 and 15 Hz. Correlations to elevation (Fig. 15b) are
mostly insignificant. Significant correlation to well density is ob-
served in the frequency range 6–12 Hz (Fig. 15c) and corresponds
to the weaker correlations to SgφH in the same band, confirming
a common concern that correlations to reservoirs are confounded
by infrastructure noise. However, in the 1–4 Hz range, where best

correlation to the reservoir is observed, there is no correlation to
well density. All plots in Fig. 15 use the same colour-scale.

4 D I S C U S S I O N

We have computed the average seismic power density of the ambient
wavefield polarization at the Jonah tight-gas field in the frequency
range 1.5–3.0 Hz, restricted to the 10 per cent quietest time peri-
ods. This subset has low-power, is laterally isotropic and is likely to
represent the isotropic, quasi-stationary background wavefield that
consists of a mixture of body waves and surface waves originating
from an apparently isotropic source distribution. Although the ra-
tio of surface to body waves is unknown, filtering the wavefield in
this way increases the chance of uncovering weak components that
may carry information about the deeper subsurface. An interfero-
metric test independently confirms that the data selection strategy
can indeed lead to a significant attenuation of surface waves from a
specific direction.

The seismic power density correlates well with hydrocarbon pore
thickness published by DuBois et al. (2004). The same seismic at-
tribute does not correlate to an elevation map and only weakly
correlates to an estimated well density map. Also, no qualitative
relation is visible to the data acquisition pattern that spanned 7 d.
This is confirmed by the observation that day-to-day temporal vari-
ations of P̄ were much smaller than the observed lateral variations
(Fig. 9).

The above three variables are thus unlikely to confound the cor-
relation to the reservoir parameter map and we have a situation
where the hypothesis cannot be rejected at this stage. However,
other non-hydrocarbon variables should still be included. Withers
et al. (1996) investigated the effect of wind speed on the seismic
background noise on a location in New Mexico with similar to-
pography and vegetation. No precipitation occurred during the data
acquisition period and wind speeds did not exceed the 3 m s−1

threshold above which Withers et al. (1996) observed an impact on
seismic background noise on the surface for a similar topography. A
significant atmospheric impact on the analysis is therefore unlikely.

Weathering layer thickness should still be included because of its
well-known influence on particle motion. Information on the near-
surface geology in Jonah is very limited. The HVSR technique may
still be used to estimate lateral variations of near-surface geology
(Goertz et al. 2012). However, an analysis of H/V spectra in the

Figure 13. (a) The hydrocarbon target values SgφH are plotted against P̄ . The scatter exhibits a slight non-linearity, potentially two separate trends (dashed
lines). The relation should not be described with the linear correlation coefficient. (b) The ranks of SgφH are plotted against the ranks of P̄ . The rank correlation
in this case is the linear correlation in the ranks and quantifies the degree of monotonic relation between the two variables (grey line is best linear fit).
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Figure 14. (a) Ranks of SgφH plotted against ranks of P̄ (left-hand panel) and bootstrap distribution of the estimated rank correlation coefficient ρrank

(right-hand panel). The 90 per cent confidence interval for the rank correlation is given in the right-hand panel. (b) Same plots for elevation against P̄ .
(c) Same plots for well density against P̄ .

measured locations showed that they were largely controlled by
source characteristics, rendering them unusable for site characteri-
zation. No statics from active seismic surveys were available to us,
but based on experience from the wider area, they often correlate
with elevation. In this context, we used the elevation map as the
closest available proxy for near-surface geology.

The well pad density map as a proxy for anthropogenic seismic
noise should be considered with caution since it is based on the
assumptions that each well isotropically radiates the same amount
of surface wave energy during the analysis period and that the noise
decay with distance does not depend on location. We use it in this

work mainly to illustrate how infrastructure noise could be included
in a comparative correlational analysis. Alternative proxies based on
field logs of surface activity and dedicated seismic characterization
of noise sources around the field would be preferable. Energy from
near-by road traffic is unlikely to affect the quietest time periods,
since this would require such transient events to occur during more
than 90 per cent of the recording period. The selected attribute also
shows no visual relation to the transit roads in Fig. 10.

The bootstrap method is likely to generate somewhat optimistic
confidence intervals because the considered variables have a certain
degree of spatial smoothness. A more appropriate method to use in
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Figure 15. (a) The seismic power density at different frequencies is averaged over progressively larger percentages of the recording (from quietest time periods
to the entire recording) and then correlated to SgφH. The graph shows the rank correlation coefficient colour-coded as a function of frequency and percentage
of data used. The colourmap is white where the correlation is insignificant. The dashed green box highlights the data that was used in Figs 13 and 14. (b) Same
visualization showing rank correlations to elevation. (c) Same visualization showing rank correlations to estimated well density.

such a situation is described by Buhlmann (2002). However, the
simple technique used here is sufficient since the relatively high
correlation to the subsurface reservoir is likely to hold even with
larger confidence intervals and the statement of insignificant or weak
correlation to non-hydrocarbon variables is even more supported by
larger confidence intervals.

We note again that the lateral isotropy is a necessary but not suf-
ficient requirement to identify subvertically travelling body waves.
Noise cross-correlations are an interesting alternative to detect body
waves (Draganov et al. 2006), but their applicability can be compli-
cated by unsuited ambient source distributions and/or short record-
ing periods. Another alternative to reduce ambiguities in the wave-
field analysis is offered by array analysis (Rost & Thomas 2002).
Appropriately designed sensor arrays distributed around the area of
interest can provide a means to detect subvertically incident body
waves directly (Gerstoft et al. 2008; Koper et al. 2009; Zhang et al.
2009; Birkelo et al. 2010).

5 C O N C LU S I O N S

Providing empirical evidence for the hypothesis that the ambient
seismic wavefield above 1 Hz carries information about the deeper
subsurface (>800 m) is hampered by (i) uncontrolled surface wave
sources and (ii) influences of the near-surface geology. Both effects
can confound correlations of observed attributes to deeper targets.

In this work, we suggest a strategy that addresses these issues in
two main steps. First, we only average seismic power density over

frequencies and time periods where the dominant polarization has
low power and is laterally isotropic. This is considered a minimum
criterion to reduce surface wave interferences from a few dominant
sources. Second, we test whether the residual seismic power density
significantly correlates to a hydrocarbon target and that this corre-
lation is stronger than correlation to non-hydrocarbon targets. We
recommend to do this quantitatively using the non-parametric rank
correlation and bootstrap confidence intervals.

A first example for the proposed strategy is given for an am-
bient wavefield data set acquired over a producing tight-gas field.
We find that the quietest 10 per cent of time periods in the 1.5–
3.0 Hz band meet the minimum requirements against few domi-
nating surface sources. Seismic power density in this subset sig-
nificantly correlates to a hydrocarbon pore thickness map, while it
does not significantly correlate to elevation, only weakly correlates
to an estimated well density, and shows no apparent relation to the
data acquisition days. We can therefore not falsify the hypothesis
that the ambient wavefield contains a measurable amount of body
wave energy carrying information about the subsurface hydrocarbon
target.
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