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ABSTRACT
A multivariate positive definite estimator of the integrated covariance
matrix of noisy and asynchronously observed asset returns is pro-
posed. We adopt a Bayesian Dynamic Linear Model where microstruc-
ture noise is interpreted as measurement error, and asynchronous
trading as missing observations in an otherwise synchronous series.
Missing observations are treated as any other parameter, as typical in
a Bayesian framework. An augmented Gibbs algorithm is used since all
full conditionals are available and its convergence and robustness are
discussed. A realistic simulation study compares our estimator with
existing alternatives, under different liquidity and microstructure noise
conditions. The results suggest that our estimator is superior in terms
of RMSE particularly under severe conditions, such as portfolios of
assets with heterogeneous liquidity and high level of microstructure
noise. The application to the empirical dataset of ten tick-by-tick stock
price series confirms the simulation results. ( JEL: C13; C51; C52; C58)
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Available intra-day prices can be used to improve the estimation of the covariance
among several financial assets, so that even the covariation of asset prices within
the day can be included in the inferential process. The two main concerns when
dealing with several time series of Ultra-High Frequency (UHF) prices is that they
are observed at different trading times and with microstructure noise. The first
problem is known as asynchronicity of UHF asset prices and its effect on the
estimation of the covariance was first identified by Epps (1979), who found that
the correlation is biased toward zero as the sampling frequency increases when the
realized covariance is computed on a regularized grid. The Realized Covariance
estimator proposed by Hayashi and Yoshida (2005) (HY) is unaffected by this
asynchronicity problem. The second feature of UHF asset prices (and in general
of asset prices) is that they present a component due to the microstructure noise. In
the literature, there are several proposed corrections to HY that make it robust to this
noise. For example, Voev and Lunde (2007), Bibinger (2011), based on a multiscale
subsampling correction of HY that improves the convergence properties of the
estimator proposed by Palandri (2006) and the Two-Scales Realized Covariance
(TSRC) estimator of Zhang (2011). A consistent QMLE-type estimator of the high-
frequency covariance of two assets observed asynchronously with microstructure
noise was introduced by Ait-Sahalia, Fan, and Xiu (2010).

When instead of the covariance between two assets we consider the covariance
matrix of several assets, all estimators mentioned above, which successfully deal
with the asynchronicity and noise in the bivariate case, do not guarantee a positive
semi-definite estimator in the multivariate setting. Among the few works in the
literature proposing a multivariate covariance estimator that preserves positivity,
the most popular is the Multivariate Realized Kernel of Barndorff-Nielsen et al.
(2011). They suggest to synchronize the high-frequency prices using a Refresh
Time Scheme combined with a multivariate realized kernel to provide a consistent
and positive semi-definite estimator of the covariance matrix. A drawback of their
methodology is that the synchronization of the time series with the Refresh Time
Scheme can cause a large loss of information if the involved assets are traded with
very different liquidity. Furthermore, they need to tune a bandwidth parameter.
Finally, their results are valid only asymptotically, when the mesh of trading
intervals converges to zero and the number of observations goes to infinity. The
Composite Kernel has been recently proposed in Lunde, Shephard, and Sheppard
(2012) to solve these important issues, but it is again a bivariate estimator,
then requiring some kind of projection to retain the positivity in a multivariate
framework.

Motivated by the need of an unbiased, positive-semidefinite estimator of
the multivariate integrated covariance matrix of asynchronous and noisy UHF
asset prices, we cast the problem into a Bayesian framework and consider the
asynchronous times series as synchronous series with missing observations, that
are treated as any other parameter of the problem as typically done in a Bayesian
framework. The flexibility of the Dynamic Linear Model we adopt allows us to
easily treat the true latent price process, not affected by microstructure noise,
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as additional parameters to be estimated. Since the joint posterior distribution
of the parameters and the missing values is not standard, we use Markov chain
Monte Carlo algorithms to obtain samples from it. In particular, the posterior
covariance matrix is sampled through a Gibbs sampler from an Inverse Wishart
distribution which naturally preserves its positivity. The simulation results show
superior performance of the proposed estimator compared to the benchmark
one, particularly for a high number of assets and dispersed missing probabilities.
These performance improvements are mainly due to the high robustness of the
proposed estimator to market microstructure noise and to its ability to fully
incorporate all the relevant information available from the whole set of assets.
In fact, one of the main advantages of our approach is to be able to reconstruct
the unobserved dynamics for each asset by using the information contained
in the observed dynamics of all the other assets. This type of multivariate
signal extraction is particularly convenient for the less liquid series which can
benefit more from the information contained in the dynamics of the more liquid
assets.

We confirm the simulation results by applying our methodology to an
empirical dataset composed of ten tick-by-tick series of stock prices from January
to November 2007. The empirical analysis shows that the covariance matrix of
the proposed estimator produces a vector of standardized returns closer to a
multivariate standard normal than the ones obtained with alternative methods.

Recently, the quest for a realized covariance estimator which guarantees
positive definiteness and robustness to both market microstructure and asyn-
chronicity has spurred several research papers employing different method-
ologies. Mancino and Sanfelici (2011) and Park and Linton (2012) present a
covariance estimators based on the Fourier domain techniques introduced by
Malliavin and Mancino (2009) which avoid explicit time synchronizations.

A more similar approach to ours, but considered from the classical fre-
quentist viewpoint, has been recently investigated in the concurrent works of
Corsi, Peluso, and Audrino (2014) and Shephard and Xiu (2012). In the latter,
the focus is more on the derivation of the theoretical asymptotic proper-
ties of the estimator showing that it converges at the optimal rate, while
in Corsi, Peluso, and Audrino (2014) the reconstruction of the missing values
from the noisy observed prices is performed by a Kalman smoother and
Expectation Maximization (KEM) algorithm. Although similarities between EM-
type algorithms and stochastic algorithms like the Gibbs sampler exists (see
Tanner and Wong, 1987 and Meng and van Dyk, 1997), differently from the KEM
estimator of Corsi, Peluso, and Audrino (2014), our Bayesian approach is more
flexible to generalizations of the dynamics of the latent price process and to different
distribution of microstructure noise (i.e., we can extend our framework to non-
Gaussian latent log returns, to autocorrelated microstructure error or to other model
features we believe empirically consistent). Furthermore, in our Bayesian estimator
there is no additional computational cost in dealing with nondiagonal covariance
matrices of the microstructure noise. Finally, the KEM methodology finds the MLE
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of the integrated covariance matrix, while the Bayesian estimator produces samples,
approximating the entire posterior distribution of any function of interest of the
integrated covariance matrix. This could be of interest when some functional of the
integrated covariance matrix is in use,1 or when, for risk management purposes,
having the quantiles of the distribution of the integrated covariance allows a precise
quantification of the uncertainty in the covariance estimation.

We present our methodology in Section 1: in Section 1.1 we introduce the
case of asynchronicity without noise, which is extended in Section 1.2 to noisy
observations, where we propose the augmented Gibbs sampler. In Section 2, Monte
Carlo simulation experiments are performed to compare our Bayesian estimator
with alternative estimators presented in Section 2.1, with a simulation design
introduced in Section 2.2 that reflect realist scenarios, in a bivariate (Section 2.3) and
multivariate (Section 2.4) setting. Section 3 contains the application and comparison
of the methodologies to the empirical dataset of ten stocks, with some Gaussianity
tests and with a portfolio allocation exercise that measure the economic relevance
of the alternative estimation procedures. We check convergence properties of the
Gibbs sampler and its robustness to strong microstructure noise and high missings
percentages in Sections 4.1 and 4.2, respectively. Section 5 concludes.

1 METHODOLOGY

1.1 Asynchronicity without Noise

We start by considering the model with asynchronous prices that are observed at
different times within the day, but without being contaminated by microstructure
noise. The simplified model is

dXt =μ(Xt,θ )dt+ √
�(Xt,θ )dWt, (1)

where, for some compact �⊆R
k , θ the unknown parameter vector, μ :Rd ×�→R

d,
� :X−1(Rd)×�→R

d×d,+, Xt is a d-dimensional log-price diffusion process, Wt is a
d-dimensional Brownian motion and R

d×d,+ :={M∈R
d×d :M>0, symmetric}, that

is the space of square, d×d positive definite symmetric matrices. We assume that
the drift and the diffusion functions satisfy the Lipschitz condition

||μ(x,θ )−μ(y,θ )||+||
√

�(x,θ )−
√

�(y,θ )||≤C||x−y|| (2)

for some positive constant C and with ||·|| indicating the Euclidean norm. We need
this assumption to ensure the existence of a strong (unique), square integrable
solution to (1) (Oksendal, 2002).

1As in Chiriac and Voev (2010) who focused on the vech of the upper triangular matrix in the Cholesky
decomposition of the integrated multivariate covariance.



PELUSO ET AL. | Multivariate Covariance of Noisy and Asynchronous Returns 669

We work with the discretized version (time instants between adjacent
observations �t=1) of (1) with constant diffusion coefficient and zero drift, so
that the inference is directly conducted on �. Assuming a deterministic drift equal
to zero is reasonable since a bounded variation drift is negligible for inference on
�. Furthermore, we recognize that the volatility is a time-varying process, and we
rely on the recent result of Xiu (2010) that shows that the QMLE of the volatility
of a misspecified model with constant volatility remains consistent and optimal
in terms of its rate of convergence under fairly general assumptions. Let us first
consider the bivariate case, for i=1,2

Xi,t = Xi,t−1 +εi,t εi,t ∼N(0,σ 2
i ), (3)

with corr(ε1,tε2,t)=ρ, Xi,t is the log-price of asset i observed at time t, σi is its
volatility and ρ is the correlation coefficient.

We define �=
[

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

]
, the missing and observed parts of X respectively

as Xmiss and Xobs and partition the time interval [1,··· ,T] as [tmiss
i ,tobs

i ] accordingly.
The likelihood is

L(�,Xmiss
1:T |Xobs

1:T)∝
2∏

i=1

1
(1−ρ2)σ 2

i

exp

⎛
⎜⎝−1

2

∑
t∈tobs

i

(Xi,t −mi,t)2

(1−ρ2)σ 2
i

⎞
⎟⎠,

where Xi,s:t indicates the log price of asset i, from time s to time t, both
extremes included, mi,t :=Xi,t−1 −ρ

σi
σ−i

(X−i,t −X−i,t−1) and −i is the other asset. We

assume a Jeffrey’s uninformative prior (Jeffreys, 1946) for �, p(�)∼|�|−3/2, but an
informative prior that incorporates in the analysis prior knowledge on the problem
can easily be adopted. For example, in an empirical Bayesian approach, an Inverse
Wishart prior for �, with parameters T0 and S0 being respectively, the sample size
and the sum of squared observed returns, ignoring the missing data, would still
retain the conjugacy of the problem.

The asynchronicity (or, in other words, the presence of missing observations)
complicates the form of the likelihood, but, once we condition on missing
observations, we can still use standard results from multivariate normal theory
to derive the full conditional for �:

p(�|X)∝|�|−(T+3)/2exp

(
−1

2
tr(�−1

T∑
t=1

εtε
′
t)

)
∝ IW

( T∑
t=1

(Xt −Xt−1)(Xt −Xt−1)′,T
)

and find that φ(Xmiss
i,t |�), the full conditionals of Xmiss

i,t , i=1,2, are normal:

Xmiss
i,t |Xi,1:t−1,X−i,1:t,�∼N

(
mi,t,(1−ρ2)σ 2

i

)
,

where the subscript −i refer to the other asset. The extension of (3) to the
multivariate case is straightforward and sampling the covariance matrix from an
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Inverse Wishart assures that the resulting estimate is positive definite. The generic
d-dimensional discretized model is, for i=1,··· ,d:

Xi,t = Xi,t−1 +εi,t εi,t ∼N(0,σ 2
i ), (4)

with corr(εi,tεj,t)=ρij. X and � are, respectively, a d x T and a d x d matrix. We write
the likelihood as

L(�,Xmiss
1:T |Xobs

1:T)∝
d∏

i=1

v−1
i exp

⎛
⎜⎝−1

2

∑
t∈tobs

i

v−1
i (Xi,t −m̃i,t)2

⎞
⎟⎠,

where vi :=σ 2
i −�i·�−1

−i �′
i·, �−i is obtained from � by dropping the row and column

corresponding to asset i, while �i· is the i-th row of � without its i-th element,
m̃i,t :=Xi,t−1 +�i·�−1

−i (X−i,t −X−i,t−1) and X−i,s:t is the matrix of assets log prices
j, ∀j 
= i and from time s to time t. The Jeffrey’s uninformative prior for � is now
p(�)∼|�|−(d+1)/2 and its full conditional is

p(�|X)∝|�|−(T+d+1)/2exp

(
−1

2
tr(�−1

T∑
t=1

εtε
′
t)

)
∝ IW

( T∑
t=1

(Xt −Xt−1)(Xt −Xt−1)′,T
)

.

The full conditional of Xmiss
i,t , φ(Xmiss

i,t |�), is easily derived as:

Xmiss
i,t |Xi,1:t−1,X−i,1:t,�∼N

(
m̃i,t,vi

)
.

To sample from the posterior distribution of Xmiss and �, we use a Gibbs
sampler and iteratively sample {Xmiss,�} from their full conditionals. The algorithm
at each iteration thus consists of the following two steps:

1. Draw a covariance matrix � from its full conditional, that is an Inverse Wishart
distribution, IW(S(Xmiss),T), with S(Xmiss)=∑T

t=1(Xt −Xt−1)(Xt −Xt−1)′. S is
expressed as a function of Xmiss to highlight the dependence on the imputed
missing log prices.

2. Impute the missing observations, Xmiss, by drawing from φ(Xmiss
i,t |�), ∀t∈tmiss,

i=1,··· ,d.

1.2 Asynchronicity and Noise

A step toward a more realistic model is made by introducing the microstructure
noise, so that our model becomes, for t=1,··· ,T

Yt = Xt +
√


dBt (5)

dXt = μ(Xt,θ )dt+√�(Xt,θ )dWt, (6)
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where μ, �, Xt, and Wt are defined as in (1), 
 is the constant variance of the
microstructure noise term, Yt is a d-dimensional observed (with noise) log-price
diffusion process, Bt is a d-dimensional Brownian motion, Bt⊥Wt. Assume that
the Lipschitz condition (2) is satisfied. The discretized version of (5) and (6) with
constant diffusion coefficient is

Yt = Xt +ηt , ηt ∼N(0,
), (7)

Xt = Xt−1 +εt , εt ∼N(0,�), (8)

where Yt is the observed log-price, Xt is considered as the true latent log-price
process, ηt is the microstructure noise and 
 its covariance matrix, ε is the true
latent return with covariance �. ηt and εt are assumed independent.

This is a linear state space model, consisting in the observation Equation (7)
and the state Equation (8). In this particular form, is also known in the literature as
local level model, or random walk plus noise model or steady forecasting model,
extensively covered in Harvey (1989) and in West and Harrison (1997). Despite its
simplicity, the local level model can be used to analyze real datasets in various
settings and scenarios, as it has been pointed out by many authors, see for example
Durbin (2004) or Triantafyllopoulos (2011). The model can also be viewed as a
particular case of a Dynamic Linear Model (West and Harrison, 1997), DLM in
short, characterized in its general form by {A,C,R,Q}, respectively the observation
matrix, transition matrix, observation error variance matrix and transition error
variance matrix, possibly time-varying. Then, our model is a time-invariant DLM
with matrices {Id,Id,
,�}.

Under this model, the observed log-return follows an MA(1) process
(Ait-Sahalia, Fan, and Xiu, 2010), and we can still obtain the likelihood in a product
form by noting that {εt|Yt,Xt−1,
}T

t=1 are i.n.i.d (independent but not identically
distributed) Gaussian random vectors with zero means and covariance matrix
�̃t =Vt−1

t +
. Vt−1
t is the variance of the prediction error obtained through the

Kalman filter. Hence, the likelihood is

L(�,
,Ymiss
1:T ,X1:T |Yobs

1:T)∝
d∏

i=1

∏
t∈tobs

i

ṽ−1
i,t exp

(
−1

2
ṽ−1

i,t (Xi,t −m̃i,t)2
)

,

with ṽi,t := σ̃ 2
i,t −�̃i·,t�̃−1

−i,t�̃
′
i·,t and Ymiss and Yobs are the missing and observed

parts of Y corresponding to the partition [tmiss,tobs]. If we assume uninformative
Jeffrey’s priors for � and 
, the complete data joint posterior density of � and 


is proportional to

(|
||�|)− d+1
2

T∏
t=1

N(Yt;Xt,
)N(Xt;Xt−1,�).

The Gibbs sampler can be used also in this more complicated setting since
the full conditionals are available in standard form. In our simulation approach,
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we augment the data twice, by considering both the missing observations and the
latent process as additional parameters. Therefore, we implement the algorithm by
iteratively sampling {X,�,
,Ymiss} from their full conditional densities. The full
conditionals of � and 
 are still proportional to Inverse Wishart: p(�|
,Y1:t,X1:t)∝
IW(SS�,T) and p(
|�,Y1:t,X1:t)∝ IW(SS
,T), with SS� =∑T

t=1(Xt −Xt−1)(Xt −
Xt−1)′ and SS
 =∑T

t=1(Yt −Xt)(Yt −Xt)′.
To sample the missing observations, we partition Y in [Ymiss,Yobs] and

the full conditional density of the missing observations are still available
in a standard form since they are obtained as the conditional normal den-
sity that result from the joint density of observed and missing log-prices
Yt|Y1:t−1,X,�,
∝N(Xt,
), that is Ymiss

i,t |Yi,1:t−1,Y−i,1:t,X,�,
, distributed as

N
(

Xi,t +
i·
−1
−i (Y−i,t −X−i,t),ω2

i −
i·
−1
−i 


′
i·
)

, where Y−i,s:t is the matrix of log-
prices for assets j, ∀j 
= i, from time s to time t and, similarly, X−i,s:t is the matrix of
latent log-prices sampled with the FFBS (Forward Filtering Backward Simulation)
algorithm for assets j, ∀j 
= i and from time s to time t. 
−i is obtained from 
 by
dropping the row and column corresponding to asset i, and 
i· is the i-th row of 


without its i-th element.
Finally, we extract the latent log-price by using the FFBS algorithm, a Kalman

smoother in which the smoothing recursions are replaced by simulations of the
latent process. Following Fruwirth-Schnatter (1994), we can write the distribution
of X|Y,�,
 as

p(X|Y,�,
)=
T∏

t=1

p(Xt|Xt+1:T,Y), (9)

where the last factor in the product is simply p(XT |Y), that is, the filtering
distribution of XT , which is N(Xt

t,V
t
t ), with Xt

t the filtered latent log-price and
Vt

t its covariance matrix. In order to obtain a draw from the distribution on
the left-hand side, one can start by drawing XT from N(Xt

t,V
t
t ) and then, for

t=T−1,T−2,··· ,1, recursively draw Xt from p(Xt|Xt+1:T,Y). It can be shown that
p(Xt|Xt+1:T,Y)=p(Xt|Xt+1,Y1:t) and this distribution is N(Xt

t +Vt
t (Vt

t+1)−1(Xt+1 −
Xt

t+1),Vt
t −Vt

t (Vt
t+1)−1Vt

t ), where Xt
t+1 is the predicted latent log-price.

Summarizing, the implemented Gibbs sampler executes the following steps at
each iteration:

1. Draw the covariance matrix� from its full conditional, that is an Inverse Wishart
distribution IW(SS�,T), with SS� =∑T

t=1(Xt −Xt−1)(Xt −Xt−1)′.
2. Draw the covariance matrix
 from its full conditional, that is an Inverse Wishart

distribution IW(SS
,T), with SS
 =∑T
t=1(Yt −Xt)(Yt −Xt)′.

3. Impute, for i=1,··· ,d and t∈ tmiss
i , the missing observations Ymiss by drawing

from N
(

Xi,t +
i·
−1
−i (Y−i,t −X−i,t),ω2

i −
i·
−1
−i 


′
i·
)
, where the dependence on

i of 
i· and 
−i has been suppressed to simplify notation.



PELUSO ET AL. | Multivariate Covariance of Noisy and Asynchronous Returns 673

4. Apply the FFBS algorithm to the DLM {Id,Id,
,�} to extract the latent process
X from its full conditional

∏T
t=1N(mt,Wt), where we have defined mt ≡Xt

t +
Vt

t (Vt
t+1)−1(Xt+1 −Xt

t+1) and Wt ≡Vt
t −Vt

t (Vt
t+1)−1Vt

t .

2 SIMULATION STUDY

2.1 Competing Estimators

In this section, we compare the performance of our Gibbs estimator with
other estimators available in the literature. The first alternative is proposed by
Ait-Sahalia, Fan, and Xiu (2010) (AFX), who estimate the covariance as a function
of variances after synchronizing the asset returns. They use the Refresh Time
Scheme introduced by Barndorff-Nielsen et al. (2011), which consists in aligning
the returns on an irregular time grid by selecting those ticks at which all the
assets have been traded at least once in the interval. This scheme includes the
largest amount of data among all the Generalized Synchronization Schemes as
defined in Ait-Sahalia, Fan, and Xiu (2010), but the loss of information still strongly
depends on the presence of illiquid assets since several observations for the more
liquid assets are neglected within each grid interval. After the synchronization,
they estimate the covariance by applying the QMLE estimator suggested in
Ait-Sahalia, Mykland, and Zhang (2005) to the identity Cov(X1,X2)= 1

4 (Var(X1 +
X2)−Var(X1 −X2)), valid for any random variables X1 and X2. It is fair to note that
the polarization identity results in an increased variance when volatilities of the
components are not equal (higher differences lead to higher losses by polarization),
so that it could be interesting in a future work to see if the bivariate QMLE in the
version by Shephard and Xiu (2012) can be a better benchmark.

The second estimator we include in the comparison study is the Composite
Realized Kernel of Lunde, Shephard, and Sheppard (2012) (CompK). CompK
synchronizes the high-frequency prices using a Refresh Time Scheme combined
with a pairwise realized kernel. Compared to the Multivariate Realized Kernel
of Barndorff-Nielsen et al. (2011), the use of a bivariate synchronization of the
data (through the Refresh Time Scheme) increases the accuracy of the covariance
estimation (since a smaller amount of data needs to be discarded) but makes the
estimator no longer positive semi-definite by construction. For its implementation,
we follow the suggestions contained in Lunde, Shephard, and Sheppard (2012)
choosing a jittering parameter equal to 2 and a Parzen kernel function as weight
function for the realized autocovariances.

The bandwidth is set to its optimal value by using the true � and 
 (that
cannot be observed in reality) and thus favoring the CompK methodology. For
more details, we refer the reader to the original paper.

The third estimator is Bibinger (2011) multiscale estimator (MultiSC).
This estimator is the multiscale extension of the the estimator proposed by
Hayashi and Yoshida (2005) (HY), that is the cross-product of all returns with
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at least a partial overlapping. HY is robust to the asynchronicity but not to the
microstructure noise. The multiscale extension is performed by first, adopting the
pseudo-aggregation of Palandri (2006) and then choosing the optimal number of
scales and optimal weights for the subsample estimators according to Bibinger
(2011). We further report the results of the HY estimator.

An estimator that guarantees a positive semidefinite multivariate covariance
matrix is essential in many applications. To enforce it when using AFX, CompK,
and MultiSc in a multivariate setting, we project the resulting estimated matrix
into the space of positive semi-definite matrices, by minimizing different notions
of distances. In addition to be an ad hoc procedure, these types of projections suffer
from the problem of loosing the financial interpretation of the covariance between
the assets since, as noted in Frigessi et al. (2010), some entries of the covariance
matrix, upon projection, can dramatically change.

We now describe the three types of projections we use to render all the
estimators positive definite. The first is the Eigenvalue clipping projection built on
the Marcenko–Pastur theorem (Marčenko and Pastur, 1967) from Random Matrix
theory, and recently employed in Hautsch, Kyj, and Oomen (2012). Random Matrix
theory suggests that all the significant eigenvalues of the estimated covariance has
to be higher than the specific threshold λM = (1− λ(1)

d )(1+√( d
N ))2, where λ(1) is the

highest eigenvalue, d is the number of assets and N is the sample size used to
compute the covariance. If we define k =∑d

i=1 I(λ(i) ≥λM) and I is the indicator

function, all the eigenvalues below λM are converted to λ∗
(i) =

∑d
i=k+1 max(0,λ(i))

d−k , i=
k+1,...,d.

The second is the so-called Factor projection where only a fixed number k of
largest eigenvalues is kept.

To the estimated covariance matrix �, it corresponds an estimated correlation
matrix R that can be decomposed, through Spectral Decomposition, as LDL′, where
L is the matrix with eigenvectors as columns, D is a diagonal matrix with the
eigenvalues ordered from largest to smallest λ(i), i=1,...,d, on the diagonal. λ(i) is
converted to λ∗

(i) =λ(i), i=1,...,k and to λ∗
(i) =0 otherwise. Finally, the covariance

matrix is reconstructed by considering the converted eigenvalues and only the
eigenvectors corresponding to the nonzero eigenvalues.

Finally, in the Shrinkage projection the optimal shrinking matrix E of
Ledoit and Wolf (2003) is used to shrink the estimated correlation matrix R as
(1−a)R+aE, where a is chosen to be the minimum weight for which the shrinked
R becomes positive.

2.2 Data-Generating Process

The data-generating process is a multifactor extension of the stochastic volatility
Heston (1993) model with two volatility factors having different persistence. In
addition, a deterministic intraday volatility component is added to the stochastic
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process in order to reproduce the observed U-shape intraday pattern. For i=1,··· ,d,
t∈[0,T] and j∈{a,b}:

dXi,t = σ a
i,tdWa

i,t +σ b
i,tdWb

i,t,

d(σ j
i,t)

2 = kj{θ j
t −(σ j

i,t)
2}+sjσ

j
i,tdBj

i,t,

θ
j
t =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(hj
1 −1)θ̄ j

(
t

αjT
−1
)2 + θ̄ j t∈[0,αjT)

θ̄ j t∈[αjT,(1−β j)T)

(hj
2 −1)θ̄ j

(
t

β jT
− 1−β j

β j

)2 + θ̄ j t∈[(1−β j)T,T],

where E(dWj
i,tdWj

k,t)=ρ
j
ikdt, E(dWj

i,tdBj
k,t)=δikπ

j
i dt, E(dWa

i,tdWb
k,t)=0 and

E(dBa
i,tdBb

k,t)=0 ∀ i 
=k, αj, βj ∈[0,1], with αj +βj ≤1, and hj
1, hj

2 ∈R. Xi,t is the
log latent price of asset i at time t, Wa

i,t, Wb
i,t, Ba

t , and Bb
t are Brownian motions

with correlation structure defined above, kj and sj are, respectively, the speed of
the mean reversion and the volatility of the variance process (σ j

i,t)
2, θ j captures the

deterministic intraday pattern of θ̄ j, the asymptotic mean of (σ j
i,t)

2. In particular,
following for example Ellickson et al. (2011), we split the trading day into three
parts: the first αj part of the trading day is the a region of price discovery, where
θ j starting from values around hj

1θ̄
j, decreases to θ̄ j, around which it stays for the

following 1−αj −β j part of the day, until raising again in the final β j part of the
trading hours, up to hj

2θ̄
j.

The two-factors Heston model, also known as Double Heston model, was
introduced in Christoffersen, Heston, and Jacobs (2009), who model the variance
process with two uncorrelated processes. The addition of a second factor improves
the quality of fit on empirical data compared to the original Heston model while
computing time remains comparable. Empirical studies show that adding a third
process, however, does not lead to further significant improvements. To introduce
the well known U-shape intraday volatility pattern in the model, we substitute the
asymptotic means of the volatility processes with the deterministic time-varying
process (θ j)t∈[0,1] that appears as in Figure 1. Fixing αj = 4

13 , β j = 3
13 , hj

1 =4 and hj
2 =2

allows us to capture the stylized facts of a high variance at the beginning of the
trading day (up to 4 times the midday level) that quickly decreases until stabilizing
within 2 hours, with a slight increase again toward the end of the day (up to two
times the midday level). Furthermore, the time t observed vector of log prices Yt is
supposed to be

Yt =Xt +Tt,

where Tt ∼ td(x;
,v)∝
(

1+ 1
v x′
−1x

)− v+d
2 a d-dimensional scaled Student’s t-

distribution with scale matrix 
 and v degrees of freedom that explains large
outlier returns, hardly justifiable by Gaussian disturbances. Finally, to reproduce
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Figure 1 Volatility factor deterministic intraday trend.

the asynchronicity of intraday log asset prices, we randomly cancel observations
Yi,t. Since trading volumes and volatility are inversely related, we negatively relate
the number of missing obervations to the volatility level.

We use an Euler discretization scheme to generate the data (see Authier and
Possamaï, 2010 for a discussion on alternative discretization schemes of the Double
Heston model). The first observation for the variance process is drawn from a
Gamma distribution centered in the mean variance. All the codes have been written
in Matlab 7.11.0 (R2010b) and run (possibly in parallel) with Intel(R) Xeon(R) CPU
X7460 @ 2.66 GHz. In Table 1, we report the computational cost in seconds of
one iteration of our Gibbs sampler, as function of the sample size T used for the
estimation of the integrated covariance matrix and of the number of assets d. The

algorithm CPU time is O
(

T
√

d(d+1)
2

)
: there is a linear computational cost in the

sample size T, and a square root cost in d(d+1)
2 , the number of parameters in the

covariance matrix.
In all the following simulations and in the subsequent empirical analysis, the

frequency at which the synchronized latent process is reconstructed is chosen to be
of one second. Obviously, our methodology can be applied with a finer or coarser
grid, depending on the characteristics of the available data. When performing
the Monte Carlo analysis with a time-varying covariance matrix, the estimated
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Table 1 CPU time in seconds per Gibbs iteration, as function of the sample size T and
number of assets d.

d 2 4 10 50 100

T
23,400/4 1.25 1.45 1.7 6.7 24.6
23,400/2 2.5 3 3.5 13.4 49
23,400 5 5.6 6.8 27 98
23,400 ·2 10 11.25 13.5 54 196
23,400 ·10 50 56 67 270 980

(constant) integrated covariance matrices are computed at the daily horizon and
compared with the realized covariance matrix of the latent process for that day.
Hence, each day the covariance estimators are compared with a realized measure
of the latent process which is different for every day.

2.3 Bivariate Case

We first run a bivariate simulation study with: sample size of T =23,400, of which
1/3 and 1/2 are removed completely at random from the whole generated sample,
for the first and second asset, respectively, and two starting log prices of log(100)
and log(40). The true � and 
 matrices, (the same for the two volatility factors) are,
respectively,

�=
[

0.16 0.06
0.06 0.09

]
, 
=

[
0.08 0

0 0.04

]
.

The other parameters {θ̄ j,kj,sj,ρ
j
12,π

j
1,π

j
2} are, respectively,

{0.1,0.179,0.28,0,−0.834,−0.834} and {0.1,1.303,0.28,0,−0.834,−0.834} for the
two volatility factors, as estimated by Christoffersen, Heston, and Jacobs (2009),
on S&P500 call options in the period 1990–2004. For each compared estimator,
we generate M=100 matrices of prices and we run our Gibbs sampler for each
generated sample of prices for 5000 steps, after 5000 initial iterations of burn-in.
The starting point (of the MCMC simulation) of the missing values is the local
mean ignoring the missing data up to ten ticks before and after the missing trade.
To speed up the convergence of the Markov chain, we need to be careful about the
initial values for the covariance parameters: We initialize the sampler from the
pairwise Hayashi and Yoshida (2005) estimate of the covariance of the partially
observed noisy returns series for the off-diagonal terms. For the variances, we use
the Two Time Scale Estimator of Zhang, Myckland, and Ait-Sahalia (2005). Then,
we interpret the return variability not captured by the Two Time Scale Estimator
as the contribution coming from the microstructure noise. We stress the fact that
different starting values affect the convergence speed of the Markov chain, but not
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Table 2 Simulation results: bivariate case. M=100 Monte Carlo estimates for each
compared estimator are computed and the mean is reported. The Gibbs sampler runs
for 5000 iterations, plus 5000 of burn-in. The RMSE is reported in parenthesis.
RCov5min and RCov10min refer to the realized covariance matrix computed with,
respectively, 5-minute and 10-minute returns

Asset 1 Asset 2 Asset 1–2

No Lead Lead1 Lead2

RCov5min 0.0539 0.0301 0.0186 0.0202 0.0202
(0.0097) (0.0051) (0.0051) (0.0063) (0.0064)

RCov10min 0.0536 0.0295 0.0188 0.0202 0.0216
(0.0138) (0.0069) (0.0073) (0.0081) (0.0073)

AFX 0.0534 0.0298 0.0199 0.0200 0.0165
(0.0063) (0.0036) (0.0028) (0.0026) (0.0038)

CompK 0.0560 0.0314 0.0189 0.0143 0.0108
(0.0073) (0.0040) (0.0046) (0.0061) (0.0093)

MultiSc 0.0514 0.0289 0.0186 0.0198 0.0201
(0.0103) (0.0049) (0.0047) (0.0054) (0.0050)

HY 0.0532 0.0296 0.0204 0.0155 0.0106
(0.0063) (0.0036) (0.0066) (0.0057) (0.0098)

Gibbs 0.0535 0.0299 0.0199 0.0195 0.0152
(0.0062) (0.0035) (0.0027) (0.0023) (0.0050)

True value 0.0532 0.0298 0.0199 0.0199 0.0199

the validity of the results, since the chain is independent on the chosen starting
values, once it has reached stationarity.

The results of this first simulation are reported in Table 2 where the Gibbs
estimator is shown to perform slightly better than all other competitors in terms of
RMSE, still all methods return fairly precise estimates of the covariance matrix.
Thus, with only two assets, no significant differences are observed among the
estimation procedures under comparison. Notable exceptions are the realized
measures estimated through low-frequency returns at 5 and 10 minutes (reported in
line 1 and 2 of Table 2, respectively), which suffer from higher estimation variability.

In order to test the robustness of the estimators to the presence of noncontem-
poraneous covariation, we further stress the simulation setting by adding delayed
covariation in the true latent asset prices: the so-called lead–lag effect empirically
observed by, for instance, Griffin and Oomen (2009). To this aim we let the more
liquid asset (asset 1) lead the other one designing two different settings: in the
scenario Lead1, a portion of 30% and 20% of the covariation is shifted, respectively,
by one and two seconds, while in Lead2 setting, the covariation is shifted over
a longer time span of 10 seconds with a proportion of (10−i+1)% shifted by i
seconds, for i=1,...,10. The results are reported in the last two columns of Table 2.
In Lead1, CompK and HY already show a relevant bias since they fail to fully capture
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the noncontemporaneous portion (50%) of the total covariance. These estimators,
together with realized covariance estimators at 5 and 10 minutes, present the worst
RMSE. On the other hand, MultiSC, AFX, and Gibbs seem more robust in terms
of bias-variance trade-off in presence of lead–lag effects. In the more challenging
Lead2, there is a further slight deterioration in the RMSE of the low-frequency
estimators, and an important bias is visible for CompK and HY. MultiSc is still robust
to the lead–lag effect, while some distortions start appearing in AFX and Gibbs.
The results are quite favorable to our Bayesian estimator, since it remains among
the best alternatives. In particular, it is interesting to note how the Gibbs estimator
turns out to be much more robust than its competing tick-by-tick estimator, that is
the HY one. For our Bayesian estimator, both a preprocessing and a postprocessing
remedy to eliminate the bias induced by the lead–lag effect are subjects of current
research: the first one investigates the use of a lower frequency for the reconstructed
synchronized series; the second one, inspired by the covariance correction proposed
by Scholes and Williams (1977), adds lead–lag cross-product terms to the standard
sample covariance to capture the noncontemporaneous portion of covariation.

2.4 Multivariate Case

For the multivariate simulation analysis, we estimate the covariance matrix for
a portfolio of ten assets. Our Gibbs estimator is naturally extended to the ten-
dimensional case, without any modification. If the covariance matrices obtained
with the pointwise procedures are not positive semi-definite, we project them
onto the space of positive semi-definite matrices through the procedures described
above. The true covariance matrices of the data-generating process are �,
reported in Table 3, and 
=diag([0.08,0.04,0.02,0.05,0.1,0.06,0.1,0.15,0.15,0.08]).
The simulation is initialized from P0 = log([100,40,60,80,40,20,90,30,50,60]), with
probabilities of missing observations equal to v=0.5978−1.087 ·diag(�), so that
trading volumes and volatility levels are inversely related. The probability of
missing values ranges from 25% for the most liquid asset, to 50% for the least liquid
asset. We note that, as the dimension of the portfolio increases, it becomes more
and more difficult to obtain, through pairwise inferences, an estimated covariance
matrix that retains positivity.

We iterate Gibbs sampler for 5000 (burn-in) plus 5000 steps. As synthetic
measure of the performance we choose the Frobenius norm of the matrix
difference � between the estimated and generated realized covariance matrix. In
particular, we define our norm as ||�i,j||=||(�̂j

i −�)||F, where ||·||F is the traditional

Frobenius norm, and �̂
j
i is the j-th covariance matrix estimated with methodology

i, and j=1,...,M. We further define Ê[||�i||] := 1
M
∑M

j=1 ||�i,j|| and σ̂ [||�i||] :=(
1

M−1
∑M

j=1(||�i,j||−Ê[||�i||])2
)1/2

as the estimated expected value and standard
deviation of the Frobenius distance for methodology i. The results are summarized
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Table 3 10-dimensional � matrix used to generate simulated data

�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.16 0.06 −0.01 0.10 0.12 0.04 0.06 0.09 0.09 0.04
0.06 0.09 0.04 0.05 0.05 0.02 0.04 0.03 0.05 0.10

−0.01 0.04 0.12 0.03 0.08 0.05 0.09 0.05 0.11 0.04
0.10 0.05 0.03 0.11 0.11 0.04 0.06 0.11 0.13 0.04
0.12 0.05 0.08 0.11 0.25 0.06 0.09 0.07 0.16 0.03
0.04 0.02 0.05 0.04 0.06 0.16 0.10 0.07 0.14 0.06
0.06 0.04 0.09 0.06 0.09 0.10 0.18 0.07 0.16 0.05
0.09 0.03 0.05 0.11 0.07 0.07 0.07 0.32 0.11 0.05
0.09 0.05 0.11 0.13 0.16 0.14 0.16 0.11 0.28 0.05
0.04 0.10 0.04 0.04 0.03 0.06 0.05 0.05 0.05 0.24

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

in Table 4 and Figure 2a. They clearly show that the proposed multivariate Bayesian
estimator is the most accurate measure of the true covariance matrix, followed, in
order, by AFX, CompK, HY, and MultiSc. In Figure 3a, we compare graphically
the kernel density of the Frobenius distances for all methodologies observing,
again, that the Gibbs estimator outperforms the other compatitor measures. The
kernel density estimate is based on a Gaussian kernel function, using the optimal

window parameter (width) â
(

4
3M

)1/5
, where â=med

(∣∣||�i||−med(||�||)∣∣)/0.6745
is a robust estimate of the standard deviation of the frobenius distances. The density
is evaluated at 100 equally spaced points that cover the range of the data. For the
projection methodologies, the factor approximation method induces an important
bias in the estimation, while there is no clear ordering between shrinking and
clipping methods.

Furthermore, following Andersen et al. (2003), in Figures 4 and 5, we use as
simple graphical diagnostic the volatility signature plot and the correlation signature
plot for two randomly chosen stocks, which show the pattern of bias injected
in realized covariances as underlying returns are sampled progresively more
frequently. The key insight is that microstructure bias will likely manifest itself
as sampling frequency increases by distorting the average realized volatility.
Consequently, a plot of average realized volatility against sampling frequency may
help reveal the severity of microstructure bias as sampling frequency increases.
A comparison with the estimated covariance matrix provided by the competing
methodology can reveal if they are robust to microstructure noise. For readability,
we plot only the clip projections of the pairwise estimators, that is the best projection
in this case. What we observe is that all the methodologies considered are robust
to the microstructure noise, except for HY in the correlation estimation, expected
to be downward biased.
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Ê
[||�

i||]
0.

02
98

0.
04

08
0.

13
32

0.
03

50
0.

06
38

0.
13

83
0.

06
21

0.
11

96
0.

16
61

0.
11

60
0.

04
32

0.
13

25
0.

03
88

σ̂
[||�

i||]
0.

00
96

0.
00

78
0.

01
47

0.
00

80
0.

00
93

0.
01

54
0.

00
95

0.
03

19
0.

02
69

0.
03

19
0.

00
69

0.
01

45
0.

00
70

(e
)H

ig
h

no
is

e
m

is
si

ng
s

Ê
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(a) (b)

(c)

(e)

(d)

Figure 2 Simulated root mean squared errors. M=100 Monte Carlo estimates for each estimator
are computed. The Gibbs sampler runs for 5000 iterations, plus 5000 of burn-in. The x-
axis is the index for the fifty-five parameters of the covariance matrix, starting from the
ten variances. Define missing probabilities v=0.5978−1.087 ·diag(�) and noise matrix 
=
diag([0.08,0.04,0.02,0.05,0.1,0.06,0.1,0.15,0.15,0.08]) (a) Standard: missing probabilities v and
noise matrix 
. (b) Dispersed missings: more dispersed missing probabilities 1.2130−3.4783·diag(�)
and noise matrix 
. (c) High noise: missing probabilities v and noise matrix 
+0.35I. (d) High
missings: missing probabilities v+0.35 and noise matrix 
. (e) High noise and missings: missing
probabilities v+0.35 and noise matrix 
+0.35I.
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(a) (b)

(c)

(e)

(d)

Figure 3 Kernel density estimates of the Frobenius distances ||�i,j||=||(�̂j
i −�)||F , �̂

j
i is the

j-th covariance matrix estimated with methodology i and j=1,...,M=100 and � is the true
covariance matrix. Define missing probabilities v=0.5978−1.087 ·diag(�) and noise matrix 
=
diag([0.08,0.04,0.02,0.05,0.1,0.06,0.1,0.15,0.15,0.08]). (a) Standard: missing probabilities v and
noise matrix 
. (b) Dispersed missings: more dispersed missing probabilities 1.2130−3.4783·diag(�)
and noise matrix 
. (c) High noise: missing probabilities v and noise matrix 
+0.35I. (d) High
missings: missing probabilities v+0.35 and noise matrix 
. (e) High noise and missings: missing
probabilities v+0.35 and noise matrix 
+0.35I.
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Figure 4 Signature plot for one variance. The line called Realized is the value of the variance from
the Realized Covariance computed over returns synchronized at the frequency in seconds given
by the x-axis.

Figure 5 Signature plot for one correlation. The line called Realized is the value of the correlation
from the Realized Covariance computed over returns synchronized at the frequency in seconds
given by the x-axis.

We expect the performance of the Bayesian estimator to improve relative to
the other estimators in the presence of a more dispersed probabilities of missing
(i.e., when assets have very different liquidity profiles), since in this case our
Bayesian estimator capture multivariate information that is not available to the
pairwise methodologies. To validate this expectation, we repeat the simulations



PELUSO ET AL. | Multivariate Covariance of Noisy and Asynchronous Returns 685

for ten assets, holding everything as in the previous simulation setting, but
with more dispersed missing probabilities 1.2130−3.4783·diag(�), still inversely
proportional to �, but in the range [10%,90%]. The results in Figure 2b confirm
our intuition: particularly affected by the changed scenario are AFX and MultiSc,
but the ordering of the estimators remains as in the base case, with the Gibbs
methodology performing best. The relative norms are summarized in Table 4 and
in Figure 3b the relative kernel densities estimates are plotted. The explanation
is that information contained in the co-movement of more liquid assets is
incorporated in the estimation of covariances of less liquid asset only with a
truly multivariate approach, which can then significantly improves the covariance
estimation accuracy in portfolios containing assets with very different liquidity
profiles.

3 EMPIRICAL APPLICATION

3.1 Dataset and Gaussianity Tests

Our dataset consists of NYSE TAQ tick-by-tick data from 3 January 2007 to
21 November 2007 for ten U.S. stocks: Alcoa Inc., Citigroup Inc., Hasbro Inc.,
Harley Davidson, Intel Corp., Microsoft Corp., Nike Inc., Pfizer Inc., Exxon
Mobil Corp., and Tektronix. The average missing probability per day ranges
from 0.67 to 0.96, respectively, for Citigroup and Tektronix, whose time series
(in log scale) are reported in Figure 6, for the first 1000 seconds of one
randomly selected trading day. The correlation between these two stocks, estimated
through the competing methodologies described above, is shown in Figure 7.
Not all projection procedures are reported for brevity, but are available under
request.

Clark (1973) and Ane and Geman (2000) theoretically argue that, for an
underlying continuous-time diffusion process, rescaling the log-return by an
appropriate measure of the market activity, recovers the standard Gaussian
distribution. Andersen et al. (2000, 2001b, 2003), Andersen et al. (2001b), and
Andersen, Bollerslev, and Dobrev (2007) indeed show that, when daily returns
are standardized by the corresponding daily realized volatility, the resulting
distribution is nearly Gaussian. Analogously, in a multivariate context, rescaling
the daily return vector by the appropriate integrated covariance measure should
recover the multivariate standard Gaussian distribution. Theoretically, the presence
of jumps could induce deviations from the normality of standardized returns.
However, since all the considered measures are equally affected by the presence
of jumps, we assume that the estimator whose covariance matrix produces a
vector of standardized returns closer to a multivariate standard normal will be
the preferred one.

Following this intuition, we compare the different covariance matrix estimates
through the use of two tests. In particular, we compute the 10-dimensional vector of
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Figure 6 First 1000 seconds of 11 May 2007 for Citigroup (above) and Tektronix (below) log prices.

Figure 7 Estimated correlation between Citigroup and Tektronix.
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Table 5 Empirical tests: in the first column, all the estimation methodologies with
associated projection procedures are reported. In the second column, we have the test
based on moments comparison, while in the last column the p-value for the χ2 test.
See the text for details on the estimation methodologies, the projection procedures,
and the empirical tests

Moments test

Method and proj Mean dist Cov dist χ2 test p-val

Gibbs 0.1186 1.4517 0.7135
CompK clipping 0.3969 22.9628 0.2696
CompK factor 0.3084 4.9784 0.2798
CompK shrink 1.0130 264.0134 0.1629
Multisc clipping 0.2176 3.1529 0.3193
Multisc factor 0.2331 3.9824 0.2598
Multisc shrink 0.2223 4.0357 0.2834
AFX clipping 0.1637 1.4658 0.5606
AFX factor 0.1546 2.3255 0.4870
AFX shrink 0.1637 4.3677 0.5535
HY clipping 0.2133 6.9434 0.5844
HY factor 0.2652 23.1247 0.5335
HY shrink 0.4801 54.3585 0.5406

open-to-close daily returns for each day, and we standardize its demeaned version
using the estimated covariance matrix. Then,

• in the first test we conduct a comparison based on the difference between the
sample and hypothesized moments of the standardized returns. In particular,
we take the mean over the days of the standardized returns and we compute
the Euclidean distance between this obtained 10-dimensional vector and the
null vector of same dimension. In the same way, we compute the sample
covariance matrix of the standardized returns and we compute the Frobenius
distance between this obtained 10×10 matrix and the identity matrix of same
dimensions. We expect the best methodology to report the lowest distances.

• In the second test we compute the probability of observing more extreme
data, given the null hypothesis of multivariate standard gaussianity of the
standardized returns. In particular, under the null, the vector of daily retuns
is an observation from the multivariate standard Gaussian distribution,
or, equivalently, its squared Euclidean norm is an observation from a χ2

distribution with 10 degrees of freedom, denoted χ2
10. Then, the area under the

χ2
10 density on the right of the observed squared Euclidean norm is a sort of p-

value, and we expect the best methodology to show a higher p-value, suggesting
more confidence in the null hypothesis.

The results for the tests above are reported in Table 5, where it is clear that our
Bayesian estimator is superior to alternative methodologies, and for any projection
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procedures. In the table, we limit the analysis of the first test to the first two
moments, but results not reported show the same conclusions for higher moments.

The signature plots averaged all over the sample period show that the estimates
of all the methodologies under comparison are not centered on the low-frequency
synchronized realized covariance. We claim that this effect is not due to the market
microstructure noise or asynchronicity since, as also shown in the simulation
analysis, all the considered estimator are robust to these type of effects, but that are
due to other intrinsic characteristics of the empirical data. In particular, as already
noted by Griffin and Oomen (2009) this might be due to a delay in the manifestation
of the correlation among assets. This effect is more likely to be observed in a dataset
where assets have very different trading volumes, like in our case, since assets
which are more liquid, tend to lead the behavior of other less traded assets, but
with some delay due to the absence of market activity. To confirm our intuition,
we plot in Figure 8 the signature plot of the correlations among the latent price
processes reconstructed from our Bayesian methodology, that is on the latent prices
obtained after synchronization and microstructure noise filtering. The fact that,
as the frequency decreases, we still observe an increase in the realized covariance
estimation on synchronized and noise-free data seems to suggest that such behavior
might be induced by the presence of a lead–lag correlation structures among the
assets. In fact, comparing it with the equivalent signature plot computed using
the same reconstructed latent price process but from the simulated data (using
the data-generating process employed in the previous section), we observe that in
contrast to the signature plot of the empirical data, the one on simulated data is
virtually horizontal. This comparison suggests that the upward slope observed on
empirical data is more a feature of the data rather than the methodology which is (as
extensively shown in the previous section) perfectly able to cope with a wide range
of market frictions and imperfections: market microstructure noise, asynchronicity,
stochastic volatility, intraday pattern, and heavy tails in the return distributions.

3.2 Portfolio Allocation Analysis

We also evaluate the economic benefit of the proposed covariance estimators,
employing the methodology suggested by West, Edison, and Cho (1993) and
Fleming, Kirby, and Ostdiek (2001, 2003), which compares the utility level obtained
by different covariance estimators in the context of portfolio allocation. In
particular, we consider a risk-averse investor who uses a conditional mean-variance
optimization rule to allocate funds across the stocks in our dataset, with a daily
rebalance.

Define Rf
t as the risk-free rate, μi

t =Et[Ri
t+1] as the expected value at time t of

the stock i return at time t+1 and μ
p
t =Et[Rp

t+1] as the target expected return of the
portfolio. The investor solves the quadratic program

min
wt

w′
t�twt
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Figure 8 Signature plot for the averaged correlation on the latent prices reconstructed through our
Bayesian methodology: comparison between simulated and empirical data. The dashed line is the
normalized signature plot of the correlation from empirical synchronized returns, at the frequency
in seconds given by the x-axis. The dotted line is the equivalent plot for simulated data.

subject to
w′

tμt +(1−w′
t1d)Rf

t =μp,

where wt is the vector of portfolio weights, �t is the covariance matrix estimated at
time t with tick prices observed in day t−1, and 1d is a d-dimensional vector of ones.
Asssuming absence of predicability in the expected returns of the single stocks at
the daily level, we assume μi

t =μt =Rf
t +0.1 ∀ i,t. Fixing the expected stock returns

equal to the risk-free rate plus a constant spread in a mean-variance framework,
is equivalent to following a volatility-timing strategy where the weights vary only
with �t. The vector of weights that minimize the portfolio variance is

wt = (μp −Rf
t )�−1

t (μt −Rf
t )110

(μt −Rf
t )110�

−1
t 1′

10(μt −Rf
t )′

.

Following Engle and Colacito (2006); Audrino and Trojani (2006);
Corsi and Audrino (2012), the economic differences between the covariance
estimates is computed as the AU measure, interpreted as the fee that the investor
would be willing to pay to switch from one covariance measure to the other. The
AU is expressed as:

AU = λ

2
1
T

T∑
t=1

(Rp
t −R̄p)2 (10)
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Table 6 Annualized fees (expressed in basis points) that an investor following a
volatility timing strategy would be willing to pay to employ the Bayesian integrated
covariance estimator in place of the alternative estimators. The portfolio weights are
obtained minimizing the conditional variance of a portfolio containing the ten stocks
in our database and one-month U.S. Treasury bonds

Target (%) Method λ=2 λ=7 λ=10

0.06 Kernel 0.8 2.9 4.1
Multiscale 0.2 0.8 1.2
AFX 0.1 0.4 0.5
HY 0.3 1.1 1.6

0.10 Kernel 9.3 32.4 46.3
Multiscale 2.1 7.3 10.5
AFX −0.6 −1.9 −2.8
HY 1.5 5.3 7.5

0.15 Kernel 31.8 111.3 159.0
Multiscale 6.9 24.3 34.7
AFX −3.3 −11.6 −16.6
HY 2.7 9.5 13.6

where
Rp

t =Rf
t +w′

t−1(Rt −Rf
t 110)

is the return of the portfolio constructed at time t−1, R̄p is the sample mean of
portfolio returns, and λ is a coefficient of risk aversion.

We compute AU in (10) for the covariances estimated by the different
methodologies in our dataset. As risk-free return we use the U.S. one-month rate,
but similar results are obtained for the U.S. three-month rate. The results are
reported in Table 3.2, for risk-aversion parameter λ equal to 2, 7, and 10, and for
target portfolio expected return μp of 6%, 10%, and 15%. The figures show that
an investor following a volatility timing strategy would almost always be willing
to pay a positive annual fee to switch to the Bayesian estimator of the integrated
covariance. The exception (but for modest amounts) is AFX in case of large target
portfolio returns and high-risk aversion; we expect a favorable result for the Gibbs
estimator even in this scenario for the estimation of larger covariance matrices,
where the projection of a pairwise mathodologies can be much more distorting. As
a general trend, we note that the economic gains become greater for larger values
of μp and λ.

4 MCMC CONVERGENCE ISSUES AND ROBUSTNESS

Our model with noise is a nonstationary latent Gaussian Bayesian model with
Gaussian response variables and we use an MCMC approach for inference. It is
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well known that MCMC tends to exhibit poor performance when applied to these
models. The first reason is that the different points of the latent process X are
strongly dependent on each other. Second, the latent process and � are also strongly
dependent, especially in large sample settings as ours. This is known in the literature
as Roberts–Stramer critique (Roberts and Stramer, 2001) and is formalized by noting
that

plim
�t→0

T∑
t=1

(Xt −Xt−1)′(Xt −Xt−1)=�. (11)

This asymptotic relationship between � and X causes, in the limit, the Markov
Chain to be reducible, that is unable to escape from the current value.

A common approach to overcome the strong posterior dependence within the
latent process, is to sample the whole process X jointly. This is what we do in (9) by
using the FFBS algorithm of Fruwirth-Schnatter (1994) and the simulation study
results suggest that our Gibbs estimator is not severely affected by the Roberts–
Stramer reducibility problem. This happens thanks to the double augmentation
scheme, since the sampling of the missing values of the noisy observed process
adds a disturbance element to the sampling of the latent process, breaking
the deterministic relation between � and X. Our doubly augmented algorithm
naturally complements the traditional Gibbs sampler that does not sample Ymiss:
the convergence speed of the traditional Gibbs sampler increases when the signal-
to-noise ratio of the problem is higher (Roberts and Sahu, 1997), while in our
augmented Gibbs sampler, as the observational noise increases, sampling of X
will be more “disturbed” by sampling of Ymiss, improving the performance of the
Bayesian estimator.

We investigate the robustness of our methodology in two ways: we increase
the noise, everything else being fixed, and look at simulation results to validate
the hypothesis that with higher noise, the Gibbs sampler works relatively better.
Then, to test the robustness to a finer grid, that is to a higher number of points
between observations in the latent process, we increase the missing percentage,
holding everything else constant.

With an increase in noise, Ymiss introduces an higher “disturbance” to the
deterministic relation (11) between the latent process and the covariance matrix.
Since the reducibility problem is attenuated, it is natural to expect that the Bayesian
estimation improves relative to the alternative methodologies. In Figure 2c, we
report the results for the different methodologies compared, with noise variance

1 =
+0.35I, and we indeed note that there is an improvement in favor of the
Bayesian approach. As expected, HY is severely distorted, since not robust to
microstructure noise, and only AFX resists close after the Gibbs method. The
estimated expected values and standard deviations of the Frobenius distances
are reported in Table 4. Figure 2c compares the RMSEs and components of the
methodologies and Figure 3c plots the Frobenius distance kernel densities.
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The increase in missing percentage has the effect of increasing the number
of points of the latent process to be estimated, severing the reducibility problem.
Still, with missing probabilities equal to the missing percentages of the standard
multivariate case plus 0.35 for each assets (missing percentages from 60% to 85%),
the simulation study shows superior results for the Bayesian estimator as reported
in Figures 2d, 3d, and in Table 4, with HY resisting better, since it does not use
synchronization schemes that are heavely affected by high missing values. We thus
conclude that the other estimation procedures deteriorate as or more rapidly than
ours when the market conditions become more severe.

Finally, we add simultaneously more variance noise and more missings and we
report the results in Figures 2e, 3e, and in Table 4, confirming the higher robustness
of the Bayesian methodology to more extreme market conditions.

5 CONCLUSIONS

In this article, we study the problem of estimation of the multivariate integrated
covariance matrix of noisy and asynchronous observations. The Dynamic Linear
Model is the setting chosen to deal with presence of microstructure noise in
the data, and we treat the asynchronous time series as synchronous series with
missing observations. The Bayesian approach allows us to deal with missing
observations (asynchronicity) by treating them as additional parameters of the
problem. An augmented Gibbs algorithm is implemented to sample the covariance
matrix, the observational error variance matrix, the latent process, and the missing
observations of the noisy process. Our MCMC estimator is positive definite by
construction and we compare it with several alternatives available in the literature.
A simulation study suggests that our estimator is superior in terms of RMSE in a 10-
dimensional setting, even with dispersed and high missing percentages and with
high noise. This suggests that our Bayesian estimator performs better in normal
and severe conditions, as with portfolios of assets with heterogeneous liquidity
profiles, or particularly illiquid, or when there is a high level of microstructure noise
in the market. Since noise variances are usually estimated to be rather small in large
samples, the outperformance of the Bayesian estimator is less crucial when large
amount of data are available, still it is indicative of good small sample performances.
The application of our methodology to an empirical dataset composed of ten tick-
by-tick series of stock prices seems to confirm simulation results by showing that
the covariance matrix of the proposed estimator produces a vector of standardized
returns closer to a multivariate standard normal than the ones obtained with
alternative methods, and that there is a concrete economic advantage in using our
Bayesian estimator.

As possible extension, our methodology could be applied to factors of much
larger portfolios. Furthermore, we could extend the simulation algorithm to
adaptive MCMC samplers (Haario, Saksman, and Tamminen, 2001) or to Particle
MCMC methods (Andrieu, Doucet, and Holenstein, 2010) to face the problem of
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lost conjugacy of the full conditionals in the case of nonlinear and nonnormal
measurement and transition equations.

APPENDIX A: FINITENESS OF THE POSTERIOR

We check, first without missings and then with missings, that the posterior
distribution of � is proper. Without missings, proving

∫
p(�|Y)d�<∞ is equivalent

to prove

p(Y)=
∫

p(Y|�,
,X)p(�,
,X)d�d
dX <∞

when p(Y|�,
,X)=∏T
t=1Nd(yt;xt,
)<∞ by the assumed state space model and

�, 
, and X are a priori independent. We denote with Nd(yt;xt,
) the d-
dimensional Gaussian distribution, with location xt and scale matrix 
. A priori,
p(�)∝|�|− d+1

2 , p(
)∝|
|− d+1
2 , and p(X)∝c, so that the their joint distribution

p(�,
,X)∝ (|�||
|)− d+1
2 is finite. For positive-definite � and 
,

p(Y) =
∫

p(Y|�,
,X)p(�,
,X)d�d
dX (A1)

=
∫ T∏

t=1

Nd(yt;xt,
)(|�||
|)− d+1
2 d�d
dX (A2)

∝
∫

|
|−T/2 exp

{
− 1

2

T∑
t=1

(yt −xt)′
−1(yt −xt)

}
(|�||
|)− d+1

2 d�d
dX

=
∫

|
|− T+d+1
2 exp

{
− 1

2

T∑
t=1

(yt −xt)′
−1(yt −xt)

}
d
dX

∫
|�|− d+1

2 d�

≤
(

min
i∈{1,...,d}

(λ�,i)
)− d(d+1)

2
∫

|
|− T+d+1
2 exp

{
− 1

2

T∑
t=1

(yt −xt)′
−1(yt −xt)

}
d
dX

=
(

min
i∈{1,...,d}

(λ�,i)
)− d(d+1)

2
∫

|
|− d+1
2

∫
RdT

|
|−T/2 exp

{
− 1

2

T∑
t=1

(yt −xt)′
−1(yt −xt)

}
dXd


∝
(

min
i∈{1,...,d}

(λ�,i)
)− d(d+1)

2
∫

|
|− d+1
2 d


≤
(

min
i∈{1,...,d}

(λ�,i)
)− d(d+1)

2
(

min
i∈{1,...,d}

(λ
,i)
)− d(d+1)

2
<∞,

where λA,i is the i-th eigenvalue of the matrix A. We have used the inequality
|A|=∏d

i=1λA,i ≥
(
mini∈{1,...,d}(λA,i)

)d. Note that for singular �, the result does not
hold since

(
mini∈{1,...,d}(λ�,i)

)=0. The same is true for singular 
.
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When missings are introduced, the relation to prove becomes

p(Yo)=
∫

p(Yo|�,
,X,Ym)p(�,
,X,Ym)d�d
dXdYmd�<∞,

where p(�,
,X,Ym)∝ (|�||
|)− d+1
2 and

p(Yo|�,
,X,Ym)∝
d∏

i=1

∏
t∈to

i

v−1
i,t exp

{
−1

2
v−1

i,t (xi,t −mi,t)2
}

with vi,t := σ̃ 2
i,t −�̃i·,t�−1

−i,t�̃
′
i·,t, �̃t =Vt−1

t +
, mi,t :=xi,t−1 +�̃i·,t�−1
−i,t(xi,t −xi,t−1)

and Vt−1
t is the prediction error variance at time t obained through Kalman

iterations. Computations can be strongly simplified thanks to the relation p(Yo)=∫
p(Yo,Ym)dYm =∫ p(Y)dYm:

p(Yo) =
∫ T∏

t=1

Nd(yt;xt,
)(|�||
|)− d+1
2 d�d
dXdYm

≤
(

min
i∈{1,...,d}

(λ�,i)
)− d(d+1)

2
∫

|
|− d+1
2 d
dYm

≤
(

min
i∈{1,...,d}

(λ�,i)
)− d(d+1)

2
(

min
i∈{1,...,d}

(λ
,i)
)− d(d+1)

2
<∞.

Similar calculations, not reported for brevity, show that the posterior
distribution of 
 is also proper.
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