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Sequence differences between histones of procyclic
Trypanosoma brucei brucei and higher eukaryotes
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SUMMARY

Four histones, a, b, c, d from procyclic Trypanosoma brucei brucei, which show similarities with the amino acid composition
of the core histones H3, H2A, H2B and H4, were isolated and cleaved with Endoproteinase Glu-C. The fragments were
separated by FPLC reversed phase chromatography and a subset of the fragments (a5, a9, b6, c8, d3, d9, dl 1) was subjected
to sequence analysis. A 54-71 °u identity was found in the sequences of the fragment c8 and the C-terminal half of H2B
and of three fragments of protein d covering the N-terminal half as well as the C-terminal region of H4. The amino acid
sequence of the fragment a9 showed a 57 and 54 "0 identity with H3 sequences of Saccharomyces cerevisiae and Xenopus
laevis. Neither the a5 nor the b6 sequence could be aligned with histone sequences of other eukaryotes. The significant
differences of 21—48",, between the T. b. brucei histone sequences and those of calf thymus histones, which are more
pronounced than the differences of Tetrahymena pvriformis and the higher eukaryote, resulted partially from replacements
of amino acids with different properties and indicate specific patterns of histone—histone and/or histone—DNA contact
sites in the nucleosome of T. b. brucei. These differences, together with the lack of a functional histone HI , maybe sufficient
to explain the lack of a salt-dependent formation of the nucleosome filament into the 30 nm fibre, which reflects alternative
methods of organizing and processing the genetic information in the nucleus of the protozoan parasite and which may be
of chemotherapeutic significance.
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INTRODUCTION

The nucleosome core particle, the basic subunit of
chromatin of eukaryotic cells, is composed of two
molecules of histone H2A, H2B, H3, H4, and a
stretch of 146 bp of DNA (Van Holde et al. 1975;
McGhee & Felsenfeld, 1980). Core histones have
been generally conserved during evolution (DeLange
et al. 1969a; Isenberg, 1979; Van Holde, 1989) in
particular the portions of the histone molecules
which constitute the central globular core. This
implies that histone-histone interaction is of a
conservative nature (Martinson et al. 1979). How-
ever, relatively large amino acid sequence differences
may exist between the core histones of lower and
higher eukaryotes. The largest differences of 13—
37 °0, between any core histones hitherto described,
are those between Tetrahymena pyriformis and
human spleen or calf thymus histones (Nomoto,
Hayashi & Iwai, 1982; Fusauchi & Iwai, 1983;
Hayashi et al. 1984a; Hayashi, Nomoto & Iwai,
19846; Kasai, Hayashi & Iwai, 1986). It is postulated
that the degree of diversity of core histones among
the eukaryotes did increase with the capacity to
undergo post-translational modifications which oc-
cur mainly in the basic, N-terminal regions (Isen-

* Reprint requests to: H. Hecker, Swiss Tropical In-
stitute, Postfach, CH-4002 Basel, Switzerland.

berg, 1979). These regions were proposed to be
involved in the modulation of fibre-solenoid trans-
itions rather than in the stabilization of the nucleo-
some itself (McGhee & Felsenfeld, 1980; Allan et al.
1982). Four histones a, b, c and d are involved in the
organization of the nuclear chromatin of procyclic
Trypanosoma brucei brucei (Hecker & Gander, 1985 ;
Hecker et al. 1989; Bender et al. 1991). Similarities
in the amino acid composition were found for the
histones a and H3, b and H2A, c and H2B, d and H4,
but these histones could be distinguished from those
of higher eukaryotes by differences in charge and/or
size. Proteins a and d showed a lower hydrophobicity
than H3 and H4 (Bender et al. 1991).

The chromatin organization of T. b. brucei differs
from that of higher eukaryotes. Protein-DNA inter-
actions are less stable than in rat liver chromatin
(Hecker et al. 1989). The interactions between the
histones a and d with the DNA were abolished at
significantly lower ionic strength as compared to
those of H3 and H4 with the DNA in the chromatin
of higher eukaryotes (Bender et al. manuscript
submitted). In addition, no functional histone HI
could be demonstrated in T. b. brucei chromatin,
nucleosomes were arranged and spaced irregularly
and no salt-induced formation of the chromatin
filaments into the typical 30 nm fibre took place
(Hecker & Gander, 1985; Hecker et al. 1989).

It was the aim of the present investigation, to
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Fig. 1. Separation of peptide fragments generated by cleavage of procyclic Trypanosoma bnicei brucei histones a, b, c,
d with Endoproteinase Glu-C. Reversed phase FPLC on a C1/C8 column (Pharmacia, ProRPC 5/10) using a linear
acetonitrile gradient. Solution A, CM °0 TFA in water. Solution B, O'l "0 TFA in acetomtnle. Peaks used for sequence
analysis are marked.

a5: Thr-Ala-Arg-Thr-Lys-Lys-Thr-lle-Thr-Ser-Lys-Lys-Ser-
Lys-Lys

a9: lle-Thr/Leu-Gln-Phe-Gln-Arg-Ser-Thr-Asp-Leu-Leu-Leu-GIn
Lys-Ala

b6: Leu-Ser-Val-Lys-Ala-Ala-Ala-Gln-Gln-Thr-Lys-Lys-Thr-Lys-
Arg-Leu-Thr-Pro-Arg-Thr

c8: Leu-Gln-Thr-Ala-Val-Arg-Leu-Val-Leu-Pro-Ala-Asp-Leu-Ala
d9.1 : Tyr-Ser-Arg-Lys-Lys-Thr-Val-Thr-Ala-Val-Asp-Val-Val-Asn-

Ala-Leu-Arg-Lys-Arg-G ly-Lys-l le-Leu-Tyr-G ly-Tyr-Ala
d9.2: lle-(Ser)-Gln-Phe-Gln-(Arg)-Ser-Gly-Asp-Leu-Arg/l_eu-

(Leu)-Gln-Lys-(Arg)-Pro-Phe-Gln-(Arg)-Leu
d11 : Asn-Val-Xaa-Gly-lle-Thr-Arg-Gly-Ser-lle-Arg-Arg-Leu-Ala-

(Arg)-Xaa-Gly-Xaa-Val
d3.1 : Xaa-Lys-Gly-Xaa-Lys-Ser-Gly-Glu-Ala-Lys-Gly-Ser-GIn-

(Lys)-Arg
d3.2: Lys-Gly-Xaa-Lys-Ser-Gly-Glu-Ala-Lys-Gly-Ser-Gln-(Lys)-

Arg
d3.3: Ala-(Lys)-(Gly)-Ser-Gln-(Lys)-Arg-Gln-(Arg)-Xaa-Val-

Leu-Arg
Fig. 2. Amino acid sequences of procyclic Trypanosoma brucei brucei histone fragments a5, a9, b6, c8, d9 .1 . , d9.2.,
d l l , d3 .1 . , d3.2. , d3.3 . . Xaa, unidentified res idue; / , ambiguity between two residues; (. . .), most probable residue.
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analyse the amino acid sequence of fragments of the
histones of T. b. brucei in order to establish their
identity with those of other eukaryotes on the basis
of their primary structure. Differences between
T. b. brucei histones and those of higher eukaryotes
should contribute to the better understanding of
histone evolution as well as to the identification of
potential target sites for new chemotherapeutic
agents for African trypanosomiases.

MATERIALS AND METHODS

Trypanosoma brucei brucei procyclic culture forms
were cultivated in SDAI 79 medium (Brun &
Schoenenberger, 1979).

Preparation of nuclei

Nuclei were isolated from 1-5—3-5 x 1010 exponen-
tially growing procyclic T. b. brucei (Hecker et al.
1989; Shapiro & Doxsey, 1982).

Production of soluble chromatin

Isolated nuclei were digested at 30 °C for 50 sec with
micrococcal nuclease (Sigma, N-3755, 0'2U/20
A260), centrifuged, and the chromatin solubilized by
nuclear lysis in a low-salt buffer. Insoluble material
was removed by centrifugation (Hecker & Gander,
1985; Thoma, Koller & Klug, 1979).

Extraction of histones from soluble chromatin

Histones were extracted according to the method of
Kurochkina & Kolomijtseva (1989) from the lyo-
philized, soluble chromatin with 0'2 M H2SO4. In-
soluble material was removed by centrifugation
(11 500 ̂ , 15 min). Histones were precipitated with
45 vol. ethanol at —100 °C, centrifuged, the pellet
washed with 80 °0 ethanol and vacuum dried.

Purification of histones

Extacted histones were separated by FPLC reversed
phase chromatography with acetonitrile gradients as
described previously (Bender et al. 1991).

Cleavage of histones with Endoproteinase Glu-C

Histones were digested with Endoproteinase Glu-C
from Staphylococcus aureus (Boehringer, 1/20 w/w)
in 25 mM ammonium carbonate buffer (pH 7-8) for
2 h at 25 °C following the methods of Ohe, Hayashi
& Iwai (1989) and Drapeau (1977).

Isolation of the histone fragments

Fragments were isolated in a FPLC-system con-
nected to a reversed phase C1/C8 column (Phar-
macia, ProRPC 5/10). Histone solutions were taken
up with 0-1 °o TFA to 200-500/d and chromato-
graphed at a constant flow of 05 ml/min, using a

gradient of solvent A with 0-l °0 TFA in water and
solvent B with 0-1 °0 TFA in acetonitrile. The
concentration of B was increased at a rate of
1 °0/min. The eluted histone fragments were moni-
tored at 214 nm. The peak fractions were collected
separately and lyophilized.

Sequence analysis

N-terminal amino acid sequence analysis was per-
formed by automated Edman degradation with a
pulsed-liquid-phase sequenator from Applied Bio-
systems (model 477A, Foster City, Ca, USA). The
released amino acids were analysed on-line according
to Applied Biosystems (Schaller et al. 1991).

Sequence comparison

To assess the degree of similarity, amino acid
sequences of trypanosome histone fragments were
compared (Lipman & Pearson, 1985) to reference
sequences by using the FASTA program and the
NBRF data bank (March 1991; 26651 sequences).

RESULTS

The purified histones a, b, c, d (Bender et al. 1991)
were cleaved with Endoproteinase Glu-C, and the
resulting fragments were separated by FPLC re-
versed phase chromatography in 0—45 °0 aceto-
nitrile gradients (Fig. 1). The amino acid sequences
of 10 fragments of the 4 histones were analysed (Fig.
2). The fragments differed in size in having between
13 and 27 amino acids. Five out of the 7 peak
fractions contained single peptides whereas peaks 3
and 9 of histone d were mixtures of several peptides
in the ratios of 5 :1:1 (d3.1., d3.2. and d3.3.) and 5:1
(d9.1. and d9.2.).

The degree of similarity between the amino acid
sequences of the histones of procyclic T. b. brucei
and histones of other eukaryotes was determined by
sequence comparison using the NBRF protein data
bank (Table 1). The comparison, of the sequences of
the fragments d9.1., d9.2. and d l l with the ones in
the library, scored within the 20 (of c8 within 33)
most similar sequences, exclusively histones. H2B
sequences were scored for c8, H3 for d9.2. and H4
for d9.1. and d l l . Only a few scores for histones
were found for the sequences of the other fragments
(a5, a9, b6, d3.1., d3.2. and d3.3.). It should be
mentioned that the sequence of fragment a5 showed
a score with 5 HI sequences from human, trout and
Caenorhabditis elegans (MacLeod, Wong & Dixon,
1977; Mezquita et al. 1985; Doenecke & Tonjes,
1986; Vanfleteren, van Bun & van Beeumen, 1988;
Sanicola et al. 1990) as well as two H5 sequences
from goose and chicken (Yaguchi, Roy & Seligy,
1979; Krieg et al. 1983) among the 20 most similar
sequences.

A high degree of sequence identity (64-71 %) was
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Table 1. Comparison of procyclic Trypanosoma
brucei brucei histone sequences c8, a9, d9.2., d9.1.
and d l l with the NBRF sequence data bank

(March 1991 ; 26 651 sequences available.)

Frag-
ments

c8

a9

d9.2.

d9.1.

d l l

Similar
histones

H2B

H3

H3

H4

H4

Similar
histone
regions*

90-103 (12)'1

91-104(18)
94-107(15)
95-108 (9)
51-65 (5)1'2

81-95 (5)
51-69(5)
51-70(80)
52-71 (10)
75-101 (82)
76-102 (18)
25-43 (80)
26-44 (20)

Identity
("o)t '

64-71
71
71
71
57
54
55
60-65
60
54-58
58
58-63
63

* Numbers represent positions of amino acid residues in
eukaryotic histones. l l '2 numbers in parenthesis indicate
percentage of similar histone regions within the 33 (cl) or
20 (c2) best scores.
f Percentage identity between T. b. brucei sequences and
histone sequences of other eukaryotes.

found for fragment c8 and the C-terminal half of
histones H2B. Fragment d9.1. showed a high
percentage of identity with the C-terminal portion
and d l l with the N-terminal half of H4 histones. In
the two scores of fragment a9 a sequence identity of
54—57% was found with H3 histones of Xenopus
laevis and Sac char omyces cerevisiae (Moorman et al.
1981 ; Brandt & von Holt, 1982). Surprisingly, d9.2.
showed a 55-65 % identity with the central region of
H3 as well (Table 1). Start and end positions of the
most similar regions of corresponding histones found
for d9.1., d9.2. and d l l differed in only one or two
residues. Regions of H2B histones showing simi-
larities to peptide c8 were somewhat more variable
and 54% of the scored histone regions were located
between residues 90-108.

D I S C U S S I O N

The amino acid composition and the electrophoretic
mobilities in three different gel systems of the four
proteins a, b, c, d isolated from nuclear chromatin of
procyclic T. b. brucei strongly indicated their core
histone nature (Bender et al. 1991). Similarities of a,
b, c and d with the core histones H3, H2A, H2B and
I-I4- of higher eukarvotes were found.

On the basis of the relatively high number of
glutamoyl residues per protein molecule, Endo-
proteinase Glu-C was used to produce fragments of
medium size. The amino acid sequences, described
in the present report, of some of these fragments of
three proteins showed high scores and a high

percentage of sequence identity with histones, which
allowed the identification of protein a as H3, c as
H2B and d as H4.

The amino acid composition as well as the
electrophoretic behaviour of histone b indicated its
relationship to H2A histones (Bender et al. 1991).
The fragment b6 can, on the basis of the sequence
comparison, not be identified as a H2A histone,
which suggests that this fragment represents a
region of histone b not well conserved during
evolution, as it is known for the lysine- and arginine-
rich terminal domain of H2A (Isenberg, 1979; Van
Holde, 1989). It cannot be ruled out, however, that
this fragment could be derived from a contaminating
protein.

Fragment d3.1., representing 70% of fraction d3,
can be extended by the 6 residues of d3.3. (positions
8-13) to yield the sequence Xaa-Lys-Gly-Xaa-Lys-
Ser-Gly-Glu-Ala-Lys-Gly-Ser-Gln-(Lys)-Arg-
Gln-(Arg)-Xaa-Val-Leu-Arg- (d3). The comparison
of the combined sequence with the protein library
yielded a significant similarity to the N-terminal
region of H4 histones (positions 4(5)--23(24)) with
55—60% identity. The sequence of positions 1-7 in
peptide d3.3., present in relatively small amounts in
fraction d3, corresponded to the position 9-15 in
peptide d3.1.. It is possible that the bond between
glutamic acid and alanine at positions 8 and 9 of
peptide d3.1. was partially cleaved.

Sequences d3.2. and d3.1. were identical, with the
exception of their X-terminal amino acid, suggesting
the fragment d3.2. was generated from d3.1. by
unspecific cleavage between Xaa (1) and Lys (2).
The unidentified residues in sequence d3 (in posi-
tions 1 and 4) eluted as peaks between the positions
of tvrosine and proline and between those of histidine
and alanine. These two residues of the sequence d3
correspond to the N-terminal region of H4 if the two
sequences are aligned (Fig. 4). Amino acids such as
serine, which is often found to be acetylated, and/or
lysine which may be acetylated or methylated are
found in the N-terminal region (residues 1-20) of H4
histones. It can therefore be assumed that Xaa (1)
and Xaa (4) correspond to such modified amino acids
(for a review, see Van Holde, 1989).

The 14 N-terminal residues of fragment d9.2.,
which represented a subfraction (17"0) of d9,
corresponded to the sequence a9 of histone a. The
sequence differed only in the positions 2, 8 and 15.
Since both fractions a9 and d9 eluted at similar
acetonitrile concentrations of about 30% and since
protein d preparations occasionally were contami-
nated with small amounts of protein a, it is reasonable
to suggest that peptide d9.2. is a fragment of pro-
tein a.

All segments of the histones of eukaryotes that
showed similarity to the T. b. brucei sequences a9
(resp. d9.2.), c8, d9.1., and the C-terminal part of
d l l are within the globular, relatively hydrophobic,
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95 100 105
c. t . H2B -Glu-Ile-Gln-Thr-Ala-Val-Arg-Leu-Leu-Leu-Pro-Gly-Glu-Leu-
T. b. -Leu-Gln-Thr-Ala-Val-Arg-Leu-Val-Leu-Pro-Ala-Asp-Leu-

c8

108
c.t .H2B -Ala-Lys-
T.b. -Ala-

B

c. t .H3
T.b.

C.t.H3
T.b.

50 55 60
-Glu-Ile-Arg-Arg-Tyr-Gln-Lys-Ser-Thr-Glu-Leu-Leu-Ile-Arg-

-Ile-Xaa-Gln-Phe-Gln-Arg-Ser (Thr) Asp-Leu-Leu-Leu-Gln-
a9 * *

65 70 72
Lys-Leu-Pro-Phe-Gln-Arg-Leu-Val-Arg-
Lys(Arg)Pro-Phe-Gln(Arg)Leu-

Fig. 3. Comparison of c8 and a9 histone fragments of procvclic Trvpanosoma brucei brucei (T.b.) with (A) calf thvmus
(c.t.) histone H2B (Ivvai, Hayashi & Ishikawa, 1972) and (B) H3 (DeLange, Hooper & Smith, 1973). Sequences were
aligned to obtain maximum similarity. Xaa, unidentified residue; (...), most probable residue; —, amino acid
substitution; * , replacement of residues with different properties.

region of the molecules. These are involved in the
histone-histone interactions in the core particle of
higher eukaryotes (McGhee & Felsenfeld, 1980).
Such interactions have been proposed to exist
between residues 37-114 of H2B and histone H2A
(Moss et al. 1976), the C-terminal half of H2B and
H4 (Martinson et al. 1979), and residues 42-120 in
histone H3 and 42-102 in histone H4 (Bohm et al.
1977). Similarities between these histone regions of
higher eukaryotes and the T. b. brucei sequences
suggest contact sites between histones a and d, as
well as c and d, a finding which is in agreement with
the evolutionary conserved pattern of histone-
histone binding (Isenberg, 1979; Martinson & True,
1979).

In spite of these similarities significant differences
were found when the sequences were compared to
calf thvmus histones and aligned to obtain maximum
similarity. Sequences c8 and H2B (Fig. 3) differed in
the residues 94—107 to a degree of 29 °0 through
substitutions between similar amino acids (Dayhoff,
1972; Schulz & Schirmer, 1984). A9 and H3
(residues 51-70, Fig. 3) were different at 7 positions
(35% difference) with 3 differences resembling
substitutions not strictly conservative (Dayhoff,
1972; Schulz & Schirmer, 1984).

The successful alignment of the T. b. brucei se-
quences d3, d l l , d9 with calf thvmus histone H4 in
the positions 4—23, 25-43 and 75-101 were different
at 22 residues corresponding to a 33 % difference
(Fig. 4); 5 of them were in the X-terminal region

(24% difference), 4 in the residue 25-43 (21%
difference), and 13 in the C-terminal region (48%
difference). Most substitutions were between similar
amino acids, whereas 6 differences in the X- and C-
terminal portions were substitutions between amino
acids with different properties.

The amino acid N-terminally located to Leu (1),
He (1) and Tyr (1) of the three peptides c8, a9 (Fig.
3) and d9 (Fig. 4) are probably glutamic acid as
deduced from the specificity of Endoproteinase Glu-
C and the occurrence of glutamic acid at positions
93, 50 and 74 in the corresponding calf thvmus
sequences.

The amino acid replacement of glutamic acid with
leucine at position 8, of serine with glycine at
position 12 of T. b. brucei d3 versus calf H4, and the
presence of serine at position 6 of d3, are in addition
to the Xaa (1 and 4) sites for possible post-
translational histone modifications such as methyl-
ation (DeLange et al. 1969 a; DeLange & Smith,
1971; DeLange, Hooper & Smith, 1973), ADP-
ribosylation (Hayashi & Ueda, 1977), phosphoryl-
ation (Jackson et al. 1976; Ajiro & Nishimoto, 1985;
Fusauchi & Iwai, 1984), and acetylation (Doenecke
& Gallwitz, 1982).

The differences between core histone sequences of
calf thymus and Tetrahymena pyriformis (ciliated
protozoan) are the largest sequence differences of
histones described in eukaryotes (Kasai et al. 1986;
Nomoto et al. 1982; Fusauchi & Iwai, 1983 ; Hayashi
et al. 1984a, b). A difference of 14% exists between
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1 5 8 9 10
c. t. H4 Ser-Gly-Arg-Gly-Lys-Gly-Gly-Lys Gly-Leu-Gly-Lys-
T. b. -Xaa-Lys-Gly-Xaa-Lys-Ser-Gly-Glu-Ala-Lys-

d3 *

20 25
c. t.H4 Gly-Gly-Ala-Lys-Arg-His-Arg-Lys-Val-Leu-Arg-Asp-Asn-Ile-
T.b. Gly-Ser-Gln(Lys) Arg-Gln(Arg) Xaa-Val-Leu-Arg- -Asn-Val-

* dll

30 35 40
c. t. H4 Gln-Gly-Ile-Thr-Lys-Pro-Ala-Ile-Arg-Arg-Leu-Ala-Arg-Arg-
T.b. Xaa-Gly-Ile-Thr-Arg-Gly-Ser-Ile-Arg-Arg-Leu-Ala (Arg) Xaa-

c.t.H4
T.b.

c.t.H4
T.b.

44
Gly-Gly-Val-Lys-.
Gly-Xaa-Val-

75 80
.-Glu-His-Ala-Lys-Arg-Lys-Thr-Val-Thr-

Tyr-Ser-Arg-Lys-Lys-Thr-Val-Thr-

d9

85 90 95
Ala-Met-Asp-Val-Val-Tyr-Ala-Leu-Lys-Arg-Gln-Gly-Arg-Thr-
Ala-Val-Asp-Val-Val-Asn-Ala-Leu-Arg-Lys-Arq-Gly-Lys-Ile-

100 102
c.t.H4 Leu-Tyr-Gly-Phe-Gly-Gly
T.b. Leu-Tyr-Gly-Tyr-Ala-

Fig. 4. Comparison of amino acid sequences of histone d fragments (d3, d l l , d9) of procyclic Trypanosoma brucei
brucei (T.b.) with the sequence of calf thymus (c.t.) H4 (DeLange et al. 19696). Sequences were aligned to obtain
maximum similarity; the gap in the sequence of H4 between residues Lys (8) and Gly (9) was introduced
to maximize similarity. Xaa, unidentified residue; (...), most probable residue; —, amino acid substitution;
* , replacement of residues with different properties.

the residues 94-107 of calf thymus and the protozoan
H2B; and of 10-15 °0 between the residues 51-70 of
H3. Differences of 14-24 °0 (residues 4-23), 5 ° o

(residues 25-43) and 4 ° 0 (residues 75-101) existed
between calf thymus and the corresponding T. pyri-
formis H4 sequences. The sequence differences of
21-48 °0 between procyclic T. b. brucei and calf
thymus histones were more pronounced than those
beween T. pyriformis and calf thymus. These results
are in agreement with the phylogenetic theory, that
the separation of protozoa from higher eukaryotes
occurred long before the one of animals from plants
and fungi (Nomoto et al. 1982; Fusauchi & Iwai,
1983; Hayashi et al. 1984a, b), since sequence
differences within corresponding core histones are
small between the three phyla (Van Holde, 1989;
Hayashi et al. 1984a, b).

The described substitutions of amino acids in
procyclic T. b. brucei histone sequences may in-
fluence protein conformation and histone-histone as
well as histone-DNA interactions within the nucleo-
some core of the protozoan parasite. The previous
observation that nucleosome filaments of T. b. brucei

were more easily destabilized under experimental
conditions as compared to rat liver chromatin
(Hecker et al. 1989) support this hypothesis. In
addition, preliminary data indicate that histones a
and d of procyclic T. b. brucei were more weakly
bound to the DNA than H3 and H4 in the chromatin
of higher eukaryotes (Burton et al. 1978), since they
were released at 1 M NaCl (Bender et al. manuscript
submitted). All these data indicate differences in the
nucleosome structure, which are involved in the
different compaction pattern of the chromatin of
T. b. brucei (Hecker & Gander, 1985; Bender et al.
manuscript submitted).

As a vaccine is still not available, chemotherapy is
considered the most effective measure to improve
the control of trypanosomiasis (Doyle et al. 1984;
Mehlhorn 1988). Differences found between the
histones of T. b. brucei and those of higher eukaryotes
encourage the identification of new targets for the
action of trypanocidal drugs. In addition to drugs
directed against glycolytic enzymes, polyamines or
the purine metabolism (Clement, 1989), putative
chemotherapeutic agents should be designed which
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bind selectively to the parasites' histones. They
could interfere with the nucleosome assembly as well
as with the transport of histones from the cytoplasm
into the nucleus (Van Holde, 1989), thereby allowing
a non-toxic chemotherapy of the host.

We thank Dr R. Brun, C. Kunz and R. Niiesch for their
help concerning the cultivation of trypanosomes. The
support of Dr. W. Rudin and E. Fluri is also gratefully
acknowledged.
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