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S U M M A R Y
We image the rupture process of the 2000 Western Tottori earthquake (M w = 6.6) through
fitting of strong motion and GPS data. We consider an observational network consisting of 18
strong motion and 16 GPS stations, located within three fault lengths from the epicentre. We
assume a planar fault and compute Green’s functions for a 1-D velocity model. The earthquake
rupture is described as a shear dislocation parameterized in terms of peak slip velocity, rake
angle, rupture time and rise time, defined on a regular grid of nodes on the fault surface and
derived at inner points through bilinear interpolation.

Our inversion procedure is based on a Bayesian approach. The solution of the inverse
problem is stated in terms of a posterior probability density function (pdf), representing the
conjunction of prior information with information contained in the data and in the physical
law relating model parameters with data. Inferences on model parameters are thus expressed
in terms of posterior marginal pdfs. Due to the non-linearity of the problem, we use a Markov
Chain Monte Carlo (MCMC) method, based on the Metropolis algorithm, to compute posterior
marginals.

Except for a few cases posterior marginals do not show a Gaussian-like distribution. This
prevents us from providing a mean model and from characterizing uncertainties in terms of
standard deviations only. Resolution on each single parameter is analysed by looking at the
difference between prior and posterior marginal pdfs.

Posterior marginals indicate that the best resolved feature is a major slip patch (peak value
of 311 ± 140 cm), located between the hypocentre and the top edge of the fault, centered at a
depth of 4.5 km. This shallow slip patch is triggered about 3 s after the earthquake nucleated
and required about 4 s to reach its final slip value. The presence of this shallow slip patch is
common to all previous studies. In contrast to some previous studies, we do not identify any
significant slip (>1 m) at the bottom of the fault.

We also compare inferences from both strong motion and GPS data with inferences derived
from strong motion data only. In both cases the shallow slip patch is identified. At other
locations, the main effect of the GPS data is in reducing the probability associated with high
values of slip. GPS data reduce the presence of spurious fault slip and therefore strongly
influence the resulting final seismic moment.

Key words: Inverse theory, Earthquake source observations.

1 I N T RO D U C T I O N

The M w = 6.6 Tottori earthquake struck southwestern Japan on
2000 October 6, at 04:30:17.75 UTC. The hypocentre was located
at 35.275◦N, 133.350◦E at a depth of 9.6 km (Fukuyama et al.
2003). The best-fitting double-couple focal mechanism estimated
by Fukuyama et al. (2003) indicates an almost pure left-lateral
strike-slip event with a strike-angle of 150◦ and a dip of 85◦ (Fig. 1).
No clear surface rupture was observed near the epicentre, although

some cracks oriented parallel to the estimated fault were found on
a paved road (Umeda 2002). Systematic displacement of 10–20 cm
was also found in the concrete lining in a tunnel 200 m below the
surface near the source region.

To reveal the details of the earthquake rupture process, a number
of studies derived kinematic images. Using a linearized frequency-
domain method and an initial slip model obtained through GPS
data inversion, Semmane et al. (2005) inverted strong motion data
to infer values of slip amplitude, rupture time and rise time. They
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Figure 1. Location and focal mechanism for the 2000 Western Tottori
earthquake (Fukuyama et al. 2003).

proposed different rupture models that all show a major slip patch
located near the top edge of the fault (elongated towards southeast).
Using strong motion data only and a backprojection method, Festa
& Zollo (2006) inferred two major slip patches: one located above
the hypocentre, close to the surface, extending southwards to the
bottom of the fault and a second one located north of the hypocentre,
at depths between 10 and 18 km. Fitting simultaneously strong
motion and GPS data and using a direct search method based on
a simulated annealing algorithm, Piatanesi et al. (2007) estimated
peak slip-velocity, rise time, rupture time and rake angle. They
confirm the presence of a major slip patch between the hypocentre
and the surface, but also identify an additional slip patch (2–2.5 m)
located at the bottom of the fault.

A dynamic model of the rupture process has also been derived for
the Tottori earthquake. Assuming constant upper yield stress and
uniform slip-weakening distance, and using a direct search method
based on the neighbourhood algorithm, Peyrat & Olsen (2004) in-
ferred the distribution of stress drop over the fault surface by fitting
strong motion data. The resulting slip pattern again shows that most
of the slip is concentrated in the uppermost part of the fault.

All these proposed images are similar in their general features—
they all show a high slip patch near the surface. However, the pres-
ence of slip at the bottom of the fault is ambiguous: it has been
recognized by Festa & Zollo (2006) and Piatanesi et al. (2007) but
not by Semmane et al. (2005). Also the Peyrat & Olsen (2004)
model does not require any slip at depth to fit the data, even though
they consider a fault with a smaller depth extent compared with the
ones used to obtain kinematic images.

One more aspect that has been investigated by both Semmane
et al. (2005) and Piatanesi et al. (2007) is the rise time distribution
on the fault surface. The model by Semmane et al. (2005) shows
a highly heterogeneous pattern of rise time values that vary mostly
between 0.5 and 2 s. Piatanesi et al.’s model shows a distribution
that is instead more homogeneous (probably due to a coarser grid
discretization and because they present a mean model) with rise
time values varying mostly between 2.5 and 3.5 s. Clearly, these
discrepancies can partially be due to the different approaches and
parametrizations. However, no common features can be identified
between the rise time distributions presented in these two studies,
highlighting the intrinsic difficulty in imaging rise time in finite
source inversions.

The Tottori earthquake is one of several examples, where multiple
rupture models have been proposed to explain the observed data.
All models are similar in some aspects but their obvious differences

require a better understanding of where this variability comes from.
Are these discrepancies in the source images only due to different
approaches and modelling assumptions, or do they reveal some
more fundamental lack of resolution?

Rupture-parameter estimates depend on how the inverse problem
is stated, a well-known fact since the initial works of Olson & Apsel
(1982) and Hartzell & Heaton (1983), who showed that results of
linear slip inversions depend on the stabilization constraints and
the data set used. More recently, considering the 2004 Parkfield
earthquake, Custodio et al. (2005) analysed how kinematic rupture
parameters depend on the chosen data set, while Hartzell et al.
(2007) showed how source-inversion results may depend on the
definition of the misfit function, the bounds on model parameters
and the size of the model fault plane.

However, once a model parametrization, an inversion method and
a data set are chosen, uncertainties on model parameters are deter-
mined by errors in data, modelling, and finite data coverage. All
these factors influence the topology of the misfit function and there-
fore its minimum. Every minimum is characterized by a certain local
topology, which determines the uncertainties on the corresponding
model parameters. This is evident for the linear least-square prob-
lem, where the covariance matrix for model parameters is propor-
tional to the inverse of the second derivative of the misfit function at
the minimum (Menke 1989)—the sharper the minimum, the smaller
the uncertainties. In case of non-linear problems, the minimization
problem may even have multiple solutions, because the misfit func-
tion may have multiple (or degenerate) minima.

To estimate these uncertainties, some methods have been pro-
posed. Emolo & Zollo (2005) used a genetic algorithm to search
the model space and estimated resolution on the best-fitting model
by defining a Gaussian probability density function, centred around
it. For each model parameter they derived a marginal probability
density function by computing the objective function in the neigh-
bourhood of the best-fitting model, varying the parameter of interest
but keeping all the remaining parameters fixed to their best-fitting
values. With this approach, the posterior probability density func-
tion is forced to be Gaussian around the best-fitting model and,
more importantly, the computed marginals do not take into account
the correlation between different model parameters. Peyrat & Olsen
(2004), Corish et al. (2007) and Piatanesi et al. (2007) derived uncer-
tainty estimates by statistically analysing models generated by the
optimization algorithm minimizing the misfit. The main drawback
of this approach is that the statistical properties of a set of models
produced by optimization do not necessarily represents the actual
uncertainties (Sambridge 1999; Monelli & Mai 2008), but rather
the tuning parameters and the operators adopted by the algorithm.

The aim of this paper is to investigate the rupture process of the
Tottori earthquake, focusing on determining resolution on model
parameters using a Bayesian approach (Mosegaard & Tarantola
1995; Tarantola 2005). A Bayesian approach allows one to estimate
uncertainties, taking into account the non-linearity of the problem.
It requires defining a posterior probability density function (pdf) on
the model space, representing the conjunction of our prior informa-
tion with information contained in the data (strong motion and GPS
data in this case) and in the physical law relating model parame-
ters with data. Inferences on model parameters are then expressed
in terms of posterior marginal pdfs. Due to the non-linearity and
large dimensionality of the problem, we use a Markov Chain Monte
Carlo (MCMC) method, based on the Metropolis algorithm, to com-
pute posterior marginals. Resolution on each model parameter is
analysed by looking at the difference between the corresponding
prior and posterior pdfs. With this approach, we can identify which
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Bayesian imaging of the 2000 Western Tottori earthquake 137

Figure 2. The observational network consists of 18 strong motion stations (black triangles) and 16 GPS stations (black dots) located within about 90 km from
the epicentre (black star). We use seven borehole stations (upward-pointing triangles) and 11 surface stations (downward-pointing triangles). The black solid
line indicates the assumed fault strike (150◦).

regions of the fault surface are better illuminated by the data
and which features of the rupture process can be considered well
resolved.

2 T H E O B S E RVAT I O NA L N E T W O R K

The observational network we use consists of 18 strong motion
and 16 GPS stations, located within about 90 km from the epicentre
(Fig. 2). Among the strong motion stations, we use 11 K-net stations
and 7 KiK-net borehole stations (SMNH01 and SMNH02 at 101 m
depth, TTRH04 at 207 m depth, OKYH07, OKYH08, OKYH09,
OKYH14 at 100 m depth).

The strong motion data (available at http://www.kik.bosai.go.jp/)
come as raw accelerations with absolute time. We bandpass filter
the waveforms in the frequency range 0.1–1 Hz using a first-order
bandpass Butterworth filter, applied both in the forward and reverse
directions to preserve phase. We then integrate the filtered wave-
forms to obtain ground velocities, which we resample to a sampling
interval of 0.015 s. The horizontal components of station OKYH14
have been also rotated by 76◦ anticlockwise to correct for sensor
misalignment. Each waveform lasts for 61.425 s and contains 4096
data points. Considering all components at all stations, the total
number of waveform data points is therefore 221 184.

The GPS stations belong to the GEONET array, operated by the
Geographical Survey Institute of Japan (Sagiya 2004). At each sta-
tion, we define the coseismic static offset as the difference between
the mean values of daily positions during the 5 days before and the
5 days after the earthquake. We also compute the corresponding
standard deviations that we then propagate to compute the error on
the final static displacement. For each station, we consider both the
two horizontal components and the vertical component, resulting in
a total number of GPS data points of 48.

3 T H E F O RWA R D M O D E L L I N G

We adopt a 1-D piecewise-linear velocity–density–depth distribu-
tion, based on the velocity model used by Fukuyama et al. (2003)
for the main shock location (Table 1). S-wave velocities are assumed

Table 1. Seismic velocity and density model for the Tottori region.

Depth (km) V P (km s−1) V S (km s−1) ρ (g cm−3)

0.0 3.00 1.73 2.3
1.0 4.00 2.31 2.5
3.0 6.00 3.46 2.7
30.0 8.00 4.62 2.9

to be 1/
√

3 of the P-wave speed. Density values are deduced from
P-wave velocities, using the Gardner’s relationship (Gardner et al.
1974).

We represent the fault as a 40 km long and 20 km deep, vertically
dipping plane surface, with a strike of 150◦. The same strike and dip
has been used by Peyrat & Olsen (2004), Festa & Zollo (2006) and
Piatanesi et al. (2007). The fault’s upper edge is at 0.5 km depth,
because coseismic surface rupture was essentialy absent. On the
fault surface, we define a regular grid of nodes,with a spacing of 4
km along-strike and along dip. The total number of nodes on the
fault is therefore 66. At each node, we define four parameters: peak
slip velocity, rise time, rupture time and rake angle.

We compute ground velocities using the frequency-domain rep-
resentation theorem (Spudich & Archuleta 1987):

u̇m (y, ω) =
∫ ∫

�

ṡ (x, ω) · Tm (x, ω; y, 0) d�, (1)

where u̇m is the mth component of ground velocity at the receiver
location y, ṡ is the slip-velocity function, Tm is the traction exerted
across the fault surface � at point x, generated by an impulsive
force applied in the mth direction at the receiver (ω = 2π f : angular
frequency). Tractions Tm are computed, up to a frequency of 1 Hz,
using a Discrete Wavenumber/Finite Element method (Compsyn
package, Spudich & Xu 2002), for a 1-D flat layered Earth model
without attenuation. A trapezoidal-rule quadrature of the product
ṡ·Tm is performed separately for each frequency, with the quadrature
points being the sample points where Tm have been computed.
Rupture-parameter values at integration points are derived through
bilinear interpolation of values at surrounding grid nodes, similar to
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the approach taken by Liu & Archuleta (2004) and Piatanesi et al.
(2007).

In this study, we assume the slip-velocity function to be an isosce-
les triangle. With this parametrization, the peak slip velocity cor-
responds to the height of the triangle and the rise time, to the
base length. Rupture time corresponds to the first point of the base
segment. With this parametrization, rise and rupture times are non-
linearly related to ground velocity. Previous studies used different
parametrizations, like a smooth ramp (Semmane et al. 2005) or a
box-car function (Piatanesi et al. 2007).

Following eq. (1), we convolve tractions with the assumed slip-
velocity function to compute ground velocity at the strong motion
station locations. We compute GPS data predictions by integrating
ground velocities to ground displacements and then selecting the
final static offsets.

4 T H E B AY E S I A N A P P ROA C H

In a Bayesian approach, inferences on model parameters (e.g. mean
values, standard deviations, 1-D/2-D marginals) are derived from
a posterior pdf defined on the model space. In Section 4.1, we
introduce the general equations defining the posterior pdf. We then
apply these equations to our specific case defining two different
posteriors: one considering strong motion data only and the other
considering both strong motion and GPS data. Our aim is to compare
inferences from these two posteriors and analyse how GPS data
influence the results. In Section 4.2, we define the model space. We
pay special attention to defining a physically consistent model space
to avoid considering unrealistic models. Finally, we present the
numerical scheme used to derive inferences on the model parameters
(Section 4.3).

4.1 The posterior pdf

We assume the M-dimensional model space and D-dimensional
data space, M and D, respectively, to be linear spaces. The prior
probability density functions on model parameters and data are
indicated with ρ M (m) and ρ D(d), respectively. θ (d |m) denotes the
conditional probability density representing the correlation between
d and m. The posterior pdf on the model space is given by (Tarantola
2005)

σM (m) = kρM (m)L(m), (2)

where k is a normalization constant and L(m) is the likelihood
function

L(m) =
∫

D

dd ρD(d)θ (d|m), (3)

which gives a measure of how well a model m explains the data.
In this study, we assume that our prior knowledge consists only

of the information that each model parameter is strictly bounded by
two values mα

min and mα
max, where α ∈ I M , I M = {1, . . ., M}. We

then write the prior pdf as

ρ(m) =
∏

αM ∈IM

ρα(mα), (4)

where

ρα(mα) =
⎧⎨
⎩

1
mα

max−mα
min

for mα
min ≤ mα ≤ mα

max

0 otherwise

is the prior marginal for each model parameter (i.e. a uniform prob-
ability density function [Monelli & Mai 2008]).

The common approach to define the likelihood function requires
deriving a data covariance matrix for data uncertainties and a mod-
elling covariance matrix for uncertainties in the forward modelling.
Assuming Gaussian uncertainties the likelihood function takes a
Gaussian functional form where the associated covariance matrix is
the sum of the data and modelling covariance matrices (Gouveia &
Scales 1998; Tarantola 2005).

Because we consider two different data sets (strong motion and
GPS data), we define two distinct likelihood functions. For the strong
motion data, we do not have a complete estimate of the associated
uncertainties. Strong motion data represent a single measurement
of the ground motion produced by an earthquake, and we therefore
have a single realization of the data errors. A possible approach
to still derive a data covariance matrix would be to analyse the
portion before the P-wave arrival of each trace and to assume this
portion to be representative of the seismic noise. More problematic
is to derive the modelling covariance matrix, which would require
knowing the uncertainties in the velocity and fault models (unknown
in our case) and then propagating them into the Green’s functions
used to compute the predicted ground motion.

Due to the difficulty of deriving a realistic covariance matrix
for strong motion data, we propose an alternative approach. First,
we assume a ‘perfect instrument’ condition (Tarantola 2005). This
assumption is valid if data uncertainties are negligible compared
with modelling uncertainties. We propose this approach for the
strong motion waveforms considered in this study, for which we
find high signal-to-noise ratios thanks to the vicinity of the recording
stations with respect to the source and the magnitude of the event.
This assumption translates into the following condition:

ρsm
D (d) = δ(d − dobs) (5)

where ρsm
D (d) represents prior knowledge on strong motion data

and dobs represents the observed data.
We define now the correlation θ (d | m) between data and model

parameters. Due to our lack of knowledge of the amplitude and
type of uncertainites affecting our modelling, we cannot derive
θ (d | m) from a formal theory. We therefore propose an empirical
formulation. Using an optimization algorithm, we examine which
model produces the best fit, given the observed data. We then use
this information to define a correlation function that assigns to each
model m, a correlation value that depends on how well it fits the
data with respect to the level of fit produced by the best-fitting
model. Models producing a level of fit close to the one of the best
fitting models should then have a higher value of correlation than
models producing a worse level of fit. Indicating with φ(d, m) the
percentage difference between the misfit produced by a model m and
the misfit produced by the best-fitting model mbest (which depends
on the data d), we obtain:

φ(d, m) = S(m) − S(mbest(d))

S(mbest(d))
· 100 (6)

where S indicates the misfit function used and mbest (d) represents
the best-fitting model given data d. We define the correlation be-
tween (strong motion) data and model parameter as

θ sm(d|m) =
⎧⎨
⎩

c , ∀m ∈ M : φ(d, m) < 0,

c exp[−φ(d, m)] , ∀m ∈ M : φ(d, m) ≥ 0,
(7)

where c is a normalization constant. Eq. (7) predicts that for all mod-
els producing a lower misit value than the best-fitting model, the cor-
relation assumes its maximum value. This condition accounts for the
possibility that the best-fitting model found during the optimization

C© 2008 The Authors, GJI, 176, 135–150

Journal compilation C© 2008 RAS



Bayesian imaging of the 2000 Western Tottori earthquake 139

process may not correspond to the absolute misfit minimum. For all
other models, the value of the correlation decreases exponentially,
depending on the percentage difference between the generated mis-
fit and the minimum misfit associated with the best-fitting model.
In writing eq. (7), we follow the analogy with a Guassian corre-
lation function. When assuming Guassian modelling uncertainties,
the correlation function θ (d, m) assumes an exponential functional
form where the argument is the L2 norm of the data misfit weighted
by the modelling covariance matrix. In our study we keep the expo-
nential functional form, but we substitute the argument with eq. (6).
Inserting eqs (5) and (7) into eq. (3), the integration yields

L sm(m) =
⎧⎨
⎩

c , ∀m ∈ M : φ(dobs, m) < 0,

c exp[−φ(dobs, m)] , ∀m ∈ M : φ(dobs, m) ≥ 0,
(8)

where Lsm (m) represents the likelihood function for strong motion
data.

For GPS data, we define a data covariance matrix. As described
in Section 2, we define the observed static offset as the difference
between the mean values of daily positions during the 5 days before
and after the earthquake. By computing the corresponding standard
deviations, we can deduce the standard deviation on the final static
displacement. Assuming uncorrelated uncertainties, we then define
a covariance matrix for GPS data, which is a diagonal matrix of
data variances. Assuming Gaussian uncertainties, the prior pdf on
(GPS) data is

ρ
gps
D (d) = C exp

[
−1

2
(d − dobs)T C−1

d,gps(d − dobs)

]
(9)

where C is a normalization constant and Cd,gps is the data covariance
matrix for GPS data.

As for the strong motion data, the modelling covariance matrix
for uncertainties in the predicted GPS displacement requires know-
ing the uncertainties in the velocity and fault models. However, GPS
data, measuring a static offset, reflect the zero frequency component
of the wavefield, which is less sensitive to complexities in the ve-
locity model. Also, GPS data seems to be well explained even using
a simple planar fault (Piatanesi et al. 2007). We hence assume for
GPS data to have neglible uncertainties in the forward modelling.
This assumption translates into the following condition:

θgps(d|m) = δ(d − g(m)), (10)

where g (m) is the forward modelling operator. Inserting eqs (9)
and (10) into eq. (3), the result of the integration is

Lgps(m) = C exp

[
−1

2
rT C−1

d,gpsr

]
, (11)

where Lgps (m) represents the likelihood function for GPS data and
r = g (m) −dobs.

Considering eq. (2) we now define a posterior pdf representing
the conjunction of our prior information with information contained
in strong motion data

σ sm
M (m) = kρM (m)Lsm(m). (12)

Eq. (12) can then be used as prior information to define a new
posterior pdf for the model parameters, which also considers the
GPS data:

σ
sm,gps
M (m) = kρM (m)Lsm(m)Lgps(m). (13)

4.2 The model space

The posterior pdf is defined over the model space. Inferences on
model parameters are therefore dependent on the chosen model
space. A correct definition of the model space is of vital importance
to avoid testing unrealistic models that make the inference process
inefficent. We thus pay special attention to defining a physically
consistent model space.

In our inversion, we assume the peak slip velocity (and therefore
the slip) to be zero at the fault edges. Non-zero slip at the fault
boundaries would constitute a discontinuity in slip that lead to un-
realistically high values of stress change at the edges. This condition
is assumed to be valid also for the top edge of the fault, because
no surface rupture was reported for the Tottori earthquake. For the
inner nodes, the peak slip velocity is allowed to vary between 0 and
400 cm s−1. With these conditions, we generate peak slip velocity
distributions, with non-zero values only inside the fault and tapered
to zero at the edges.

The moment tensor solution for the Tottori earthquake indicates
an almost pure left-lateral strike-slip event (Fukuyama et al. 2003);
nevertheless we allow the rake angle to vary between −30◦ and
+30◦ at each node. Positive angles indicate a downdip component
whereas negative angles an updip component.

The range of rupture times at each grid node is defined as the
time interval between the arrival times of two circular rupture fronts,
propagating from the hypocentre (at 9.6 km depth) at two limiting
rupture velocities: 1.5 and 4 km s−1.

The range of possible values for rise time has been chosen accord-
ing to the frequency band used in the inversion. Having bandpass
filtered the waveforms in the frequency band 0.1–1 Hz, we consider
1 and 10 s as minimum and maximum values for rise time, re-
spectively. However, from dynamic rupture simulations (Day 1982;
Madariaga et al. 1998), it is known that when a rupture front reaches
the unbreakable boundaries of a fault, it generates stopping phases
that propagate inwardly and heal the slip process as they spread
over the fault. As a consequence, the duration of slip at fault loca-
tions is influenced by the stopping phases emitted from the edges
of the fault. In our case, the hypocentre is located approximately
in the centre of the assumed fault plane; we may therefore expect
that the inner portion of the fault will start slipping earlier and will
be reached by the stopping phases, later than regions near the bor-
ders of the fault. For this reason, the minimum allowed rise time
is assumed to be 1 s for each node, whereas the maximum allowed
rise time is assumed to decrease from the maximum value (10 s),
according to the following equation:

τmax,n
r = τmin

r + (
τmax

r − τmin
r

) (
1 − dn

hyp

dn
hyp + dn

bound

)
, (14)

where τmax,n
r is the maximum rise time at the node n, τmin

r and τmax
r

are the minimum and maximum rise time values allowed by the
considered frequency range, respectively, dn

hyp is the distance of the
node n from the hypocentre and dn

bound is the minimum distance of
the node n from the boundaries of the fault. This equation predicts
that the maximum allowed rise time is equal to 10 s, only for a node at
the hypocentre (dn

hyp = 0) and that for all the nodes on the boundaries
(dn

bound = 0), the maximum rise time corresponds to the minimum
allowed rise time. For all remaining nodes, the maximum rise time
decreases as their distance from the boundary decreases (Fig. 13).
For the nodes having the same minimum distance (e.g. nodes 14, 15,
16, 17), the maximum allowed rise time decreases with increasing
distance from the hypocentre. Eq. (14) only predicts the maximum
allowed rise time at each node and expresses the fact that long rise
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times are not expected near the borders of the fault, simply because
stopping phases are expected to reduce the duration of the slip
process in these locations. The minimum rise time is 1 s everywhere.
Between the minimum and maximum allowed rise time values,
the prior pdf assumes uniform probability at each node. In other
words, a crack-like rupture behaviour or a pulse-like propagation
are assumed to be equally likely.

4.3 Sampling the posterior pdf

Once the posterior pdf and the model space are defined, information
on each model parameter mα can be quantified by computing the
corresponding 1-D marginal posterior pdf:

M(mα) =
∫

. . .

∫
σM (m)

M∏
k=1k 	=α

dmk (15)

Eq. (15) involves computing the integral of the posterior pdf over all
dimensions of the model space, except the one corresponding to the
parameter of interest. Due to the large dimensionality of the problem
(204 model parameters) Eq (15) can be estimated only using Monte
Carlo methods that generate models m as samples of the posterior
pdf σ M (m). Once a large ensemble of such samples has been gen-
erated, the 1-D marginal of each parameter can be approximated by
the histogram of the corresponding sampled values.

Among the different possible sampling algorithms (for a review
see Tarantola 2005), we use a Markov Chain Monte Carlo (MCMC)
method, based on the Metropolis algorithm (Martinez & Martinez
2002; Tarantola 2005). A Markov chain is a sequence of random
variables m1, m2, . . . , mt , such that the next value or state of the
sequence mt+1 depends only on the previous one mt . An MCMC
method, based on the Metropolis algorithm, generates a Markov
chain where the state of the chain at t + 1 is obtained by sampling a
‘candidate point’ m̃ from a symmetric proposal distribution q(.|mt ).
An example of a distribution like this is the normal distribution
with mean mt and fixed covariance. To generate variables that are
samples of a given pdf P, the candidate point is accepted as the next
state of the chain with a probability given by:

α(mt , m̃) = min

{
1,

P(m̃)

P(mt )

}
. (16)

This means that if P(m̃) ≥ P(mt ), that is, if the proposed model
corresponds to an higher value of the target pdf, the move is always
accepted because α(mt , m̃) will be equal to one. In the opposite
case, if the move produces a lower value of the target pdf, the
proposed model is accepted with probability given by P(m̃)/P(mt ).
If the point m̃ is not accepted, then the chain does not progress and
mt+1 = mt .

Our aim is to generate models that are samples of the posterior
pdf. In our case the posterior pdf is given by the product of several
pdfs [in case of σ

sm,gps
M (m), the prior and the likelihoods for strong

motion and GPS data]. Using a general notation we write

σM (m) = k P1(m)P2(m)P3(m). (17)

To generate samples according to the posterior defined in eq. (17),
we use the Cascaded Metropolis algorithm (Tarantola 2005). We
start by defining a random walk that generates samples according
to the first pdf. At a given step, the random walker is at point mt

(which is a sample of P1). Using a proposal distribution, we generate
a model m̃. We accept the new model as a next step of the random
walk, according to the following rules.

(a) If P2(m̃) ≥ P2(mt ), then go to step (c).
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Figure 3. The maximum allowed rise time (s) on the fault surface. Num-
bered labels indicate node locations. The white star represents the hypocentre
location.

(b) If P2(m̃) < P2(mt ), then decide randomly to go to step (c)
or to reject the proposed model, with a probability to go to step (c)
given by α = P2(m̃)/P2(mt ).

(c) If P3(m̃) ≥ P3(mt ), then accept the new model.
(d) If P3(m̃) < P3(mt ), then decide randomly to accept a new

model or to stay at mt , with a probability to accept the new model
given by α = P3(m̃)/P3(mt ).

5 R E S U LT S

In Section 4.1, we defined the posterior pdfs σ sm
M (m) (eq. 12) for

strong motion data and σ
sm,gps
M (m) (eq. 13) for both strong motion

and GPS data. We now present the corresponding estimated max-
imum likelihood models, and compare their predictions with the
observed data (Section 5.1). Then we compute the corresponding
1-D marginals and analyse how GPS data change inference results
(Section 5.2). In Section 5.3, we finally compute 2-D marginals for a
number of model parameters and investigate possible correlations.

5.1 The maximum likelihood models

The maximum likelihood model for σ sm
M (m) corresponds to the

model maximizing the likelihood function Lsm (m). By definition
(eqs 6 and 7) the maximum is attained in correspondence with the
best-fitting model. Given a model m, we measure the level of fit with
strong motion data, using a L2 norm of the misfit between observed
and predicted waveforms in the time domain. We explore the model
space to identify the best-fitting model, using a direct search method
based on an evolutionary algorithm (Beyer 2001; Monelli & Mai
2008). An evolutionary algorithm is a population-based stochastic
optimization method. According to this algorithm, the search of the
model space starts with generating an initial set of models, which is
obtained through a uniform random sampling of the model space.
This initial population then evolves through the subsequent appli-
cation of both stochastic and deterministic operators. Goal of these
operators is to generate a new population of models that hopefully
show better properties (i.e. lower misfit values). The creation of a
new population is referred as a new generation.

We consider an initial population of 100 models from which we
produce, at each generation, 2000 new models. The search lasts for
100 generations and the total number of models produced is there-
fore 200 100. The best objective function value for each generation
versus the generation number is shown in Fig. 4. We can see that
after the 40th generation, the level of fit reaches an approximately
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Figure 4. Misfit reduction during the search. After about the 40th genera-
tion, the level of fit reaches an approximately stationary level.

stationary level. The best-fitting model (generating the lowest misfit
function value) is shown in Fig. 5 (left-hand panels).

The maximum likelihood model for σ
sm,gps
M (Fig. 5, right panels)

corresponds to the model minimizing the sum of the exponents of

Peak slip-velocity

(a)

Peak slip-velocity

(d)

Rise time

(b)

Rise time

(e)

Final slip with rupture time contour lines

(c)

Final slip with rupture time contour lines

(f)

Figure 5. Peak slip velocity vector (cm s−1), rise time (s) and final slip (cm) distributions (with rupture time contour lines every 1 s) of the maximum likelihood
models for σ sm

M (panels a, b, c, respectively) and for σ
sm,gps
M (panels d, e, f, respectively). The grid indicates the subfault discretization. The white star represents

the hypocentre location.

the two likelihood functions, Lsm(m) and Lgps(m). We identify it
among the models visited during the sampling process which we
describe in detail in Section 5.2.

Comparing the two rupture models, we can see that both of them
present several high slip-velocity patches. In both cases, we can
identify a high slip-velocity patch between the hypocentre and the
top edge of the fault (at 4.5 km depth). The maximum likelihood
model for σ sm

M presents significant peak slip velocity SE of the
hypocentre, which is not observed in the maximum likelihood model
for σ

sm,gps
M . The latter presents also a low peak slip velocity region,

NW of the hypocentre, which is also visible, but less extensive, in
the maximum likelihood model for σ sm

M .
In both cases, the rise time pattern shows higher values near the

hypocentre and lower values near the borders, following approxi-
mately the pattern of the maximum allowed rise time.

In comparing the final slip distributions, we note in both cases a
high slip patch (maximum value about 4 m) between the hypocentre
and the top edge of the fault, with an elongation of the slip distribu-
tion towards SE. The major difference concerns the presence of deep
slip. The maximum likelihood model for σ

sm,gps
M presents little slip

at the bottom of the fault, especially in the NW, whereas the max-
imum likelihood model for σ sm

M contains, instead, more deep slip.
The seismic moments of the maximum likelihood models for

σ sm
M and σ

sm,gps
M are 1.9 × 1019 and 1.6 × 1019 N m, respectively.

Semmane et al. (2005) inferred values of seismic moment of
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Figure 6. Level of fit produced by the maximum likelihood models for σ sm
M (dark grey) and σ

sm,gps
M (light grey) with the observed ground motion (black). For

each waveform the maximum observed ground velocity (cm s−1) is shown at the end of each trace. Waveforms are not normalized. For each component, the
vertical spacing between two subsequent traces is equal to the maximum positive amplitude of the lower trace.

1.5– 1.7 × 1019 N m, Festa & Zollo (2006), 2.6 × 1019 N m and
Piatanesi et al. (2007) 1.7 × 1019 N m.

In Figs 6 and 7, we show the level of fit produced by both models
with the observed strong motion data. For some components, both
models reproduce the polarity of the first arrival and the amplitude
and duration of the main phase (see fault parallel component at sta-
tions SMN003, SMN015, TTR005, SMNH01, SMNH02, TTRH04
for instance). For some other components, the forward modelling
does not reproduce the observed complexity (see waveforms at sta-
tion TTR008 for instance). Both models produce a similar level of
fit. Without any uncertainty characterization, we cannot say which
model is performing better in reproducing the observed strong mo-
tion data.

In Fig. 8, we compare the horizontal static displacement produced
by both models with the one deduced from GPS data. Ellipses
represent 95 per cent confidence level. We note that at some stations
(74, 379, 660, 662, 381), the static displacement produced by the
maximum likelihood model for σ sm

M lies just on or is slightly outside
the error ellipse. The maximum likelihood model for σ

sm,gps
M , instead,

reproduces the observed surface displacements within the estimated
displacement error at all stations.

5.2 The 1-D marginals

According to Section 4.3, we express our inferences on the inves-
tigated rupture parameters in terms of marginal pdfs derived from
the two posterior pdfs defined in eqs (12) and (13).

Following the algorithm described in Section 4.3, we simulated,
for both cases, four random walks starting from different models
obtained through uniform random sampling of the model space.
Each random walk has a different seed value for the random num-
ber generator also. At each step, we generate a new model using
a Gaussian probability distribution with fixed covariance matrix.
We assume the covariance matrix to be diagonal, with standard de-
viations equal for parameters of the same type. After several trial
random walks, we fix the standard deviations for peak slip velocity,
rake angle, rupture time and rise time to be 5 cm s−1, 2◦, 0.1 s and
0.1 s, respectively. With these values, the acceptance rate of the
Metropolis algorithm (ratio between accepted and generated mod-
els) is ∼50 per cent when sampling σ sm

M and ∼30 per cent when
sampling σ

sm,gps
M . Tarantola (2005) suggests that the size of the per-

turbations in the model space should give an acceptance rate of
∼30–50 per cent.

Models produced by the Metropolis sampler are not independent
samples of the posterior pdf, since each model depends on the pre-
vious one. However, the estimation of the integral in equation (15)
requires independent samples. Only with n independent samples
can eq. (15) be approximated as accurately as needed by increasing
n (Martinez & Martinez 2002). After taking one sample, a possible
strategy to generate a new independent sample is to wait a sufficient
number of moves before collecting a new sample, such that the
random walk has ‘forgotten’ the previous sample. Unfortunately,
no general rule exists that helps to set the number of moves that
should be done before collecting a new sample (Tarantola 2005).
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Figure 7. Continuation of Fig. 6.

Figure 8. Horizontal static displacement predicted by the maximum likelihood models for σ sm
M (thin dark grey) and σ

sm,gps
M (thick light grey) compared with

the observed one (thin black). Ellipses represent 95 per cent confidence levels.
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From a practical point of view, this parameter is also dependent
on the computation time available. After some experimentation we
decided to collect samples every 100 steps.

To generate samples according to σ sm
M , we ran each random walk

for 1 000 000 steps and collected samples every 100 moves. Each
random walk produced therefore 10 000 approximately independent
samples. We ran the four random walks in parallel, each of them
requiring a single processor. The computation time needed was
∼40 days on a Linux cluster, based on AMD Opteron 64-bit CPUs.
We then merged all ensembles produced by the different random
walks into a single ensemble, which we finally used to estimate
marginals.

To generate samples according to σ
sm,gps
M , the sampling algo-

rithm requires solving the forward modelling for the GPS data
prediction. With this additional calculation, each random walk, pro-
duced 300 000 models in approximately the same computation time
(∼35 days). From each random walk we extracted 3000 approxi-
mately independent samples that we then merged to estimate the
corresponding marginals. Even with a smaller number of samples,
we observed that each single random walk was able to produce ap-
proximately the same marginal, indicating therefore an acceptable
convergence.

In Fig. 9(a), we present 1-D marginals for peak slip velocity
at grid points, displaying only inner grid points, because on the
fault plane boundaries, peak slip velocity is assumed to be zero
(Section 4.2). For each node, we present the 1-D prior marginal, the
posterior obtained from σ sm

M and the one from σ
sm,gps
M .

The most important feature to note is that the posteriors gener-
ally do not show a Gaussian shape, rather a skewed distribution.
The only two posterior marginals with a Gaussian-like distribution
corresponds to nodes number 16 and 17. For these two nodes, the
posteriors from σ

sm,gps
M predict a peak slip velocity of 122 ± 57

and 140 ± 57 cm s−1, respectively. The relative error for these two
nodes is about 47 and 41 per cent, respectively. These two posteriors
confirm the presence of a near-surface high slip-velocity patch as
imaged in the maximum likelihood models (Fig. 5).

For all the remaining nodes, posteriors show a distribution skewed
towards the minimum allowed peak slip velocity value (0 cm s−1).
Note that the skeweness depends on the node location. As a general
trend, we find that the skeweness, and therefore the posterior peak,
become less clear from the top edge of the fault towards the bot-
tom (see subplots along the columns). This is particularly evident
for posteriors from strong motion data only. This implies that the
resolution power of the data sets (measured at each node by the
difference between posterior and prior pdfs) follows the same trend
and decreases with increasing depth.

Comparing posterior marginals obtained from σ sm
M and σ

sm,gps
M ,

we find that GPS data have a notable effect in constraining the peak
slip velocity distribution. In fact, GPS data are sensitive to the final
slip distribution. In our modelling, the final slip at each fault location
is directly proportional to peak slip-velocity [assuming an isosceles
triangle as source time function, final slip = (peak slip-velocity ×
rise time)/2]. Looking at nodes 16 and 17, we see that GPS data
confirm the presence of a high slip-velocity patch. However, for
node 17, GPS data suggest an even higher value of peak slip-velocity
with respect to the one inferred using strong motion data only. In
most of the remaining locations, GPS data have an effect in reducing
the tail of the posteriors obtained from σ sm

M . This is evident at nodes
21, 32, 43, for instance. It is also interesting to note that the GPS
data used in this study have the same effect at the bottom of the
fault (see nodes number 46, 47, 48). This shows that, at least in this

case, GPS data bring useful information on the rupture process also
for the deeper part of the fault.

We show 1-D marginals for rise time in Fig. 9(b): the posterior
marginals present a well-defined peak only for the nodes located
near the high slip-velocity patch (nodes 15, 16, 17, 18 and 27, 28,
29). For all remaining nodes, posterior marginals present very little
difference with respect to the prior uniform, indicating therefore
very poor resolution for rise time. At node 17, corresponding to
the highest inferred peak slip velocity value, the mean rise time is
about 4.4 s. We also note that the maximum estimated mean rise
time (7.2 s) corresponds to node 28, which is associated with low
peak slip velocity values (see corresponding posterior in Fig. 9a).
We could expect to have little resolution on rise time for a node
associated with low slip-velocity. However, we recall that rupture
parameters are defined on a coarse grid on the fault surface and
then derived on a finer grid (where the actual integration is carried
out) through bilinear interpolation. Even if a node is associated
with a low value of peak slip velocity, its vicinity may not have low
values if a neighbouring node is associated with an high value of
peak slip velocity. Node 17, where the highest value of peak slip
velocity is inferred, is a neighbouring node of node 28. This means
that between these two nodes, significant peak slip-velocity may be
present. In that case, the long rise time corresponding to node 28
is needed to describe the slip process in its neighbourhood. When
comparing posteriors from σ sm

M and σ
sm,gps
M , we note the greatest

differences only at nodes 17 and 18. For these nodes, GPS data
increase the probability associated with larger values of rise time.

In Fig. 10(a) we show 1-D marginals for rupture time. In this case
we consider also nodes located at the edges of the fault. Marginals
from σ sm

M and σ
sm,gps
M are very similar, since GPS data do not con-

tribute information about rupture timing. Again, we find that poste-
riors present a well defined peak with respect to the prior marginals,
only in the upper-most part of the fault (especially at nodes 4, 5, 6
and 15, 16, 17). Nodes 16 and 17 correspond to the nodes where the
shallow high slip-velocity patch is located. Assuming mean values
as estimates of the actual rupture times, the rupture front triggers
the high slip-velocity patch located below the top edge of the fault
(nodes 17) approximately 3.1 s after the rupture initiated. The av-
erage rupture velocity from the hypocentre in the updip direction
is therefore 1.6 km s−1, corresponding to 44 per cent of the av-
erage shear velocity in the involved depth range. For some nodes
located on the boundary of the fault (4, 5 and 6 especially) the
posterior pdfs show a clear peak, although for these nodes, the peak
slip velocity is assumed to be zero. The fact that data are sensi-
tive to these parameters, is an effect of the bilinear interpolation
scheme. Even if these parameters correspond to nodes where the
peak slip velocity is assumed to be zero, the rupture time defined
on these nodes determines the rupture time in the neighbourhood
points. Hence, if these neighbourhood points are associated with
well-resolved slip, the rupture time in the neighbourhood nodes
will also be well resolved.

Comparing 1-D marginals for the rake angle (Fig. 10b), with
marginals for peak slip velocity, rise time (Fig. 9) and rupture time
[Fig. 10(a)] we find that the rake angle is the least resolved parameter
in the considered model space. Differences between priors and pos-
teriors are generally less accentuated than for the other parameters.
We also observe that GPS data have a notable effect in constraining
the rake angle at some locations. This is evident at nodes 16, 17,
27, 28. In these locations, posterior marginals suggest that the high
slip-velocity patch is associated with a positive rake angle, which
implies a downdip movement in our modelling.
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(a)

(b)

Figure 9. 1-D marginals for (a) peak slip velocity (cm s−1) and (b) rise time (s). Each subplot corresponds to a node position. Dashed lines represent priors,
solid lines posterior marginals (grey from σ sm

M , black from σ
sm,gps
M ). For each subplot we indicate node number, posterior mean value (μ) and standard deviation

(σ ) of the posterior marginal obtained from σ
sm,gps
M . The black star represents the hypocentre location.

Fig. 11 shows posterior marginals for final slip (derived from peak
slip velocity and rise time values). Note that prior marginals are not
uniform because they represent prior information on a combination
of the original model parameters. Again, we find that posteriors
show mostly a skewed distribution. Only posteriors at nodes 16
and 17 show a Gaussian-like shape. For these two nodes, posteriors
predict a final slip of 250 ± 120 and 311 ± 140 cm, respectively. The
relative error is ∼48 and 45 per cent, respectively. We also infer a

low slip region NW of the hypocentre (nodes from 24 to 27 and 35 to
38). In these locations, 1-D marginals present a distribution, skewed
towards the minimum allowed slip (0 cm) with standard deviations
∼50 cm. SE of the hypocentre, 1-D marginals present instead larger
standard deviations: ∼100 cm at nodes 28 and 40 and ∼140 cm at
node 29 indicating therefore a wider range of likely values. This
feature may suggest an elongation of the slip distribution towards
SE. The effect of GPS data in constraining the peak slip-velocity is
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(a)

(b)

Figure 10. 1-D marginals for (a) rupture time (s) and (b) rake angle (degrees). The same notation of Fig. 9 is used. For clarity we do not report mean values
and standard deviations.

reflected in the marginals for the final slip. GPS data have a notable
effect in reducing the tail of the marginals (see nodes 21, 32, 43, for
instance). They help also in constraining the shallow slip (see node
16 and 17).

These changes have a strong effect when computing the pos-
terior marginal for seismic moment (Fig. 12). GPS data reduce
the probability associated with high values of slip and produce
a shift of the peak of the posterior towards lower values of
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Figure 11. 1-D marginals for final slip (cm).
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Figure 12. 1-D marginals for seismic moment as obtained from the prior
pdf (dashed), σ sm

M (grey) and σ
sm,gps
M (black).

seismic moment than obtained from σ sm
M . From the posterior

marginal from σ
sm,gps
M we infer a value of seimic moment equal

to 1.7 ± 0.16 × 1019 N m. The corresponding relative error is about
10 per cent.

Figure 13. 1-D marginals for moment (a) and moment rate (b) (derived from σ
sm,gps
M only) as they evolve in time.

In Fig. 13 we present posterior 1-D marginals (derived from
σ

sm,gps
M only) for seismic moment and moment rate, as they evolve

in time. In other words, we compute moment and moment rate
time histories for each sample of σ

sm,gps
M and then compute, at each

time step, the corresponding 1-D marginal. In this way, we obtain
a ‘probabilistic’ image of the moment and moment rate functions,
where at each time step, we have not a single value but rather a
distribution of values. From the seismic-moment time history, we
see that most of the seismic moment starts to be released only after
about 3 s from the origin time. This is consistent with the fact
that the shallow slip patch is triggered, on an average, 3 s after the
earthquake initiated. The moment rate function assumes its peak
value at about 5 s. Again considering node 17, we infer a value of
rise time of 4.4 s (average value deduced from posterior marginal for
rise time, see Fig. 9b). In other words, at node 17, the slip-velocity
reaches its peak value about 2 s after the rupture time, that is, at
about 5 s. We therefore see a correlation between the peak of the
moment rate function and the peak of the source time function at
node 17, which is associated with the highest inferred slip.
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Figure 14. 2-D marginals between peak slip velocity, rise time and rupture time at node 16 and 17.

5.3 2-D marginals

1-D marginals represent all information we have on a single param-
eter. However, they do not contain any information about possible
correlations with other parameters, which constitutes an integral
part in any uncertainty analysis. If a pair of parameters is cor-
related, this implies that we cannot measure them independently.
Correlations between pairs of different parameters can be analysed
computing 2-D marginals.

Due to the large number of parameters (204 in this study) we
did not explore all possible correlations. We focused our attention
on the rupture parameters describing the shallow high slip patch,
at nodes 16 and 17. We derived 2-D marginals from σ

sm,gps
M only

because it considers all the data. We first computed 2-D marginals
between rupture parameters (mainly peak slip velocity, rupture time
and rise time) defined on the same node (Figs 14a–f). We do not
identify any significant correlation between these parameters. In
Figs 14(g)–(i), we instead present 2-D marginals between rupture
parameters defined on different nodes. Here, we identify a strong
anticorrelation between peak slip velocity values. In other words, if
the peak slip velocity at node 16 increases, the peak slip velocity at
node 17 will decrease, and vice versa.

6 D I S C U S S I O N

From the analysis of the 1-D marginals computed from σ
sm,gps
M we

identify the following main features in the rupture process of the
2000 Tottori earthquake.

(1) Between the hypocentre and the top edge of the fault, cor-
responding to a depth of 4.5 km (nodes 16, 17), we find a high
slip-velocity patch. Posterior marginals show a Gaussian-like shape
from which we deduce values of peak slip velocity of 122 ± 57 and
140 ± 57 cm s−1.

(2) In correspondence to the high slip-velocity patch, the pos-
terior marginals for rise time show a skewed distribution, with the
maximum attained at the maximum allowed rise time. The mean
values for rise time at nodes 16 and 17 are 4.1 and 4.4 s, respec-
tively.

(3) Combining values of peak slip velocity and rise time, we
infer for the shallow slip patch final displacements of 250 ± 120
and 311 ± 140 cm on nodes 16 and 17, respectively.

(4) 1-D marginals for rupture time indicate that the shallow slip
patch is triggered about 3.1 s (mean value of posterior at node
17) after the rupture initiated at the hypocentre. We can therefore
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estimate an average rupture velocity in the updip direction, of about
1.6 km s−1.

(5) The rake angle is generally poorly resolved in the model space
considered. Only on the shallow slip patch (nodes 16, 17), posterior
marginals suggest that a positive angle (downdip component) is
more likely than a negative one.

The presence of a high slip patch near the top edge of the fault
has also been recognized in previous studies (Semmane et al. 2005;
Festa & Zollo 2006; Piatanesi et al. 2007). Their models indicate
a maximum value of slip of about 4 m, roughly in agreement with
our estimates (311 ± 140 cm). We do not identify any significant
slip at the bottom of the fault. For the deepest nodes (from node 46
to 54) posterior 1-D marginals of slip from σ

sm,gps
M exhibit a skewed

distribution with maximum attained at the minimum allowed slip
(0 cm, see Fig. 11). Assuming that standard deviations represent the
range of most likely values, we infer for the deepest nodes, values
of slip between 0 and ∼80 cm. Our inferences for the final slip
distribution are therefore more consistent with the preferred model
of Semmane et al. (2005), which does not show significant slip at
the bottom, rather than with the models proposed by Festa & Zollo
(2006) and Piatanesi et al. (2007), which suggest the presence of
significant deep slip (up to 2.5 m).

Regarding the rupture timing, we infer a value of about 1.6
km s−1 for the rupture velocity in the updip direction. Festa & Zollo
(2006) and Piatanesi et al. (2007) inferred values equal to 2.1 and
2.2 km s−1, respectively. These higher values may be due to the
deeper hypocentre assumed in these studies (13.5 km, Festa & Zollo
2006 and 12.5 km, Piatanesi et al. 2007) compated with the one we
adopted (9.6 km).

Another difference from previous studies concerns the rise time
pattern. Our results show that rise time values are well resolved
only in the vicinity of the shallow high slip patch. At these loca-
tions (nodes 16, 17 for instance), the rise time values equal ∼4 s.
Semmane et al.’s (2005)’s preferred model shows at the same loca-
tions lower values between 0.5 and 1.5 s. Piatanesi et al.’s 2007’s
average model shows instead more comparable values between 2.5
and 3 s.

As recognized in all studies (including this work), a peculiar
feature of the Tottori earthquake is the presence of considerable
slip at shallow depth (311 ± 140 cm at 4.5 km depth), without any
evident surface rupture. Identifying the reasons why the slip did
not reach the surface is beyond the scope of this paper and requires
dynamic modelling of the earthquake rupture process. Qualitatively,
we can imagine that possible reasons impeding slip propagation to
the surface can be a velocity-strengthening behaviour of the shallow
layers or low pre-stress in the uppermost part of the fault, or a
combination of these two effects.

Also, the Tottori earthquake is not the only event showing shal-
low slip with no surface breaks. An earthquake showing similar
behaviour is the 2003 M W = 6.5, Bam (Iran) earthquake. From the
inversion of radar data, Fialko et al. (2005) showed how the Bam
earthquake is characterized by right-lateral displacements having
a maximum amplitude of about 2 m at a depth of 3–7 km. How-
ever both radar data and field investigations confirm lack of surface
rupture associated with the faulting event.

Finally, we stress that all the results we show in this study depend
and are limited by the chosen model space. For instance in our
study we find that for some parameters (e.g. concerning rise time
and rupture time), the posterior marginals are skewed towards the
maximum allowed values, suggesting that the solution, for these
parameters, is located beyond the upper bound of the considered

range of values. We acknowledge therefore that a natural extension
of this work would be considering a larger model space (e.g. by
removing constraints on rise time) and checking if the inference
results remain stable or if new solutions are found.

7 C O N C LU S I O N S

In this study, we investigate the rupture process of the 2000 Western
Tottori earthquake through fitting of strong motion and GPS data.
Our inversion methodology is based on a Bayesian approach. We
state our inferences in terms of marginal pdfs derived from two
distinct posterior pdfs: one that considers only strong motion data
and the other that considers both strong motion and GPS data.

With both posteriors, we identify as a stable feature of the earth-
quake rupture process the presence of a high slip patch between the
hypocentre and the top edge of the fault. This feature is common
with previous studies. The analysis of the 1-D marginals for rupture
time, rise time and rake angle indicates that these parameters are
well resolved, only where this shallow slip patch is located, mean-
ing that the signal emitted by this patch determines most of the
wavefield that we fitted.

When using both strong motion and GPS data, we do not identify
any significant slip (>1 m) at the bottom of the fault. For this aspect,
our inference results disagree with some previous studies (Festa &
Zollo 2006; Piatanesi et al. 2007).

We compare inferences obtained considering strong motion data
only with ones derived considering both strong motion and GPS
data. In our study, we note that the main effect of GPS data is in
reducing the precence of spurious slip on the fault, which in turn,
has a strong influence on the estimate of the final seismic moment.

A clear point in our analysis is that resolution on kinematic
rupture parameters cannot be explained generally, using the Gaus-
sian uncertainty hypothesis. In our study, most of the 1-D poste-
rior marginals do not show a Gaussian distribution. Understand-
ing the actual resolution requires taking into account the non-
linearity of the problem and therefore dealing with non-Gaussian
distributions.
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