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It was recently shown by Souam and Toubiana [34] that the (nonconstantly curved)

Berger spheres do not contain totally umbilic surfaces. Nevertheless, in this article we

show, by perturbative arguments, that all analytic metrics sufficiently close to the round

metric g0 on S3 possess generalized totally umbilic 2-spheres, namely critical points of

the conformal Willmore functional
∫

Σ
|A◦|2 dμγ . The same is true in the smooth setting

provided a suitable nondegeneracy condition on the traceless Ricci tensor holds. The

proof involves a gluing process of two different finite-dimensional reduction schemes,

a sharp asymptotic analysis of the functional on perturbed umbilic spheres of small

radius and a quantitative Schur-type Lemma in order to treat the cases when the trace-

less Ricci tensor of the perturbation is degenerate but not identically zero. For left-

invariant metrics on SU(2) ∼= S3, our result implies the existence of uncountably many

distinct Willmore spheres.

1 Introduction

One of the most general problems in extrinsic Riemannian geometry is to find the

best immersion Φ of a given smooth manifold M in a higher dimensional ambient

space N endowed with a Riemannian metric g, by which we mean that some special
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curvature condition is required. For instance, one might prescribe the vanishing of

the second fundamental form A of M in N (in which case Φ is called totally geodesic),

or the vanishing of its trace H (in this case, Φ is minimal) or, instead, the vanishing

of its traceless component A◦, which corresponds to Φ being totally umbilic. Over

the last century, a number of different obstructions to the existence of such optimal

immersions have been found: for example, it is well known that if M is compact and

has no boundary, then it cannot be minimally immersed in the Euclidean space Rn, as a

basic consequence of the classical monotonicity formula for minimal submanifolds (or,

maybe more simply, as a direct consequence of the maximum principle). If dimR(M) = 2

and dimR(N) = 3, a recent obstruction was found by Souam and Toubiana [34], who

proved that if (N, g) belongs to the class of the Berger spheres, then there exist no

totally umbilic immersions of M in N, unless (N, g) is in fact a space form. It should be

remarked that this result was then extended to any compact, homogeneous 3-manifold

by Manzano and Souam (see [23]). Given these facts, it is then natural to weaken our

requirement and to ask whether there exist immersions having the property to minimize

(or, more generally, to be critical points for) some integral functional of |A◦|. This is the

object of study of the present article.

Before proceeding further, let us introduce some notation. We will always deal

with a compact, isometrically immersed, surface (Σ, γ ) in (N, g): the corresponding prin-

cipal curvatures will be denoted by λ1, λ2 and the mean curvature H of Σ will be their

sum, namely H = λ1 + λ2. Moreover, according to our sign convention the round unit

sphere in R3 has mean curvature equal to 2.

In this work, we consider the conformal Willmore functional given by

I (Σ, γ ) =
∫
Σ

(
H2

4
− D

)
dμγ = 1

2

∫
Σ

|A◦|2 dμγ , (1)

where dμγ is the Riemannian volume form associated to the metric γ , A◦ := A− 1
2 Hγ is

the traceless part of the second fundamental form A of Σ in M and D = λ1λ2. In the spe-

cial case when the sphere S3 is endowed with its standard round metric g0 (as embedded

unit sphere in R4) then the previous two functionals coincide, modulo a null Lagrangian,

with the functional

W(Σ, γ ) =
∫
Σ

(
H2

4
+ 1

)
dμγ , (2)

as an immediate consequence of the Gauss equations. However, from the point of

view of conformal geometry, for immersions in a general Riemannian manifold, the
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functional I is more natural than W, indeed the former is conformally invariant (see,

for instance, [37]) while the latter may not be.

Since we deal with isometric immersions, γ is nothing but the pullback of the

metric g, hence we will omit the γ -dependence of I and W (therefore we will only write

I (Σ) and W(Σ)).

In the last five decades, the study of the existence of critical points for these

functionals and their geometric characterization has been the object of a number of

works also due to the connections with other key questions in Geometric Analysis, like

the classification of positive genus minimal surfaces in the round 3-sphere S3 (this link,

inspired by the works of Ros [30] and Urbano [35], was smartly exploited by Marques and

Neves [23] in their proof of the Willmore conjecture), the regularity of complete properly

embedded minimal surfaces in the Hyperbolic 3-space (see the recent paper of Alexakis

and Mazzeo [1]), the study of sharp eigenvalue estimates in relation to the conformal

volume theory by Li and Yau [21], etc.

Starting with the nowadays classical paper of Simon [33], the variational study

of Willmore-type functionals for immersions in the flat Euclidean space Rn has been

extensively carried through, both in terms of existence and of regularity results (we

recall the remarkable results of Kuwert and Schätzle, for instance, [15]). In parallel with

Simon’s ambient approach (involving geometric measure theory), recently Rivière devel-

oped a parametric approach to successfully attach the existence and regularity issues

regarding the Willmore functional (see [31, 32]).

We stress that all the aforementioned existence results concern immersions in

the flat euclidean space Rn (or equivalently, thanks to the stereographic projections and

the conformal invariance of the Willmore functional, for immersions in the round sphere

Sn). Explicit examples of Willmore surfaces, or explicit bounds on the energy of some

special submanifolds, in very symmetric ambient manifolds have been constructed by

several authors (see, for instance, [6, 12, 20, 36], etc.). The existence of Willmore sur-

faces in nonconstantly curved ambient manifolds is a very recent topic started by the

second author in a perturbative setting in [24, 25] (for existence of Willmore surfaces

under area constraint, still in a perturbative setting, see the papers of Lamm and Met-

zger [16, 17] and Lamm et al. [18]). The minimization (i.e., the existence of a minimizer

and the corresponding regularity theory), among smooth immersions of 2-spheres in a

3-manifold, of quadratic curvature functionals of the type
∫ |A|2 and

∫ |H |2 + 1 has been

achieved by the second author in collaboration with Kuwert and Schygulla in [14] (see

also [28] for the noncompact case). Finally, in collaboration with Rivière (see [26, 27]), the

second author developed a parametric approach for studying the regularity of possibly
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branched immersions which are critical points (possibly with constraints) of such cur-

vature functionals in Riemannian manifolds (also of higher codimension), and applied

this theory to the minimization of these functionals among possibly branched immer-

sions of 2-spheres in homotopy groups (see also the paper of Chen and Li [9] for related

results).

Let us remark that all these results in general Riemannian manifolds follow a

minimization scheme; on the other hand, such a method cannot be applied for finding

interesting spherical type critical points of the conformal Willmore functional I defined

in (1). Indeed, given a point p in the 3-manifold M and denoted with Sp,ρ the geodesic

sphere of center p (i.e., the sphere in geodesic coordinates centered at p) and radius

ρ > 0, it is easy to see that I (Sp,ρ) → 0 as ρ → 0. Therefore, the infimum, among smooth

immersions of S2 into M, of the functional I is zero and every minimizing sequence either

collapses to a point or converges, in a suitable sense, to a totally umbilic surface. But

both the situations are not interesting for our purposes: the former is a degeneration

which does not give a geometric object in the limit, while the latter simply may not

happen (and indeed it does not happen in our case, by the result of Souam and Toubiana).

Therefore, in order to study the critical points of the functional I , one could

either perform a min − max scheme or use a perturbative method. The present paper is

related to the second technique, the first one will be studied in a forthcoming work.

Now we can state the main theorem of this paper which answers, in a perturba-

tive setting, the question of the existence of an umbilically best immersion in relation

to the aforementioned obstruction given in [34].

Theorem 1.1. Let gε = g0 + εh be a Riemannian metric on S3 for some analytic, symmet-

ric (0, 2)-tensor h. There exists ε̄ ∈ R>0 such that if ε ∈ (−ε̄, ε̄), then there exist embedded

critical points for the conformal Willmore functional in metric gε

Iε(Σ) = 1

2

∫
Σ

|A◦|2 dμγε
.

More precisely, every Willmore surface we construct is a normal graph over a totally

umbilic sphere of a smooth function wε converging to 0 in C 4,α norm as ε → 0. �

Remark 1.2. It follows from the arguments (as explained in the sequel of this

Introduction) that the critical points we construct are in fact saddle points for Iε. More-

over, a standard bumpy-metric argument shows that (in case (S3, gε) does not have con-

stant sectional curvature) these are generically nondegenerate of index exactly 4. To our
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knowledge, this is the first existence result for embedded Willmore surfaces of saddle

type in a compact (nonconstantly curved) ambient manifold.
�

Let us now briefly describe the logical scheme of the proof and, correspondingly,

the structure of this article. The first basic idea is, loosely speaking, to compare the func-

tional Iε to its unperturbed counterpart I0: indeed, if ε = 0, then we endow S3 with the

round metric g0 and clearly the conformal Willmore functional admits a 4D manifold

of minimum points (where I0 is identically null) which is made of all totally umbili-

cal spheres (Sp,ρ) for p∈ S3 and ρ ∈ (0, π). In fact, thanks to the quantization results by

Bryant [8] (see also the recent paper [19] of Lamm and Nguyen for the branched case)

it is well known that we can separate such manifold: the full moduli space of smooth

immersions of S2 into S3 which are critical points of I0 consists of a countable num-

ber of connected components, the one of minimal I0-energy corresponding to the totally

umbilic 2-spheres in S3 (for which I0 = 0), followed by a second component with a gap of

exactly 12π . As a result, for our purposes we can neglect all higher energy components

and so, from now onwards, let us denote by Z ′ the (closure of the) critical sub-manifold

of I0 where such functional vanishes identically. The perturbation scheme we need to

apply is based on the explicit knowledge of the global topology of the critical manifold

Z ′: unfortunately, if Σ is not oriented, then we cannot simply identify Z ′ with S3 × [0, π ]

since clearly the couples (p, r) and ( p̂, π − r) correspond to the same sphere (where we

have denoted by p̂ the antipodal point of p in S3). Instead, the set Z ′ is diffeomorphic to

BlO D4, namely the real blow-up at the origin of the unit disk D4 ⊆ R4. We recall that

BlO D4 = {(x, l) ∈ D4 × RP3 | x ∈ l},

and that BlO D4 ∼= D4#RP4 so that, as a result, Z ′ is a closed smooth nonorientable man-

ifold with boundary.

Given this fact and in order to avoid unnecessary complications in our proof, we

will therefore consider the same Willmore functional Iε defined on oriented isometri-

cally embedded spheres, so that the critical manifold at minimal energy for I0 (which

we denote by Z ) is diffeomorphic to S3 × [0, π ]. We remark that this choice is not at all

necessary for our arguments to work, yet in the former setting the logical structure of

our proof would considerably lose in terms of conceptual clarity and effectiveness. For

the sake of brevity, we will sometimes refer at Z as a cylinder and its subsets S3 × {0}
and S3 × {π} will be called bases of such cylinder.

Given such manifold Z , our strategy is based on applying a finite-dimensional

reduction of our problem in the spirit of Ambrosetti–Badiale [2, 3] (which in turn is
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based on the classical Lyapunov–Schmidt reduction; for a sketch of the abstract method

see Subsection 2.4, for a more extensive discussion including applications, see [4]; let

us also recall the seminal paper of Ye [39] about geometric applications of perturbative

techniques): namely, we construct a small perturbation Zε of Z which plays the role, for

the functional Iε, of a natural variational constraint in the sense that (interior) critical

points of Iε on Zε are in fact critical points for the unconstrained functional Iε. The

manifold Zε corresponds, in our setting, to small graphical perturbations of the totally

umbilic spheres Sp,ρ : we construct a map wε(p, ρ) that associates, to each point p∈ S3

and radius ρ, a (smooth) function defined over the 2-sphere S2, identified with Sp,ρ . In

fact, in performing this reduction we face a number of technical obstacles. First of all,

the general method by Ambrosetti–Badiale refers to a Hilbert space setting, while in

our case it is convenient to work with w ∈ C 4,α(S2; R) (the equation we need to solve

in order to find critical points of Iε has order 4) and therefore we need to adapt the

construction to our specific setting. The second issue (which is related to the first) is

that the construction of the map wε(·, ·) (see Section 3) requires the second derivative

operator of Iε to be uniformly elliptic, which is true (by Equation (8)) only on relatively

compact subsets of Z̊ 	 S3 × (0, π). As a result, in order to solve our problem by means

of a finite-dimensional reduction we first need to show that we can get rid of suitably

small neighborhoods of the bases of Z . More precisely, we will show that the functional

Iε is strictly increasing for ρ 	 0 (hence, by symmetry, for ρ 	 π ) so that we can apply

the reduction scheme to a suitable closed subcylinder of Z of the form S3 × [δ, π − δ]

for some suitably small δ > 0. A delicate aspect, in doing this, is that we need to find δ

not depending on ε. To this aim, we need to construct (in Section 4) a sort of second

finite-dimensional reduction map (which we will still denote by wε(·, ·)) in order to study

the asymptotics for ρ → 0 of Iε on graphs over the spheres Sp,ρ for very small values of

their radii. In other terms, we show that if Iε has a critical point w̃ which is a graphical

perturbation of a totally umbilic sphere Sp,ρ of small radius, then in fact w̃ = wε(p, ρ)

and at that point we study the behavior, both in ρ and in ε, of the corresponding reduced

functional Iε(Sp,ρ(wε(p, ρ))). This is based on the work performed in [25, Section 3] (where

it is proved that Iε(Sp,ρ(wε(p, ρ))) 	 π
5 ρ4‖ ˚Ric‖2 + Oε(ρ

5)); yet in our setting we do not fix

a given Riemannian metric on S3 and it is crucial for us to obtain estimates that are

uniform in ε, at least for small values of this parameter.

A distinctive feature of our Theorem 1.1, compared with other perturbative

results (like, for instance, [24, 25]), is that the perturbation h is completely arbitrary

in the sense that we do not add any sort of technical nondegeneracy condition. This is

possible thanks to the fact that if the traceless Ricci tensor of gε vanishes identically
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on S3, then gε is homothetic to the round metric; if this is not the case, we can exploit

the fact that all curvature tensors of gε are in fact analytic in ε and hence ˚Ric can be

expanded in ε (with analytic coefficients) and the problem can be suitably reduced to

the fully degenerate case thanks to a quantitative Schur-type argument (we remark that

an integral-quantitative Schur Lemma was proved by De Lellis and Topping [10] in case

of positive Ricci curvature, but our arguments are independent from theirs: indeed on

one hand we work in a perturbative regime, on the other hand we get pointwise esti-

mates). We believe that the method used in this part of the argument is rather new and

interesting in itself.

When the analyticity assumption on gε (or, equivalently, on h) is removed, our

argument still works provided we require that the expansion (in ε) of the traceless Ricci

tensor in nondegenerate at least at some point. This amounts to requiring that the vari-

ation h is not in the kernel of the linearization at the metric g0 of the traceless Ricci

operator. Therefore, we can state the following smooth counterpart of our main result.

Theorem 1.3. Let gε = g0 + εh be a Riemannian metric on S3 for some C ∞ symmetric

(0, 2)-tensor h. There exists ε̄ ∈ R>0 such that if ε ∈ (−ε̄, ε̄), then there exist embedded

critical points for the conformal Willmore functional in metric gε provided h does not

satisfy the following equation:

1
2ΔLh + 1

2LδG(h)� g0 − 1
3 g0(Ricg0 , h) + 1

3 (δ2h)g0 − 1
3Δ(trg0 h)g0 = 0.

Here ΔL denotes the Lichnerowicz Laplace operator, δ is the divergence (with respect to

the metric g0), � is the standard musical isomorphism Γ (T∗M) → Γ (T M) determined by

the metric g0 and we have set G(h) = h − 1
2 (trg0 h)g0.

Moreover, every Willmore surface we construct is a normal graph over a totally

umbilic sphere of a smooth function wε converging to 0 in C 4,α norm as ε → 0. �

Our argument also implies multiplicity results whenever S3 is endowed with left-

invariant metrics with respect to its Lie group structure. Indeed, the manifold S3 can be

identified with the algebraic group

SU(2) = {A∈ M2×2(C) : det(A) = 1, A∗ = A−1}

=
{[

z w

−w̄ z̄

]
: |z|2 + |w|2 = 1

}
.

Now, if G is an analytic Lie group (in fact we know that any C 0 Lie group always admits a

unique analytic structure), then every left-invariant Riemannian metric is itself analytic



Existence of Generalized Totally Umbilic 2-Spheres in Perturbed 3-Spheres 6027

and therefore we are always in position to apply our Theorem 1.1 to left-invariant

metrics on SU(2) without any nondegeneracy constraint. If we combine this fact with

the trivial remark that the action of G = SU(2) on itself is transitive, we obtain the fol-

lowing remarkable consequence.

Corollary 1.4. Let gε = g0 + εh be a left-invariant metric on SU(2) ∼= S3. There exists ε̄ ∈
R>0 such that if ε ∈ (−ε̄, ε̄), then for every p∈ S3 there exists an embedded critical 2-

sphere for the conformal Willmore functional (in metric gε) passing through p. As a

result, under these assumptions the functional Iε has uncountably many distinct critical

points. �

Remark 1.5. We would like to stress that both Theorem 1.1 and Corollary 1.4 can easily

be extended, with almost no change in the proofs, to the case when gε = g0 + hε with h

a perturbation which is analytic in all of its variables and such that hε=0 = 0. Therefore,

it is clear that Corollary 1.4 does in fact apply to any left-invariant metric g on SU(2)

which is sufficiently close to g0. �

Remark 1.6. It is also appropriate to remark that the Berger spheres are indeed a one

parameter family of left-invariant metrics on S3 ∼= SU(2), so that Corollary 1.4 implies

the existence for them of uncountably many generalized totally umbilic 2-spheres, in

sharp contrast with the negative result of Souam and Toubiana asserting that there are

no totally umbilic 2-spheres at all. More generally, our multiplicity result apply to the

subclass of left-invariant metrics G defined by requiring that

g ∈ G ⇒ g(Xi, X j) = δi
jλi for some λ1, λ2, λ3 ∈ R>0,

where

X1 =
[

i 0

0 −i

]
, X2 =

[
0 1

−1 0

]
, X3 =

[
0 i

i 0

]
.

These clearly form a basis of the Lie algebra su(2) of SU(2). Note that the Berger spheres

correspond to the 1-parameter family in G given by choosing λ1 = λ, λ2 = λ3 = 1 and in

that case X1 is tangent to the orbits of the Hopf circle action. �

The paper is structured as follows: in Section 2, we collect some preliminary

results (both concerning perturbation schemes and expansions of curvature tensors), in



6028 A. Carlotto and A. Mondino

Section 3 we construct the manifold Zε, namely the finite-dimensional reduction map

w, in Section 4 we study the sharp asymptotics of the functional Iε for small radii, and

finally we give in Section 5 a detailed proof of Theorem 1.1. The first and second variation

formulas for the conformal Willmore functional, which are recalled in Section 2, are

proved in the appendix at the end of this work.

2 Notation and Preliminary Results

In order to make more concise and readable the key arguments in the proof of

Theorem 1.1, we collect in this section a number of useful results. For each of them,

we will either provide a proof or give the reader an appropriate reference.

2.1 Notation

As anticipated in Section 1, it is convenient for us to consider small perturbations of

the totally umbilic spheres Sp,ρ in S3 of center p∈ S3 and radius ρ ∈ [0, π ]; such per-

turbations are of the form of normal graphs defined over the unit sphere S2 ↪→ R3

(the identification using the exponential map of the appropriate metric gε). Coherently

with [24, 25], we will denote by Θ1 and Θ2 the corresponding coordinate vector-fields

on S2 (induced by the standard polar coordinates on the unit sphere of the Euclidean

space R3). Due to technical reasons (specifically: the need to apply suitable Schauder

estimates), we will take w ∈ C 4,α(S2; R), which is the Banach space of functions whose

fourth-order derivatives with respect to Θi, i = 1, 2, are α-Hölder, for some specific α ∈
(0, 1). Denoted by ΔS2 the Laplace–Beltrami operator on S2, we will often work with the

fourth-order operator ΔS2(ΔS2 + 2), which induces a splitting of the Hilbert space L2(S2)

as follows:

L2(S2) = Ker[ΔS2(ΔS2 + 2)] ⊕ Ker[ΔS2(ΔS2 + 2)]⊥.

We shall then consider C 4,α(S2) as a subspace of L2(S2), hence there is an induced split-

ting as above and we can set

C 4,α(S2)⊥ = C 4,α(S2) ∩ Ker[ΔS2(ΔS2 + 2)]⊥. (3)

We remark that K = Ker[ΔS2(ΔS2 + 2)] is finite-dimensional therefore closed, and

C 4,α(S2)⊥ is itself a Banach space with (the restriction of) the C 4,α-norm. Finally, it is

also convenient to name P : L2(S2; R) → K⊥ the L2-orthogonal projector to K⊥.



Existence of Generalized Totally Umbilic 2-Spheres in Perturbed 3-Spheres 6029

Given a point p∈ S3, ρ ∈ (0, π) and a function w ∈ C 4,α(S2; R) (of suitably small

norm), we are then in position to define a perturbed geodesic sphere, denoted by Sp,ρ(w)

as the image of the map Ψp,ρ,w,ε : S2 → S3

Ψp,ρ,w,ε(Θ) = expp((ρ + w(Θ))Θ), (4)

which is in fact a normal graph over Sp,ρ ↪→ S3. We stress that here expp denotes the

exponential map defined on TpS
3 for a given metric gε = g + εh on S3, not necessarily the

round one (in which case, we will add an explicit remark to our discussion).

Given a∈ N, any expression of the form L(a)
p (w) denotes a linear combination of

w and its derivatives (with respect to Θ1 and Θ2) up to order a. We allow the coefficients

of such combination to depend (smoothly) on p, ρ, and ε, but we require the existence of

a constant C (independent of these) so that

‖L(a)
p (w)‖C k,α(S2) ≤ C‖w‖C k+a,α(S2), k∈ N.

More generally, for b ∈ N, any expression of the form Q(b)(a)
p (w) denotes a polynomial

expression involving monomials of degree at least b, each of these involving w and its

derivatives up to order a. Again, we allow the coefficients to depend on our parameters,

yet we require the existence of absolute constants giving bounds as above and also of

the form

‖Q(b)(a)
p (w2) − Q(b)(a)

p (w1)‖C k,α(S2) ≤ C (‖w2‖C k+a,α(S2) + ‖w1‖C k+a,α(S2))
b−1‖w2 − w1‖C k+a,α(S2),

provided ‖wl‖C a(S2) ≤ 1, l = 1, 2. If the numbers a, b are not specified, we agree that they

equal 4 and 2, respectively.

If x is a real variable and f : I → R is a function of x defined at least on

some neighborhood of zero, we will write f(x) = O(|x|β) (for some β ∈ R>0) in order to

mean that

lim sup
x→0

| f(x)|
|x|β < ∞.

When f depends (smoothly enough) on some other variable, say z, we will use the nota-

tion Oz(|x|β) in order to stress the dependence on z (and, more specifically, to stress the

fact that the remainder might not be uniform in z). In our problem, we need to consider

functionals and functions depending on several parameters, typically p∈ S3, ρ ∈ [0, π ] (or

possibly in a smaller interval) and ε ∈ (−ε∗, ε∗) for some suitably small ε∗ and therefore
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we will often write Op,ρ(ε
β) and Op,ε(ρ

β) whenever an estimate is gotten by freezing some

of the parameters (e.g., p, ρ and p, ε, respectively) and considering the asymptotics with

respect to the other ones.

2.2 Riemannian geometry preliminaries

Given a Riemannian metric g on S3, we will only make use of the associated Levi-Civita

connection ∇ and concerning all the corresponding curvature tensors we will follow the

conventions given, for instance, on the book by Petersen [29]. It is a trivial, yet crucial

remark that if g = g0 + εh, then all curvature tensors are analytic in ε: thus, for |ε| < ε̄

they can be expanded in power series of ε with smooth coefficients if h is, or more gen-

erally of class C k if h is a tensor of class C k+2. Both these statements follow at once from

the local expression of the curvature tensors. In this work, we will mostly be interested

in the Ricci curvature tensor Ricgε
of gε and in its trace-free part ˚Ricgε

:= Ricgε
− 1

3 Rgε
gε

where Rgε
is the scalar curvature of the same metric. Concerning the perturbative expan-

sion of ˚Ricgε
, observe that

‖ ˚Ricgε
‖2 = ε2T (2)

p (h) + o(ε2),

where T (2)
p (h) denotes a nonnegative quadratic expression in the second derivatives of h

and namely (see the statement of Theorem 1.3)

T (2)
p (h) = ( 1

2ΔLh + 1
2LδG(h)� g0 − 1

3 g0(Ricg0 , h) + 1
3 (δ2h)g0 − 1

3Δ(trg0 h)g0)
2.

Moreover, if T (2)
· (h) ≡ 0 identically on S3 (which is a nongeneric condition on the pertur-

bation h), then locally (around any given point) ‖ ˚Ricgε
‖2 =∑

k≥k0
εkT (k)

p (h) for some k0 ≥ 4

and with suitably strong convergence in a (possibly smaller) neighborhood.

2.3 First and second variation formulas

Given p∈ S3 and ρ ∈ (0, π), we state here the first and second variations of the functional

I0 on the totally umbilic spheres Sp,ρ (with the pullback metric γ0 given by the restriction

of g0), the proof being postponed to the appendix.

Lemma 2.1. Let us consider an isometrically immersed surface (Σ, γ ) and a deformation

F : Σ × (−σ, σ ) → S3 such that F (Σ, 0) = Σ and ∂F
∂s (Σ, 0) = uν where ν is the (co-)normal
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vector field of Σ (which is oriented, by assumption) in S3 and u∈ C 4,α(Σ, R). Then, if we

set L to be the Jacobi operator of Σ , namely

Lu= −ΔΣ,γ u− (Ric(ν, ν) + |A|2)u,

we have that:

(1) the first variation formula for I0 is given by

δ I0(Σ)[u] =
∫
Σ

u
[

1

2
L H +

(
H3

4
+ H

)]
dμγ , (5)

hence the first derivative operator is I ′
0(Σ) = 1

2 L H + ( H3

4 + H), and (Σ, γ ) is

Willmore if and only if it satisfies the fourth-order equation L H + ( H3

2 +
2H) = 0;

(2) if (Σ, γ ) = (Sp,ρ, γ0) is a totally umbilic sphere with the corresponding pull-

back metric, then the second variation formula is given by

δ2 I0(Σ)[u1, u2] = (I ′′
0 u1, u2)L2(Σ,γ ) for I ′′

0 (Σ)[u] = 1

2
ΔΣ,γ0

(
ΔΣ,γ0 + H2

2
+ 2

)
u,

(6)

where H = sin(2ρ)

sin2(ρ)
. �

Remark 2.2. For the purpose of the present work, it is convenient to pull back u to

the standard unit sphere S2 (note that in (6) the operator ΔΣ,γ depends on the metric γ

induced on the CMC 2-sphere Σ , while it would be much more convenient to work with

a normalized operator, making the dependence on ρ explicit) and to this aim, we define

the following correspondence:

u∈ C 4,α(Sp,ρ; R)�w ∈ C 4,α(S2; R) : w(Θ) = u(expp(ρΘ)). (7)

For the sake of clarity, let us set f = expp(ρ·) so that one simply has w = u◦ f . Then by

the scaling properties of the Laplace–Beltrami operator (and the Gauss Lemma) we get

ΔΣ,γ u(q) = 1

sin2
(ρ)

ΔS2w( f−1(q)),

and so, as a result, our second derivative operator takes the final form

I ′′
0 [w] = 1

2 sin4
(ρ)

Δ2
S2w + 1

sin2
(ρ)

ΔS2w + sin2
(2ρ)

4 sin6
(ρ)

ΔS2w;
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by the well-known trigonometric identity sin(2ρ) = 2 sin(ρ) cos(ρ), we end up getting

I ′′
0 (Sp,ρ)[w] = 1

2 sin4
(ρ)

ΔS2(ΔS2 + 2)w. (8)

Note that here we are identifying the spaces C 4,α(Sp,ρ; R) and C 4,α(S2; R), so that the

functional I0 is in fact defined on the latter of these (coherently with [24, 25]) and we

will always stick to this convention in the sequel. As a further remark, observe that the

operator I ′′
0 [w] has all the scaling and symmetry properties we might expect and, more

specifically, it is invariant under the map ρ �→ π − ρ, as it must be. �

Remark 2.3. It is easily checked from (8) that the operator I ′′
0 (Sp,ρ) is Fredholm of

index 0; moreover, its kernel K ⊂ L2(S2, R) is given by the linear span 〈1, x1, x2, x3〉, where

x1, x2, x3 are the restrictions of the coordinate functions of R3 to S2 ↪→ R3. �

2.4 Perturbation methods: the Lyapunov–Schmidt reduction

The most basic idea behind our approach is to find critical points of the functional Iε by

applying a finite-dimensional reduction, after which our main theorem will follow by

showing that a certain function of four variables defined on Z has an interior maximum

point. The tool we need is a sort of generalized implicit function theorem, which is usu-

ally referred to as Lyapunov–Schmidt reduction. We recall here its general formulation

(see [2–4] for a wider discussion of the method).

Let H be a Hilbert space and let us consider a suitably smooth functional Jε :

H → R of the form

Jε(u) = J0(u) + εG(u),

for some J0 ∈ C 2(H ; R) which plays the role of the leading term (namely the unperturbed

functional) and where G ∈ C 2(H ; R) is an additive perturbation. Let us assume that J0

has a finite-dimensional smooth manifold of critical points:

Ξ = {ξ ∈ H | J ′
0(ξ) = 0}.

The general idea behind the method is that if J0 satisfies suitable nondegeneracy con-

ditions, then for ε small enough the functional Jε has a finite-dimensional natural

constraint, namely there exists a smooth finite-dimensional manifold Ξε such that the
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critical point of Jε constrained to Ξε is in fact stationary points for Jε. Such nondegen-

eracy conditions are:

(i) for all ξ ∈ Ξ, one has that TξΞ = Ker(J ′′
0 )(ξ);

(ii) for all ξ ∈ Ξ, the second derivative operator J ′′
0 (ξ) is a Fredholm operator of

index 0;

and the precise statement is the following.

Theorem 2.4. Suppose that the functional J0 has a critical manifold of dimension d

and satisfies conditions (i) and (ii) above. Given a compact subset Ξc of Ξ , there exists

ε0 > 0 such that for all ε ∈ (−ε0, ε0) there is a smooth function wε : Ξc → H satisfying the

following three properties:

(1) for ε = 0, it results wε(ξ) = 0, for all ξ ∈ Ξc;

(2) wε(ξ) is orthogonal to TξΞ for all ξ ∈ Ξc;

(3) the manifold Ξε = {ξ + wε(ξ) : ξ ∈ Ξc} is a natural constraint for Jε, by which

we mean that if ξε is a critical point for the function Φε : Ξc → R given by

Φε(ξ) = Jε(ξ + wε(ξ)), then uε = ξε + wε(ξε) is a critical point of Jε. �

Remark 2.5. When applying this method, it is often difficult to characterize the map

w, so that it is in fact necessary to upgrade this scheme showing that under suitable

regularity assumptions on Jε the function wε(ξ) is of order O(ε) uniformly for ξ ∈ Ξc

(possibly depending on some parameters), so that as a result Φ(ξ) = Jε(ξ) + o(ε) and so

it is sufficient to study the perturbed functional Jε on the critical manifold Ξ (which is

typically known). �

3 Finite-Dimensional Reduction of the Problem

In this section, we state and prove the two key lemmas that allow the finite-dimensional

reduction of our problem.

The goal of this work is to solve, for suitably small ε > 0 the Willmore equation

I ′
ε(Sp,ρ(w)) = 0 in w ∈ C 4,α(S2; R). Our ansatz is that in fact we can split this into two

problems, namely ⎧⎨
⎩P I ′

ε(Sp,ρ(w)) = 0,

(IC 0,α(S2;R) − P )I ′
ε(Sp,ρ(w)) = 0,

(9)
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where P : C 0,α(S2; R) → C 0,α(S2; R) is the projection operator defined in Section 2.1, after

Equation (3). In this section, we are concerned with the first of the two, called auxil-

iary equation; as it will be clear in the sequel, this equation is somehow simpler even if

infinite-dimensional. In the next lemma we show, using an implicit function-type argu-

ment, that such equation is solvable at least for suitably small perturbative parameter,

that is, 0 < ε � 1.

Lemma 3.1. For each suitably small δ > 0, there exist ε0 = ε0(δ) and r0 > 0 such that,

for ε ∈ (−ε0, ε0) and ρ ∈ [δ, π − δ], the auxiliary equation P I ′
ε(Sp,ρ(w)) = 0 has a unique

solution wε(p, ρ) ∈ B(0, r0) ⊆ C 4,α(S2; R)⊥. Moreover,

(1) the map wε(·, ·) : S3 × [δ, π − δ] → C 4,α(S2; R)⊥ is C 1;

(2) ‖wε(p, ρ)‖C 4,α(S2;R) = O(ε) uniformly in (p, ρ) ∈ S3 × [δ, π − δ]. �

Proof. Given the first variation formula (5), which has been derived for a generic iso-

metric immersion of (Σ, γ ) into a Riemannian 3-manifold (M, g), it is immediate to note

that in the special case of M = S3 and gε = g0 + εh, then one has

I ′
ε(Sp,ρ(w)) = I ′

0(Sp,ρ(w)) + εG(ε, Sp,ρ(w)), (10)

where G(·, ·) is a smooth function which is uniformly bounded for ε suitably small. It

should be remarked that even though G(ε, ·) is defined on the perturbed sphere Sp,ρ(w) ⊆
S3, it is convenient (with slight abuse of notation) to consider it defined on S2 instead:

this being said, we observe that G is a smooth function of ε,Θ,w, Dw, D2w, D3w, D4w

where D(k)w synthetically denotes the kth order covariant derivatives of the func-

tion w ∈ C 4,α(S2; R). Let us now define the remainder term Rp,ρ(w) = I ′
0(Sp,ρ(w)) −

I ′′
0 (Sp,ρ)[w] so that, thanks to (10), the auxiliary equation we aim at solving takes the

expanded form

P I ′′
0 (Sp,ρ)[w] + P Rp,ρ(w) + εP G(ε, Sp,ρ(w)) = 0. (11)

At this point, in order to turn our problem into a fixed point equation (to be solved

by iterative schemes), we recall that the second derivative operator I ′′
0 (Sp,ρ) given in (8),

takes the form

I ′′
0 (Sp,ρ)[w] = 1

2 sin4
(ρ)

ΔS2(ΔS2 + 2)w.

Observe that, if f ∈ C 0,α(S2, R)⊥ and u∈ C 4,α(S2, R)⊥ solves I ′′
0 (Sp,ρ)[u] = f , then (looking at

I ′′
0 as a composition of two linear bounded second-order elliptic operators and applying
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the Schauder estimates)

‖u‖C 4,α(S2;R) ≤ C‖ f‖C 0,α(S2;R), (12)

for some constant C = C (α, δ). Therefore, I ′′
0 (Sp,ρ)

−1 : C 0,α(S2; R)⊥ → C 4,α(S2; R)⊥ is well

defined as a bounded operator and we can turn (11) into the equivalent fixed point

problem

w = Fε,p,ρ(w) where Fε,p,ρ(w) = −I ′′
0 (Sp,ρ)−1[εP G(ε, Sp,ρ(w)) + P Rp,ρ(w)].

Henceforth, the only issue is to show that, given δ as in our statement, we can find

a threshold ε0 so that for any |ε| < ε0, p∈ S3, and ρ ∈ [δ, π − δ], the map Fε,p,ρ : B(0, r) ⊆
C 4,α(S2; R) → B(0, r) is a contraction (for some r > 0 small, to be determined).

Now, it is convenient to proceed in two steps:

Step 1: we show that there exist positive ε and r so small that Fε,p,ρ(w) maps

the ball B(0, r) ⊆ C 4,α(S2; R) into itself;

Step 2: we show that, possibly by further decreasing ε and r with respect to

Step 1, we have that in fact that Fε,p,ρ(w) acts as a contraction on such ball.

Concerning Step 1, we can make use of the argument given in [24, pp. 605–606]

to show that given δ as above there exists a constant C (δ) such that

‖Fε,p,ρ(w)‖C 4,α(S2;R) ≤ C (δ)‖P I ′′
0 (Sp,ρ)

−1‖(ε + ‖w‖2
C 4,α(S2;R)),

and therefore, given the fact that the right-hand side of the previous inequality is

quadratic in w, we can certainly choose r and ε so that Fε,p,ρ is a selfmapping of B(0, r).

Concerning Step 2, we can make use of [24, Equation (A.7)] (its simple proof can be

repeated verbatim) to get

‖Fε,p,ρ(w2) − Fε,p,ρ(w1)‖C 4,α(S2;R) ≤ C (δ)‖P I ′′
0 (Sp,ρ)−1‖(ε + 2r)‖w2 − w1‖C 4,α(S2;R),

which implies the claim. As a result, we have shown that there exists ε0 such that for |ε| <
ε0 the auxiliary equation P I ′

ε(Sp,ρ(w)) = 0 is uniquely solvable in w. Now, thanks to the

well-known version of the Contraction Mapping Theorem in dependence of parameters

(specifically: [5, pp. 447–449; 7, pp. 22–23]) one proves that wε(p, ρ) is C 0 in (ε, p, ρ) and

C 1 in (p, ρ). Clearly, this implies (just by uniform continuity) that

lim
ε→0

‖wε(p, ρ)‖C 4,α(S2;R) = 0 uniformly for p∈ S3, ρ ∈ [δ, π − δ].
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We need to improve this result to show that in fact ‖wε(p, ρ)‖C 4,α(S2;R) = O(ε) uniformly

on our domain, which would end the proof. To this aim, let us recall from (11) that the

auxiliary equation takes the form

P I ′′
0 (Sp,ρ)[w] + 1

sin4
(ρ)

Q(2)(4)(w) = −εP G(ε, Sp,ρ(w)),

which is more conveniently analyzed after dividing by ε namely in the form

P I ′′
0 (Sp,ρ)

[w

ε

]
+ 1

ε sin4
(ρ)

Q(2)(4)(w) = −P G(ε, Sp,ρ(w)).

Indeed, the right-hand side is uniformly bounded in C 0,α norm for |ε| < ε0 and so the

left-hand side has to be as well, but clearly the second summand is of order strictly

higher than the first (since obviously ‖Q(2)(4)(w)‖C 0,α(S2;R) ≤ C‖w‖2
C 4,α(S2;R)

) and, as a result,

P I ′′
0 (Sp,ρ)[w

ε
] has to be uniformly bounded in C 0,α for ε → 0. Hence, it follows from

Schauder estimates that the function w
ε

is bounded in C 4,α-norm, which is equivalent

to ‖wε(p, ρ)‖C 4,α(S2;R) = O(ε), as we claimed. �

Following the general Lyapunov–Schmidt reduction as our model (as outlined in

Section 2.4), we will now show that Lemma 3.1 determines a natural constraint, in the

sense that the problem of proving existence of (conformal) Willmore surfaces is reduced

to finding critical points of the C 1-function Φε : S3 × [δ, π − δ] → R given by

Φε(p, ρ) := Iε(Sp,ρ(wε(p, ρ))). (13)

Lemma 3.2. Given δ > 0 suitably small, let ε0 and r0 be given as in the statement

of Lemma 3.1 and let Φε, for ε ∈ (−ε0, ε0) be the reduced functional defined above by

Equation (13). Then there exists ε′
0 ∈ (0, ε0) such that if |ε| < ε′

0 and Φε has a critical point

(pε, ρε) ∈ S3 × (δ, π − δ), then Spε,ρε
(wε(pε, ρε)) is a critical point for Iε. �

Proof. By construction, we already know that Spε,ρε
(wε(pε, ρε)) solves the auxiliary

equation

P I ′
ε(Spε,ρε

(wε(pε, ρε))) = 0,

and so we only need to show that the orthogonal component of I ′
ε(Spε,ρε

(wε(pε, ρε))) ∈
L2(S2) vanishes as well, namely that (IL2(S2;R) − P )I ′

ε(Sp,ρ(w)) = 0. To this aim, let us recall
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from Remark 2.3 (based on the explicit formula (8)) that K = Ker[ΔS2(ΔS2 + 2)] is spanned

over R by (the restriction to S2 ⊂ R3 of) constant and affine functions; let us consider

an orthonormal basis {qε
i }i=0,...,3 for K with respect to the L2-inner product, obtained by

normalizing such functions:

q0 = 1√
4π

, qi =
√

3

4π
xi for i = 1, 2, 3.

Let us then decompose I ′
ε(Spε,ρε

(wε(pε, ρε))) with respect to this basis:

I ′
ε(Spε,ρε

(wε(pε, ρε))) =
4∑

i=1

Ai,εqi, Ai,ε = (I ′
ε(Spε,ρε

(wε(pε, ρε))), qi)L2(S2),

so that the assertion we need to prove reduces to showing that Ai,ε = 0 for i = 0, 1, 2, 3.

To that aim let us make explicit the condition that (pε, ρε) is a stationary point for Φε:

[
∂Φε

∂ρ

]
(pε, ρε) = 0,

[
∂Φε

∂pi

]
(pε, ρε) = 0,

where ∂
∂pi

is computed in local coordinates around pε (and, specifically, by taking

geodesic normal coordinates centered at pε so that S3 \ p̂ε is identified with R3). For

brevity, let us refer from now onwards to the variable ρ as p0 so that ∂
∂p0

will stand for

∂
∂ρ

(this allows to use a unified notation). Moreover, let us set c0 = √
4π and ci =

√
4π
3 for

i = 1, 2, 3. Therefore, we have

0 = dIε(Spε,ρε
(wε(pε, ρε)))[X

(i)] for i = 0, 1, 2, 3,

where X(i) is the variation vector field (with respect to pi) of (Spε,ρε
(wε(pε, ρε))). We can

decompose each of these vector fields (which are sections, defined over Spε,ρε
(wε(pε, ρε))

of the tangent bundle TS3) into their tangential and normal component: namely, if ν

is an (outward-pointing) co-normal vector field along Spε,ρε
(wε(pε, ρε)) and τ1, τ2 are a

local orthonormal basis to the tangent space of the same sphere, we can write X(i) =
X(i)

1 τ1 + X(i)
2 τ2 + X(i)

n ν. Now clearly dIε(Spε,ρε
(wε(pε, ρε)))[X

(i)
l τl ] = 0, for i = 0, 1, 2, 3 and l =

1, 2 because the tangential components of X(i) only determine a re-parameterization of

the same sphere Spε,ρε
(wε(pε, ρε)). Therefore, we can reduce our analysis to the normal

component, for which we have

(I ′
ε(Spε,ρε

(wε(pε, ρε))), X(i)
n )L2(Spε ,ρε (wε(pε,ρε))) = 0 for i = 0, 1, 2, 3. (14)
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At this stage, using the fact that ‖wε(p, ρ)‖C 4,α(S2) = Oρ(ε) for ε → 0 (which was proved

in Lemma 3.1) and recalling Equation (4), namely Ψp,ρ,w,ε(Θ) = expp((ρ + w(Θ)Θ)), we

get that

X(i)
n (Ψp,ρ,w,ε(Θ)) = ciqi + ∂

∂pi
(wε(p, ρ)(Θ)) + Oρ(ε), i = 0, 1, 2, 3, (15)

with the remainder term uniformly bounded for ρ ∈ [δ, π − δ], as it is in our case. In order

to check this, one needs to proceed quite differently for the i = 0 and the i = 1, 2, 3 cases.

For the former, one starts by noticing that (thanks to the chain-rule and by linearity of

the differential):

∂Ψ

∂p0
= ∂Ψ

∂ρ
= (D expp)(ρ+w(Θ))Θ

(
Θ + ∂w

∂ρ
Θ

)

= (D expp)(ρ+w(Θ))Θ(Θ) + ∂w

∂ρ
(D expp)(ρ+w(Θ))Θ(Θ),

and the claim easily follows combining the Gauss Lemma together with the fact that Θ

belongs, by definition, to the unit sphere in TpS
3. When i ≥ 1, one has to consider the

exponential map as a function of the basepoint as well: the conclusion (Equation (15))

is achieved by observing that, for the round metric on S3, the normal component of ∂Ψ
∂pi

trivially equals xi and recalling that ‖wε(p, ρ)‖C 4,α(S2) = Oρ(ε) for ε → 0.

Hence, going back to (14) and using (15), it follows that

0 = sin2
(ρε)

⎡
⎣ci Ai,ε +

3∑
j=0

Aj,ε

(
qj,

∂

∂pi
(wε(pε, ρε))

)
L2(S2)

⎤
⎦+ Oρ(ε), i = 0, 1, 2, 3. (16)

Since the system above for Ai,ε, i = 0, 1, 2, 3 is homogeneous, the claim will follow from

showing that the 4 × 4 matrix given by sin2
(ρε)[ciδi j + (qj,

∂
∂pi

(wε(pε, ρε)))L2(S2)] + Oρ(ε) is

nonsingular. From the conditions (wε(pε, ρε), qi)L2(S2) = 0, by differentiating with respect

to ρ and pi for i = 1, 2, 3, we get that

(
∂

∂pi
wε(pε, ρε), qj

)
L2(S2)

+
(

wε(pε, ρε),
∂qj

∂pi

)
L2(S2)

= 0,

and hence, recalling once again that ‖wε(pε, ρε)‖C 4,α(S2) = Oρ(ε) we obtain that also

( ∂
∂pi

wε(pε, ρε), qj)L2(S2) = Oρ(ε). As a result, possibly taking ε′
0 smaller than ε0 if ε ∈ (−ε′

0, ε
′
0)

the determinant of this matrix is not zero and so system (16) forces Ai,ε = 0 for i =
0, 1, 2, 3 which is what we had to prove. �
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4 Small Radii Sharp Asymptotics

Recall that the reduction performed in the previous section, in particular in Lemma 3.1,

was done for technical reasons on S3 × [δ, π − δ] for any δ > 0. The goal of the present

section is to understand what happens at the boundary of the critical manifold Z =
S3 × [0, π ]; as anticipated in Section 1, we need a different method to extend the reduc-

tion suitably till the bases of such cylinder, where the spheres degenerate to points. To

this aim, the strategy is essentially to fix the parameter ε (in a suitably small neigh-

borhood of zero) and to use the radius ρ as perturbative parameter. This construction

follows directly from some results proved in [25] about the expansion of the functional

I on suitably small perturbed geodesic spheres in a given Riemannian 3-manifold (M, g)

(which happens to be, in our case (S3, gε = g + εh)). The real issue is then to show that

the reduction corresponding map wε(p, ρ) is sufficiently smooth in all its parameters

(and, specifically, in ε), since this is needed to give an upper bound (involving both ε and

ρ together) for Iε on such perturbed spheres. Note that, due to the uniqueness part in

the statement of both Lemmas 3.1 and 4.1, the two construction can be glued together

and give a global reduction map. Concerning the functional analytic setting, and specif-

ically concerning the definition of the subspace C 4,α(S2; R)⊥ the reader is referred to

Section 2.1.

Lemma 4.1. There exist ε1, ρ1 > 0, r1 > 0 and a C 1 map wε(·, ·) : [−ε1, ε1] × S3 × [0, ρ1] →
C 4,α(S2; R)⊥, (ε, p, ρ, ) �→ wε(p, ρ) such that if Sp,ρ(w) is a critical point of the conformal

Willmore functional Iε (for some ε ∈ (−ε1, ε1)) with (p, ρ,w) ∈ S3 × [0, ρ1] × B(0, r1), then

w = wε(p, ρ). Moreover, the following properties are satisfied:

(1) for any p∈ S3, the map (ε, ρ) �→ wε(p, ρ) is C ∞;

(2) ‖wε(p, ρ)‖C 4,α(S2;R) = Oε(ρ
3) as ρ → 0 uniformly for p∈ S3;

(3) ‖ ∂
∂ρ

wε(p, ρ)‖L2(S2;R) = Oε(ρ
2) uniformly for p∈ S3;

(4) one has that

∥∥∥∥wε(p, ρ) +
(

− 1

12
ρ3 Ricp(Θ,Θ) + 1

36
ρ3 R(p)

)∥∥∥∥
C 4,α(S2;R)

= Oε(ρ
4) as ρ → 0;

(5) one has that ‖wε‖C 4,α(S2) = O(ε) uniformly for (p, ρ) ∈ S3 × [0, ρ1], namely there

exists a constant C = C (g0, ε1, ρ1) such that ‖wε‖C 4,α(S2) ≤ C ε. �

Proof. The construction of this map was performed, for a fixed Riemannian metric

g in [25, Lemma 3.10]. Here, we need to show that the map is smooth in the couple
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(ε, ρ) and that estimate (5) holds. Concerning the first assertion, let us recall from [25,

Proposition 3.9] the explicit expansion of the first derivative of the conformal Willmore

functional (the same result could be easily deduced from Section 2.3):

I ′
ε(Sp,ρ(w)) = 1

2ρ4
ΔS2(ΔS2 + 2)w + 1

ρ

[
Op,ε(ρ

0) + 1

ρ2
L(4)

p (w) + 1

ρ4
Q(2)(4)

p (w)

]
.

It is convenient to perform a change of variable calling w̃ := ρ−3w, so that the equation

above can be rewritten as

ρ I ′
ε(Sp,ρ(ρ3w̃)) = 1

2ΔS2(ΔS2 + 2)w̃ + Op,ε(ρ
0) + L(4)

p (w̃) + ρQ(2)(4)
p (w̃). (17)

It is easily checked from the (relatively straightforward) computation leading to (17),

that all terms on the right-hand side are smooth (i.e., C ∞) in the triple (ε, p, ρ). Let us

then fix a point p∈ S3 and consider the map Fp given by

Fp : [−ε1, ε1] × [0, ρ1] × C 4,α(S2)⊥ → C 0,α(S2)⊥, Fp(ε, ρ, w̃) = ρP I ′
ε(Sp,ρ(ρ3w̃)),

so that we want w̃ = w̃ε(p, ρ) to be the function implicitly defined by the equation

Fp(ε, ρ, w̃) = 0. Indeed, for ε = ρ = 0 we get that (directly from (17) by projecting through

P ) Fp(0, 0, 0) = 0 and moreover if we take the derivative ∂Fp

∂w̃
(0, 0, 0) (in the appropriate

sense of Banach Calculus), we obtain

∂Fp

∂w̃
(0, 0, 0) = 1

2
ΔS2(ΔS2 + 2),

which is invertible from C 4,α(S2)⊥ to C 0,α(S2)⊥. As a result, we get that (for that fixed

point p∈ S3) there exist positive constants εp, ρp so that (ε, ρ) → w̃ε(p, ρ) is smooth, for

ε ∈ (−εp, εp) and ρ ∈ (−ρp, ρp). Thanks to the Implicit Function Theorem for functional

depending on parameters (see, for instance, [7]) and the compactness of S3 we get a

global C 1 map w := ρ3w̃, which coincides (thanks to the local uniqueness property in

both constructions) with the map defined in [25, Lemma 3.10]. Assertions (2)–(4) follows

then directly from [25, Lemma 3.10] (note the difference in the notation of w: what we

call here w was called −ρw in [25]; this explains the apparently different statements).

Concerning estimate (5), we can argue as follows. Given p∈ S3 and ρ ∈ [0, ρ1], let

us consider the first-order Taylor expansion

wε(p, ρ) = w0(p, ρ) + ε
∂wε

∂ε ε=ξε

(p, ρ),
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for some ξε ∈ (0, ε); hence, again by a local uniqueness argument we must have w0(p, ρ) =
0 (since totally umbilic spheres are trivially critical points for the conformal Willmore

functional). It follows that

‖wε(p, ρ)‖C 4,α(S2) ≤ ε max
ε∈[−ε1,ε1]

∥∥∥∥∂wε(p, ρ)

∂ε

∥∥∥∥
C 4,α(S2)

,

but now it is enough to observe that the composite map [−ε1, ε1] × S3 × [0, ρ1] →
C 4,α(S2; R)⊥ → R given by ‖ ∂wε(p,ρ)

∂ε ε=0
‖C 4,α(S2) is C 0 and is defined on a compact space, so

that it attains a finite maximum value and this implies the claim. �

These results being given, we analyze the asymptotics (in ρ, but depending on

the parameter ε) of the conformal Willmore functional.

Lemma 4.2 ([25, Proposition 3.11], improved). Let ε1, ρ1 be given by Lemma 4.1 and

let p∈ S3, ρ ∈ [0, ρ1], and ε ∈ [−ε1, ε1]. For gε = g0 + εh, the expansion of the conformal

Willmore functional on perturbed geodesics spheres Sp,ρ(wε(p, ρ)) (determined by the

previous Lemma 4.1) is

Iε(Sp,ρ(wε(p, ρ))) = π

5
‖ ˚Ricgε

(p)‖2ρ4 + Ω(ε, ρ),

with

|Ω(ε, ρ)| ≤ C ε2ρ5 for ε < ε1 and ρ < ρ0,

for some constant C ∈ R>0 that can be chosen independently of ε and ρ. �

From Subsection 2.2, we know that ‖ ˚Ricgε
(p)‖2 = ε2T (2)

(p) (h) + o(ε2) (where T (2)
p (h) is

a nonnegative quadratic function in the second derivatives of h, as we specified above),

so we get that

Iε(Sp,ρ(wε(p, ρ))) = π

5
T (2)

p (h)ε2ρ4 + o(ε2)ρ4 + Ω(ε, ρ), (18)

which will be crucial in the sequel of this work.

Proof. Thanks to statement (5) of Lemma 4.1, we obtain that

Iε(Sp,ρ(wε(p, ρ))) = Op,ρ(ε
2) uniformly forρ < ρ0, p∈ S3. (19)

Indeed, let us first Taylor expand in the perturbative parameter ε to get

Iε(Sp,ρ(wε(p, ρ))) = I0(Sp,ρ(wε(p, ρ))) + εG1(Sp,ρ(wε(p, ρ))) + ε2G2(Sp,ρ(wε(p, ρ))) + op,ρ(ε2),
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and then let us expand in w = wε(p, ρ) the first two summands above

I0(Sp,ρ(wε(p, ρ))) = I0(Sp,ρ) + I ′
0(Sp,ρ)[wε(p, ρ)] + 1

2 I ′′
0 (Sp,ρ)[wε(p, ρ), wε(p, ρ)] + op,ρ(ε2),

G1(Sp,ρ(wε(p, ρ))) = G1(Sp,ρ) + G ′
1(Sp,ρ)[wε(p, ρ)] + op,ρ(ε).

Now, using statement (5) of Lemma 4.1 repeatedly we see that all terms are (at least)

uniformly quadratic in ε apart from I0(Sp,ρ), I ′
0(Sp,ρ)[wε(p, ρ)], and G1(Sp,ρ) which are all

exactly zero and so (19) follows (I0(Sp,ρ) and I ′
0(Sp,ρ) are clearly null on the totally umbilic

spheres, the computation of G1(Sp,ρ) is analogous to the proof of [25, Lemma 4.6]). At this

point, let us recall from [25, Proposition 3.11] that in fact we already know that

Iε(Sp,ρ(wε(p, ρ))) = π

5
T (2)

p (h)ε2ρ4 + op(ε
2)ρ4 + Ω(ε, ρ), Ω(ε, ρ) = Op,ε(ρ

5), (20)

so that, by comparison with (19) we obtain that

Ω(ε, ρ) = Op,ε(ρ
5) = Op,ρ(ε

2) − π

5
T (2)

p (h)ε2ρ4 − op(ε
2)ρ4.

At this point, let us first observe that Ω(ε, ρ) ∈ C ∞((−ε1, ε1) × (−ρ1, ρ1)) because all other

terms in (20) have this degree of regularity (the left-hand side as a consequence of the

previous Lemma 4.1, and the term op(ε) because it is a remainder term in the expansion

of the traceless Ricci tensor at p, hence it does not depend on ρ, while it depends ana-

lytically on ε). Therefore, our claim comes from the following elementary lemma, whose

easy proof (based on a Taylor expansion) is omitted.

Lemma 4.3. Given x∗, y∗ ∈ R>0, let f ∈ (C h+k([−x∗, x∗] × [−y∗, y∗]); R) such that

f(x, y) = Ox(|y|k) for y→ 0

and

f(x, y) = Oy(|x|h) for x → 0.

Then there exists a constant M ∈ R>0 such that | f(x, y)| ≤ M|x|h|y|k for all x ∈ [−x∗, x∗]

and y∈ [−y∗, y∗]. ��

5 Proof of Theorem 1.1

In this section, we give a short and direct proof of the main theorem stated in Section 1

which makes use of the various auxiliary tools developed above.
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Proof. Let ˚Ricgε
(p) be the traceless Ricci tensor of the Riemannian manifold (S3, gε =

g0 + εh) and let us recall from Subsection 2.2 that, due to the analyticity in ε of all

curvature tensors, we have a local expansion of the form

‖ ˚Ricgε
(p)‖2 =

∑
k≥k0

εkT (k)
p (h),

for some k0 ≥ 2 depending on p. There are three distinct (and disjoint) cases we need to

consider:

(I) there exists a point p̄∈ S3 such that k0( p̄) = 2, namely T (2)
p̄ (h) �= 0;

(II) for all points p∈ S3, one has T (2)
p (h) = 0 but there exists p̄∈ S3 such that

T (k)
p̄ (h) �= 0, for some k≥ 3;

(III) the traceless Ricci tensor vanishes identically on (S3, gε).

We now develop the proof separately for each of these three cases.

Case III: the fully degenerate case. First of all, note that for any h as in the

statement of the theorem we can find a constant εIII such that for ε ∈ (−εIII, εIII) the (0, 2)

tensor gε = g0 + εh actually defines a Riemannian metric. The assumption ˚Ricgε
≡ 0 can

be restated as

Ricgε
= 1

3 Rgε
gε,

so the metric gε is Einstein and hence, by the Schur Lemma, it has constant scalar cur-

vature. As a result, the Ricci tensor is parallel and gε has constant sectional curvature

(see, for instance, [29, p. 38]). It follows that (S3, gε) is homothetic (namely: isometric

modulo scaling) to S3 and so the result is trivial (in fact, in this case there is a 4D mani-

fold of critical points for the conformal Willmore functional given by the totally umbilic

spheres in S3).

Case I: the nondegenerate case. Let ε1, ρ1 be given by Lemma 4.1. Using the

assumption T (2)
p̄ �= 0 together with Lemma 4.2, observe that we can choose ε2 ∈ (0, ε1] and

ρ2 ∈ (0, ρ1] such that for every ε ∈ [−ε2, ε2] we have

max
S3×([0,ρ2]∪[π−ρ2,π ])

Iε(Sp,ρ(wε(p, ρ))) <
maxS3×[0,π ] Iε(Sp,ρ(wε(p, ρ)))

2
. (21)

As a second step, let us set εI = min{ε′
0, ε2} (where ε′

0 is given by Lemma 3.2, applied

with δ = ρ2) and ρ̄ = ρ2/2. Now, let Φε be the corresponding finite-dimensional reduced

functional, namely let us set for a fixed value ε < ε̄

Φε : S3 × [ρ̄, π − ρ̄] → R, Φε(p, ρ) = Iε(Sp,ρ(wε(p, ρ))).
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By compactness, Iε has (at least) a maximum point ( p̄, r̄) ∈ S3 × [ρ̄, π − ρ̄] and, from (21)

and the definition of ρ̄ as ρ2/2, this must be an interior maximum point. As a result,

by the naturality of the constraint (Lemma 3.2), we conclude that correspondingly

Sp,ρ(wε( p̄, ρ̄)) is a critical point for the functional Iε. Namely, this graph gives a con-

formal Willmore surface in the perturbed metric gε. By construction, such submanifold

is a saddle point of Iε of index 4, yet a possibly degenerate one.

Case II: the degenerate case. This is the most delicate case, and our strategy

is to reduce ourselves to Case III by applying a quantitative version of the (classical)

Schur Lemma. Indeed, let us suppose that the traceless Ricci tensor has no second-

order term in the ε-expansion at any point and let k0 > 2 be the minimum integer such

that T (k0)
p (h) �= 0 for some p∈ S3. Incidentally, observe that k0 must be even and hence,

since ‖ ˚Ricgε
‖2 is positive definite, at least equal to 4. Let us also denote by p̄ a point

(which will be fixed from now onwards) where T (k0)
p̄ (h) �= 0, so that

‖ ˚Ricgε
‖2 = εk0

⎛
⎝T (k0)(h) +

∞∑
j=1

ε jT (k0+ j)(h)

⎞
⎠ at all points. (22)

Starting from the identity

Ric = ˚Ric + 1
3 Rg

(which we are going to apply for g = gε) and taking the divergence of both left- and right-

hand sides, we get

δ(Ric) = δ( ˚Ric) + 1
3 dR,

so that, by means of the contracted Bianchi identity dR= 2 δ(Ric), we have

dR= 6 δ( ˚Ric). (23)

Now, given any point q ∈ S3 let us choose a length-minimizing geodesic connecting p̄ to

q (in the corresponding Riemannian metric g = gε): if we integrate Equation (23) along

that path, using our assumption (22), we obtain

Rε(q) = Rε( p̄) + εk0/2Λε(q), (24)
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for some smooth function Λε on S3. At this point, we can exploit (24) to get information

on the full curvature tensor of (S3, gε). Indeed, let us recall the Ricci decomposition

Riem = R

2n(n− 1)
g · g + 1

n− 2

(
Ric − R

n
g
)

· g + W,

where · stands for the Kulkarni–Nomizu product of two symmetric 2-tensors and W is

the Weyl tensor (see, for instance, [11, p. 182]); for n= 3, the Weyl tensor vanishes and

therefore the previous reduces to

Riem = R

12
g · g + ˚Ric · g. (25)

Making use of our assumption (22) and its consequence (24) into (25), we get that

Riemgε
= Rgε

( p̄)

12
gε · gε + εk0/2R̃iemε, (26)

for a suitable (0,4) curvature-type tensor R̃iemε. Set r(ε) =
√

6
Rε( p̄)

, observe that (S3, gε)

is locally isometric (then globally isometric since they are diffeomorphic) to an εk0/2-

perturbation of the round sphere of radius r(ε), namely we can write

gε = r2(ε)g0 + εk0/2h̃, (27)

for some analytic, symmetric (0,2)-tensor h̃. Indeed, it is well known (see, for instance,

[38, pp. 90–92]) that given a point q ∈ M = S3 and denoted by x1, x2, x3 normal coordinates

centered at q we can express an analytic metric g as a convergent power series with

coefficients only depending on the curvature tensor and its covariant derivatives at the

point q:

grs(x) = δrs +
∞∑

n=2

3∑
i1,i2,...,in=1

E (n)
r,s,i1i2···in(Riem)xi1 xi2 · · · xin, (28)

where for each n≥ 2 the coefficient E (n) consists of a finite number of summands, each

one being the evaluation at q of a term of the form

∇αi1 Riem ∗ ∇αi2 Riem ∗ · · · ∗ ∇αimn Riem for someαi j ∈ N≥0 satisfying
mn∑
j=1

(αi j + 2) = n.

(29)
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The first terms in such expansion are well known:

grs = δrs − 1

3

3∑
i, j=1

Rirjs(q)xixj − 1

6

3∑
i, j,k=1

∇i Rjrksx
ixjxk

+ 1

120

3∑
i, j,k,l=1

⎧⎨
⎩−6∇2

i j Rkrls + 16

3

3∑
f=1

Rirj f Rksl f

⎫⎬
⎭ (q)xixjxkxl + · · · .

Now, if we compute such expansion for a metric homothetic to g0 (specifically of the

form r2(ε)g0) and for our metric gε (just based on the estimate (26) and compare them, we

immediately get that relation (27) holds provided we set

h̃rs =
∞∑

n=2

3∑
i1,i2,...,in=1

E (n)
r,s,i1i2···in(R̃iemε)x

i1 xi2 · · · xin (30)

= −1

3

3∑
i, j=1

(R̃iemε)ir jsx
ixj − 1

6

3∑
i, j,k=1

∇gε

i (R̃iemε) jrksx
ixjxk + · · · . (31)

By our analyticity assumption, this series converges on a ball of suitable radius and

hence it is easy to check that it determines a well-defined symmetric (0,2)-tensor h̃.

At this point, let us consider Equation (27): if we expand in ε both left-hand

side (gε = g0 + εh) and right-hand side and compare the two we get that it implies the

existence of two real numbers c, c̃ ∈ R (independent of ε) so that

h= cg0, h̃= c̃g0.

In fact, c and −c̃ are just the coefficients of order 1 and k0/2, respectively, in the ε-

expansion of the function r2(ε). Clearly, the first of these two relations imply that in fact

such gε should be totally degenerate (in the sense of Case III), which is a contradiction.

Therefore, the proof of the assertion follows from the arguments we gave for

Case I and Case III. �

Remark 5.1. Concerning our Remark 1.5 at the end of Section 1, we need to indicate how

to modify the argument above in order to treat the more general case when gε = g0 + hε

with hε analytic in all of its variables. In that case the proof is exactly the same, with the

only substantial difference that Case II cannot, in general, be reduced to Case III based

on equation (27). Instead, after the deduction of (27) we simply need to observe that Case

II can be reduced to Case I: we can recover all our auxiliary estimates (and, specifically,
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Lemma 4.2) replacing ε by εk0/2/r(ε)2 (recall that r(ε) 	 1 and k0 ≥ 4) and we can complete

the proof following the very same argument used in the nondegenerate Case I treated

above. �
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Appendix

We give here the proof of Lemma 2.1 stated in Section 2.3.

Let us briefly recall the setting: (Σ, γ ) is an isometrically immersed surface, and

F : Σ × (−σ, σ ) → S3 is a smooth variation such that F (Σ, 0) = Σ and ∂F
∂s (Σ, 0) = uν, where

ν is the (co-)normal vector field of Σ in S3 and u∈ C 4,α(Σ) (concerning the geometric

quantities we follow the notation of [13, 18]).

Proof. Concerning the first variation, we just need to recall the well-known formulas:

dμγ

∂s
= uHdμγ ,

∂ H

∂s
= Lu, (A.1)

where evaluation at s = 0 is tacitly assumed and L is the Jacobi operator of Σ , namely

Lu= −ΔΣ,γ u− (Ric(ν, ν) + |A|2)u (A.2)

(note the sign convention, which might be not entirely conventional). As a result

δ I0(Σ) = ∂

∂s s=0

∫
Σs

(
H2

4
+ 1

)
dμγ =

∫
Σ

[
1

2
H Ludμγ +

(
H2

4
+ 1

)
uH

]
dμγ ,
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and hence, integrating by parts

δ I0(Σ) =
∫
Σ

u
[

1

2
L H +

(
H3

4
+ H

)]
dμγ .

Correspondingly, (conformal) Willmore surfaces are defined by (weakly) satisfying the

fourth-order equation

L H + 2
(

H3

4
+ H

)
= 0. (A.3)

Concerning the second variation, we have

δ2 I0(Σ) =
∫
Σ

∂

∂s s=0

[
1

2
L H +

(
H3

4
+ H

)]
udμγ

+
∫
Σ

[
1

2
L H +

(
H3

4
+ H

)](
∂u

∂s
+ Hu2

)
s=0

dμγ ,

which reduces, for any critical point of the conformal Willmore functional I0 to

δ2 I0(Σ) =
∫
Σ

∂

∂s s=0

[
1

2
L H +

(
H3

4
+ H

)]
udμγ .

In order to proceed further, let us set

Iu= ∂

∂s s=0

[
1

2
L H +

(
H3

4
+ H

)]
,

and observe that

I(u) = −1

2

[
∂

∂s
,ΔΣ,γ

]
H + 1

2
LLu− 1

2
H

∂

∂s
Ric(ν, ν) − 1

2
H

∂|A|2
∂s

+
(

3

4
H2 + 1

)
Lu, (A.4)

where [T1, T2] denotes the commutator of two (suitably regular) scalar operators. At this

point, we can make use of the computations done in [18, Section 3] namely

∂

∂s
Ric(ν, ν) = u∇ν Ric(ν, ν) − 2 Ric(∇u, ν), (A.5)

∂

∂s
|A|2 = −2utrA3 − 2Aij∇i∇ ju− 2uAijTij, (A.6)

[
∂

∂s
,ΔΣ,γ

]
z= Hg(∇u,∇z) − ug(∇z,∇H) − 2A(∇u,∇z) − 2uRic(∇z, ν) − 2ug(A,∇2z),

(A.7)

where we set Tij = Rici j + G(ν, ν)γi j, with G = Ric − (R/2)g the (ambient) Einstein tensor.
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Since we are interested in computing the second variation on totally umbilic

spheres Sp,ρ in (S3, g0), we have the following simplifications: ∇Ric(ν, ν) = 0, A◦
i j ≡ 0, and

the mean curvature is constant (depending on ρ). Plugging (A.5)–(A.7) in (A.4), we obtain

Iu= 1

2
LLu+ HRic(∇u, ν) + H [utrA3 + g(A,∇2u) + ug(A, T)] +

(
3

4
H2 + 1

)
Lu.

Writing A= A0 + 1
2 Hγ and using the formulas computed at [18, p. 14], we finally get

Iu= 1

2
LLu+

(
H2

4
+ 1

)
Lu+ H, Ric(ν,∇u).

Moreover, thanks to the identity divA0 = 1
2∇H + Ric(ν, ·)� it follows that Ric(ν,∇u) = 0

for any variation u∈ C 4,α(Sp,ρ) so that the previous formula simplifies and, as a result,

the second derivative operator for I0 at Sp,ρ is given by (6), namely

I ′′
0 [u] = 1

2
L2u+

(
H2

4
+ 1

)
Lu. (A.8)

Observing that I ′′
0 is L2-selfadjoint we can write the associated second variation as

d2 I0(u1, u2) = (I ′′
0 u1, u2)L2(Σ,γ ).

In order to make these formulas totally explicit, we need to compute the terms

Ric(ν, ν) and |A|2 for any totally umbilic 2-sphere Sp,ρ . Clearly, the round metric g0 on S3

is Einstein, so that obviously Ric = S
3 g0 where S is the corresponding scalar curvature,

which is exactly equal to 6 for the unit sphere, so that Ric(ν, ν) = 2 at all points of each

of the spheres Sp,ρ . Concerning the other terms, in a principal orthonormal frame at a

given point one has

A=
(

H/2 0

0 H/2

)
,

so that |A|2 = H2

2 and the computation reduces to determining the mean curvature H of

Sp,ρ . To that aim, one can then use the first variation formula for the area functional, and

easy computations give

H = sin(2ρ)

sin2
(ρ)

so that |A|2 = sin2
(2ρ)

2 sin4
(ρ)

. (A.9)

Note that for ρ → 0+, one has H 	 2/ρ and |A|2 	 2/ρ2.
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At this point, starting from (A.8) we can perform simple algebraic computations

to write the second variation as

I ′′
0 [u] = 1

2
Δ2

Σ,γ u+ 1

4
H2ΔΣ,γ u+ ΔΣ,γ u= 1

2
ΔΣ,γ

(
ΔΣ,γ + H2

2
+ 2

)
u.

We complete the proof of Lemma 2.1 by replacing H with its explicit expression for Sp,ρ

given in (A.9). �
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Linéaire, to appear.

[29] Petersen, P. Riemannian Geometry, 2nd ed. Graduate Texts in Mathematics 171. Berlin:

Springer, 2006.

[30] Ros, A. “The Willmore conjecture in the real projective space.” Mathematical Research Let-

ters 6, no. 5 (1999): 487–93.

[31] Rivière, T. “Analysis aspects of Willmore surfaces.” Inventiones Mathematicae 174, no. 1

(2008): 1–45.

[32] Rivière, T. “Variational principles for immersed surfaces with L2-bounded second funda-

mental form.” Journal für die Reine und Angewandte Mathematik (Crelle’s Journal), to

appear.



6052 A. Carlotto and A. Mondino

[33] Simon, L. “Existence of surfaces minimizing the Willmore functional.” Communications in

Analysis and Geometry 1, no. 2 (1993): 281–325.

[34] Souam, R. and E. Toubiana. “Totally umbilic surfaces in homogeneous 3-manifolds.” Com-

mentarii Mathematici Helvetici 84, no. 3 (2009): 673–704.

[35] Urbano, F. “Minimal surfaces with low index in the three-dimensional sphere.” Proceedings

of the American Mathematical Society 108, no. 4 (1990): 989–92.

[36] Wang, P. “On the Willmore functional of 2-tori in some product Riemannian manifolds.”

Glasgow Mathematical Journal 54, no. 3 (2012): 517–28.

[37] Weiner, J. L. “On a problem of Chen, Willmore, et al.” Indiana University Mathematics Jour-

nal 27, no. 1 (1978): 19–35.

[38] Willmore, T. J. Riemannian Geometry. Oxford Science Publications. Oxford: Oxford Univer-

sity Press, 1993.

[39] Ye, R. “Foliation by constant mean curvature spheres.” Pacific Journal of Mathematics 147,

no. 2 (1991): 381–96.


	Introduction
	Notation and Preliminary Results
	Notation
	Riemannian geometry preliminaries
	First and second variation formulas
	Perturbation methods: the Lyapunov--Schmidt reduction

	Finite-Dimensional Reduction of the Problem
	Small Radii Sharp Asymptotics
	Proof of Theorem 1.1
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG2000
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG2000
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages true
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 175
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


