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  How to gain evidence in neurorehabilitation: 
a personal view  
   Abstract:   Neurorehabilitation is an emerging field driven 

by developments in neuroscience and biomedical engi-

neering. Most patients that require neurorehabilitation 

have had a stroke, but other diseases of the brain, spinal 

cord, or nerves can also be alleviated. Modern therapies 

in neurorehabilitation focus on reducing impairment 

and improving function in daily life. As compared with 

acute care medicine, the clinical evidence for most neu-

rorehabilitative treatments (modern or conventional) is 

sparse. Clinical trials support constraint-induced move-

ment therapy for the arm and aerobic treadmill training 

for walking, both high-intensity interventions requiring 

therapist time (i.e., cost) and patient motivation. Prom-

ising approaches for the future include robotic training, 

telerehabilitation at the patient ’ s home, and supportive 

therapies that promote motivation and compliance. It is 

argued that a better understanding of the neuroscience 

of recovery together with results from small-scale and 

well-focused clinical experiments are necessary to design 

optimal interventions for specific target groups of patients.  
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  Introduction 
 In the conventional view, rehabilitation starts when and 

where acute care medicine has left the patient with a dis-

ability. The aim of rehabilitation is to reintegrate the patient 

into his or her professional life, social life, and home envi-

ronment. This aim can be achieved by different approaches: 

by providing assistive devices, making adjustments to life or 

home, or by reducing individual impairments. Neuroreha-

bilitation treats patients with brain disorders  –  most often 

stroke because it is frequent and usually has neurological 

sequelae. After a stroke, a patient typically recovers unless 

another stroke interferes. This is in contrast to diseases with 

a slowly progressive (e.g., Parkinson disease) or undulating 

time course (e.g., multiple sclerosis). Recovery from stroke 

is a slow process, lasting months or years. 

 If one aims at fast reintegration and wants to mini-

mize rehabilitation costs, assisting (nursing), modifying 

the environment, or training the patient to compensate 

for disability (e.g., training to eat or dress with the good 

arm when the other one is impaired) is often chosen. This 

leaves the patient with an impairment that reduces his 

or her quality of life (QoL). Also, cost reduction is short 

sighted  –  in the long-run, functional impairments put the 

patient at a higher risk for complications that may cost 

much more then the rehabilitation up front. 

 Modern neurorehabilitation aims at reducing impair-

ments and gaining function. This requires time and training 

of sufficient intensity  [25, 51, 55, 62] . If performed intensely, 

most treatments that involve active training provide 

similar benefits across groups  [26, 50, 54, 57] . However, 

the response of individual patients varies largely. Little is 

known about the factors that determine therapy response. 

Although small-scale studies show the effects of a lesion ’ s 

location, side, or the timing of therapy relative to the stroke 

 [27] , larger trials are necessary to confirm these findings. 

 Although many decisions in acute care medicine can 

be based on scientifically sound evidence from clinical 

trials, only few trials exist for stroke rehabilitation. Those 

that are available were conducted in small patient groups, 

with only a few hundred subjects at most  [29] . This level of 

evidence compares poorly with trials testing, for example, 

the use of thrombolysis for acute stroke. These trials recruited 

several hundreds to thousands of patients  [15, 44] . 

 This article does not aim at providing a complete over-

view of stroke rehabilitation but formulates an opinion 

about how the field can develop in the coming years.  

  Evidence of benefit 

  Training interventions without technical 
assistance 

 Despite these difficulties, there is sufficient evidence to 

assume that a few treatments are effective. Two examples 
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are constraint-induced movement therapy (CIMT) and 

aerobic treadmill exercise. CIMT is based on the neuroscien-

tific observation that immobility leads to functional deficits 

 [53] . If a stroke survivor does not use the arm due to weak-

ness, the arm will deteriorate further. Therefore, CIMT forces 

stroke survivors to use the weak arm by immobilizing the 

intact arm. This, of course, only works if the subjects have 

good residual arm function. If one cannot move the arm at 

all, immobilizing the other arm will be frustrating. In addi-

tion, CIMT includes an intensive (usually 2 h/day) physical 

therapy protocol that trains movements by reinforcing goal-

directed behavior in a stepwise fashion (shaping). The latter 

component  –  or the fact that it is delivered in an intensity 

higher than standard physical therapy protocols  –  may be 

more important than immobilization itself  [3] . CIMT has 

been shown to be more effective in reducing impairment 

and improving arm function than standard rehabilitation 

protocols  [49, 60] . However, one must consider that compar-

ing an intervention to  “ standard rehabilitation ”  carries the 

disadvantage of poor generalizability because the  “ stand-

ard ”  greatly differs among institutions, countries, and con-

tinents. Also, the standard is often insufficiently described 

in study reports to arrive at generalizable conclusions. 

 Another form of effective motor therapy is tread-

mill training. Walking on a treadmill is a task-oriented, 

highly repetitive form of training that carries over to better 

walking over ground  [18] . Treadmill training with body 

weight support can be performed early after the stroke and 

seems to be equally effective as a home-based physical 

therapy program  [9] . Treadmill training works by induc-

ing changes in brain activation related to knee movement 

 [31] , an indication of reorganization within CNS circuits. It 

also changes the composition of skeletal muscle, thereby 

potentially improving insulin resistance and type II dia-

betes  [16, 22] . If performed at a sufficient intensity to 

increase heart rate, aerobic treadmill training also has a 

conditioning effect, thereby improving cardiorespiratory 

fitness even in patients with very low fitness levels  [13, 31, 

32] . Thus, this form of training serves several objectives: it 

not only trains walking but equips the patients with better 

fitness to effectively walk in daily life and reduces diabe-

tes as a major risk factor for future strokes  [14] .  

  Training interventions with technical 
assistance 

 Neurorehabilitation engineering is an expanding field 

and has produced many interesting devices to aid reha-

bilitative training. However, few have been tested in larger 

groups of patients. Weight-supported treadmill training 

uses a harness to reduce the body weight while the patient 

walks on a treadmill  [18] . Several clinical trials were con-

ducted after stroke; a Cochrane meta-analysis of trials 

shows no superiority of weight-supported treadmill over 

other gait interventions, although individual trails have 

suggested added benefits  [38] . Results in patients after 

spinal cord injury are conflicting because studies are too 

heterogeneous to be compared  [7, 30] . The widespread use 

of these interventions remains disputed  [6] .   

  Promising technical developments 

  Sensors and monitoring 

 Neurorehabilitation science needs to improve its methods, 

specifically, how to optimally and reliably measure therapy 

effects. First, researchers have to agree on the purpose of 

therapy. The international classification of function pro-

poses a trichotomy of therapy goals: (1) to reduce impair-

ment, (2) to regain functional use, (3) to enable participation 

in life. From 1 to 3, these objectives become more difficult 

to achieve because a multitude of cofactors intervene. If an 

impairment, e.g., spasticity is reduced, it does not necessar-

ily mean that the patient can use the arm to eat. If the patient 

is trained to use the fork with the weak arm, it does not mean 

that she/he will actually do so in daily life, i.e., participate. 

It will be interesting to measure the effects of therapy on 

participation. Participation is difficult to measure because 

it requires patient monitoring in the natural environment 

(home, work, etc.). Sensor technologies measuring location, 

acceleration, rotation, altitude, heart rate, muscle activity, 

interaction forces, etc. combined with storage and analytical 

capabilities may be able to deliver this information. Simple 

accelerometry is useful for activity monitoring in stroke sur-

vivors  [12] . Combining accelerometers and gyroscopes can 

classify activities at least into broad categories of standing, 

sitting, lying, and walking  [23, 58] . Gait and balance can be 

monitored using accelerometry sensors on the pelvis  [63]  or 

inertial sensors and force sensors in the shoes  [34, 35] . For 

the upper extremity, sensing of reaching movements have 

been performed using textile-integrated sensing systems 

 [55] . These data can then be used to optimize a therapy for 

the individual patient.  

  Robots 

 Robotic devices have originally been developed to assist 

physical and occupational therapists in movement 
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for outpatient training. Therefore, new approaches to reha-

bilitation at home are needed. Training at home by a reha-

bilitation therapist is often practiced and useful  [51, 62] . 

Computer-assisted gaming can provide assistance, supervi-

sion, and motivational feedback to enable effective training 

at home. Commercially available products have been used 

and found feasible and safe for stroke survivors at home  [11, 

45] . Even video-based training has been proposed  [43] . The 

potential problems are the price of the equipment, malcom-

pliance, poor ergonomics of use, and the lack of immediate 

expert feedback if training is conducted in the wrong way. 

Depending on the system and on the focus of rehabilitation 

(e.g., arm, leg), the patient ’ s home needs to fulfill certain 

requirements (e.g., minimum space, Internet connection). 

However, modern computer technology provides low-cost 

and high-quality equipment to render home rehabilitation 

a realistic option for the future.  

  Motivational therapy 

 Motivation is a prerequisite to successful therapy. Thera-

pists need to engage and motivate the patient to be suc-

cessful. One factor that stimulates motivation is positive 

feedback and reward. Reward is in part encoded within 

the dopaminergic networks of basal brain regions, such 

as substantia nigra and ventral tegmental area  [47] . These 

regions also send projections to the primary motor cortex 

where dopamine supports the acquisition of a motor skill as 

well as the formation of synaptic plasticity, that is, a cellu-

lar mechanism of learning  [20, 37] . It is therefore likely that 

reward signals are directly fed into motor cortex networks to 

support learning. It remains to be shown that the effects of 

specific rehabilitative training can be augmented by empha-

sizing rewards or by medications that facilitate dopamine 

actions. Preliminary evidence suggests a role of levodopa 

in supporting physiotherapy in stroke survivors  [46] . Train-

ing schemes may pay specific attention to being rewarding 

and motivational. Promising approaches are music therapy 

 [57]  and virtual reality training  [45]  or rehabilitation gaming 

 [5] . Further research is necessary to elucidate the neurosci-

ence and potential clinical applications behind motivation-

enhancing strategies as an add-on to movement training.   

  Why is there little evidence in 
neurorehabilitation ?  
 There are many reasons why the evidence level in stroke 

neurorehabilitation is poor. 

training  [19] , and highly repetitive training like walking 

on a treadmill with the therapist moving the weak leg is 

facilitated by a robot. However, theoretically, robots can 

do more. By precisely monitoring the patient ’ s movement, 

they can interfere with it at the right time and place. This 

robot-human interaction can be in the form of assistance, 

that is, to complete a movement that the patient cannot 

fully perform. Assistance or guidance has been shown to 

improve motor skill acquisition  [33]  but may also impair 

the acquisition of tasks that highly depend on error-based 

learning  [8, 59] . The devices include end-effector-based 

robotic manipulanda  [24, 28]  or exoskeletons  [39] . The 

assist-as-needed robotic training has been tested in a 

clinical trial and has not been found to be superior to con-

ventional physical therapy  [29] . In spinal cord injury, the 

efficacy of assist-as-needed training has been suggested 

by animal models  [4]  and human studies  [1, 52] . Robot-

human interaction can also mean that the robot perturbs 

the patients movement, e.g., by applying a force that devi-

ates from the desired movement path  [40, 48] . Because 

perturbation renders a movement more difficult, it deliv-

ers a stronger learning stimulus that may support recovery 

 [36, 41] . Both elements of robotic training, assistance and 

perturbation, have not been fully tested in humans after 

stroke. Based on motor learning theory, one would expect 

more benefit from perturbation than from assistance  [21] . 

 Another element of robotic arm therapy is proximal 

support. Proximal support of the arm facilitates distal 

movements  [10] . This concept  –  part of the Brunnstrom 

stages of motor recovery  –  has been successfully inte-

grated into robotic training. Stepwise loading of the arm 

proximally helps to increase the range of motion across 

the elbow  [10] . The range of motion increases the work 

area of the arm, thereby helping to overcome thresholds 

necessary for daily life tasks  [42] . 

 Another element of robotic training is to stimulate 

strength and muscle force. Strength training is benefi-

cial for motor recovery after stroke  [17] . Although simpler, 

non-robotic devices are available to enable muscle train-

ing, robots may be specifically useful for the integration of 

strength into task-oriented training.  

  Rehabilitation at home 

 Training can be more efficient if delivered at a high inten-

sity (long duration and greater complexity of motor exer-

cises) as long as it is not limited by motivation or fatigue 

 [2, 25, 61] . High-intensity training is costly and often not 

feasible because the patient needs be admitted as inpatient 

or is required to travel to a rehabilitation center frequently 
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 The problem is complex. The stroke survivor faces 

a plethora of problems: deficits of movement, language 

and communication, mobility and fitness, cognition, and 

emotion as well as social issues. It is obvious that each of 

these require different and likely individualized treatment 

approaches. However, single treatments need to be devel-

oped and tested separately in smaller trials before they can 

be combined into multimodal rehabilitative programs. An 

alternative solution is to carefully select a homogeneous 

sample of patients with specific deficits or lesions to be 

included in trials. However, this carries the disadvantage 

that results are unlikely to generalize to larger popula-

tions and that the study cannot address questions about 

correlations between therapy response and, e.g., lesion 

location of deficit severity. 

 Although the overall aim of all therapies taken 

together is to improve the patient ’ s functioning and inde-

pendence, it is unclear which specific outcome measure 

to use to prove that a single therapy works. A therapy 

aiming, for example, at improving elbow movement can 

only be expected to do exactly that, i.e., improving the 

elbow  [56] . It cannot be expected to increase QoL or inde-

pendence because more than elbow function is needed to 

achieve this goal. Using elbow movement as an end-point 

measure of a trial investigating elbow therapy  –  even there 

is debate what should actually be measured  –  is often crit-

icized as being meaningless for the patient. Although this 

is true from a global perspective, substituting the elbow 

measure with a more global assessment will render the 

trial negative. As a consequence, the therapy is no longer 

investigated or utilized. Therapies aiming to improve QoL 

will have to consist of different interventions addressing 

all functional domains that are impaired in an individual 

patient. A collection of single interventions is extremely 

difficult or impossible to standardize between cases. 

 It is difficult to formulate valid comparisons for ran-

domized trials. A pill can be compared with a placebo 

pill using a double-blinded design. Blinding is difficult 

in neurorehabilitation. Comparisons of two treatments, 

e.g., a new therapy robot with conventional therapy, can 

be criticized: patients may be more impressed by expen-

sive robotic equipment than by a conventional physical 

therapist or they may like the therapist more than the non-

human robot  –  both settings that will induce large placebo 

effects. Valid comparisons are needed to identify training 

strategies that work better than others and in whom, i.e., 

in which population of patients. 

 Neurorehabilitative treatment in most cases involves 

many hours of training, requiring high compliance of 

patients and therapists alike. This translates into cost. 

On the one hand, clinical trials are expensive and are 

even more so if the investigational therapy is costly. On 

the other hand, funding for neurorehabilitation trials is 

scarce because there are few large companies  –  like the 

pharmaceutical industry  –  with an interest in neuroreha-

bilitative interventions. Public funding for neurorehabili-

tation trials is insufficient. 

 There is too little basic understanding of recovery 

mechanisms. Before a drug is tested in a clinical trial, an 

exact knowledge exists about its mode of action, dosage, 

pharmacokinetics, etc. In neurorehabilitation, the thresh-

old dosage (intensity) of a treatment that are required 

to produce an effect is seldom known, let alone how 

the treatment works. More studies in neuroscience are 

required to pave the way for successful neurorehabilita-

tive interventions.  

  Summary 
 Technical developments not only show the way toward 

novel therapeutic approaches but also provide excellent 

research tools to test a hypothesis relevant for therapy 

development and optimization. The important hypotheses 

Neuronal mechanism

Identification of a promising 
treatment/training strategy

...

Multicenter clinical trial combining the most 
effective therapies aiming at improving 

independence or quality of life

Small scale clinical 
experiment

Testing the strategy in a valid 
(placebo-controlled) 

comparison with an outcome 
measure that is close to what 

was trained, to answer 
questions like: Does this 
strategy add to treatment 

benefits? In what type of patient 
does this strategy work? etc.

Small scale clinical 
experiment

Testing the strategy in a valid 
(placebo-controlled) 

comparison with an outcome 
measure that is close to what 

was trained, to answer 
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strategy add to treatment 

benefits? In what type of patient 
does this strategy work? etc.

experiment
Testing the strategy in a valid 
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measure that is close to what 
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strategy add to treatment 
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does this strategy work? etc.
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Testing the strategy in a valid 
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comparison with an outcome 
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was trained, to answer 
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benefits? In what type of patient 
does this strategy work? etc.

Small scale clinical 

 Figure 1    Potential conceptual framework for achieving well-

founded evidence in neurorehabilitation.    
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to be tested are the following: What strategies of training, 

e.g., perturbation, motivation, assistance, repetition, are 

more beneficial than others ?  What strategies work best in 

which patient population ?  At what time after the stroke 

should these therapies be applied and which dose ?  

 In neurorehabilitation, there is little evidence on the 

efficacy of interventions. Versatile treatment options are 

available, but they all seem to provide similar benefits if 

delivered at a sufficient intensity. Nevertheless, the treat-

ment response varies greatly between individuals. It seems 

likely that certain (unknown) factors predispose a patient 

to treatment success, that different individuals will require 

different therapies, and that treatment plans need to be 

tailored to optimize the individual ’ s response. A well-

characterized therapeutic instrumentarium will therefore 

be necessary. Novel sensor technologies can provide pow-

erful assessment instruments to measure not only motor 

impairment and function but also how the patient moves 

in daily life. Neurorehabilitation technology to improve 

training carries a great potential but probably is still used 

in suboptimal ways and, therefore, cannot demonstrate 

superiority to conventional approaches. Optimal strategies 

can only be developed if a thorough understanding of the 

neuroscience of recovery is achieved. Based on this knowl-

edge, therapeutic concepts can be derived that require 

testing in smaller clinical experiments before large-scale 

clinical trials can yield interpretable results (Figure  1  ).    
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