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ABSTRACT
We study the strong gravitational lensing properties of galaxy clusters obtained from N-body
simulations with different kinds of dark energy (DE). We consider both dynamical DE, due to
a scalar field self-interacting through Ratra–Peebles (RP) or supergravity (SUGRA) potentials,
and DE with constant negative w = p/ρ = −1 (�CDM). We have 12 high-resolution lensing
systems for each cosmological model with mass greater than 5.0 × 1014 h−1 M�. Using a ray
shooting technique, we make a detailed analysis of the lensing properties of these clusters,
paying particular attention to the number of arcs and their properties (magnification, length
and width). We find that the number of giant arcs produced by galaxy clusters changes in
a considerable way from �CDM models to dynamical dark energy models with an RP or
SUGRA potential. These differences originate from the different epochs of cluster formation
and from the non-linearity of the strong lensing effect. We suggest that strong lensing is one
of the best tools to discriminate among different kinds of dark energy.

Key words: methods: analytical – methods: numerical – galaxies: clusters: general – galaxies:
haloes – cosmology: theory – dark matter.

1 I N T RO D U C T I O N

The mounting observational evidence for the existence of dark en-
ergy (DE), which probably accounts for ∼70 per cent of the critical
density of the Universe (Riess et al. 1998; Perlmutter et al. 1999;
Tegmark, Zaldarriaga & Hamilton 2001; Netterfield et al. 2002; Ef-
stathiou et al. 2002; Percival et al. 2002; Pogosian, Bond & Contaldi
2003; Spergel et al. 2003), raises a number of questions concern-
ing galaxy formation. The nature of DE is suitably described by
the parameter w = p/ρ, which characterizes its equation of state.
The �CDM model (w = −1) has been extensively studied dur-
ing the past decade. Recently, much more attention has been given
to physically motivated models with variable w Mainini, Macciò
& Bonometto (2003a), for which a number of N-body simulations
have been performed (Klypin et al. 2003, hereafter KMMB03; Dolag
et al. 2004; Linder & Jenkins 2003; Macciò et al. 2004). One of the
main results of KMMB03 was that dynamical DE haloes are denser
than those with the standard �CDM one. In this work we want to
analyse the impact of this higher concentration on the strong lensing
properties of the cluster size haloes.

It was first noted by Bartelmann et al. (1998) (for OCDM, SCDM
and �CDM cosmologies) that the predicted number of giant arcs
varies by orders of magnitude among various cosmological mod-
els. The agreement between data and �CDM simulations has been
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tested by many authors (see Meneghetti et al. 2000; Dalal, Holder
& Hennawi 2004; Wambsganss et al. 2004), but the situation is still
unclear. A direct comparison of arc statistics with observational data
is beyond the scope of this work. What we want to point out here
is the capability of strong lensing to discriminate between different
kinds of dark energy [a similar paper, but for a different choice of the
dynamical DE parameters, was recently submitted by Meneghetti
et al. (2005)].

Here, using a ray shooting technique, we make a lensing analysis
of dark matter haloes extracted from N-body simulations of cosmo-
logical models with varying w arising from physically motivated
potentials that admit tracker solutions. In particular, we focus on
the two most popular variants of dynamical DE (Ratra & Peebles
1988; Wetterich 1988, 1995). The first model was proposed by Ratra
& Peebles (1984, hereafter RP) and it yields a rather slow evolu-
tion of w. The second model (Brax & Martin 1999, 2000; Brax,
Martin & Riazuelo 2000) is based on potentials found in supergrav-
ity (SUGRA) and it results in a much faster evolving w. Hence, RP
and SUGRA potentials cover a large spectrum of evolving w. These
potentials are written as

V (φ) = �4+α

φα
RP, (1)

V (φ) = �4+α

φα
exp(4πGφ2) SUGRA. (2)

Here � is an energy scale, currently set in the range 102–1010 GeV,
relevant for the physics of fundamental interactions. The potentials
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depend also on the exponent α. The parameters � and α define the
DE density parameter �DE. However, we prefer to use � and �DE

as independent parameters. Fig. 10 in Mainini et al. (2003b) gives
examples of w evolution for RP and SUGRA models.

The SUGRA model considered in this paper has � = 103 GeV,
which implies w = −0.85 at z = 0, but w drastically changes with
redshift: w ≈ −0.4 at z = 5. The first RP model (RP1) has the
same value for � as the SUGRA model. At redshift z = 0 it has
w = −0.5; then the value of w gradually changes with redshift: at
z = 5 it is close to −0.4. Although the w interval spanned by this
RP model covers values significantly above −0.8 (not favoured by
observations), this case is still important both as a limiting reference
case and to emphasize that models with constant w and models with
variable w produce different results even if the average values of w

are not so different. For the second RP model (RP2), we have chosen
�=10−8 GeV; in this case the value of the state parameter at redshift
z = 0 is the same as SUGRA: w(z = 0, � = 10−8 GeV) = −0.85.
This model is certainly in better agreement with cosmic microwave
background (CMB) constraints, but it loses most of its interest from
a theoretical point of view: such a small value of � has no clear
connection with the physics of fundamental interactions, and so it
has exactly the same ‘fine tuning’ problem as the �CDM model.

We have normalized all the models in order to have today the
same value of the rms density fluctuation on a scale of 8 h−1 Mpc,
which has been chosen as σ 8 = 0.8.

2 N - B O DY S I M U L AT I O N S

The adaptive refinement tree code ART (Kravtsov, Klypin &
Khokhlov 1997) was used to run the simulations. The ART code
starts with a uniform grid, which covers the whole computational
box. This grid defines the lowest (zeroth) level of resolution of
the simulation. The standard particles–mesh algorithms are used
to compute density and gravitational potential on the zeroth-level
mesh. The ART code reaches high force resolution by refining all
high-density regions using an automated refinement algorithm. The
refinements are recursive: the refined regions can also be refined,
each subsequent refinement having half of the previous level’s cell
size. This creates a hierarchy of refinement meshes of different res-
olution, size and geometry covering regions of interest. Because
each individual cubic cell can be refined, the shape of the refine-
ment mesh can be arbitrary and match effectively the geometry of
the region of interest.

The criterion for refinement is the local density of particles: if the
number of particles in a mesh cell (as estimated by the cloud-in-
cell method) exceeds the level nthresh, the cell is split (‘refined’) into
eight cells of the next refinement level. The refinement threshold
depends on the refinement level. For the zero level it is n thresh =
2. For the higher levels it is set to n thresh = 4. The code uses the
expansion parameter a as the time variable. During the integration,
spatial refinement is accompanied by temporal refinement. Namely,
each level of refinement, l, is integrated with its own time-step �al =
�a0/2l , where �a0 = 3 × 10−3 is the global time-step of the zeroth
refinement level. This variable time-stepping is very important for
the accuracy of the results. As the force resolution increases, more
steps are needed to integrate the trajectories accurately. Extensive
tests of the code and comparisons with other numerical N-body
codes can be found in Kravtsov et al. (1997) and Knebe et al. (2000).
The code was modified to handle DE of different types (Mainini et al.
2003b; KMMB03).

We performed a low-resolution simulation for each model with
the following parameters: box size, 320 h−1 Mpc; number of par-

Table 1. Parameters of simulations.

Model � Box N p M res F res

(GeV) (h−1 Mpc) (h−1 M�) (h−1 kpc)

RP1 103 320 5123 2.03 × 1010 4.8
RP2 10−8 320 5123 2.03 × 1010 4.8
SUGRA 103 320 5123 2.03 × 1010 4.8
�CDM 0 320 5123 2.03 × 1010 4.8

ticles, 1283; force resolution, 9.2 h−1 kpc. All the simulations have
the same initial random seed so at z = 0 the clusters are more or less
in the same positions. Then we selected the four massive clusters
in the �CDM simulation and re-ran them with a mass resolution
64 times higher. The same clusters are also re-run with the same res-
olution also in the RP and SUGRA models. At the end we have 12
lensing systems (each cluster can be seen by three different orthogo-
nal directions) for each cosmological model, with a mass resolution
of 2.03 × 1010 h−1 M� and a force resolution of 4.8 h−1 kpc. A
complete list of simulation parameters is contained in Table 1.

3 L E N S I N G S I M U L AT I O N S

In order to compute arc statistics for the models discussed above,
we adopted a technique similar to the one originally proposed by
Bartelmann & Weiss (1994). We centre the cluster in a cube of
4 h−1 Mpc side length and study three lenses, obtained by projecting
the particle positions along the coordinate axes. This grants us a
total of 12 lens planes per model that we treat as though being due
to independent clusters, for our present purposes.

We then divide the projected density field 	 by the critical surface
mass density for lensing

	cr = c2

4πG

DS

DL DLS
, (3)

so obtaining the convergence k. Here c is the speed of light, G is
the gravitational constant, while DL, DS and DLS are the angular-
diameter distances between lens and observer, source and observer,
and lens and source, respectively. Once we set the lens and source
redshifts, the value of the angular-diameter distance depends on the
cosmological model. We detail this point in the next section. In
Fig. 1 we show the convergence map for one of the clusters, whose
length-scale size is 4 h−1 Mpc. The deflection angle due to this 2D
particle distribution, on a given point x on the lens plane, reads

α(x) =
N∑

j=1

4G

c2

m j

|x − yj | . (4)

Here y j is the position of the jth particle and N is the total number
of particles.

As direct summation requires a long time, we speed up the code
by using a P3M-like algorithm: the lens plane was divided into 128 ×
128 cells and direct summation was applied to particles belonging
to the same cell of x and for its eight neighbouring cells. Particles in
other cells were then seen as a single particle in the cell baricentre,
given the total mass of the particles inside the cell.

The deflection angle diverges when the distance between a light
ray and a particle is zero. To avoid this unwanted feature, we intro-
duce a softening parameter ε in equation (4); the value ε is tuned
on the resolution of the current simulation.

We start to compute α(x) on a regular grid of 256 × 256 test rays
that covered the central quarter of the lens plane, then we propagate
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Figure 1. Convergence map for one of the �CDM clusters. The side length
is 4 h−1 Mpc. In the central part, k > 1, so this halo is able to produce giant
arcs.

a bundle of 2048 × 2048 light rays and determine the deflection
angle on each light ray by bicubic interpolation amongst the four
nearest test rays (see Section 3.2 for further discussion on the effects
of the adopted resolution in the lens mapping).

The relation between images and source positions is given by the
lens equation:

y = x − α(x), (5)

and the local properties of the lens mapping are then described by
the Jacobian matrix of the lens equation,

Ahk(x) = ∂yh

∂xk
= δhk − ∂αh

∂xk
. (6)

The shear components γ 1 and γ 2 are found from Ahk through the
standard relations

γ1(x) = − 1
2 [A11(x) − A22(x)], (7)

γ2(x) = − 1
2 [A12(x) + A21(x)], (8)

and the magnification factor µ is given by the Jacobian determinant,

µ(x) = 1

det A
= [A11(x)A22(x) − A12(x)A21(x)]−1. (9)

Finally, the Jacobian determines the location of the critical curves
xc on the lens plane, which are defined by det A(xc) = 0. Because
of the finite grid resolution, we can only approximately locate them
by looking for pairs of adjacent cells with opposite signs of det A.
Then, the lens equations

yc = xc − α(xc) (10)

yield the corresponding caustics y c on the source plane.

3.1 Deformation of sources

For statistical purposes, one has to distribute and map a large num-
ber of sources. We are interested in arc properties and arcs form
near caustics; so for numerical efficiency we have to distribute less
sources in those parts of the source plane that are far away from
any caustics, and more sources close to or inside the caustics. We

follow the method introduced by Miralda-Escudè (1993) and later
adapted to non-analytical models by Bartelmann & Weiss (1994).
In the previous section we have obtained the deflection angles for
the x i j (with i , j = 1, . . . , 2048) positions on the lens (or image)
plane. Using the lens equation (10) we can obtain the corresponding
positions on the source plane yi j (x i j ). As usual, we call this discrete
transformation the mapping table.

We model elliptical sources with axial ratios randomly drawn
from the interval [0.5;1] and area equal to that of a circle with
radius r s = 0.5 arcsec. We first distribute sources on a coarse grid of
32 × 32, defined in the central quarter of the source plane covered
by the light rays traced (as a result of convergence, only a restricted
part of the source plane can be reached by the light rays traced from
the observer through the lens plane). From the mapping table, we
obtain the magnification µ. If it changes by more than one (absolute
value) between two sources, we place an additional source between
the two. In this way we increase the resolution by a factor of 2
in each dimension. For the nth iteration of source positions, the
criterion to add additional sources is that magnification changes by
2n−1. We repeat this procedure four times to obtain the final list of
source positions. To compensate for this artificial increase in the
source number density, we assign a statistical weight of 21−n to
each image of a source placed during the nth grid refinement. On
average we have about 15 000 sources for each lensing system.

3.2 Analysis of arcs

To find the images of an extended source, all image plane positions
x are checked if the corresponding entry in the mapping table y lies
within the source: i.e. for an elliptical source with axes a, b and
centred on (yc

1; yc
2), it is checked if(

y1 − yc
1

)2

a2
+

(
y2 − yc

2

)2

b2
� 1, (11)

where (y1, y2) are the components of the vector y.
Those points fulfilling the previous equation are part of one of the

source images and are called image points. We then use a standard
friends-of-friends algorithm to group together image points within
connected regions, since they belong to the same image (the number
of images of one source ranges from 1 to 5 for our clusters).

We measure arc properties using a method based on Bartelmann &
Weiss (1994). The arc area and magnification are found by summing
the areas of the pixel falling into the image. Arc lengths are estimated
by first finding the arc centre, then finding the arc pixel farthest
from the centroid as well as the pixel farthest from this pixel. The
arc length is then given by the sum of the lengths of the two lines
connecting these three points. The arc width is defined as the ratio
between the arc area and the arc length.

In Fig. 2 we plot the relation between length/width ratio and
magnification; we found a good agreement with previous results
obtained by Dalal et al. (2004). The scatter in this relation is due
to local fluctuations in the surface mass density. Highly distorted
images are also highly magnified, but the converse is not always
true.

Before proceeding with our analysis, we performed some tests
on the resolution adopted in our ray shooting code. Fig. 3 shows the
fraction of sources (number of sources divided by the total number)
versus their length/width ratio for different values of the resolution
of the lens mapping grid N 2

hr (results are for the �CDM model with
z l = 0.3 and z s = 1.0). If the resolution of the lens mapping is not
high enough, the critical curves are too small compared to the source
size and a spurious cut-off in the number of arcs with L/W > 10
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Figure 2. Magnification versus length/width ratio for �CDM clusters.
These two quantities are equal for an isothermal sphere lens.

Figure 3. Fraction of sources mapped in an arc versus length/width ratio
of the arc for different values of the resolution of the lensing mapping. All
curves are for the �CDM model with z l = 1.0 and z s = 0.3.

appears. This cut-off is totally artificial and it vanishes for N hr �
2048. As Fig. 3 shows, the results are stable also for a higher value
of N hr (4096). Then in order to have a good compromise between
resolution and computational time, we have adopted N hr = 2048 in
the following.

4 A R C S TAT I S T I C S

In this paper we aim to compare the lensing properties of a given
cluster as it appears in different cosmological models. There are
three main features that affect the number of giant arcs: the concen-
tration of the halo, the total number of lensing systems at a given
redshift, and the value of the critical surface mass density (	 cr).

As predicted analytically by Bartelmann, Perrotta & Baccigalupi
(2002) (for constant w models) and first noted in numerical N-body

Figure 4. Density profile of the same halo simulated in different mod-
els. The full (red online) curve is for �CDM, the dotted (black) one for
SUGRA, and the dashed (blue) one for RP1. The halo has a virial mass of 6
× 1014 h−1 M�.

Figure 5. Number density of haloes with mass greater than 4.0 ×
1014 h−1 M� for �CDM [solid (red online) curve], SUGRA [dotted (black)
curve] and the two RP models, RP1 [dashed (blue) curve] and RP2 [dot-
dashed (cyan) curve]. The value of � is 103 GeV for both RP1 and SUGRA,
and 10−8 GeV for RP2.

simulations by KMMB03, and then confirmed by Dolag et al. (2004)
and Linder & Jenkins (2003), the concentration of dynamical DE
haloes is greater than the concentration of �CDM ones. Here we use
the same definition of concentration as KMMB03: the ratio of the
radius at the overdensity of the �CDM model (103 times the critical
density) to the characteristic (‘core’) radius of the Navarro, Frenk &
White (NFW) profile (see however KMMB03 for more details). A
greater concentration increases the probability of forming giant arcs.
In Fig. 4 we report the density profile of the same halo simulated
in different cosmological models. The RP1 halo is clearly denser
and more concentrated than the �CDM halo, with the SUGRA
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Figure 6. Value of the critical surface mass density 	 cr in different cos-
mological models (curves as for Fig. 5). For all the curves we choose a lens
redshift z l = 0.4.

Figure 7. Fraction of sources mapped in an arc versus length/width ratio
of the arc. The uppermost curve is RP1 (dashed, blue online); then from
top to bottom we have SUGRA (dotted, black), RP2 (dot-dashed, cyan) and
�CDM (full, red) results.

halo laying in between; the RP2 halo (which is not shown in this
plot) has a concentration parameter close to the one of the �CDM
model.

The expected number of objects with mass exceeding 4 ×
1014 h−1 M� (in order to produce multiple images) at a given red-
shift (in this case z = 0.4) can be estimated using a Press–Schechter
formalism (see Mainini et al. 2003a). In dynamical DE, objects form
earlier than in �CDM, so we have more lensing systems per Mpc3

at z = 0.3. This can be taken into account by multiplying the number
of arcs by 1.3, 1.21 and 1.12 in RP1, SUGRA and RP2, respectively.
(In Fig. 5 we report the evolution with redshift of the mass function
for a mass threshold of 4.0 × 1014 h−1 M�.)

Figure 8. Same plot as Fig. 7 for the SUGRA model where the arc properties
are computed using 	cr(�CDM) (solid line) and 	cr(SUGRA) (dashed
line).

Figure 9. Arc counts for two different values of the source redshift in the
�CDM model.

The evolution of the scalefactor a with time also depends on the
model. This implies that, at a given redshift z = 1/a −1, the angular-
diameter distance Dad is model-dependent; in fact its value is given
by

Dad(a) = ac

H0

∫ 1

a

√
a[1 − �DE(a)]

�m,0
da. (12)

Here c is the speed of light, H0 and �m,0 are the present value of the
Hubble constant and the matter density parameter, and �DE (a) gives
the evolution of the DE density parameter with the expansion factor.
To compute �DE(a) for RP and SUGRA models, we have used the
analytical expression of Mainini et al. (2003b). In Fig. 6 we show
the value of the critical surface mass density for the adopted cos-
mological models. The different values for 	 cr mean that a �CDM
halo yields more arcs than a dynamical DE halo, if they have the
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Figure 10. The same as Fig. 7 for z s = 2. With this value for the source
redshift, the number of arcs increases in all the models.

Figure 11. Number of arcs versus the lens redshift for two different thresh-
olds of the L/W ratio: 10 and 7.5. Solid (red online) line is for �CDM,
dashed (blue) for RP1, dot-dashed (cyan) for RP2, and dotted (black) for
SUGRA (z s = 1.0).

same surface mass density. The effect of the different values of the
angular-diameter distance tends therefore to reduce the number of
arcs in dynamical DE models.

The first result of our analysis is shown in Fig. 7, where we
plot the fraction of sources (number of sources divided by the total
number) versus their length/width ratio for a cluster (lens) redshift
z l = 0.3, where lensing is most efficient for a source redshift of 1.0
(as shown later in Fig. 11). As expected, the RP1 model produces
more distorted images, due to its more concentrated haloes. The
SUGRA and RP2 models are quite similar for L/W > 10 and they
lay in between RP1 and �CDM, which, as expected, produces less
highly distorted images than the dynamical DE models. We want
to underline that part of the higher lensing signal due to the higher
concentration of dark matter haloes in such models is cancelled by

the increased 	 cr value. This effect is clearly illustrated in Fig. 8,
where we have computed the arc statistics in a SUGRA model using
the �CDM critical surface density. As expected, we have obtained
a result for SUGRA that is closer to the RP1 one.

As pointed out by many authors (Wambsganss, Bode & Ostriker
2004; Dalal et al. 2004), the number of arcs that a cluster is able to
produce is strongly related to the redshift of the sources (although
the strength of this effect is not yet completely understood, various
authors having found different results). In Fig. 9 we plot the arc
number counts for the �CDM model for z s = 1 (dashed line) and
z s = 2 (solid line). As in previous work we found that the number
of arcs increases if we increase the source redshifts. Fig. 10 shows
the same results of Fig. 7, but for z s = 2.

As expected, the total number of arcs increases in all cosmological
models. Again we have a sort of hierarchy of results according to
what is expected from the dynamical evolution of dark matter haloes
in the corresponding cosmological model.

Moreover, owing to the lower difference in the value of 	 cr for
this source redshift, the four models are better separated, especially
the SUGRA and RP2 ones. A difference between these two mod-
els is somewhat expected even if they have the same value of state
parameter today (w = −0.84). This arises from the different evo-
lution of w: in SUGRA it drastically changes with redshift (w =
−0.4 at z = 5), whereas it is more constant in RP2 (w = −0.72 at
z = 5).

As the final result, in Fig. 11 we show the evolution with lens
redshift of the number of arcs for two different choices of the
length/width ratio: 10 and 7.5 (the redshift of the sources is z s =
1.0). On average the RP1 model is always above the others; instead,
the difference between SUGRA and �CDM is more or less constant
at all redshifts and the lensing signal decreases rapidly for z > 0.45.

The RP2 model has a sort of double behaviour: it is close to
�CDM for z > 0.35 but it is more similar to SUGRA for z < 0.35.
We think that this bimodality is again due to the evolution of the
state parameter in this model, especially if compared to the SUGRA
one. The ratio wRP2/wSU decreases with redshift towards unity at
z = 0, so it is less different from �CDM at high redshift in respect
to SUGRA.

The peaks in the lensing signal have slightly different positions in
the different models. As argued by other authors (Torri et al. 2004),
this could be due to time offset between merger events in different
dark energy cosmologies.

5 D I S C U S S I O N A N D C O N C L U S I O N S

Models with dynamical DE are in an infant state. We do not know
the nature of DE. Thus, the state parameter w(t) is still uncertain.
In view of this functional indeterminacy, at first sight it could seem
that the situation is hopeless.

In spite of that, we can outline some general trends that result
from our analysis. In dynamical DE models, haloes tend to collapse
earlier than in a �CDM model with the same normalization at z =
0. As the result, haloes are more concentrated and denser in their
inner parts (KMMB03). Starting from this finding, we have explored
the consequences of this higher concentration on the strong lensing
properties of dark matter haloes, in SUGRA and RP cosmologies.

We found that RP1 haloes (obtained assuming the cluster abun-
dance of the power spectrum and a value for the energy scale �

in the range suggested by the physics of fundamental interactions)
produce a higher number of arcs with a L/W > 10 if compared to
the standard �CDM model. This model (RP1) is marginally consis-
tent with the observations and its purpose is mainly to illustrate the
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principal effect of a dynamical dark energy component on the arcs
statistic.

The second model we analysed based on RP potential (RP2) is
more realistic from an observational point of view but less motivated
by theoretical arguments. This model produces about 50 per cent
more arcs with L/W > 10 than the �CDM one for z l = 0.3 and
z s = 1, but it is marginally distinguishable from �CDM for lensing
systems at moderately high redshift (z l > 0.35, Fig. 11) or for high-
redshift sources/arcs (z l = 0.3 and z s = 2).

The SUGRA model is always in between the �CDM and the RP1

models and it produces about 70–80 per cent more arcs than �CDM.
This difference is almost constant on changing both the source and
the lens redshifts, and it tends to disappear for z l > 0.6 (for z s =
1.0), where all the lensing systems considered in this paper (M l ≈
5 × 1014) are unable to produce highly distorted images (except in
the test model RP1). We also noted that part of the stronger lensing
signal due to the higher concentration of haloes in dynamical DE
models is partially cancelled by geometrical effects that increase the
critical surface density in such models (Figs 6 and 8).

As a final remark we would like to stress that the arc statistic is
a powerful tool to investigate the nature of dark energy. The forth-
coming observational surveys (i.e. CFHT Legacy Survey, SDSS and
others) will improve the statistics of giant arcs on the sky [for ex-
ample, the RCS-2 Survey (Gladders et al. 2003) will cover an area
of 830 deg2 and is expected to produce 50–100 new arcs]. Such
observational material will provide a discrimination between DE
cosmologies, possibly allowing one to constrain the � scale of the
SUGRA and RP potentials.

AC K N OW L E D G M E N T S

It is a pleasure to thank Massimo Meneghetti for his help and his
comments on lensing simulations and Roberto Mainini for useful
discussions on dynamical dark energy models. We also thank Silvio
Bonometto and Ben Moore for carefully reading the manuscript and
INAF for allowing us to use the computer resources at the CINECA
Consortium (grant cnami44a on the SGI Origin 3800 machine).

R E F E R E N C E S

Bartelmann M., Weiss A., 1994, A&A, 287, 1
Bartelmann M., Huss A., Carlberg J., Jenkins A., Pearce F., 1998, A&A,

330, 1

Bartelmann M., Perrotta F., Baccigalupi C., 2002, A&A, 396, 21
Brax P., Martin J., 1999, Phys. Lett. B, 468, 40
Brax P., Martin J., 2000, Phys. Rev. D, 61, 103502
Brax P., Martin J., Riazuelo A., 2000, Phys. Rev. D, 62, 103505
Dalal N., Holder G., Hennawi J. F., 2004, AJ, 609, 50
Dolag K., Bartelmann M., Perrotta F., Baccigalupi C., Moschardini L.,

Meneghetti M., Tormen G., 2004, A&A, 416, 853
Efstathiou G. et al., 2002, MNRAS, 330, L29
Gladders M. D., Hoekstra H., Yee H. K. C., Hall P. B., Barrientos L. F., 2003,

ApJ, 593, 48
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