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We provide a ‘user guide’ to the literature of the past twenty years concerning
the modelling and approximation of discontinuous solutions to nonlinear hy-
perbolic systems that admit small-scale dependent shock waves. We cover sev-
eral classes of problems and solutions: nonclassical undercompressive shocks,
hyperbolic systems in nonconservative form, and boundary layer problems.
We review the relevant models arising in continuum physics and describe the
numerical methods that have been proposed to capture small-scale dependent
solutions. In agreement with general well-posedness theory, small-scale de-
pendent solutions are characterized by a kinetic relation, a family of paths, or
an admissible boundary set. We provide a review of numerical methods (front-
tracking schemes, finite difference schemes, finite volume schemes), which, at
the discrete level, reproduce the effect of the physically meaningful dissipa-
tion mechanisms of interest in the applications. An essential role is played
by the equivalent equation associated with discrete schemes, which is found
to be relevant even for solutions containing shock waves.
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1. Introduction

1.1. Small-scale dependent shock waves

Nonlinear hyperbolic systems of partial differential equations, arising in
continuum physics and especially in compressible fluid dynamics, admit
discontinuous solutions containing shock waves that may depend on under-
lying small-scale mechanisms such as the coefficients of viscosity, capillarity,
the Hall effect, relaxation, and heat conduction. Such small-scale dependent
shocks exist for a variety of problems of physical interest, for instance, those
modelled by conservative hyperbolic systems with dispersive phenomena
(e.g., with capillary effects) and nonconservative hyperbolic systems (e.g.,
for two-phase fluid flows), as well as boundary layer problems (e.g., with
viscosity terms). In the past twenty years, it is has been successively recog-
nized that a standard entropy inequality (after Lax, Oleinik, Kruzkov, and
others) does not suffice for the unique characterization of physically mean-
ingful solutions to such problems, so that additional criteria are required
in order to characterize these small-scale dependent shock waves uniquely.
These criteria are based on the prescription of a kinetic relation for conser-
vative hyperbolic systems, a family of paths for nonconservative hyperbolic
systems, and an admissible boundary set for boundary value problems.

Although standard finite difference, finite volume and finite element meth-
ods have been very successful in computing solutions to hyperbolic conser-
vation laws, including those containing shock waves, these well-established
methods are found to be inadequate for the approximation of small-scale
dependent shocks. Starting with Hou and LeFloch (1994) and Hayes and
LeFloch (1996), this lack of convergence was explained in terms of the equiv-
alent equation associated with discrete schemes through a formal Taylor
expansion. The leading terms in the equivalent equation represent the nu-
merical viscosity of the scheme and need not match the physically relevant
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small-scale mechanisms that have been neglected in the hyperbolic mod-
elling. Consequently, standard shock-capturing schemes, in general, fail to
converge to physically meaningful solutions.
Our purpose here is to review the methods developed in the past twenty

years which accurately describe and compute small-scale dependent shocks.
The challenge is both to develop the proper theoretical tools for the descrip-
tion of such solutions and to ensure the convergence of numerical methods
toward physically meaningful solutions. We have built upon several earlier
reviews by LeFloch (1989, 1999, 2002, 2010), and include the most recent
developments and material on numerical methods that have not been pre-
sented so far – especially the theory of schemes with well-controlled dissi-
pation (WCD for short) recently developed by the authors.

1.2. Physical models and mathematical theories

In one space dimension, the classes of hyperbolic systems under review either
admit the conservative form

ut + f(u)x = 0 (1.1)

or the nonconservative form

ut +A(u)ux = 0, (1.2)

in which the map u : R+ × R → U is the unknown. In (1.1), the given flux
f : U → R

N is defined on a (possibly not connected) open set U ⊂ R
N and

satisfies the following strict hyperbolicity condition: for every v ∈ U , the
matrix A(v) := Df(v) admits real and distinct eigenvalues λ1(v) < · · · <
λN (v) and a basis of right-eigenvectors r1(v), . . . , rN (v). In (1.2), the given
matrix-valued field A = A(u) need not be a Jacobian matrix, and is required
to possess real and distinct eigenvalues and a complete set of eigenvectors.
Small-scale dependent solutions arise with systems of the form (1.1) or

(1.2), and it is our objective to present and investigate specific models of
interest in physical applications, especially the following.

• Strictly hyperbolic systems. The simplest example of interest is pro-
vided by the scalar conservation law with cubic flux and added second-
and third-order terms, and is presented in Section 2.1 below. More
challenging models arise in the dynamics of fluids and nonlinear elastic
material with viscosity and capillarity effects (see Section 2.3).

• Non-strictly hyperbolic systems. In the presence of certain phase tran-
sition phenomena, the models of fluids and elastic materials fail to
be globally strictly hyperbolic. Furthermore, the system of magneto-
hydrodynamics with viscosity and Hall effects is probably the most
challenging model, and also plays an essential role in applications, for
instance, in the modelling of the solar wind.
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746 P. G. LeFloch and S. Mishra

• Nonconservative hyperbolic systems. As will be discussed in Section 4
below, one of the simplest (yet most challenging) examples in the
class of nonconservative hyperbolic systems is obtained by coupling
two Burgers equations, while the most challenging model of interest in
the application contains five equations (or seven equations, if two ther-
modynamical variables are introduced) for the evolution of two (fluid
and vapour) phases of a fluid mixture. Other important models are
the multilayer shallow water system and the Lagrangian gas dynamics
with internal energy taken as an independent variable.

• Initial and boundary value problems. Models of interest include both
the linearized and nonlinear Euler equations with artificial viscosity or
physical viscosity.

A (mathematical) entropy inequality can be naturally associated with all
(conservative or nonconservative) systems under consideration, that is,

U(u)t + F (u)x ≤ 0, (1.3)

where U : U → R and F : U → R
n are referred to as the entropy and

the entropy flux, respectively. However, in contrast to more classical prob-
lems arising in fluid dynamics, (1.3) is often insufficiently discriminating
to characterize physically meaningful solutions to the initial value problem
associated with (1.1) or (1.2). Therefore, additional admissibility criteria
are required, as follows.

• Kinetic relations Φj = Φj(u−) provide a general tool to define non-
classical entropy solutions to strictly hyperbolic systems of conserva-
tion laws (LeFloch 1993, Hayes and LeFloch 1996) and are relevant
when the characteristic fields of the systems do not satisfy Lax’s gen-
uine nonlinearity condition (Lax 1957, 1973). They were introduced
first for a hyperbolic–elliptic model of phase transitions in solids (Abe-
yaratne and Knowles 1991a, 1991b, Truskinovsky 1987, 1993, 1994).
Roughly speaking, a kinetic relation for a nonclassical (undercompres-
sive) shock in the j-characteristic family prescribes the right-hand state
Φj(u−) as a function of the left-hand state u−.

• Families of paths s ∈ [0, 1] �→ ϕ(s;u−, u+) (Dal Maso, LeFloch and
Murat 1990, 1995) provide underlying integration paths which are nec-
essary in order to define generalized jump relations and weak solu-
tions to nonconservative hyperbolic systems. The paths s ∈ [0, 1] �→
ϕ(s;u−, u+) connect left-hand states u− to right-hand states u+ and
are derived by analysing the trajectories of travelling wave solutions,
once an augmented model is selected that takes higher-order effects
into account.
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• Admissible boundary sets Φ(uB) (Dubois and LeFloch 1988) are re-
quired in order to formulate well-posed initial-boundary value problems
associated with nonlinear hyperbolic systems. Waves propagating in
weak solutions may collapse near a boundary and generate a bound-
ary layer connecting a given boundary state uB with an actual state
constrained to lie in a prescribed boundary set Φ(uB).

1.3. Designing schemes with well-controlled dissipation

It is now recognized (Hou and LeFloch 1994, Hayes and LeFloch 1996,
LeFloch and Rohde 2000, LeFloch and Mohamadian 2008, Fjordholm and
Mishra 2012) that a finite difference or volume scheme (LeVeque 2003) may
not converge to physically relevant weak solutions, unless one can ensure
a certain consistency property with small-scale effects, that is, consistency
with the prescribed kinetic relation, family of paths, or admissible bound-
ary set associated with any specific problem under consideration. LeFloch
(2010) suggested that the numerical methods satisfying this requirement
should be called schemes with ‘controlled dissipation’ and, in recent work
by the authors (covering the treatment of shocks of arbitrary strength), it
was proposed to refer to them as schemes with well-controlled dissipation.
In particular, the role of the equivalent equation associated with a given

finite difference scheme has been emphasized and analysed. The leading
terms of the equivalent equations for standard finite difference schemes like
the Lax–Friedrichs scheme, for instance, significantly differ from the phys-
ically relevant small-scale mechanisms. For small-scale dependent shocks,
the approximate solutions, say u∆x converge (when the discretization pa-
rameter ∆x approaches zero) toward a limit, say v, which is distinct from
the physical solution, say u. In other words, standard finite difference or
finite volume techniques, in general, lead to the non-convergence property

v := lim
h→0

uh �= u. (1.4)

This holds for a variety of strictly hyperbolic systems, nonconservative hy-
perbolic systems, and boundary layer problems.
On the other hand, ‘schemes with well-controlled dissipation’ are precisely

designed to overcome this challenge and are built by analysing discrete dis-
sipation operators arising in equivalent equations, requiring that the latter
should match the small-scale mechanisms in the underlying augmented sys-
tem, at least to leading order. Hou and LeFloch (1994) and Hayes and
LeFloch (1996) emphasized that, in fact, the objective need not be to en-
sure the convergence of the schemes, but rather to control the error term
(in a suitable norm)

‖v − u‖
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748 P. G. LeFloch and S. Mishra

in terms of the physical parameters arising in the problem: shock strength,
order of accuracy of the scheme, ratio of capillarity over viscosity, and so on.
In recent years, extensive studies have demonstrated the relevance of the

equivalent equation, as a tool for designing numerical methods for comput-
ing small-scale dependent shocks, and have included numerical experiments
in physically realistic set-ups.
This paper is organized as follows. Section 2 is concerned with strictly hy-

perbolic systems and the discussion of nonclassical undercompressive shocks
to such systems, when the associated augmented models contain diffusive
and dispersive terms. Then, Section 3 discusses the numerical methods
adapted to these problems. Next, in Section 4 we turn our attention to
nonconservative hyperbolic systems. The boundary value problems are dis-
cussed in Section 5 and some concluding remarks are made in Section 6.

2. Nonclassical entropy solutions to nonlinear hyperbolic
systems

2.1. The regime of balanced diffusion and dispersion

We first consider the class of hyperbolic conservation laws with vanishing
diffusion, that is,

uεt + f(uε)x = ε
(
b(uε)uεx

)
x
, (2.1)

where uε = uε(t, x) ∈ R is the unknown, the flux f : R → R is a given
smooth function, and the diffusion coefficient b : R → (0,∞) is bounded
above and below. For any given initial data, solutions to the initial value
problem associated with (2.1) converge strongly (when ε → 0) toward a
limit u = u(t, x) satisfying the hyperbolic conservation law

ut + f(u)x = 0 (2.2)

in the weak sense of distributions. Weak solutions to (2.2) are not uniquely
characterized by their initial data, but must also be constrained to satisfy a
certain entropy condition, ensuring that they be achieved as limits of (2.1)
(Oleinik 1963, Kruzkov 1970, Volpert 1967).
More precisely, solutions uε to (2.1) satisfy, for every convex function

U : R → R,

U(uε)t + F (uε)x = −Dε + εCε
x,

Dε := ε b(uε)U ′′(uε) |uεx|2, Cε := b(uε)U(uε)x,

in which F (u) :=
∫ u

f ′(v)U ′(v) dv and (U,F ) is referred to as an entropy–
entropy flux pair. Hence, u = limε→0 u

ε satisfies the so-called entropy in-
equalities

U(u)t + F (u)x ≤ 0, U ′′ ≥ 0. (2.3)
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Weak solutions to (2.2) that satisfy all inequalities (2.3) (i.e., for every
convex U) are referred to as classical entropy solutions. It is also customary
to reformulate the entropy condition in the Kruzkov form:

|u− k|t +
(
sgn(u− k)(f(u)− f(k))

)
x
≤ 0 for all k ∈ R.

Nonclassical shock waves arise in weak solutions when both diffusion and
dispersion are included. The simplest model of interest is provided by the
linear diffusion–dispersion model

uεt + f(uε)x = ε uεxx + γ(ε)uεxxx, (2.4)

which depends upon two parameters ε and γ referred to as the diffusion and
the dispersion coefficients. This equation was studied first by Jacobs, Mc-
Kinney and Shearer (1995), Hayes and LeFloch (1996, 1997), and Bedjaoui
and LeFloch (2002a, 2002b, 2002c, 2004). Importantly, the relative scaling
between ε and γ = γ(ε) determines the limiting behaviour of solutions, and
we can distinguish between three cases.

• In the diffusion-dominant regime γ(ε) � ε2, the qualitative behaviour
of solutions to (2.4) is similar to the behaviour of solutions to (2.1)
and, in fact, the limit u := limε→0 u

ε is then independent of γ(ε) and
is a classical entropy solution characterized by the infinite family of
entropy inequalities (2.3).

• In the dispersion-dominant regime γ(ε) � ε2, high oscillations develop
(as ε approaches zero), especially in regions of steep gradients of the
solutions, and only weak convergence of uε is observed. The vanishing
dispersion method developed by Lax and Levermore (1983) for the
Korteweg–de Vries equation is the relevant theory in this regime, which
cannot be covered by the techniques under consideration in the present
review.

• In the regime of balanced diffusion–dispersion, corresponding typically
to γ(ε) := δ ε2 for a fixed δ, the limit u := limε→0 u

ε does exist (in a
strong topology), and only mild oscillations are observed near shocks,
so that the limit is a weak solution to the hyperbolic conservation
law (2.2). Most importantly, when δ > 0, the solutions u exhibit
nonclassical behaviour, as they contain undercompressive shocks (as
defined below) and strongly depend upon the coefficient δ.

From now on, we focus our attention on the ‘critical regime’, where the
small-scale terms are kept in balance, and, for instance, we write (2.4) as

uεt + f(uε)x = ε uεxx + δ ε2 uεxxx, (2.5)
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in which δ is a fixed parameter and ε → 0. For this augmented model, we
easily derive the identity

(1/2) |u2ε |t + F (uε)x = −Dε + εCε
x,

Dε := ε |uεx|2 ≥ 0, Cε := uεuεx + δ ε
(
uε uεxx − (1/2) |uεx|2

)
.

The diffusive contribution decomposes into a non-positive term and a conser-
vative one, while the dispersive contribution is entirely conservative; hence,
formally at least, as ε → 0 we recover the entropy inequality (2.3), but only
for the specific entropy function U(u) = u2/2. In other words, we obtain
the (single) quadratic entropy inequality(

u2/2
)
t
+ F (u)x ≤ 0, F ′ := u f ′. (2.6)

In general, no specific sign is available for arbitrary convex entropies (unlike
what we observed in the diffusion-only regime).

2.2. Thin liquid film and Camassa–Holm models

More generally, we can consider the nonlinear diffusion–dispersion model

uεt + f(uε)x = ε
(
b(uε)uεx

)
x
+ δ ε2

(
c1(u

ε)
(
c2(u

ε)uεx
)
x

)
x
, (2.7)

where b, c1, c2 : R → R are given smooth and positive functions. For this
model, the formal limit u = limε→0 u

ε satisfies the following entropy inequal-
ity determined by the function c1/c2:

U(u)t + F (u)x ≤ 0, U ′′ =
c2
c1

> 0, F ′ := f ′ U ′. (2.8)

That is, in the entropy variable û = U ′(u), the dispersive term takes the
form (

c1(u)
(
c2(u)ux

)
x

)
x
=

(
c1(u)

(
c1(u) ûx

)
x

)
x
,

so that any solution to (2.7) satisfies

U(uε)t + F (uε)x = −Dε + εCε
x, Dε := ε b(u)U ′′(u) |ux|2,

Cε := b(u)U ′(u)ux + δε
(
c1(u)û

(
c1(u) ûx

)
x
− |c2(u)ux|2/2

)
.

(2.9)

Nonlinear augmented terms also arise in the model of thin liquid films,

uεt + (u2ε − u3ε )x = ε (u3εu
ε
x)x − δε3 (u3ε u

ε
xxx)x, (2.10)

with δ > 0 fixed and ε → 0. The scaling δε3 is natural since the augmented
term (u3ε u

ε
xxx)x now involves four derivatives. The right-hand side describes

the effects of surface tension in a thin liquid film moving on a surface and
u = u(t, x) ∈ [0, 1] denotes the normalized thickness of the thin film layer.
The parameters governing the forces and the slope of the surface are repre-
sented by the small parameter ε. The model (2.10) can be derived from the
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so-called lubrication approximation of the Navier–Stokes equation when two
counteracting forces are taken into account: the gravity is responsible for
pulling the film down an inclined plane while a thermal gradient (i.e., the
surface tension gradient) pushes the film up the plane. This model was
studied by Bertozzi, Münch and Shearer (2000) and Bertozzi and Shearer
(2000), as well as by Levy and Shearer (2004, 2005), LeFloch and Shearer
(2004), Otto and Westdickenberg (2005), and LeFloch and Mohamadian
(2008).
LeFloch and Shearer (2004) observed that the model (2.10) satisfies the

identity

(uε log uε − uε)t +
(
(u2ε − u3ε ) log u

ε − uε + u2ε
)
x
= −Dε + εCε

x,

Dε := ε u3ε |uεx|2 + γ(ε) |(u2ε uεx)x|2 ≥ 0,

so that, in the limit ε → 0, the following log-type entropy inequality associ-
ated with the thin liquid film model holds:

(u log u− u)t +
(
(u2 − u3) log u− u+ u2

)
x
≤ 0. (2.11)

Finally, consider the generalized Camassa–Holm model

uεt + f(uε)x = ε uxx + δ ε2 (uεtxx + 2uεx u
ε
xx + uε uεxxx), (2.12)

which arises as a simplified shallow water model when wave breaking takes
place. This equation was first investigated by Bressan and Constantin
(2007) and Coclite and Karlsen (2006). LeFloch and Mohamadian (2008)
observed that (2.12) implies(

(|uε|2 + δε2 |uεx|2)/2
)
t + F (uε)x = −ε |uεx|2 + εCε

x,

so that the formal limits u = limε→0 u
ε must satisfy the quadratic entropy in-

equality (2.6), which was already derived for the linear diffusion–dispersion
model (2.5). Although limiting solutions to (2.5) and (2.12) look very simi-
lar in numerical tests, careful investigation (LeFloch and Mohamadian 2008)
leads to the conclusion that they do not coincide. Consequently, we empha-
size that two augmented models obtained by adding vanishing diffusive–
dispersive terms to the same hyperbolic conservation laws do not generate
the same nonclassical entropy solutions. In particular, if a numerical scheme
is consistent with the quadratic entropy inequality, it need not converge to
physically relevant solutions.

2.3. Fluids and elastic materials with phase transitions

Models for the dynamics of fluids and elastic materials (in one space vari-
able) are completely similar and, for definiteness, we present the latter. The
evolution of elastic materials undergoing phase transition may be described
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by the nonlinear elasticity model

wt − vx = 0,

vt − σ(w)x = 0.
(2.13)

Here, w > −1 denotes the deformation and v the velocity of the material
and, for typical materials, the stress–deformation relation σ = σ(w) satisfies
the monotonicity property

σ′(w) > 0 for all w > −1. (2.14)

Under this condition, (2.13) is strictly hyperbolic and admits the two wave
speeds −λ1 = λ2 = c(w) (the sound speed). The two characteristic fields
are genuinely nonlinear in the sense of Lax (1957, 1973) if and only if σ′′
never vanishes, which, however, fails for most materials encountered in ap-
plications as convexity is lost at w = 0. We thus assume

σ′′(w) ≷ 0 if w ≷ 0. (2.15)

Furthermore, following Slemrod (1983, 1989), the augmented version of
(2.13) reads

wt − vx = 0,

vt − σ(w)x = ε vxx − δ ε2wxxx,
(2.16)

and is referred to as the model of viscous–capillary materials, where the
parameters ε and δ ε2 are (rescaled) viscosity and capillarity coefficients.
Material undergoing phase transitions may be described by the model

(2.16) but with a non-monotone stress–strain function, satisfying

σ′(w) > 0, w ∈ (−1, wm) ∪ (wM ,+∞),

σ′(w) < 0, w ∈ (wm, wM )
(2.17)

for some constants wm < wM . In the so-called unstable phase (wm, wM ),
the model admits two complex (conjugate) eigenvalues and is thus elliptic
in nature. The system is hyperbolic in the non-connected set

U :=
(
R× (−1, wm)

) ∪ (
R× (wM ,+∞)

)
,

and all solutions of interest for the hyperbolic lie outside the unstable region.
Recall that Slemrod (1983, 1989) first studied self-similar solutions to

the Riemann problem (i.e., the initial value problem with piecewise con-
stant data), while Shearer (1986) introduced an explicit construction of the
Riemann solutions when δ = 0. It was only later that the notion of a ki-
netic relation for subsonic phase boundaries was introduced by Truskinovsky
(1987, 1993, 1994) and Abeyaratne and Knowles (1991a, 1991b). The lat-
ter solved the Riemann problem for (2.13) and investigated the existence
of travelling wave solutions to (2.16) when σ is a piecewise linear function.
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Next, LeFloch (1993) introduced a mathematical formulation of the kinetic
relation for (2.16) and studied the initial value problem within a class of
nonclassical entropy solutions with bounded variation and established an
existence theory based on Glimm’s random choice scheme; therein, the
kinetic relation was interpreted as the entropy dissipation measure. Fur-
ther studies on this problem include those of Corli and Sablé-Tougeron
(1997a, 1997b, 2000).

2.4. Entropy inequality for models of elastodynamics

To the models in Section 2.3, we can associate the entropy

U(v, w) =
v2

2
+Σ(w), F (v, w) = −σ(w) v, Σ(w) :=

∫ w

0
σ(s) ds, (2.18)

which is strictly convex under the assumption (2.14). That is, for the aug-
mented model (2.16), we have(
v2

2
+Σ(w)+

δ ε2

2
w2
x

)
t

−(
v σ(w)

)
x
= ε

(
v vx

)
x
−ε v2x+δ ε2

(
vxwx−v wxx

)
x
,

so that in the limit we formally obtain the following entropy inequality
associated with the phase transition model:(

v2

2
+ Σ(w)

)
t

− (
v σ(w)

)
x
≤ 0. (2.19)

One important difference between the hyperbolic and the hyperbolic–elliptic
cases concerns the entropy (or total mechanical energy) (2.18), which is con-
vex in each hyperbolic region but cannot be extended to be globally convex
in (the convex closure of) U . This model and its augmented version includ-
ing viscosity and capillarity terms describe the dynamics of complex fluids
with hysteresis, and is relevant in many applications to phase transition
dynamics, for example solid–solid interfaces and fluid–gas mixtures.
More generally, we can assume an internal energy function e = e(w,wx)

and then derive the evolution equations from the action

J [v, w] :=

∫ T

0

∫
Ω

(
e(w,wx)− v2

2

)
dx dt.

That is, by defining the total stress as

Σ(w,wx, wxx) :=
∂e

∂w
(w,wx)−

(
∂e

∂wx
(w,wx)

)
x

,

from the least action principle we deduce that a critical point of J [v, w]
satisfies

vt − Σ(w,wx, wxx)x = 0,

wt − vx = 0.
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If we also include the effect of a (nonlinear) viscosity µ = µ(w), we arrive
at a fully nonlinear phase transition model with viscosity and capillarity:

wt − vx = 0,

vt − Σ(w,wx, wxx)x =
(
µ(w) vx

)
x
.

Again, the total energy E(w, v, wx) := e(w,wx) + v2/2 plays the role of a
mathematical entropy, and we find

E(w, v, wx)t−
(
Σ(w,wx, wxx)v

)
x
=

(
vx

∂e

∂wx
(w,wx)

)
x

+
(
µ(w)vvx

)
x
−µ(w)v2x,

and once more a single entropy inequality is obtained.
When e is quadratic in wx, for some positive capillarity coefficient λ(w),

we set

e(w,wx) = ε(w) + λ(w)
w2
x

2
,

and the total stress takes the form

Σ(w,wx, wxx) = σ(w) + λ′(w)
w2
x

2
− (λ(w)wx)x, σ(w) = ε′(w).

The evolution equations then take the form

wt − vx = 0,

vt − σ(w)x =

(
λ′(w)

w2
x

2
− (

λ(w)wx

)
x

)
x

+
(
µ(w) vx

)
x
.

(2.20)

We then obtain(
ε(w) +

v2

2
+ λ(w)

w2
x

2

)
t

− (
σ(w) v

)
x

=
(
µ(w) v vx

)
x
− µ(w) v2x +

(
v
λ′(w)
2

w2
x − v

(
λ(w)wx

)
x
+ vx λ(w)wx

)
x

,

which, again, leads to the entropy inequality (2.19). When the viscosity and
capillarity are taken to be constants, we recover the previous model and,
again, the entropy inequality is identical for both regularizations.

2.5. Kinetic relations for nonclassical shocks

All the models in this section admit shock wave solutions that satisfy a single
entropy inequality in the sense of distributions (that is, (2.6), (2.8), (2.11),
or (2.19)), but fail to satisfy standard entropy conditions (e.g., Oleinik,
Kruzkov, Lax, Wendroff) However, these entropy conditions played an es-
sential role in the design of efficient shock-capturing schemes for standard
fluid dynamics problems (LeVeque 2003).
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The new shocks are referred to as nonclassical shocks and can be checked
to be undercompressive, in the sense that they are linearly unstable, since
a perturbation passes through them rather than impinging on them (as
would be the case for compressive shocks). For this reason, an additional
admissibility condition is necessary, which is called a kinetic relation. It
takes the form of an additional jump relation at shock discontinuities.
Kinetic relations can be obtained analytically only for the simpler mod-

els (scalar conservation laws with linear diffusion and dispersion, nonlinear
elasticity models with linear viscosity and capillarity), so numerical ap-
proaches are necessary to tackle these problems. In the references already
cited, numerical investigations have established that kinetic functions ex-
ist (and often satisfy certain monotonicity properties) for a large class of
physically relevant models including thin liquid films, generalized Camassa–
Holm, nonlinear phase transitions, van der Waals fluids (for small shocks),
and magnetohydrodynamics.

2.6. Other physical models and applications

The methods and techniques to be presented in this paper are also rel-
evant to other classes of problems. For instance, the Buckley–Leverett
equation for two-phase flows in porous media provides another model of
interest for the applications, and was studied by Hayes and Shearer (1999)
and Van Duijn, Peletier and Pop (2007). There are also other models of
great physical interest which, however, have not yet received as much atten-
tion. Since the hyperbolic flux of these models admits an inflection point
and dispersive-type effects are important in the modelling of such problems,
it is expected that undercompressive shocks should occur, at least in cer-
tain regimes. This is the case for quantum hydrodynamics models (Jerome,
Marcati), phase field models (Caginalp, Rätz, Voigt), Suliciu-type mod-
els (Carbou, Frid, Hanouzet, Suliciu), non-local models involving fractional
integrals (Kissling, Rohde), and discrete molecular models based on poten-
tials (e.g., of Lennard-Jones type) (Böhme, Dreyer, Ngan, Truskinovsky,
Weinan E). See the references at the end of this paper.
Another rich seam of research where analogous challenges are met is pro-

vided by the coupling techniques involving two hyperbolic systems with
distinct flux functions: see LeFloch (1993), Seguin and Vovelle (2003),
Godlewski and Raviart (2004), Adimurthi, Mishra and Gowda (2005), God-
lewski, Le Thanh and Raviart (2005), Bachmann and Vovelle (2006), Bürger
and Karlsen (2008), Chalons, Raviart and Seguin (2008), Holden, Karlsen,
Mitrovic and Panov (2009), Boutin, Coquel and LeFloch (2011, 2012, 2013),
and the references cited therein.
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3. Schemes with controlled dissipation for nonclassical
entropy solutions

3.1. Standard finite difference or finite volume schemes

We consider a nonlinear hyperbolic system in the conservative form (1.1)
and we now discretize it (in space) on a grid consisting of points xi = i∆x,
with ∆x being a uniform mesh width. (The grid is assumed to be uniform
for the sake of simplicity in the exposition.) On this grid, a standard (semi-
discrete) finite difference scheme provides an approximation of the point
values ui(t) ≈ u(t, xi) of solutions to (1.1), defined by

d

dt
ui +

1

∆x

(
gi+1/2(t)− gi−1/2(t)

)
= 0. (3.1)

Here, gi+1/2 := g(ui, ui+1) is a consistent numerical flux associated with
of the flux f , that is, g(a, a) = f(a) for all relevant a. Alternatively, by
considering the cell averages

ui(t) ≈ 1

∆x

∫ xi+1/2

xi−1/2

u(t, x) dx,

we obtain a finite volume scheme with the same form (3.1).
A well-known theorem due to Lax and Wendroff (1960) establishes that if

the numerical approximation converges (in a suitable sense), it can converge
only towards a weak solution of the underlying system (1.1). Furthermore,
if some structural conditions on the numerical flux g are assumed as in
Tadmor (1987, 2003), one can show that the scheme (3.1) in the limit also
satisfies a discrete version of the entropy inequality (2.3), that is,

d

dt
U(ui) +

1

∆x

(
Gi+1/2(t)−Gi−1/2(t)

) ≤ 0. (3.2)

Here, the numerical entropy flux Gi+1/2 := G(ui, ui+1) is consistent with
the entropy flux F in (2.3), in the sense that G(a, a) = F (a) for all relevant
a. When such a discrete entropy inequality is available, one can readily
modify Lax and Wendroff’s argument and show that if the approximations
generated by the finite difference (or finite volume) scheme converge, then
they can only converge toward an entropy solution of (1.1).
A variety of numerical fluxes that satisfy the entropy stability criteria (as

stated in Tadmor 1987, 2003) have been designed in the past three decades.
These classes of schemes include exact Riemann solvers of Godunov type,
approximate Riemann solvers such as Roe and Harten–Lax–van Leer (HLL)
solvers, and central difference schemes such as Lax–Friedrichs and Rusanov
schemes. A comprehensive description of these schemes and their properties
are available in the literature, for instance in the textbook by LeVeque
(2003).
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Figure 3.1. Approximation of small-scale dependent shock waves for the cubic
conservation law with vanishing diffusion and capillarity (2.5) using the standard
Lax–Friedrichs and Rusanov schemes.

Failure of standard schemes to approximate nonclassical shocks

As mentioned in the Introduction, standard conservative and entropy stable
schemes (3.1)–(3.2) fail to approximate nonclassical shocks (and other small-
scale dependent solutions). As an illustrative example, we consider here the
cubic scalar conservation law with linear diffusion and dispersion, that is,
(2.5) with f(u) = u3 and a fixed δ > 0. The underlying conservation law
is approximated with the standard Lax–Friedrichs and Rusanov schemes,
and the resulting solutions are plotted in Figure 3.1. The figure clearly
demonstrates that Godunov and Lax–Friedrichs schemes both converge to
the classical entropy solution to the scalar conservation law, and therefore do
not approximate the nonclassical entropy solution, realized as the vanishing
diffusion–dispersion limit of (2.5) and also plotted in the same figure. The
latter consists of three distinct constant states separated by two shocks,
while the classical solution contains a single shock.
As pointed out in the Introduction, this failure of standard schemes in

approximating small-scale dependent shocks (in various contexts) can be
explained in terms of the equivalent equation of the scheme (as was first
observed by Hou and LeFloch (1994) and Hayes and LeFloch (1996, 1998).
The equivalent equation is derived via a (formal) Taylor expansion of the
discrete scheme (3.1) and contains mesh-dependent terms and high-order
derivatives of the solution.
For a first-order scheme such as (3.1), the equivalent equation has the

typical form

ut + f(u)x = ∆x(b(u)ux)x + δ∆x2(c1(u)(c2(u)ux)x)x +O(∆x3). (3.3)

Interestingly enough, this equation is of the augmented form (2.7), with
ε = ∆x now being the small-scale parameter. Standard schemes often have
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758 P. G. LeFloch and S. Mishra

b �= b, c1 �= c1, and c2 �= c2, with b, c1, c2 being small-scale terms prescribed
in the nonlinear physical model like (2.7). Since the shocks realized as the
ε → 0 limit of (2.7) depend explicitly on the expressions of the diffusion
and dispersion terms, this difference in the diffusion and dispersion terms
between (3.3) and (2.7) is the crucial reason why standard schemes fail to
correctly approximate small-scale dependent shocks.

3.2. Finite difference schemes with controlled dissipation

The equivalent equation of the finite difference scheme (3.3) also suggests a
way to modify the scheme such that the correct small-scale dependent shock
waves can be approximated. Following Hayes and LeFloch (1997, 1998),
LeFloch and Rohde (2000), and LeFloch and Mohamadian (2008), the key
idea is to design finite difference schemes whose equivalent equation matches
both the diffusive and the dispersive terms in the augmented model (2.7)
(for instance). That is, the schemes are designed so that their equivalent
equation (3.3) has b = b, c1 = c1, c2 = c2. Such schemes are referred to as
schemes with controlled dissipation.
In order to proceed with the derivation of a class of schemes with con-

trolled dissipation, we focus attention on the prototypical example of the
scalar conservation law, and we consider nonclassical shocks generated in
the limit of balanced vanishing diffusion and dispersion: see (2.5). On the
uniform grid presented in Section 3.1 and for any integer p ≥ 1, we approx-
imate the conservation law (1.1) with the following (2p)th-order consistent
finite difference scheme:

dui
dt

+
1

∆x

j=p∑
j=−p

αjfi+j =
c

∆x

j=p∑
j=−p

βjui+j +
δc2

∆x

j=p∑
j=−p

γjui+j . (3.4)

Here, ui(t) ≈ u(xi, t) is the cell nodal value, fi = f(ui) is the flux, the con-
stant δ is the coefficient of capillarity (given by the physics of the problem)
and c ≥ 0 is a constant. The coefficients αj , βj and γj need to satisfy the
following (2p)th-order conditions:

p∑
j=−p

jαj = 1,

p∑
j=−p

jlαj = 0, l �= 1, 0 ≤ l ≤ 2p. (3.5)

These conditions define a set of (2p + 1) linear equations for (2p + 1) un-
knowns and can be solved explicitly. Similarly, the coefficients β must satisfy

p∑
j=−p

j2βj = 2,

p∑
j=−p

jlβj = 0, l �= 2, 0 ≤ l ≤ 2p (3.6)

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492914000099
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 16:51:12, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492914000099
https:/www.cambridge.org/core


Numerical methods for small-scale dependent shocks 759

while, for the coefficients γ,
p∑

j=−p

j3γj = 6,

p∑
j=−p

jlγj = 0, l �= 3, 0 ≤ l ≤ 2p. (3.7)

The proposed finite difference scheme (3.4) is a conservative and consis-
tent discretization of the conservation law (1.1). It is formally only first-
order accurate since the diffusive terms are proportional to ∆x. This scheme
need not preserve the monotonicity of the solutions.
The equivalent equation associated with the scheme (3.4) reads

du

dt
+ f(u)x = c∆xuxx + δc2(∆x)2 uxxx −

∞∑
k=2p+1

(∆x)k−1

k!
Ap

k(f(u))
[k]

+ c
∞∑

k=2p+1

(∆x)k−1

k!
Bp

ku
[k] + δc2

∞∑
k=2p+1

(∆x)k−1

k!
Cp
ku

[k]. (3.8)

Here, g[k] = dkg/dxk denotes the kth spatial derivative of a function g and
the above coefficients are

Ap
k =

p∑
j=−p

αjj
k, Bp

k =

p∑
j=−p

βjj
k, Cp

k =

p∑
j=−p

γjj
k, (3.9)

where α, β and γ are specified by the relations (3.5), (3.6), and (3.7), re-
spectively.
In view of the equivalent equation (3.8), the numerical viscosity and dis-

persion terms are linear and match the underlying diffusive–dispersive equa-
tion (2.5) with ε = c∆x. Hence, the numerical diffusion and dispersion are
‘controlled’ in the sense that they match the underlying small-scale terms.
The above schemes approximate small-scale dependent solutions very

well. Indeed, let us illustrate their performance for a representative example
of the cubic scalar conservation law with vanishing diffusion and dispersion
(2.5). A sixth-order (p = 3) finite difference scheme with controlled dissipa-
tion (3.4) was originally proposed by LeFloch and Mohamadian (2008) and
we can take the coefficient c = 5 and the same initial data, as in Figure 3.1.
The results shown in Figure 3.2 demonstrate that the proposed scheme with
controlled dissipation converges the correct nonclassical shock wave. This is
in sharp contrast to the failure observed with standard schemes such as the
Rusanov and Lax–Friedrichs schemes, which converge to classical solutions:
see Figure 3.1.

The problem of strong shocks
Schemes with controlled dissipation such as (3.4) approximate nonclassical
solutions quite well in most circumstances. However, the approximation sig-
nificantly deteriorates for sufficiently strong shocks. As an example, we can
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Figure 3.2. Approximation of nonclassical shocks to the cubic conservation law
(with vanishing diffusion and capillarity) (2.5) using LeFloch and Mohamadian’s
sixth-order scheme with controlled dissipation (3.4) with c = 5.
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Figure 3.3. Approximation of strong nonclassical shocks for the cubic conservation
law (2.5) using LeFloch and Mohamadian’s sixth-order scheme with controlled
dissipation (3.4) with c = 5.

consider strong nonclassical shocks for the cubic conservation law (2.5) and
attempt to approximate them with the sixth-order finite difference scheme
with controlled dissipation (3.4); the results are displayed in Figure 3.3.
The figures clearly show that the sixth-order scheme with controlled dissi-
pation fails to accurately resolve strong nonclassical shocks. In particular,
this scheme completely fails to approximate a large-amplitude nonclassical
shock with amplitude of around 30.
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3.3. WCD schemes for scalar conservation laws

In a recent work (Ernest, LeFloch and Mishra 2013), the authors have iden-
tified the key reason for the failure of schemes with controlled dissipation to
approximate nonclassical solutions with large amplitude, especially strong
shocks. Again, the equivalent equation associated with the finite differ-
ence scheme (3.4) explains this behaviour. As pointed out earlier, we have
designed schemes with controlled dissipation in such a manner that the nu-
merical diffusion and dispersion terms match the underlying diffusion and
dispersion in the model of interest (2.5). However, as seen in the equiva-
lent equation (3.8), the higher-order terms (i.e., of the order O(∆x3) and
higher) do play a role, particularly when the approximated shock is strong.
To illustrate this fact, we consider the equivalent equation (3.8) for a single
shock wave.
Namely, consider a single shock connecting two states uL, uR such that

[[u]] = uL−uR > 0 and [[f(u)]] > 0 (the other cases being handled similarly).
At this shock discontinuity, we formally find

u[k] ≈ [[u]]

∆xk
, (f(u))[k] ≈ [[f(u)]]

∆xk
.

Substituting these formal relations into the equivalent equation (3.8) at a
single shock, we obtain

du

dt
+

[[f(u)]]

∆x
− c[[u]]

∆x
− δc2[[u]]

∆x︸ ︷︷ ︸
l.o.t.

≈ SD
p c[[u]]

∆x
+

SC
p δc

2[[u]]

∆x
− Sf

p [[f ]]

∆x︸ ︷︷ ︸
h.o.t.

, (3.10)

in which the coefficients read

Sf
p =

∞∑
k=2p+1

Ap
k

k!
, SD

p =

∞∑
k=2p+1

Bp
k

k!
, SC

p =

∞∑
k=2p+1

Cp
k

k!
, (3.11)

where Ap
k, B

p
k, C

p
k are defined in (3.9).

The relation (3.10) represents the balance of terms in the equivalent equa-
tion in the neighbourhood of a single shock. Ideally, the higher-order error
terms (‘h.o.t.’ in (3.10)) should be dominated in amplitude by the leading-
order terms (‘l.o.t.’ in (3.10)).

The WCD condition

Ernest et al. (2013) have sought to balance both sets of terms through a
user-defined tolerance parameter τ � 1. In other words, the condition
|h.o.t.|/|l.o.t.| < τ is satisfied by using the upper bound in |h.o.t.| and the
lower bound in |l.o.t.|, that is,

|h.o.t.| ≤ (
ŜD
p c+ ŜC

p |δ|c2 + Ŝf
pσ

) |[[u]]|
∆x

,
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where σ =
∣∣[[f(u)]]/[[u]]∣∣ is the shock speed, and

Ŝf
p =

∞∑
k=2p+1

∣∣∣∣∣
p∑

j=−p

αjj
k

k!

∣∣∣∣∣, ŜD
p =

∞∑
k=2p+1

∣∣∣∣∣
p∑

j=−p

βjj
k

k!

∣∣∣∣∣,
ŜC
p =

∞∑
k=2p+1

∣∣∣∣∣
p∑

j=−p

γjj
k

k!

∣∣∣∣∣,
(3.12)

while

|l.o.t.| ≥ (|δ|c2 + c− σ
) |[[u]]|
∆x

.

Therefore, we can achieve the condition |h.o.t.|/|l.o.t.| < τ provided that

(WCD)

(
|δ| − ŜC

p |δ|
τ

)
c2 +

(
1− ŜD

p

τ

)
c−

(
1 +

Ŝf
p

τ

)
σ > 0, (3.13)

which we refer to as the WCD condition associated with the proposed class
of schemes.
Recall that, in (3.13), τ is a user-defined tolerance, δ is the coefficient of

dispersion, Ŝf,D,C
P are specified in (3.12) and can be computed in advance

(before the actual numerical simulation), while σ is the shock speed (of the
shock connecting uL and uR) and depends on the solution under considera-
tion. The only genuine parameter to be chosen is the numerical dissipation
coefficient c. In contrast to schemes with controlled dissipation where c was
set to be a constant, it is now natural that this coefficient be time-dependent
c = c(t) and evaluated at each time step and chosen to satisfy the WCD
condition (3.13)
An important question is whether there exists a suitable c such that the

WCD condition (3.13) is satisfied for a given order p. In fact, elementary
properties of Vandermonde determinants (as observed by Dutta 2013) imply
that the coefficients (3.12) satisfy

lim
p→+∞max

(
Ŝf
p , Ŝ

D
p , ŜC

p

)
= 0. (3.14)

Since c is a coefficient of diffusion in (3.4), we require c > 0, and a simple
calculation based on the quadratic relation (3.13) shows that c > 0 if and
only if

ŜC
p

τ
< 1, (3.15)

recalling that σ (the absolute value of the shock speed) is always positive.
Given (3.14), we can always find a sufficiently large p such that the suf-

ficient condition (3.15) is satisfied for any given tolerance τ . Hence, the
‘order’ of the finite difference scheme (3.4) needs to be increased to control
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the high-order terms in the equivalent equation, in relation to the leading-
order terms. The strategy of letting the exponent p tend to infinity goes
back to LeFloch and Mohamadian (2008), who established the convergence
of the numerical kinetic function to the analytical kinetic function.
Furthermore, in the limit of infinite p and for any τ > 0, the property

(3.14) leads us to the following limiting version of the WCD condition:

|δ|c2 + c− σ > 0. (3.16)

Solving the quadratic equation explicitly yields two real roots, one negative
and the other positive. The convexity of the function implies that the choice
c > c2 (where c2 is the positive root of the above quadratic equation) will
satisfy the WCD condition. Thus, for sufficiently large p (that is, sufficiently
high-order schemes), we can always choose a suitable numerical dissipation
coefficient (depending on both δ and the wave speed σ) that yields the
correct small-scale dependent solutions.
Finally, we extend the above analysis at a single shock and we determine

the diffusion coefficient c in the finite difference scheme (3.4) in the following
manner. At each interface xi+1/2 = 1

2(xi + xi+1), we use uL = ui and
uR = ui+1 in the WCD condition (3.13) and choose a coefficient ci+1/2 such
that this condition is satisfied. The coefficient for the entire scheme is then
given by c := c(t) = maxi ci+1/2.

3.4. Numerical experiments

Following Ernest et al. (2013), we test the WCD schemes (3.4) for the cubic
scalar conservation law (1.1) (with f(u) = u3) and, for definiteness, we set
δ = 1 in (2.5). The finite difference schemes defined above are semi-discrete,
and we now also discretize the equation in time using a third-order, strong
stability-preserving, Runge–Kutta time-stepping method. The time step is
determined using a standard stability condition with CFL number = 0.45
for all numerical experiments.
In order to compute the coefficient c, we need to choose τ as well as

the order 2p of the scheme, and then compute the dissipation coefficient
suggested by the WCD condition. We use here the following Riemann initial
data:

u(0, x) = uL if x < 0.4, −2 if x > 0.4,

and we vary the state uL in order to cover various shock strengths.

Small shocks

We consider two different sets of uL = 2 and uL = 4 to represent shocks with
small amplitude. The numerical results are displayed in Figure 3.4, which
presents approximate solutions for both sets of initial data, computed with
an eighth-order WCD scheme and with τ = 0.01 on a sequence of meshes.
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(a) Riemann solution for uL = 2
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(b) Riemann solution for uL = 4

Figure 3.4. Convergence (mesh refinement) for the WCD schemes and small shocks.
All approximations are based on an eighth-order scheme and τ = 0.01.

For uL = 2, we see that the WCD scheme is able to approximate a non-
classical shock preceded by a rarefaction wave. Similarly for uL = 4, we
see that the WCD scheme approximates both the leading classical shock
and the trailing nonclassical shock quite well. In both cases, the quality
of approximation improves upon mesh refinement. As expected, there are
some oscillations near the leading shock. This is on account of the dispersive
terms in the equivalent equation. As shown before, schemes with controlled
dissipation were also able to compute small shocks quite well (here the
maximum shock strengh is around 7).

Large shocks

In order to simulate nonclassical shocks of moderate to large strength, we
now choose uL = 30 and display the numerical results in Figure 3.5. The
exact solution in this case consists of a leading shock and a trailing non-
classical shock of strength around 60 (far stronger than in the previous test
with schemes with controlled dissipation that were found to fail for shocks
with such strength). In Figure 3.5, we illustrate how WCD schemes of dif-
ferent order approximate the solution for 4000 mesh points. A related issue
is the variation of the parameter τ . Observe that τ represent how strong the
high-order terms are allowed to be vis-á-vis the leading-order diffusion and
dispersion terms. Also, the order of the scheme depends on the choice of τ .
For instance, choosing τ = 0.1 implies that fourth-order schemes (p = 2) are
no longer consistent with the WCD condition (3.13) for this choice of τ and
one has to use a sixth-order scheme or even higher. In this particular ex-
periment, we choose τ = 0.3 (fourth-order scheme), τ = 0.1 (eighth-order)
and τ = 0.01 (twelfth-order). As shown in Figure 3.5, all three schemes
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(a) Riemann solution for uL = 30
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Figure 3.5. Convergence p → +∞ (increasing order of the scheme) for the WCD
scheme for a moderate shock.

approximate the nonclassical shock quite well. Also, increasing τ did not
severely affect the shock-capturing abilities of the scheme. Clearly, the
eighth- and twelfth-order schemes were slightly better in this problem.
We simulate a very strong shock using uL = 55 in the initial data. The

numerical results are presented in Figure 3.6. The exact solution consists
of a strong nonclassical shock of magnitude around 110 and a weaker (but
still of amplitude 60) leading shock wave. The results in the figure were
generated with the fourth-, eighth- and twelfth-order schemes. The mesh
resolution is quite fine (20 000 mesh points) as the difference in speeds for
both shocks is quite small, and the intermediate state is very narrow and
needs to be resolved. It is important to emphasize that one can easily use
a grid, adapted to the shock locations. The results clearly show that all
three schemes converge to the correct nonclassical shock, even for such a
strong shock.

Computing the kinetic relation

Since the exact intermediate state of a Riemann problem is known for the
cubic conservation law (for any given value of the dispersion parameter δ),
we can ascertain the quality and accuracy of numerical approximation for a
very large class of initial data by computing the numerical kinetic relation.
We do so using the eighth-order WCD scheme for three different values
of the dispersion parameter δ. The results are presented in Figure 3.7,
and they clearly demonstrate that this WCD scheme is able to compute
the correct intermediate state (kinetic relation) and hence the nonclassical
shock wave, accurately for any given shock strength. In particular, very
strong nonclassical shocks are captured accurately. Similar results were
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Figure 3.6. Convergence p → +∞ for a large nonclassical shock for the cubic
conservation law.

also obtained with WCD schemes of different orders. These results should
be compared with earlier work on numerical kinetic functions (Hayes and
LeFloch 1997, 1998, LeFloch and Rohde 2000, LeFloch and Mohamadian
2008), where, despite the convergence p → +∞ being observed for each fixed
shock strength, the numerical kinetic function was found to differ signifi-
cantly from the analytical one for large shocks. Furthermore, the WCDs are
very remarkable in that they even capture the correct asymptotic behaviour
of the kinetic function in the limit of arbitrarily large shock strength.

3.5. WCD schemes for nonlinear hyperbolic systems

Finite difference schemes with either controlled or well-controlled dissipation
can be readily extended to systems of conservation laws, now discussed.
Again, for the sake of the presentation, we focus on an example, specifically
the nonlinear elasticity system (2.16) which models viscous–capillary flows
of elastic materials. We rewrite this system in the general form

Ut + Fx = εD(1)Uxx + αε2D(2)Uxxx, (3.17)

in which we have set

U =

(
w
v

)
, D(1) =

(
0 0
0 1

)
, D(2) =

(
0 0
−1 0

)
,

and the flux vector F : R2 → R2 is given by

F(τ, u) =

( −v
−σ(w)

)
.
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Figure 3.7. Intermediate state (kinetic function) (y-axis) for the cubic conservation
law for varying left-hand state u−L (x-axis), computed using an eighth-order WCD
scheme with τ = 0.1.

We consider a uniform grid as described in the previous section, and a
(2p)th-order accurate, finite difference scheme for (3.17) is given by

dUi

dt
+

1

∆x

j=p∑
j=−p

αjFi+j =
c

∆x

j=p∑
j=−p

βjD
(1)Ui+j +

δc2

∆x

j=p∑
j=−p

γjD
(2)Ui+j ,

(3.18)
where

Ui = U(xi, t), Fi = F(Ui)

and the coefficients αj , βj and γj need to satisfy the order conditions (3.5)–
(3.7). As explained in the previous subsection, the key tool in designing a
scheme that can accurately approximate nonclassical shocks to (3.17) is the
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equivalent equation associated with the scheme (3.18), which is given by

dU

dt
= −Fx + c∆xD(1)Uxx + δc2∆x2D(2)Uxxx︸ ︷︷ ︸

l.o.t.

+ h.o.t.,

h.o.t. = −
∞∑

k=2p+1

∆xk−1

k!
Ap

kF
[k] + c

∞∑
k=2p+1

∆xk−1

k!
Bp

kD
(1)U[k]

+ δc2
∞∑

k=2p+1

∆xk−1

k!
Cp
kD

(2)U[k],

(3.19)

where the coefficients Ap
k, B

p
k and Cp

k are defined as in (3.9).
Following our discussion in Section 3.4, our design of a WCD scheme is

based on the analysis of a single shock. Adapting from the scalar case, we
impose a componentwise condition in order to balance high-order and low-
order terms in the equivalent equation for a single shock. We thus assume a
tolerance τ such that |h.o.t.| ≤ τ |l.o.t.| holds componentwise. This analysis
is carried out in Ernest et al. (2013), and results in the following WCD
condition for systems (i = 1, 2):

(WCD)i

(
|δ| − ŜC

p |δ|
τ

)
|〈D(2)

i , [[U]]
〉|c2i + (

1− ŜD
p

τ

)
|〈D(1)

i , [[U]]
〉|ci

−
(
1 +

Ŝf
p

τ

)
σ|[[Ui]]| > 0. (3.20)

Here, ŜD
p , ŜC

p , Ŝ
f
p and σ are defined as in (3.12) and 〈·, ·〉 denotes the product

of two vectors and

σ =
|[[F(U)]]|
|[[U]]| , (3.21)

which is a rough estimate of the maximum shock speed of the system with

jump [[U]] at the single shock. Observe that if
〈
D

(1)
i , [[U]]

〉
= 0, we set

the corresponding ci = 0 for i = 1, 2. The scheme parameter c in (3.18) is
defined as c = max(c1, c2). The global definition of the coefficient c can be
obtained by taking a maximum of the previously obtained c over all cells.

Numerical experiments

In our numerical tests, we use the normalized van der Waals flux given by

σ(w) := − RT(
w − 1

3

) − 3

w2

with R = 8/3 and T = 1.005, which has two inflection points at 1.01 and
1.85. With this choice of parameter, the elasticity system (2.16) is strictly
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Figure 3.8. Mesh convergence for the WCD scheme for the dispersive limit of a
van der Waals fluid with initial data (3.22) with an eighth-order WCD scheme.
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Figure 3.9. Close-up near nonclassical states for the dispersive limit of a van der
Waals fluid with initial data (3.22) and an eighth-order WCD scheme.

hyperbolic. We let α = 1 and consider the initial Riemann data

v(0, x) =

{
0.35 x < 0.5,

1.0 x > 0.5,
w(0, x) =

{
0.8 x < 0.5,

2.0 x > 0.5,
(3.22)

and the scheme parameter is set to c = cWCD. Figures 3.8 and 3.9 show a
nonclassical state in both variables v and w and displays mesh convergence
of the scheme as the mesh is refined. Furthermore, the eighth-order WCD
scheme approximates the nonclassical state quite well for both variables,
even at a very coarse mesh resolution.
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Figure 3.10. Approximation of the Riemann solution with initial data (3.23) re-
sulting in a large jump in volume τ . Results obtained with an eighth-order WCD
scheme with 25 000 points.
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Figure 3.11. Close-up at nonclassical states in the approximation of the Riemann
problem with initial data (3.23) resulting in a large jump in volume τ . Results
obtained with an eighth-order WCD scheme with 25 000 points.
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Large shocks

Next, we approximate large nonclassical shocks associated with the Riemann
initial data

v(0, x) =

{
0.35 x < 0.5,

1.5 x > 0.5,
w(0, x) =

{
0.8 x < 0.5,

25.0 x > 0.5.
(3.23)

The results with an eighth-order scheme are shown in Figures 3.10 and
3.11 and clearly show that the WCD scheme is able to approximate the
nonclassical shock of large amplitude (in the volume) quite well.

3.6. A model of magnetohydrodynamics with the Hall effect

Next, we consider the simplified model of ideal magnetohydrodynamics:

vt +
(
(v2 + w2) v

)
x
= ε vxx + α εwxx,

wt +
(
(v2 + w2)w

)
x
= εwxx − α ε vxx,

(3.24)

where v, w denote the transverse components of the magnetic field, ε the
magnetic resistivity, and α the so-called Hall parameter. The Hall effect is
relevant in order to investigate, for instance, the interaction of solar wind
with the Earth’s magnetosphere. The viscosity-only regime α = 0 has
been studied by Brio and Hunter (1990), Freistühler (1992) and Freistühler
and Pitman (1992, 1995). The left-hand sides of equations (3.24) form a
hyperbolic but a non-strictly hyperbolic system of conservation laws. Fur-
thermore, observe that solutions to (3.24) satisfy the identity

1

2

(
v2ε + w2

ε

)
t
+

3

4

(
(v2ε + w2

ε )
2
)
x
=− ε

(
(vεx)

2 + (wε
x)

2
)
+ εCε

x,

so that in the formal limit ε → 0 the following quadratic entropy inequality
holds for the magnetohydrodynamic model:

1

2

(
v2 + w2

)
t
+

3

4

(
(v2 + w2)2

)
x
≤ 0. (3.25)

Following Ernest et al. (2013), we design finite difference schemes with
well-controlled dissipation for (3.24). We first rewrite it in the general form

Ut + Fx = εD(1)Uxx + αεD(2)Uxx, (3.26)

where the vector of unknowns is U = {v, w} and

D(1) =

(
1 0
0 1

)
, D(2) =

(
0 1
−1 0

)
,

and the flux F : R2 → R2 reads

F(v, w) =

(
(v2 + w2)v
(v2 + w2)w

)
.
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We then introduce a uniform grid as in previous subsections and, for any
integer p ≥ 1, we approximate (3.26) with the (2p)th-order consistent, finite
difference scheme

dUi

dt
+

1

∆x

j=p∑
j=−p

αjFi+j =
c

∆x

j=p∑
j=−p

βjD
(1)Ui+j +

αc

∆x

j=p∑
j=−p

βjD
(2)Ui+j ,

(3.27)
where Ui = U(xi, t), Fi = F(Ui) and the coefficients αj and βj need to
satisfy the order conditions (3.5)–(3.6).
The equivalent equation associated with the scheme (3.27) reads

dU

dt
= −Fx + c∆xD(1)Uxx + αc∆x2D(2)Uxx︸ ︷︷ ︸

l.o.t.

+ h.o.t.,

h.o.t. = −
∞∑

k=2p+1

∆xk−1

k!
Ap

kF
[k] + c

∞∑
k=2p+1

∆xk−1

k!
Bp

kD
(1)U[k]

+ αc
∞∑

k=2p+1

∆xk−1

k!
Bp

kD
(2)U[k].

(3.28)

The coefficients Ap
k and Bp

k are defined as in (3.9). As in the cases of
scalar conservation laws and nonlinear elasticity models, we can analyse the
equivalent equation at a single shock with jump [[U]] and then follow the
steps of the previous subsections. This analysis was carried out by Ernest
et al. (2013), and it led them to the following WCD condition:

(WCD)i

((
|α| − ŜD

p |α|
τ

)
|〈D(2)

i , [[U]]
〉|+ (

1− ŜD
p

τ

)
|〈D(1)

i , [[U]]
〉|)ci

−
(
1 +

Ŝf
p

τ

)
σ|[[Ui]]| > 0.

(3.29)
Observe that it is particularly simple to satisfy the WCD condition in this
case as it is a set of independent linear relations. The scheme parameter c
in (3.27) is defined by c = max(c1, c2).

Numerical experiments

We set v = r cos(θ) and w = r sin(θ) and consider the following class of
Riemann initial data:

r(0, x) =

{
rL x < 0.25,

0.6rL x > 0.25,
θ(0, x) =

{
3
10π x < 0.25,

13
10π x > 0.25,

(3.30)

in which the state values of rL and α will be varied in our experiments.
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Figure 3.12. Large shocks in the v and w variables for the Hall MHD
system using a fourth-order WCD scheme with 4000 mesh points.

We consider the approximation of strong shocks by setting rL = 100 and
rL = 500. The approximations, performed with a fourth-order WCD scheme
on a mesh of 4000 uniformly spaced points is shown in Figure 3.12. The
results clearly show that the solution consists of very large-amplitude O(103)
nonclassical shocks in both the unknowns. The fourth-order WCD scheme
is able to approximate these very large nonclassical shocks quite well.

Computing the kinetic relation

We now examine the kinetic relation

φ(s) = −s
1

2
[[v2 + w2]] +

3

4
[[(v2 + w2)2]]

at nonclassical shocks numerically for α = 1, 2, 10 using the fourth-order
WCD scheme with τ = 0.1 on a grid with N = 4000 mesh points. The
numerical kinetic relation is plotted as the scaled entropy dissipation versus
the shock speed and is shown in Figure 3.13. These results suggest that the
kinetic relation for the simplified MHD model with the Hall effect has the
quadratic expression

φ(s) = kαs
2, (3.31)

for some constant kα which depends upon the value of the Hall coefficient α.
Our results demonstrate the ability of the WCD schemes to compute non-
classical shocks to (3.24) with arbitrary strength.

3.7. Entropy stable WCD schemes

The WCD schemes (3.4) constructed in the previous section may not satisfy
a discrete version of the entropy inequality (3.2) but they can be modified,
as we now explain. Namely, there has been considerable progress in the
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Figure 3.13. Scaled entropy dissipation φ(s)/s2 versus shock speed
s for the Hall MHD model (3.24) with a fourth-order WCD scheme.

last two decades regarding the construction of ‘entropy stable schemes’ of
arbitrary order. In this context, we refer to the pioneering contributions
of Tadmor (1987, 2003), who was able to characterize entropy stable, first-
order, numerical fluxes for systems of conservation laws as those which are
more diffusive than an entropy conservative flux. Recall here that an entropy
conservative flux for the finite difference (or finite volume) scheme (3.1) is
a consistent, numerical flux g∗i+1/2 such that the resulting scheme satisfies a

discrete entropy identity, of the form

d

dt
U(ui) +

1

∆x

(
G∗

i+1/2(t)−G∗
i−1/2(t)

)
= 0, (3.32)

which is associated with an entropy U and some numerical entropy flux
G∗. Tadmor (1987, 2003) showed the existence of such entropy conservative
fluxes (consistent with the entropy flux F ) and provided a recipe for the
construction of entropy stable schemes, which were determined by adding
a diffusive part to the entropy conservative flux (in terms of the entropy
variables v := ∂uU) and resulted in a discrete entropy inequality (3.2).
The next major step in the construction of entropy conservative fluxes

was taken by LeFloch and Rohde (2000) and, later, LeFloch, Mercier and
Rohde (2002). Therein, the authors were able to construct arbitrarily high-
order accurate entropy conservative fluxes for systems of conservation laws.
Furthermore, fully discrete schemes were also designed in LeFloch et al.
(2002). In more recent years, the evaluation of entropy conservative fluxes
in terms of explicit and easily implemented formulas has been proposed by
Tadmor (2003), Ismail and Roe (2009), Fjordholm, Mishra and Tadmor
(2009, 2011), Kumar and Mishra (2012), and in references therein. Further,
the design of arbitrarily high-order and computationally efficient numerical
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diffusion operators was proposed by Fjordholm, Mishra and Tadmor (2012).
This numerical diffusion operator was based on an ENO reconstruction of
the scaled entropy variables that satisfied a subtle sign property, as later
shown in Fjordholm, Mishra and Tadmor (2013). An entropy stable space–
time discontinuous Galerkin finite element method that also utilizes entropy
conservative fluxes was also introduced by Hiltebrand and Mishra (2014).
The use of entropy conservative fluxes in the context of computation of

nonclassical shock waves was pioneered by Hayes and LeFloch (1996) and
later by LeFloch and Rohde (2000). We observe here that their technique
can be readily adapted to the context of our WCD schemes. We illustrate
the approach by considering scalar conservation laws, realized as a limit of
vanishing viscosity and dispersion (2.5) and discretized on a uniform mesh,
by the following finite difference scheme:

dui
dt

+
1

∆x

j=p∑
j=−p

ζjg
∗(ui, ui+j) =

c

∆x

j=p∑
j=−p

βjui+j+
δc2

∆x

j=p∑
j=−p

γjui+j . (3.33)

Here, the coefficients β, γ were specified in (3.4) and the coefficients ζ are
given by

ζ0 = 0, ζj := 2αj , j �= 0,

where αj are the coefficients specified in (3.4). Furthermore, the numerical
flux g∗ is an entropy conservative flux given by

[[v]]i+1/2g
∗
i+1/2 := [[vf − F ]]i+1/2, (3.34)

in which an entropy function U , an entropy flux function F , and the corre-
sponding entropy variable v have been fixed. Recall that the above formula
determines a unique entropy conservative flux for scalar conservation laws.
The resulting scheme is both (2p)th-order accurate (formally) as well as
entropy stable, that is, it satisfies a discrete entropy inequality of the form
(3.2). Furthermore, the entire analysis of imposing the WCD condition,
as explained in the previous sections, can be easily modified to cover this
situation. Preliminary numerical experiments suggest very similar perfor-
mance of the entropy stable scheme in comparison to the corresponding
WCD scheme (3.4).
The construction of entropy stable WCD schemes can be extended to

systems of conservation laws, such as the MHD model (3.24), by requiring
that the entropy conservative flux satisfy

〈[[v]]i+1/2, g
∗
i+1/2〉 := [[〈v, f〉 − F ]]i+1/2 (3.35)

for the entropy variables v and entropy flux F . Explicit formulas for the
entropy conservative flux g∗ for (3.24) were derived in LeFloch and Mishra
(2009).
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4. Nonconservative hyperbolic systems

4.1. Models from continuum physics

We now turn our attention to nonlinear hyperbolic systems in nonconser-
vative form, that is, (1.2) when the matrix A cannot be written in terms
of the Jacobian of a flux. (In other words, A(u) �= Duf(u) for any f .)
As mentioned in the Introduction, many interesting systems in physics and
engineering sciences takes this nonconservative form. The rigorously math-
ematical study of such systems was undertaken in LeFloch (1988, 1990),
whose initial motivation came from the theory of two-phase flows and the
dynamics of hypo-elastic materials, and has now been built upon the so-
called DLM theory proposed by Dal Maso, LeFloch and Murat (1990, 1995).
As a first prototypical example, we consider the coupled Burgers equation,

proposed by Castro, Maćıas and Parés (2001) and Berthon (2002):

∂tw + w ∂x(w + v) = 0,

∂tv + v ∂x(w + v) = 0.
(4.1)

The system has the nonconservative form (1.2) with

u =

(
w
v

)
, A(u) =

(
w w
v v

)
.

By adding the two components of this system, we obtain the Burgers equa-
tion for the dependent ω := w + v:

∂tω +
1

2
∂xω

2 = 0.

A second prototypical example of the class of nonconservative hyper-
bolic systems is provided by the system of four equations governing a (one-
dimensional, say) flow of two superposed immiscible shallow layers of fluids:

(h1)t + (h1u1)x = 0,

(h2)t + (h2u2)x = 0,

(h1u1)t +

(
1

2
gh21 + h1u

2
1

)
= −gh1(b+ h2)x,

(h2u2)t +

(
1

2
gh22 + h2u

2
2

)
= −gh2(b+ rh1)x.

(4.2)

Here, uj = uj(t, x) and h = hj(t, x) (for j = 1, 2) represent the depth-
averaged velocity and thickness of the jth layer, respectively, while g denotes
the acceleration due to gravity and b = b(x) is the bottom topography. In
these equations, the indices 1 and 2 refer to the upper and lower layers.
Each layer is assumed to have a constant density ρj (with ρ1 < ρ2), and
r = ρ1/ρ2 represents the density ratio.
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Other examples of the class of nonconservative hyperbolic systems in-
clude the equations governing multiphase flow (studied in Saurel and Abgrall
1999) and a version of the system of gas dynamics in Lagrangian coordinates
(LeFloch 1988, Karni 1992, Abgrall and Karni 2010).

4.2. Mathematical framework

Solutions to nonlinear hyperbolic systems in the nonconservative form (1.2)
can contain discontinuities such as shock waves, and therefore an essential
mathematical difficulty is to define a suitable notion of weak solutions to
such systems. Namely, the nonconservative product A(u)ux in (1.2) cannot
be defined in the distributional sense, by integrating by parts, since this
term does not have a divergence form. The theory introduced by Dal Maso,
LeFloch and Murat (1990, 1995) allows them to define the nonconservative
product A(u)ux as a bounded measure for all functions u with bounded
variation, provided a family of Lipschitz-continuous paths

Φ : [0, 1]× U × U → U
is prescribed, which must satisfy certain regularity and compatibility con-
ditions, in particular

Φ(0;ul, ur) = ul, Φ(1;ul, ur) = ur, Φ(s;u, u) = u. (4.3)

We refer to Dal Maso, LeFloch and Murat (1990, 1995) for a full presentation
of the theory.
Once the nonconservative product has been defined, one may define the

weak solutions of (1.2). According to this theory, across a discontinuity a
weak solution has to satisfy the generalized Rankine–Hugoniot condition

σ[[u]] =

∫ 1

0
A(Φ(s;u−, u+))∂sΦ(s;u−, u+) ds, (4.4)

where σ is the speed of propagation of the discontinuity, u− and u+ are the
left- and right-hand limits of the solution at the discontinuity, and [[u]] =
u+ − u−. Notice that, if A(u) is the Jacobian matrix of some function u,
then (4.4) reduces to the standard Rankine–Hugoniot conditions for the
conservation law (1.1), regardless of the chosen family of paths.
Analogous to the theory of conservation laws, many interesting non-

conservative hyperbolic systems arising in continuum physics are equipped
with an entropy formulation (LeFloch 1988). More specifically, (1.2) is
equipped with an entropy pair (η, q), that is, a convex function η : U → R

and a function q : U → R such that ∇q(u)� = v�A(u), where v := ∇η(u)
is the so-called entropy variable. Then entropy solutions of (1.2) satisfy the
entropy inequality (in the sense of distributions)

η(u)t + q(u)x ≤ 0, (4.5)
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while smooth solutions to (1.2) satisfy the entropy equality

η(u)t + q(u)x = 0. (4.6)

4.3. Small-scale dependent shock waves

Following an idea by LeFloch (1990), we now explain how the family of
paths is derived in applications, from an augmented model associated with
a nonlinear hyperbolic system. Observe that the concept of entropy weak
solutions, as outlined above, depends on the chosen family of paths. Dif-
ferent families of paths lead to different jump conditions, hence different
weak solutions. A priori, the choice of paths is arbitrary. Thus, the crucial
question is how to choose the ‘correct’ family of paths so as to recover the
physically relevant solutions.
In practice, any hyperbolic system such as (1.2) is obtained as the limit of

a regularized problem when the high-order terms (corresponding to small-
scale effects) tend to 0. For instance, it may be the vanishing-viscosity limit
of a family of hyperbolic–parabolic problems (as in the conservative case):

uεt +A(uε)uεx = ε (B(uε)uεx)x, (4.7)

where the right-hand side is elliptic in nature on account of the viscosity
matrix B. Then, the correct jump conditions (corresponding to the physi-
cally relevant solutions) should be consistent with the viscous profiles, that
is, with travelling wave solutions

uε(t, x) = V

(
x− σt

ε

)
of (4.7) satisfying limξ→±∞ V (ξ) = u±, limξ→±∞ V ′(ξ) = 0. A single-shock
solution

u(t, x) =

{
u− x < σt,

u+ x > σt,
(4.8)

is considered ‘admissible’ if u = limε→0 u
ε (almost everywhere).

It is easily checked that the viscous profile V has to satisfy the system of
ordinary differential equations

−σV ′ +A(V )V ′ = (B(V )V ′)′.

By integrating these equations in ξ ∈ R, we obtain the jump condition
(LeFloch 1990)

σ[[u]] =

∫ ∞

−∞
A(V (ξ))V ′(ξ) dξ. (4.9)

By comparing this jump condition with (4.4), we conclude that the correct
choice for the path connecting the states u− and u+ should be (after re-
parametrization) the trajectory of the viscous profile V .
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From the above discussion, we see that different choices of viscous term
B in (4.7) may lead to different viscous profiles and consequently different
jump conditions. This dependence upon the jump conditions (and thus the
definition of weak solutions) on the explicit form of the neglected small-
scale effects has profound implications for the design of efficient numerical
methods, as explained for the case of non-convex conservative problems in
Section 3.

4.4. Error in formally path-consistent schemes

Unlike for systems of conservation laws, where consistency of finite dif-
ference (or finite volume) schemes was established by Lax and Wendroff
(1960) by requiring the schemes to have a discrete conservative form, no
such requirement is known concerning discrete schemes for nonconservative
systems. This lack of convergence of nonconservative schemes was discov-
ered by Hou and LeFloch (1994) and turned out to be difficult to observe,
as the error may be quite small in certain applications; error estimates
were derived therein, which involve the strength of shocks and the order
of the schemes between the numerical and the exact solutions. Hou and
LeFloch’s theory was motivated by work by Karni (1992), who advocated
using nonconservative schemes in certain applications to fluid dynamics,
and demonstrated the advantages.
A large literature is now available on the problems and numerical methods

presented in this section, and we will not be able to present a fully exhaustive
review. For further reading we thus refer to Audebert and Coquel (2006),
Berthon and Coquel (1999, 2002, 2006, 2007), Chalons and Coquel (2007),
and Berthon, Coquel and LeFloch (2002, 2012).
More recently, Parés (2006) introduced path-consistent schemes for the

nonconservative systems (1.2). Given a uniform grid as in the previous
section, numerical schemes for nonconservative systems can be written in
the following fluctuation form:

d

dt
ui +

1

∆x

(
D+

i−1/2 +D−
i+1/2

)
= 0, (4.10)

where D±
i+1/2(t) = D±(ui(t), ui+1(t)

)
and D± : U × U �→ U are Lipschitz-

continuous functions satisfying

D±(u, u) = 0. (4.11)

As explained above, weak solutions to (1.2) require the specification of a
DLM family of paths. In Parés (2006), the path is explicitly introduced
into the scheme (4.10) by imposing the (formal) path-consistency condition

D−(ul, ur) +D+(ul, ur) =

∫ 1

0
A(Φ(s;ul, ur))∂sΦ(s;ul, ur) ds. (4.12)
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Figure 4.1. Godunov method of Muñoz and Parés (2007) for the coupled Burgers
system (4.1) with CFL= 0.4 and 1500 grid points. Comparison with the exact
solution computed from the viscous regularization (4.19).

Of course, a family of paths must be specified in advance in (4.12) before
writing a path-consistent scheme.
Assuming that a suitable path is selected (for instance from an aug-

mented model and by deriving its viscous profiles), it is natural to inves-
tigate whether the approximate solutions to (1.2) by the path-consistent
scheme (4.10) converge to the correct (physically relevant) solution of the
nonconservative system (1.2). Unfortunately, the answer to this fundamen-
tal question is negative in most cases, as follows from Hou and LeFloch
(1994), which was revisited by Castro, LeFloch, Muñoz-Ruiz and Parés
(2008) and, more recently, Abgrall and Karni (2010).
Here, we illustrate this deficiency of path-consistent schemes by consider-

ing a very simple nonconservative system: the coupled Burgers system (4.1)
of Berthon (2002). A Godunov-type scheme was derived in Muñoz and
Parés (2007) and was shown to be (formally) consistent with the path com-
puted from viscous profiles to the corresponding parabolic regularization
(4.19). A numerical example (further details are provided in the follow-
ing subsection) is shown in Figure 4.1. The results show that although
the Godunov-type path-consistent scheme converges as the mesh is refined,
it does not converge to the physically relevant (correct) solution, which is
computed explicitly from the parabolic regularization.
As in the case of all small-scale dependent shocks to (conservative or non-

conservative) hyperbolic systems, an explanation for this lack of convergence

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492914000099
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 16:51:12, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492914000099
https:/www.cambridge.org/core
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of path-consistent schemes lies in the equivalent equation of the scheme
(4.10), say,

u∆x
t +A(u∆x)u∆x

x = ∆x
(
B̃(u∆x)u∆x

x

)
x
+H. (4.13)

Here, H includes the higher-order terms that arise from a formal Taylor
expansion in the scheme (4.10) and B̃ is the (implicit) numerical viscosity.
Assuming that the high-order terms are relatively small (which is valid for
shocks with small amplitude), we can expect jump conditions associated
with the numerical solutions to be, at best, consistent with the viscous
profiles of the regularized equation

u∆x
t +A(u∆x)u∆x

x = ∆x
(
B̃(u∆x)u∆x

x

)
x
. (4.14)

But, in general, B �= B̃. As discussed earlier, the solutions to the non-
conservative system (1.2) depend explicitly on the underlying viscosity op-
erator. Therefore, the numerical solutions generated by the scheme (4.10)
may not converge to the physically relevant solutions of (1.2). Thus, the
(implicit) numerical viscosity that is added by any finite difference scheme
(as observed first in Hou and LeFloch 1994) is responsible for the observed
lack of convergence to the physically relevant solutions.

4.5. Schemes with controlled diffusion

As in the case of conservative hyperbolic systems with small-scale dependent
shock waves, the equivalent equation provides the appropriate tool to design
finite difference schemes that can approximate small-scale dependent shocks
to nonconservative systems. The main idea is to design a finite difference
scheme, such that the numerical viscosity (the leading term in its equivalent
equation) matches that of the underlying physical viscosity in (4.7). In
addition, we would like this scheme to be entropy stable, that is, to satisfy
a discrete version of the entropy inequality. One may proceed by requiring
the (formal) path-consistent condition introduced in Parés (2006), while
considering the corrections suggested by Hou and LeFloch (1994) and Castro
et al. (2008).
Following Castro, Fjordholm, Mishra and Parés (2013), let us present here

a class of schemes in the fluctuation form (4.10) with fluctuations satisfying
the (entropy) consistency condition

v�l D
−(ul, ur) + v�r D

+(ul, ur) = q(ur)− q(ul), ul, ur ∈ U , (4.15)

where v = ∂uη is the entropy variable. Furthermore, the fluctuations speci-
fied above are also required to satisfy the path-consistency condition (4.12)
for any choice of path. Castro et al. (2013) showed that the resulting scheme
(4.10) is entropy conservative, that is, it satisfies a discrete version of the
entropy identity (4.6). Furthermore, the existence of such fluctuations was
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also proved therein. In particular, condition (4.15) was shown to be a natu-
ral extension of the definition of Tadmor’s entropy conservative flux (3.35)
to a nonconservative system.
Following the construction of the entropy stable scheme (3.33), we need to

add numerical viscosity to stabilize the entropy conservative path-consistent
scheme. Castro et al. (2013) proposed adding the following viscosity oper-
ator to their fluctuations:

D̃+(ui, ui+1) = D+(ui, ui+1) +
ε

∆x
B̂(vi+1 − vi), (4.16)

D̃−(ui, ui+1) = D−(ui, ui+1)− ε

∆x
B̂(vi+1 − vi). (4.17)

Here, D± are the entropy conservative fluctuations defined in (4.15) and the

numerical viscosity B̂ is defined by

B̂ := Buv, (4.18)

where B is the physical viscosity in (4.7). The corresponding scheme (4.10)
was then shown to be

• formally path-consistent,

• entropy stable, i.e., it satisfied a discrete version of the entropy in-
equality, and

• the leading-order term of the equivalent equation matched the under-
lying parabolic equation (4.7).

Thus, this scheme is the correct extension of finite difference schemes with
controlled dissipation which approximates small-scale dependent shocks to
nonconservative hyperbolic systems.

4.6. Numerical experiments

We present a few numerical experiments from the work by Castro et al.
(2013), which serve to illustrate the relevance of entropy stable schemes
with controlled dissipation for approximating nonconservative hyperbolic
systems.

Coupled Burgers system

First, we consider the system (4.1) and note that this system is equipped
with the entropy–entropy flux pair

η(u) =
ω2

2
, q(u) =

ω3

3
, ω = v + w.
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Recall that Berthon (2002) computed the exact viscous profiles of the reg-
ularized system, that is,

∂tw + w ∂x(w + v) = ε1∂
2
xx(w + v),

∂tv + v ∂x(w + v) = ε2∂
2
xx(w + v).

(4.19)

In the limit ε1, ε2 → 0, this gives the correct (physically relevant) entropy
solutions to the Riemann problem for the coupled Burgers equation. In the
rest of this section, we choose ε1 = ε2 = ε.
Muñoz and Parés (2007) devised a Godunov path-conservative method

(4.10)–(4.12) with

D−
i+1/2 =

∫ 1

0
A(Φ(s;uni , u

n,−
i+1/2))∂sΦ(s;u

n
i , u

n,−
i+1/2) ds,

D+
i+1/2 =

∫ 1

0
A(Φ(s;un,+i+1/2, u

n
i+1))∂sΦ(s;u

n,+
i+1/2, u

n
i+1) ds,

where un,±i+1/2 are the limits to the left-hand and right-hand sides at x = 0

of the Riemann solution with initial data (uni , u
n
i+1).

To test the performance of the Godunov scheme, we approximate the Rie-
mann problem for (4.1) with initial data ul=[7.99, 11.01]�, ur=[0.25, 0.75]�
and we compare the exact solution with the numerical one provided by the
Godunov method in the interval [−2, 10.5] with 1500 points and CFL = 0.4.
As shown in Figure 4.1, the location of the discontinuities is correctly ap-
proximated, whereas the intermediate states approximated by the Godunov
scheme are incorrect. The error in these intermediate states does vanish as
∆x tends to 0. Even though the Godunov method takes into account the
exact expression of the viscous profiles (paths) and the exact solutions of
the Riemann problems, the numerical solutions provided by the method do
not converge to the expected weak solutions, due to the numerical viscosity
added in the projection step.
Following the procedure outlined in the construction of the entropy sta-

ble scheme above, the following entropy stable fluctuations were derived in
Castro et al. (2013) for the coupled Burgers equation:

D̃−
i+1/2 =

1

6
[[ω]]i+1/2

(
2wi + wi+1

2vi + vi+1

)
− ε

∆x

(
[[ω]]i+1/2

[[w]]i+1/2

)
,

D̃+
i+1/2 =

1

6
[[ω]]i+1/2

(
2wi + wi+1

2vi + vi+1

)
+

ε

∆x

(
[[ω]]i+1/2

[[w]]i+1/2

)
.

(4.20)

In order to validate these numerical schemes, we again consider the Riemann
problem with initial data ul = [7.99, 11.01]�, ur = [0.25, 0.75]� and compare
the exact solution with the numerical one provided by the ESPC scheme
(the relevant scheme with controlled dissipation) in the interval [−2, 10.5]
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Figure 4.2. Comparison of the ESPC and Godunov schemes
for the coupled Burgers system (4.1) with the exact solution.

with 1500 grid points. The results are shown in Figure 4.2. In order to
compare the ESPC scheme with the Godunov scheme, we computed the
numerical Hugoniot locus by approximating a family of Riemann problems
whose initial data are given by ur = [0.75, 0.25]� and a series of left-hand
states belonging to the exact shock curve. The Riemann problem is solved
in the interval [−2, 10] and the corresponding left-hand state (at the shock)
is used to compute the numerical Hugoniot locus. The results are presented
in Figure 4.3 and show that the Godunov scheme does a poor job of approx-
imating the exact solution. The numerical Hugoniot locus for this scheme
starts diverging even for shocks with small amplitude. On the other hand,
the ESPC schemes approximates the correct weak solution. The numeri-
cal Hugoniot locus coincides with the exact locus for a large range of shock
strengths. Only for very strong shocks does the Hugoniot locus show a slight
deviation. This is to be expected as the high-order terms in the equivalent
equation (4.13) become larger with increasing shock strength and may lead
to deviations in the computed solution. However, the gain in accuracy with
the ESPC scheme over the Godunov scheme is considerable.

Two-layer shallow water system

Next, let us consider the two-layer shallow water system (4.2). It is widely
accepted that the correct regularization mechanism for this system is pro-
vided by the eddy viscosity, resulting in the following hyperbolic–parabolic
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Figure 4.3. Numerical Hugoniot locus for the coupled Burgers equation (4.1) gener-
ated by the ESPC and Godunov schemes, compared with the exact Hugoniot locus.

system:

(h1)t + (h1u1)x = 0,

(h2)t + (h2u2)x = 0,

(h1u1)t +

(
1

2
gh21 + h1u

2
1

)
= −gh1(b+ h2)x + ν(h1(u1)x)x,

(h2u2)t +

(
1

2
gh22 + h2u

2
2

)
= −gh2(b+ rh1)x + ν(h2(u2)x)x.

(4.21)

Here, ν � 1 is the coefficient of eddy viscosity. An entropy–entropy flux
pair for the two-layer shallow water system is given by

η =
2∑

j=1

ρj

(
hj

u2j
2

+ g
h2j
2

+ ghjb

)
+ gρ1h1h2, (4.22a)

q =

2∑
j=1

ρj

(
hj

u2j
2

+ gh2j + ghjb

)
uj + ρ1gh1h2(u1 + u2). (4.22b)

The corresponding entropy variables are given by

v =


ρ1
(−1

2u
2
1 + g(h1 + h2 + b)

)
ρ1u1

ρ2
(−1

2u
2
2 + g(h2 + b)

)
+ ρ1gh1

ρ2u2
ρ1gh1 + ρ2gh2

.
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An entropy stable scheme with controlled dissipation for this system was
proposed in Castro et al. (2013), to which the reader is referred for an
explicit expression.
As it is very difficult to compute the viscous profiles explicitly from the

viscous system (4.21), we compute the viscous profiles numerically by taking
a fixed ν � 1 in the ESPC scheme. Note that as the parameter ν is fixed,
the scheme approximates the parabolic system (4.21). The corresponding
solution and Hugoniot locus are computed, and are labelled ‘reference’ in
Figures 4.4 and 4.5.
In order to demonstrate the dependence of the weak solutions to the

two-layer shallow water equations on the choice of paths, an alternative
path is chosen by fixing a left-hand state ul and computing numerically the
states that can be linked to this state by a shock satisfying the Rankine–
Hugoniot conditions associated with the family of straight-line segments.
The computed Hugoniot locus, following Castro et al. (2008), is labelled
‘segments’ in Figure 4.5.
In addition to the ESPC scheme of Castro et al. (2013), which lacks any

viscosity in the mass balance equations, additional numerical viscosity is
added to the mass equations, resulting in a scheme called ESPC-NV in
the subsequent experiments. To provide a further comparison, we compute
the solutions of the two-layer shallow water equations with the Roe scheme
(consistent with straight-line paths) of Castro et al. (2001).
In Figure 4.4, we plot the solutions obtained with the ESPC, ESPC-NV

and Roe schemes for a Riemann problem with initial data

ul =


1.376
0.6035
0.04019
−0.04906

, ur =


0.37
1.593

−0.1868
0.1742

 (4.23)

and homogeneous Neumann boundary conditions on the computational do-
main [0, 1]. All the simulations are performed with 2000 mesh points. For
the sake of comparison, a reference solution computed with the eddy viscos-
ity system (4.21) and a fixed ν = 2× 10−4 on a very fine mesh of 216 mesh
points is also shown. As seen in this figure, the solutions computed with all
the schemes are quite close to the reference solution. As seen in the close-
up, there is a minor difference in the intermediate state computed by the
ESPC-NV and Roe schemes. The ESPC scheme contains oscillations. This
is to be expected as the mass conservation equations contain no numerical
viscosity. However, the approximate solution computed by this scheme is
still quite close to the reference solution.
In order to compare the performance of the schemes for a large set of initial

data, we compute a numerical Hugoniot locus by fixing the same right-
hand state as in (3.23), and then varying the left-hand state. A reference
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Figure 4.4. Approximate solutions for the height of the bottom layer (h2) and the
total height (h1 = h2) for the two-layer shallow water system (4.2) with the ESPC,
ESPC-NV and path-consistent Roe schemes. A reference solution is also displayed,
computed from the viscous shallow water system (4.21).
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Figure 4.5. Hugoniot loci in the h1 − (h1u1) and h2 − (h2u2) planes for the two-
layer shallow water equations (4.2), computed with the ESPC, ESPC-NV and Roe
schemes. A reference Hugoniot locus computed from the viscous shallow water sys-
tem (4.21) and a Hugoniot locus computed using straight-line paths are also shown.

Hugoniot locus, calculated from a numerical approximation of the mixed
hyperbolic–parabolic system (4.21), is shown. We also display the Hugoniot
locus corresponding to the family of straight-line segments. All the Hugoniot
loci in the h1-(h1u1) plane and the h2-(h2u2) plane are shown in Figure 4.5.
From Figure 4.5, we observe that the Hugoniot locus calculated using

straight-line segments is clearly different from the one calculated from the
underlying viscous two-layer shallow water equations (4.21). On the other
hand, all three numerical schemes lead to Hugoniot loci that are very close
to each other and to the reference Hugoniot locus. Minor differences are
visible when we zoom in: see Figure 4.5(c,d). We see that, among the
three schemes, the ESPC scheme provides the best overall approximation
to the reference Hugoniot locus. However, both the ESPC-NV and the Roe
schemes also provide a good approximation to the reference Hugoniot locus.
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The results show that (rather surprisingly) the numerical approximation of
two-layer shallow water equations is not as sensitive to the viscous terms
as the coupled Burgers system. The path-consistent Roe scheme performs
adequately in approximating the correct solution. At the same time, the
ESPC schemes provide a slightly more accurate approximation.

4.7. Schemes with well-controlled dissipation (WCD)

When approximating shocks to nonconservative hyperbolic systems, the
above numerical experiments clearly indicate the superior performance of
the schemes with controlled dissipation, in contrast to merely imposing a for-
mal path-consistent condition (directly imposed on, for instance, a Godunov
or Roe flux). However, as in the case of nonclassical shocks to conservation
laws, schemes with controlled dissipation can fail to approximate strong
(large-amplitude) shocks. Evidence for this fact has been presented in the
numerical experiments for the coupled Burgers system (see Figure 4.3), as
well as in Fjordholm and Mishra (2012), who considered the system of gas
dynamics in Lagrangian coordinates.
Therefore, again following the extensive discussion in Section 3, it is now

clear that we need schemes with well-controlled dissipation (WCD) in order
to approximate shocks with arbitrarily large amplitude to nonconservative
systems. Schemes with controlled dissipation provide a starting point but
need to be further improved. The ‘full’ equivalent equation, that is, a specifi-
cation of the high-order terms H, analogous to the equivalent equation (3.8)
for conservative systems, needs to be considered so that the asymptotics for
large shocks are taken into account in the design of the schemes. Further-
more, higher-order finite difference discretizations of the nonconservative
term A(u)ux are required. Only then can we proceed analogously to the
conservative case, and balance the leading-order terms of the equivalent
equation to the high-order terms in order to design a suitable WCD condi-
tion. The specification of this WCD condition and extensive experiments
with the resulting schemes are the subject of the forthcoming paper by
Beljadid, LeFloch, Mishra and Parés (2014).

5. Boundary layers in solutions to systems of conservation
laws

5.1. Preliminaries

We now turn our attention to the initial and boundary value problem for non-
linear hyperbolic systems of conservation laws (1.1) with prescribed data:

u(0, x) = u0(x), x ∈ Ω = (Xl,∞),

u(t,Xl) = u(t), t ≥ 0,
(5.1)
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for some given boundary point Xl ∈ R. This one-half boundary value
problem can be readily generalized to include two boundaries (that is, Ω =
(Xl, Xr) for some Xr > Xl). The study of the initial and boundary value
problem poses additional difficulties compared to the study of the Cauchy
problem. Most importantly, the problem (1.1) and (5.1) is ill-posed in the
sense that, in general, it admits no solution unless the boundary condition
u(t,Xl) = u(t) is understood in the weaker sense

u(t,Xl) ∈ Φ(u(t)), t ≥ 0, (5.2)

as proposed by Dubois and LeFloch (1988). Here, Φ(u(t)) is a set contain-
ing u, which depends upon how the boundary value problem is handled,
for instance via the Riemann problem (sharp boundary layers) or by the
vanishing viscosity method (viscous boundary layers).
Dubois and LeFloch (1988) studied sharp boundary layers for the Euler

equations: by solving the so-called boundary Riemann problem and defining
Φ(u(t)) as the set of all boundary values of Riemann problems with fixed
left-hand state u(t) at Xl, these authors show that Φ(u(t)) can be decom-
posed into several strata (or submanifolds) in the state space whose local
dimension increases with the strength of the shock layer.
Alternatively, following Benabdallah (1986), Dubois and LeFloch (1988),

Gisclon (1996), Gisclon and Serre (1994), and Joseph and LeFloch (1996,
1999), one may consider the viscous approximations (with ε > 0)

uεt + f(uε)x = ε
(
B(uε)uεx

)
x
, x ∈ Ω = (Xl,∞), (5.3)

with given viscosity matrix B = B(u), and supplement these equations with
initial and boundary conditions

uε(0, x) = u0(x), x ∈ Ω = (Xl,∞),

uε(t,Xl) = ul(t), t ≥ 0.
(5.4)

We assume that this initial and boundary value problem (5.3)–(5.4) is lo-
cally well-posed (which is the case under mild conditions on the viscosity
matrix B and given sufficient regularity in the data) and that for ε → 0 the
solutions uε converge (in a suitable topology) to a limit u = u(t, x). Due
to a boundary layer phenomenon, the limit u, in general, does not satisfy
the prescribed boundary condition ul(t) pointwise. Instead, Dubois and
LeFloch (1988) showed that if the system of conservation laws is endowed
with an entropy–entropy flux pair (U,F ), then the solutions of the viscous
approximation (5.3) converge (as ε → 0) to a solution of the initial and
boundary problem (1.1) and (5.1) in a sufficiently strong topology, and we
have the following entropy boundary inequality :

F (u(t))− F (ul(t))−DuU(ul(t)) ·
(
f(u(t))− f(ul(t))

) ≤ 0. (5.5)
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For the case of scalar conservation laws, a version of this inequality has also
been derived by Le Roux (1977) and Bardos, Le Roux and Nédélec (1979).
As for other small-scale dependent models, a major difficulty in the study

of initial and boundary value problems was pointed out by Gisclon and Serre
(1994) and Joseph and LeFloch (1996): the limit of the viscous approxima-
tion (5.3) depends on the underlying viscosity mechanism. In other words,
the limit of (2.1) generally changes if one changes the viscosity matrix B.
As an example, we consider the linearized shallow water equations (5.8)

with initial data (5.12) and boundary data (5.13). The system is a linear,
strictly hyperbolic, 2 × 2 system and is the simplest possible problem that
can be considered in this context. We consider two different viscosity opera-
tors: an artificial uniform (Laplacian) viscosity (5.10) and the physical eddy
viscosity (5.9). The resulting limit solutions are shown in Figure 5.1(a). As
shown in the figure, there is a significant difference in solutions (near the
boundary) corresponding to different viscosity operators.
For an extended discussion of the initial boundary value problem for sys-

tems of conservation laws and its viscous approximation, we refer to Serre
(2000, 2007) and the bibliography therein, as well as the theory of dis-
crete shock profiles. We stress that analytically establishing the convergence
ε → 0 in the possibly characteristic regime and for general diffusion matri-
ces has been addressed only quite recently, in the following works: Joseph
and LeFloch (1999, 2002, 2006), Ancona and Bianchini (2006), Bianchini
and Spinolo (2009) and Christoforou and Spinolo (2011). Many other re-
sults are also available in more specific cases, which we do not attempt to
review here.

5.2. Standard finite difference (or finite volume) schemes

As in the previous sections, it is common to use a finite difference or a finite
volume scheme of the form (3.1), with a suitable numerical flux gi+1/2.
Following Goodman (1982) and Dubois and LeFloch (1988) (see also the
textbook by LeVeque 2003), the Dirichlet boundary conditions at X = Xl

are imposed by setting in the ghost cell [x−1/2, x1/2]:

un0 = ul(t
n). (5.6)

One might expect that using a flux based on the Riemann solver at the
boundary should suffice to approximate the correct solution of the initial
boundary value problem. However, standard numerical schemes may not
converge to the physical viscosity solution of the initial boundary value
problem for a system of conservation laws. We illustrate this by again
considering the linearized shallow water equations (5.8) with initial data
(5.12) and boundary data (5.13) at time t = 0.25. The results with a
standard Roe (Godunov) scheme for this linear system are presented in
Figure 5.1(b). The figure clearly shows that the Roe scheme converges
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Figure 5.1. Linearized shallow water equations. (a) Viscous profile at t = 0.25
with viscosity (5.10) and eddy viscosity (5.9). (b) Roe (Godunov) scheme with the
same data.

to a solution that is different from the physical-viscosity solution of the
system, realized as a limit of the eddy viscosity approximation (5.9). In
fact, the solution converges to the limit of the artificial uniform viscosity
approximation (5.10).
As in the previous examples of numerical approximation of small-scale

dependent shock waves, this failure to approximate the correct solution
can be explained in terms of the equivalent equation (3.8) of the scheme
(3.1). As explained above, the numerical viscosity of the scheme may not
match the underlying physical viscosity B in (2.1). As the solutions of the
boundary value problems depend explicitly on the underlying small-scale
mechanism, it is not surprising that the scheme fails to approximate the
physically relevant solution, as shown in Figure 5.1.
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5.3. Schemes with controlled dissipation

As in the previous examples, the equivalent equation suggests an approach
to design numerical schemes which will approximate the physically relevant
solution. As in the previous sections, this approach consists of the following
stages.

Design of entropy conservative scheme
As outlined above, the first step is to choose a numerical flux g∗i+1/2 such

that the resulting finite difference scheme (3.1) satisfies a discrete version
of the entropy identity (3.32). The construction of such schemes follows
Tadmor (1987) and has already been outlined. We follow this recipe for our
construction and we use explicit formulas for the entropy conservative flux.

Correct numerical diffusion operator
As before, we need to add numerical diffusion to stabilize the entropy con-
servative scheme. To this end, we choose the following flux:

gi+1/2 = g∗i+1/2 −
1

2
cmaxB(ûi+1/2)[[u]]i+1/2. (5.7)

Here, B is the underlying (small-scale) physical viscosity in (5.3). The
resulting numerical scheme (3.1) with numerical flux (5.7) is called the cor-
rect numerical diffusion (CND) scheme. Mishra and Spinolo (2011) have
shown that (i) it is entropy stable, and (ii) its equivalent equation matched
the underlying parabolic regularization (2.1) of the conservation law (1.1).
Consequently, this scheme can be referred to as a scheme with controlled
dissipation in our terminology.

5.4. Numerical experiments

Linearized shallow water equations
We consider the linearized shallow water equations of fluid flow (LeVeque
2003):

ht + ũhx + h̃ux = 0,

ut + ghx + ũux = 0,
(5.8)

where h represents the height and u the water velocity. The constant g
stands for the acceleration due to gravity and h̃, ũ are the (constant) height
and velocity states around which the shallow water equations are linearized.
The physical-viscosity mechanism for the shallow water system is the

eddy viscosity. Adding eddy viscosity to the linearized shallow water system
results in the following mixed hyperbolic–parabolic system:

ht + ũhx + h̃ux = 0,

ut + ghx + ũux = εuxx.
(5.9)
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On the other hand, for the sake of comparison we can also add an arti-
ficial viscosity to the linearized shallow waters by including a Laplacian
regularization, that is,

ht + ũhx + h̃ux = εhxx,

ut + ghx + ũux = εuxx.
(5.10)

For the rest of this section, we specify the parameters

h̃ = 2, ũ = 1, g = 1 (5.11)

and the initial data

(h, u)(0, x) =

{
U− = (3, 1) x < 0,

U+ = (1, 1) x > 0,
(5.12)

together with the Dirichlet boundary data

(h, u)(−1, t) = Ul(t) = (2, 1), t > 0. (5.13)

Since the linearized shallow water equations (5.8) are a linear constant co-
efficient system of equations, one can explicitly solve the above initial and
boundary value problem (see Mishra and Spinolo 2011) for limits of the
eddy viscosity as well as the uniform viscosity. These exact solutions are
used as reference solutions. The boundary condition then holds only in the
weak sense of Dubois and LeFloch (5.2) with suitably defined boundary
layer sets.
The numerical solutions computed with the standard Roe scheme and the

CND scheme at time t = 0.25 are shown in Figure 5.2. We are interested
in computing the physical-viscosity solutions of the linearized shallow water
equations, obtained as a limit of the eddy viscosity (5.9). Observe that the
full Dirichlet boundary conditions can be imposed at the boundary, even for
the case of eddy viscosity as ũ > 0. Both numerical solutions are computed
with 1000 mesh points.
The results in Figure 5.2 clearly show that the Roe scheme does not con-

verge to the desired solution, realized as the limit of the physical-viscosity
(5.9). On the other hand, the solutions computed with the CND scheme
approximate the physical-viscosity solution quite well. There are some
small-amplitude oscillations in the height with the CND scheme. This is
a consequence of the singularity of the viscosity matrix B in this case. As
there is no numerical viscosity in the scheme approximating the height, this
results in small-amplitude oscillations. These small-amplitude oscillations
might lead to small-amplitude oscillations in the velocity. However, these
oscillations are damped considerably due to the numerical viscosity used to
approximate the velocity. At this resolution, it is not possible to observe
these oscillations in the velocity. A mesh refinement study, the results of
which are plotted in Figure 5.3, further establishes that the approximate
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Figure 5.2. Solutions of the linearized shallow water equations (5.8) at time t = 0.25
with initial data (5.12) and boundary data (5.13) computed with the Roe and
CND schemes with 1000 mesh points. The exact solution computed is provided for
comparison.

solutions generated by the CND scheme converge to the physically relevant
solution (the limit of the eddy viscosity approximation) as the mesh is re-
fined. Furthermore, the amplitude of the height oscillations reduces as the
mesh is refined.

Nonlinear Euler equations

The Euler equations of gas dynamics (in one space dimension) read

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = 0,

Et + ((E + p)u)x = 0,

(5.14)
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Figure 5.3. Solutions of the linearized shallow water equations (5.8) at time t = 0.25
with initial data (5.12) and boundary data (5.13) computed with the CND scheme
at different mesh resolutions. The exact solution is provided for comparison.

where ρ denotes the fluid density and u the fluid velocity. The total energy
E and the pressure p are related by the ideal gas equation of state

E =
p

γ − 1
+

1

2
ρu2, (5.15)

where the adiabatic constant γ > 1 is a constant specific to the gas. The
system is hyperbolic, with eigenvalues

λ1 = u− c, λ2 = u, λ3 = u+ c, (5.16)

where c =
√

γp
ρ is the sound speed. Furthermore, the equations are aug-

mented with the entropy inequality( −ρs

γ − 1

)
t

+

(−ρus

γ − 1

)
x

≤ 0, (5.17)
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with thermodynamic entropy

s = log(p)− γ log(ρ).

The compressible Euler equations are derived by ignoring kinematic vis-
cosity and heat conduction. Taking these small-scale effects into account
results in the Navier–Stokes system for compressible fluids:

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = νuxx,

Et + ((E + p)u)x = ν

(
u2

2

)
xx

+ κθxx.

(5.18)

Here, θ represents the temperature,

θ =
p

(γ − 1)ρ
,

while ν is the viscosity coefficient and κ the coefficient of heat conduction.
For the sake of comparison, we can also add a uniform (Laplacian) diffusion
to obtain the compressible Euler equations with artificial viscosity:

ρt + (ρu)x = ερxx,

(ρu)t + (ρu2 + p)x = ε(ρu)xx,

Et + ((E + p)u)x = εExx.

(5.19)

Although explicit solutions are not known (even for the boundary Rie-
mann problem), we can still rely on a numerical approximation of the reg-
ularized equations (5.19) and (5.18), as in Mishra and Spinolo (2011). To
illustrate the difference in limit solutions for different regularizations, we
consider both (5.19) and (5.18) in the domain [−1, 1], with initial data

(ρ0, u0, p0) =

{
(3.0, 1.0, 3.0) x < 0,

(1.0, 1.0, 1.0) x > 0.
(5.20)

We impose absorbing boundary conditions at the right-hand boundary and
Dirichlet boundary conditions at the left-hand boundary, with boundary
data (

ρ(−1, t), u(−1, t), p(−1, t)
)
= (2.0, 1.0, 2.0), (5.21)

and, for simplicity, we set ν = κ = ε. The results for the finite difference
scheme approximating the uniform viscosity (5.19) and the physical viscosity
(5.18) at time t = 0.25 are presented in Figure 5.4. The figure shows that
there is a clear difference in the limit solutions of this problem, obtained from
the compressible Navier–Stokes equations (5.18) and the Euler equations
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Figure 5.4. Limit solutions at time t = 0.25 of the compressible Euler equations
(5.14) with initial data (5.20) and boundary data (5.21). The limits of the physical
viscosity, that is, compressible Navier–Stokes equations (5.18) and the artificial
(Laplacian) viscosity (5.19), are compared.
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with artificial viscosity (5.19). The difference is more pronounced in the
density variable near the left-hand boundary. Both the limit solutions were
computed by setting ε = 10−5 and on a very fine mesh of 32 000 points.
The above example also illustrates the limitations of using a mixed hyper-

bolic–parabolic system such as the compressible Navier–Stokes equations
(5.18). In order to resolve the viscous scales, we need to choose ∆x =
O(1/ε), where ε is the viscosity parameter. As ε is very small in practice,
the computational effort involved is prohibitively expensive. In the above
example, we needed 32 000 points to handle ε = 10−5. Such ultra-fine grids
are not feasible, particularly in several space dimensions.
Hence, we will use a scheme with controlled dissipation such as the CND

scheme. This scheme requires both entropy conservative fluxes and numeri-
cal diffusion operators. We use the entropy conservative fluxes for the Euler
equations that were recently developed by Ismail and Roe (2009) and a dis-
crete version of the Navier–Stokes viscosity (5.18) as in Mishra and Spinolo
(2011).
We discretize the initial and boundary value problem for the compressible

Euler equations (5.14) on the computational domain [−1, 1] with initial data
(5.20) and Dirichlet data (5.21). The results with the CND scheme and
a standard Roe scheme at time t = 0.25 are shown in Figure 5.5. We
present approximate solutions, computed on a mesh of 1000 points, for
both schemes. Both the Roe and the CND schemes have converged at this
resolution. As we are interested in approximating the physical-viscosity
solutions of the Euler equations, realized as a limit of the Navier–Stokes
equations, we plot a reference solution computed on a mesh of 32 000 points
of the compressible Navier–Stokes equations (5.18) with κ = ν = 10−5. The
figure shows that the Roe scheme clearly converges to an incorrect solution
near the left-hand boundary. This lack of convergence is most pronounced in
the density variable. Similar results were also obtained with the standard
Rusanov, HLL and HLLC solvers; see the book by LeVeque (2003) for a
detailed description of these solvers.
On the other hand, the CND scheme converges to the physical-viscosity

solution. There are slight oscillations with the CND scheme because the
numerical diffusion operator is singular. However, these oscillations do not
impact on the convergence properties of this scheme. Although the Roe
scheme does not generate any spurious oscillations, it converges to an incor-
rect solution of the Euler equations. On the other hand, the CND scheme
does converge to the physical-viscosity solution (the Navier–Stokes limit),
despite some spurious oscillations. It appears that the oscillations are the
price one has to pay in order to resolve the physical-viscosity solution cor-
rectly. Moreover, the CND scheme is slightly more accurate than the Roe
scheme when both of them converge to the same solution (see near the
interior contact).
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Figure 5.5. Approximate solutions of the compressible Euler equations (5.14) with
initial data (5.20) and boundary data (5.21) at time t = 0.25. We compare the Roe
and CND schemes on 1000 mesh points with a reference solution of the compressible
Navier–Stokes equations (5.18) with κ = ν = 10−5.
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Schemes with well-controlled dissipation

The CND scheme of Mishra and Spinolo (2011) is a scheme with controlled
dissipation in this case. It approximates shocks of moderate amplitude quite
robustly, as shown in the previous numerical experiments. However, there
might be a deterioration of performance once the shock amplitude is very
large. In this case, a scheme with well-controlled dissipation (WCD) can be
readily designed using the construction involving the equivalent equation,
as outlined in the previous section.

6. Concluding remarks

6.1. Numerical methods with sharp interfaces

Another class of numerical methods for approximating small-scale depen-
dent solutions to hyperbolic problems is based on front-tracking schemes
and random choice schemes. Although they may not always be suitable for
physical applications, where the solution is not a priori known and high-
order accuracy is sought, these methods have some definite advantages.
Most importantly, numerical shocks are not smeared and are represented
as discontinuities, and it is only the location of the shock and the left-hand
and right-hand values that are approximated. Front-tracking and random
choice methods have been first used to establish the existence of small-scale
dependent solutions and allows us to achieve the following results.

• Existence theory for the initial value problem for solutions with non-
classical shocks by Amadori, Baiti, LeFloch and Piccoli (1999), Baiti,
LeFloch and Piccoli (1999, 2000, 2001, 2004), LeFloch (2002), and
Laforest and LeFloch (2010, 2014).

• Existence theory for the initial value problem for nonconservative sys-
tems by LeFloch and Liu (1993), which was based on the noncon-
servative Riemann solver and the theory of nonconservative products
developed by Dal Maso, LeFloch and Murat (1990, 1995).

• Existence theory for the initial value problem for hyperbolic systems of
conservation laws by Amadori (1997), Amadori and Colombo (1997),
Ancona and Marson (1999), Karlsen, Lie and Risebro (1999), and Don-
adello and Marson (2007).

In particular, this strategy was numerically implemented by Chalons and
LeFloch (2003) (nonclassical solutions via the random choice scheme) and,
in combination with a level set technique, by Zhong, Hou and LeFloch
(1996), Hou, Rosakis and LeFloch (1999), and Merkle and Rohde (2006,
2007), who treated a nonlinear elasticity model with a trilinear law in
two spatial dimensions. As observed by Zhong et al., this model exhibits
complex interface needles attached to the boundary, whose computation is
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numerically very challenging since they are strongly small-scale dependent.
In addition, methods combining differences and interface tracking were also
developed which ensure that the interface is sharp and (almost) exactly
propagated: see Boutin, Chalons, Lagoutière and LeFloch (2008).

6.2. Convergence analysis

As described in the current review, the design and numerical implemen-
tation of robust and efficient methods for small-scale dependent schemes
are now well established. However, a complete theory, with convergence
results, is available only for random choice and front-tracking schemes; this
theory encompasses nonclassical undercompressive shocks, nonconservative
hyperbolic systems, and the boundary value problem. However, only par-
tial results are available concerning the rigorous convergence analysis of the
proposed schemes, and the interested reader may consult and build upon
the references cited in the bibliography.

6.3. Perspectives

In summary, our main guidelines for the design of efficient and robust nu-
merical methods for small-scale dependent shock waves can be summarized
as follows.

• Standard finite difference or finite volume schemes fail to properly ap-
proximate weak solutions containing small-scale dependent shocks, and
a well-controlled dissipation requirement is necessary.

• This lack of convergence to physically relevant solutions arises with
most nonlinear hyperbolic problems, including:

– non-genuinely nonlinear systems (dispersive effects are present and
may contribute to the dynamics of shocks),

– nonconservative hyperbolic systems (since products of discontinu-
ous functions by measures are regularization-dependent), and

– boundary value problems (due to the formation of possibly char-
acteristic boundary layers).

• Numerous applications lead to such problems, especially:

– the dynamics of viscous–capillary fluids,

– the dynamics of two-phase fluids such as liquid–vapour or liquid–
solid or solid–solid mixtures,

– the model of magnetohydrodynamics with the Hall effect included,
which leads to the most challenging system because of the lack
of genuine nonlinearity, the lack of strict hyperbolicity, and the
presence of dispersive terms.
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• Although the classes of problems under consideration are quite distinct
in physical origin, a single source of difficulty was identified here, that
is, the importance of properly computing the global effect of small-
scale terms. Standard schemes for all these problems fail because the
leading terms in the equivalent equation are different from the small-
scale mechanisms of the underlying PDE.

• Schemes with well-controlled dissipation have been developed in the
past fifteen years, in order to accurately compute small-scale depen-
dent shock waves. The key ingredient was to systematically design
numerical diffusion operators that lead to the equivalent equation of
the scheme matching the small-scale mechanisms of the underlying
PDE to leading order.

• Since the residual terms of the equivalent equation can become large
with increasing shock strength, any scheme of a fixed order of accuracy
will fail to converge to the correct solution for very large shocks, and
this issue has been addressed. The proper notion of convergence for
small-scale dependent shock waves is that the approximate solutions
converge in L1 as well as in terms of kinetic relations, as the order p
of the scheme is increased.

• Computing kinetic functions, families of paths, and admissible bound-
ary sets is very useful in investigating the effects of the diffusion–
dispersion ratio, regularization, order of accuracy of the schemes, and
the efficiency of the schemes, as well as in making comparisons between
several physical models.
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