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We consider the symmetric, interior penalty discontinuous Galerkin (DG) method for the time-dependent
Maxwell’s equations in second-order form. Groteet al. (2007, J. Comput. Appl. Math.204, 375—

386), optimala priori estimates in the DG energy norm were derived, either for smooth solutions on
arbitrary meshes or for low-regularity (singular) solutions on conforming, affine meshes. Here, we show
that the DG methods are also optimally convergent intheorm, on tetrahedral meshes and for smooth
material coefficients. The theoretical convergence rates are validated by a series of numerical experiments
in two-space dimensions, which also illustrate the usefulness of the interior penalty DG method for time-
dependent computational electromagnetics.

Keywords Maxwell’s equations; discontinuous Galerkin methaalgriori error estimates.

1. Introduction

With the need to simulate electromagnetic phenomena of increasing realism and complexity comes the
need for more general numerical methods that easily handle complicated geometric features and dif-
ferent material properties. The first method for the numerical simulation of time-dependent electromag-
netic waves, the finite-difference time domain (FDTD) scheme, was proposéstliy966. Based on a
finite-difference discretization of Maxwell’s equations on two regular Cartesian grids, staggered both in
space and in time, the FDTD method remains popular due to its simplicity and efficiency. However, like
most finite-difference methods, the FDTD method is difficult to generalize to unstructured nonCartesian
grids and suffers from the inaccurate representation of the solution on curved boundaries (staircase ap-
proximation; see€Cangellaris & Wright 1991 Taflove 1995. Moreover, its extension to higher order
results in wider difference stencils, which require special treatment near physical boundaries.

In contrast, finite-element methods (FEMs) can handle unstructured grids and complex geometry;
they easily extend to higher order, even in the vicinity of physical boundaries. They also provide rig-
orousa posteriori error estimates which are useful for local adaptivity and error control. Different
finite-element discretizations of Maxwell’s equations are available, such as the edge-element methods of
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Nécklec(198Q 1986, the node-based first-order formulationla&e & Madsen(1990, the node-based
curl—curl formulation ofPaulsen & Lynch(1997) or the node-based least-squares FEMiahget al.
(1996 (see alsiMonk, 1992.

Two difficulties typically arise when standard (conforming) finite elements are used in practice.
First, they are generally intended for use on a globally conforming mesh, i.e. a mesh without hanging
nodes or mismatch of mesh points along internal boundaries. Unfortunately, the generation of high-
quality globally conforming meshes in arbitrary 3D geometry remains a formidable task, often done by
hand, which can be more time consuming than the simulation itself. Second, althédgledNelement
methods may be the most satisfactory from a theoretical point of viewMse&, 2003, in particular
near re-entrant corners, they are less attractive for time-dependent computations because the solution of
a linear system is required at every time iteration. Indeed, in the case of triangular or tetrahedral edge
elements, the entries of the diagonal matrix resulting from mass lumping are not necessarily strictly
positive (seeElmkies & Joly 1997); therefore, explicit time stepping cannot be used in general. In
contrast, nodal elements naturally lead to a fully explicit scheme when mass lumping is applied both in
space and in time, but cannot correctly represent corner singularities in general.

Discontinuous Galerkin (DG) FEMs offer an attractive alternative &miNec’s elements for the
numerical solution of Maxwell's equations, in particular for time-dependent problems. Not only do
they accommodate elements of various types and shapes, irregular nonmatching grids and even locally
varying polynomial order, and hence offer great flexibility in the mesh design, but they also lead to
(block) diagonal mass matrices and therefore yield fully explicit, inherently parallel methods when
coupled with explicit time stepping. Indeed, the mass matrix arising from a DG discretization is always
block diagonal, with block size equal to the number of degrees of freedom per element; hence, it can
be inverted at very low computational cost. In fact, for constant material coefficients, the mass matrix is
truly diagonal for a judicious choice of (locally orthogonal) shape functions. Because continuity across
element interfaces is weakly enforced merely by adding suitable bilinear forms (the so-called numerical
fluxes) to the standard variational formulation, the implementation of DG methods is straightforward
within existing finite-element software libraries.

For the first-order hyperbolic systems, various DG FEMs are available. For ins2ockbhurn &

Shu (1989 use a DG method in space combined with a Runge—Kutta (RK) scheme in time to discretize
hyperbolic conservation laws; see also the survey articteaakburn & Shu(2001) and the references
therein. In the work oKopriva et al. (2000, DG methods are developed, which combine high-order
spectral elements with a fourth-order low-storage RK scheme. A similar approach is used in the RK DG
methods ofWarburton(2000 andHesthaven & Warburto2002), which combine high-order spatial
accuracy with a fourth-order low-storage RK scheme. While successful, their schemes do not conserve
energy due to upwindindgzezouiet al. (2005 used central fluxes instead, yet the convergence rate of
their scheme remains suboptimal. A stabilized central flux formulation was propostasihaven &
Warburton(2004 for the Maxwell eigenvalue problem, which yields additional control over spurious
eigenmodes.

Recently,Chenet al. (2005 developed a high-order RKDG method for Maxwell's equations in
first-order hyperbolic form, which achieves high-order convergence both in space and in time by using
a strong stability-preserving (low-storage) RK scheme. By using locally divergence-free polynomials,
Cockburnet al. (2004 developed a locally divergence-free DG method for the first-order Maxwell
system. For the second-order (scalar) wave equaiamere & Wheelel(2001, 2003 proposed a non-
symmetric formulation, which required additional stabilization for optimal convergence. A symmetric
interior penalty DG method was first proposed®roteet al. (2006, where optimal convergence rates
in the energy norm and.?-norm were shown; the usefulness of the method was also demonstrated via
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numerical experiments. Recenthung & Engquis2006 proposed a hybrid discontinuous/continuous
finite-element approach for the acoustic wave equation.

In this paper, we continue and complete the work startégroteet al. (2007) on symmetric interior
penalty DG methods for the spatial discretization of Maxwell’s equations in second-order form. Second-
order formulations indeed halve the number of unknowns and hence permit to achieve second- or higher
order accuracy with the least amount of work and storage. They are also inherently time reversible, while
both their semidiscrete and fully discrete approximations preserve (a discrete version of) the energy.

Our previous results3roteet al, 2007) establish optimad priori error estimates in a natural energy
norm. Here, we shall show that the method also converges optimally Ir’therm (in space and time)
on regular and shape-regular tetrahedral meshes and for smooth material coefficients. The proof of this
result is based on suitable duality arguments and follows along the lines bPtherm error analysis
presented itHoustonet al. (2005 for the time-harmonic Maxwell’'s equations. In fact, it heavily relies
on some of the auxiliary technical lemmas presented there.

The outline of the paper is as follows: after stating the model problem in Seztime describe
the interior penalty DG variational formulation in SectiBnIn Section4, we first review the error
estimates oGroteet al. (2007, cf. Theoremst.1and4.2, and then state our nel?-norm error bound
in Theorem4.3. The proof of Theorerd.3is given in Sectiorb. In Section6, numerical experiments
in two-space dimensions illustrate the performance of our DG method and validate the theoretical error
bounds. Finally, some concluding remarks are presented in Séction

2. Model problem

The evolution of a time-dependent electromagnetic figd, t), H(x, t) propagating through a linear
isotropic medium is determined by Maxwell’s equations:

eEt =V xH —0cE +],
uHy =—-V x E.

Here, the coefficientg, ¢ andos denote the relative magnetic permeability, the relative electric permit-
tivity and the conductivity of the medium, respectively. The source fecmrresponds to the applied
current density. By eliminating the magnetic fiet] Maxwell's equations reduce to a second-order
vector wave equation for the electric fietd

¢Eyt + 0B + V x (11V x E) = jy.

If the electric field is eliminated instead, one easily finds that the magneticHieddtisfies a similar
vector wave equation, when bathande are constant o# is identically zero.

Thus, we consider the following model problem: find the (electric or magnetic) digigt) such
that

Sutt+O'Ut+VX(,u_lVXU)=f inQ x J,
nxu=0 on/l xJ,
(2.1)
Ult—o=Up In Q,

Utlt—o=Vo in Q.
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Here,J = (0, T) is a finite time interval an@ is a bounded Lipschitz polyhedronR? with boundary
I’ = 6Q and outward unit normail. For simplicity, we assumg to be simply connected and to be
connected. The right-hand siflés a given source term ih2(J; L2(2)3).

Here, we denote bl?(Q)3 the Lebesgue space of square-integrable vector fields. The inner product
and norm associated with this space are given by

(u,v):/ u-vdx and ||u||o=(u,u)%.
Q

The Bochner spack?(J; L2(£2)3) then consists of time-dependent functiars, t) such that

1
2
IullL2(a;L2(0)3) = (/J ||U(t)||8dt) < 00,

with u(t) being short-hand notation for the functign—> u(x, t).
The functionaug andvg in (2.1) are prescribed initial data witly € Ho(curl; Q) andvg € LZ(Q)3,
where

Ho(curl; @) = {v e L?(Q)%: V xve L2(Q)3,nxv=0o0nT}.
Finally, we assume that the coefficieptse ands are scalar positive functions that satisfy
O<uu<uX)<u <00, O<g <eX)<e" <00, XeQ, (2.2)

and
0<o(X)<o* <00, XeQ,

respectively. For simplicity, we also assume thas piecewise constant.
It follows from the results irLions & Mageneq1972 that problem 2.1) is well-posed and has a
unique weak solution(x, t) with u(t) € Ho(curl; Q) andug(t) € L2(2)3 forallt € J.

3. DG discretization
3.1 Meshes and finite-element spaces

We consider meshe$;, that partition the domain into disjoint tetrahedral or hexahedral elenj&rits
suchthatQ = UKG%K We assume that every eleméfitof the triangulation7 is affine equivalent
(see Section 2.3 @iarlet 1978 to either a reference tetrahedron or a reference cube. We always assume
that the partition is aligned with the discontinuities of the coefficient

For eachK € %, we denote byhk the diameter oK and bypk the diameter of the biggest ball
included inK; as usual, the mesh sikeof 4 is given byh = maxcc # hk. We assume the meshes
h to be shape regular. That is, they form a fanjiif }, of triangulations such that

hk
PK
with a constanfp; > O that is independent d € 9 and the mesh sizk. We allow for irregular

meshes with hanging nodes, but assume that the local mesh sizes are of bounded variation. That is, there
is a second constapp > 0 such that

<p1 VK e, vh, (3.1)

p2hk < hgr < pyth (3.2)

for all neighbouring elements andK’ in %, and mesh sizels.
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Finally, we call.Z;, regular if theintersectionk N K’ of two elementK andK' is empty, a vertex,
an entire edge or an entire face of both elements, i.e. the meshes do not contain irregular nodes. Clearly,
regular and shape-regular meshes satisfy the bounded variation pr&2xty (

We now introduce the finite-element space

VI = (v e L2(Q)3 vik € #4(K)3, K € %},

where.7¢(K) is the space?!(K) of polynomials of total degree at masbn K if K is a tetrahedron
and the spac&’ (K) of polynomials of degree at mo&tn each variable ok if K is an affine hexadron.

3.2 Trace operators

Next, we define the trace operators needed for the DG discretization of the Maxwell operator (cf.
Houstonet al, 2004 Houstonet al, 2005. To that end, let%, be a triangulation of2. An interior
face f = 6K N oK’ is the (nonempty) intersection of the boundaries of two neighbouring elerents
andK’ of . Similarly, a boundary face is given by= oK N I" for a boundary elemerk . We denote
by fh’“ the set of all interior faces, by?ﬁ% the set of all boundary faces and defifig = %’f U f,‘?.

For a piecewise smooth vector-valued functigrwe introduce the following trace operators. Let
f = oK naK’ e #7 be an interior face shared by the two elemeKts and K~. We write
n* to denote the unit outward normal vectors on the boundai€s, respectively. Denoting by*
the traces ofi taken from withinK , respectively, we define the tangential jumps and averagas of
acrossf by

[ult=nt xut4+n" xu™, {Uu}=@u"4+un)/2 (3.3)

respectively. On a boundary fade= 0K N I" € ﬁﬁ” we set ]t = n x uand{u} = u. Here, the
trace ofu is taken from within the boundary elemedft

3.3 DG semidiscretization

For a given partition, of 2, an approximation ordef > 1 andt € J, we wish to approximate the
exact solutionu(-, t) of (2.1) by a discrete functiomﬂ(-, t) € VM. Thus, we consider the following
(semidiscrete) DG finite-element formulation: fintt J x V" — R such that

(eug, V) + (eu, v) +an (", v) = (f,v), veV, tel,
uNli—o = IThuo, (3.4)

UPh:o = IlnVo.

Here, ITy is the L2-projection ontov". The discrete bilinear forray, defined orv" x V", is given by

an(u,v) = > /K;rl(v xu) - (Vxvdx— > /f|[u]|T-{,r1v x VIdA

Ke% fesn

-3 [0 xuga+ 3 [ alulr- [vvdA

fe.Zh feZh
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The interior penalty functioa penalizes the tangential jumps@f over the faces of the triangula-
tion. To define it, we first introduce the functionsandmby

h [min{hK,hK/}, fez/, f=oKnNaK/,
f =

hk, feF? f=0KNT,
. minfux, ux}, fe %, f=oKnNaK/,
"k feg? f=0KNT.

Here,uk is the restriction of the coefficient to elementK. On each facd e %}, we then set

h-1, (3.5)

alf =am
wherea > 0 is chosen sufficiently large, independently of the mesh size and the magnetic permeability,
see Lemma.1 below. This completes the semidiscrete formulation of the interior penalty DG method
for the model problem inZ.1).

3.4 Well-posedness

To discuss the well-posedness 8f4), we introduce the seminorm
vi- 3 [l + 3 [, @)
h= y2 X ) 0.K + Z T o.f 5 .
Ke.% feFn

with ||-[lo,k and||-||o,+ denoting the_2-norms over an elemeit and a facef , respectively.
The following stability result holds (se&rnold et al,, 2001 or Lemma 3.1 irHoustonet al, 2004).

LEMMA 3.1 Thereis a threshold paramedgfi, > 0, independent of the mesh size and the permeability
i, such that foe > amin,

an(u,u) > Ccoer“—”ﬁ Yue Vh,
with a coercivity constantcqer > 0 that is independent of the mesh size and the coeffigient

The result in Lemma&.1implies that the discrete problem i8.4) is well-posed and uniquely solv-
able provided that > amin (see, e.gArnold et al,, 2001, Groteet al, 2006. We note that larger values
of a result in a more restrictive CFL condition in (explicit) time discretizations3of)(

REMARK 3.2 When the interior penalty DG method is used for time-dependent computations, the finite-
element solution consists of a superposition of discrete eigenmodes. Because of symmetry, the energy of
the semidiscrete formulatioB @) is conserved, so that all the discrete modes neither grow nor decay in
time. For eigenvalue computatior&yffa & Perugia(2006 recently proved that the interior penalty DG
discretization of the Maxwell operator is asymptotically free of spurious modes: the discrete spectrum
will eventually converge to the continuous spectrunhas> 0. Nonetheless, on any fixed mesh some

of the discrete eigenmodes will not correspond to physical mddlesthaven & Warburto2002 and
Warburton & Embre€2006 showed that larger values of the penalty parameter in central flux or local
discontinuous Galerkin (LDG) discretizations increase the separation between spurious and physical
eigenmodes. Certainly as the mesh is refined, the energy present in the spurious modes will decrease
and eventually vanish, as the numerical solution obtained with the interior penalty DG method converges
to the exact solution (see Sectign
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4. A priori error bounds

In this section, we state optimalpriori bounds for the error in the energy norm and kfenorm.

For a domainD c R3, we let HS(D) be the Sobolev space of (possibly noninteger) osdegr 0.
The norm associated with this space is denotefft fiyp. Sobolev spaces of vector-valued functions are
denoted byHS(D)3. For simplicity, we write||-||s,p for the product norm as well. ID = Q, we omit
the dependence on the domain and simply write. Let X be a function space defined ov@r, and let
|I-lx be its associated norm. For a time-dependent vector funetian), we define

1
(f; v dt)”P, 1< p < oo,
IVIILPa;x) =
esssug j[Iv(t) [l p = .

The corresponding Bochner spacd.i®(J; X) = {v(X, t): [[VllLp(3;x) < 00}.

4.1 Energy norm error bounds

We setV (h) = Ho(curl; Q) + V", and equip this space with the norm
12
VIR = |e2v] + i3,

with |-, defined in 8.6).

The following error bound has been shown in Theorem @Gaifteet al. (2007). It bounds the error in
L°°(J; V(h)) and the time derivative of the error Ir?°(J; L2(2)3). This is an energy-type norm that
is naturally associated with the discrete wave problen3if)(The error bound holds for shape-regular
meshes of bounded variation consisting of tetrahedra and/or affine hexahed@&sard @.2)).

THEOREM4.1 Let the meshe$j, be shape regular and of bounded variation. Let the solutiafi(2.1)
satisfy

ue L™ H(Q)%), ur e L®(J; H(Q)?), un e LYJ; HY(Q)?),
fors > % Let uM be the semidiscrete DG approximation obtained with> amin. Then, the error

e = u — u" satisfies

1
2 (] < 2
e . o + lEl=aven < C ([cta©)] +1e0)

+ Chminis.f) (Ul oo (3: mas(@y3) + IUtllLoo(g: Hivs()3) + NUttllL1a: Hs@)3)) »
with a constan€ > 0 that is independent of the mesh size.

In Theorem4.1, we implicitly assume thatip € H1tS(2)2 andvy € HS(2)3. Hence, standard
approximation properties of the?-projection imply that

As a consequence, Theorehl yields optimal convergence of ordeki@y"s!}) in the energy norm.
In many instances, solutions to the Maxwell’'s equations have singularities that do not satisfy the
regularity assumptions in TheorefriL Indeed, it is well-known that the strongest Maxwell singularities

l . -
s2a() < ch™Me gl (e(0)ly < CH™MS ugll1ss,
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may have smoothness beldi*(Q)3 (cf. Amroucheet al, 1998 Hiptmair, 2002 Monk, 2003. The
following result from Theorem 3 dBroteet al. (2007 shows that DG methods converge in the energy-

type norm under weaker regularity assumptions, provided the meshes are regular and shape regular
(consisting of tetrahedral and/or affine hexahedral elements). The restriction to regular meshes is due
the use of curl-conforming &tElec interpolants of the first kind in the proof.

THEOREM4.2 Let the meshe$, be regular and shape regular. Let the solutiaf (2.1) satisfy
U, U, V x u, V x u e L®(J; HS(2)3)
and

U, V x U € L1(J; HS(Q)3),

fors > % Let uh be the semidiscrete DG approximation obtained with> omin. Then, the error

e = u — u" satisfies
1
|<%a

2
H Loo(J;L2(Q)3)

<C([e*a@], +1eo1n)

+ ll€llLoe(a;v(hy)

+ Chmin{s’[}(”U”Loo(J;HS(Q)s) + ||V X u”Loo(J;HS(Q)3)
+ Ul oo (3; Hs(@)3) + IV X UtllLoo(3; Hs()3)
+ Uttll 23, Hs@)3) + IV X UttllL1(3; Hs(@)3))s

with a constan€ > 0 that is independent of the mesh size.

If we additionally assume thaty € H1ts(Q)3 for s > 0, the bound in Theorem.2 yields again
optimal convergence of the ordefI®y"s:%) for the error in the energy-type norm. For initial conditions
with the lower regularityug € HS(2)23 andV x ug € HS(Q)3, s > % we obtain the same result,

provided the Necelec projection is used to approximate the initial datum instead df fgrojection.

4.2 L2-norm error bounds

Theoremst.1 and4.2 immediately imply a (suboptimal) bound of orde¢t3""s:(}) for the L2-error,

i.e. foru—uh| Leo(3:L2(2)3)- We will now show that this estimate can be improved and that convergence
of the optimal order ¢h‘*1) can be obtained for smooth solutions and convex domains. For simplicity,
we will assume that

p=1 e=1 4.1)

while no additional assumption anis necessary. We remark that our proof immediately generalizes

to smoothly varyingu, but not to piecewise smooth, because it is based on the duality techniques of
Houstoret al.(2009. In contrast tddoustoret al. (2005, however, our proof also extends to arbitrary

We further note that our error estimate only holds on regular and shape-regular tetrahedral meshes. The
same restriction on the underlying meshes appears in the conforming case whegeilee Hlements

of the second kind are known to converge suboptimally inltRenorm (see Section 8.2.3 iMonk

(2003 and Example 1 in Sectiodibelow).
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The L2-error estimate depends on the regularity of the solution to the following problem:
Letw e Ho(curl; 2) be divergence free and lebe the solution of the problem

Vx(Vx2)+z=w inQ,

nxz=0 on/.

We conclude from Lemma 7.7 iMonk (2003 and the embedding results of Proposition 3.7 in
Amroucheet al. (1998 that there is a parameteg < (% 1] and a stability constar€s > 0 such
that

ze HE(Q)3, Vxze HE(Q)®
and

IZlloe + IV x Zllge < Csllwllo. (4.2)

The maximal value ofg is closely related to the regularity properties of the Laplacian in polyhedra; in
the case of constant coefficients considered here, it depends only on the opening angles at the corners
and edges of the domain (&mroucheet al, 1998. In particular, we haveg = 1 for a convex domain.

THEOREM 4.3 Assume4.1), and let the meshe$;, be regular and shape regular, and consist of tetra-
hedra. Let the solution of (2.1) satisfy

Ue L™, HE(2)%), V xuelL®, HYQ)3,
U € L®(J, HSE(Q)3), V x up e L¥(J, H3(Q)3),

fors > % and the regularity exponent € (% 1] from (4.2). Letu" be the semidiscrete DG approxi-
mation obtained o, with a > amin. Then, the erroe = u — u" satisfies

el Lo (3:12(2)3) < ChMMSAHPE (Ul o 3; stoe 2)3) + 1V X UllLo(ahisc)3)
+ Ut ll oo (3; Hstoe (@y3) + IV X UtllLoo(3; Hs(@)3))s
with a constan€ > 0 that is independent of the mesh size.

For smooth solutions on convex domaias (= 1), Theoremd.3thus yields optimal convergence
in the L2-norm:

”e” LOO(J;LZ(Q)3) < C h[+1.

The proof of Theorerd.3will be given in Sectiorb.

5. Proof of L2-estimate

In this section, we present the proof of Theorér® The analysis follows the ideas usedikgker(1976
andGroteet al. (2006 for the scalar second-order wave equation. However, to overcome the additional
difficulties caused by the Maxwell operator, we shall employ techniques similar to those developed by
Houstonet al. (2009 for the time-harmonic case.
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5.1 Preliminaries

We start by establishing and reviewing some auxiliary results. Recajkiteat = 1 (cf. the assumption
in (4.2).

5.1.1 Auxiliary form and error equation. As in Groteet al. (2007 and Houstonet al. (2005, we
introduce the auxiliary fornay, by setting

au,v) = > /K(v xu) - (Vxvdx— > /fl[u]|T~{Hh(V x V)}dA

Keh fen
- > /l[v1|T~{Hh(v x UdA+ > /al[u]lT-ﬂv]leA,
feFn f fen f

wherelTy, is theL2-projection ontov". Clearly, the forng, is well-defined oveN (h) x V(h).
Sincean (U, V) = an(u, v) foru, v e Vy, it follows immediately from Lemma&.1that, fora > amin,
@ (U, u) > CeoerlUlZ, U € V. (5.1)

Furthermore, there exists a const@ggn: > 0 independent of the mesh size and the coefficieatich
that

|&h(u, v)| < Ceontlulp IVIh (5.2)

forall u, v e V(h) (cf. Lemma 5 inGroteet al., 2007).

Next, foru e HS(2)3, with V x u e H5(Q)3 for s > 3, we define

U v) = > /f|[v]]T AV x u—IIn(V x u)}dA, (5.3)

feFn
for anyv € V(h). Obviously,
r(u;v) =0 Vv e Ho(curl; Q). (5.4)
The following approximation result has been proved in Lemma 419afstonet al. (2005:
Ira(u; V)| < CRA™MSTY ] IV x ulls, v e V(h), (5.5)

with a constanCr > 0 that is independent of the mesh size.

Next, letu(x, t) be the solution of the Maxwell's equatio.() and suppose that it satisfies the
regularity assumption in Theoret3. Let u" be the semidiscrete DG approximation obtained with
o > amin. Then, the erroe = u — u" satisfies

(&, V) + (g&, V) +3n(e, V) =rp(u;v), veV" ae.ind, (5.6)

seeGroteet al. (2007).
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5.1.2 Neécelec space of the second kindThe largest conforming space underlyii8,
V¢ = V"N Ho(curl; Q), (5.7)

is Necelec’s space of the second kind ($¢&deleg 1986 or Section 8.2 irMonk, 2003.

We denote byl the Necélec interpolant of the second kind (sBéceleg 1986. To review its
approximation properties, let> 3 and consideu e Ho(curl; ) N HS(Q)3 with V x u e H3(Q)%.
Then, we have

lu — IInulln < CNh™MSE(ulls 4 IV x ulls),
_ (5.8)
IV x (u— IInu)lo < CNh™MMSE YV x U,

for a constanCy > O that is independent of the mesh size. Additionallg, # 0 andu € Hp(curl; Q)N
H1ts(©Q)3, then

llu — Inullo < Cnh™MS+L Iy 6. (5.9)

A proof of the first two bounds in5(8) can be found in Theorem 5.41, Remark 5.42 and Theorem 8.15
in Monk (2003. A proof of (5.9) has been given in Lemma 4.1 ldbustonet al. (2005.
We further define the projectioficu e V¢ = V" N Ho(curl; Q) by

(Vx(@U—=1I°),VxV)+(@Uu—-1II°uv)=0 VveVE- (5.10)
An immediate consequence of this definition is that

lu—I7lx = inf |lu—V|n.
veVe

The approximation properties i6.§) thus yield
lu— 17%lln < CNA™MSI (Jlulls + IV x ulls). (5.11)
The Necklec spac#/€ in (5.7) can be decomposed into
Ve=x"gvs, (5.12)
where
S'={q e H3(2):qlk € 2'1(K), K e h},
XM={veV (v,Vq)=0vqe S},

respectively. The spacé” is referred to as the space of discretely divergence-free functions. By con-
struction, the decompositioB.(L2) is orthogonal in_2(Q)3 (cf. Section 8.2 irMonk, 2003.

The following approximation result can be established by proceeding as in Lemmatif@nmair
(2002 and Lemma 7.6 itMonk (2003. For anyu € X", there is a divergence-free vector fidldi €
Ho(curl; Q) such thatv x Hu = V x u and

lu—Hullo < CHh"F |V x ullo, (5.13)
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with Cy > 0 independent of the mesh size ang denoting the parameter from.@). Moreover, we
have

[Hullo < llullo. (5.14)

Finally, we recall the approximation property of Proposition 4.5Haustonet al. (2005 for
discontinuous functions. For amye Vy, there is a functiom® e V¢ such that

2

lu-wlo<Ca( 3 [ hifule? da) . (5.15)
feZh f
1
2
lu = uClln < Ca Z/h‘1II[U]IT|2dA , (5.16)
feZn f

with a constanC > 0 independent of the mesh size.

5.2 Approximation properties of a Galerkin projection

We are now ready to introduce a Galerkin-type projection similar to that in Lemma Bakef (1976,
using the bilinear form

(U, V) =F(U,V) + (U, V). (5.17)
This form clearly satisfies
h(u,v) < maxl, Ceond IUllnlIVIln, U,V e V(h),
B (5.18)
h(u, u) = min{1, Ceoed U2, ueVp,

with C¢oerandCeont denoting the constants fror.() and 6.2), respectively.
Let nowu e H3(Q)3, with V x u e HS(Q)3 for s > 3. We define the projection € V" of u by

;ziﬁ(wh,v) =g?{,(u,v)—rh(u;v) vveVvh (5.19)
In view of the approximation property irb(5) and the stability ofs#, in (5.18), the standard Lax—

Milgram theorem implies than" is well defined. We further note the following key property of the
erroru —w", namely, that it is discretely divergence free.

LEMMA 5.1 Letw" be the projection ofi defined in 6.19. Then, we have
U—w", vp"y =0 ve"eds

Proof. Letp" € S". SinceVS" c V¢ ¢ Ho(curl; Q), we have that F¢"]t = 0 over any face inZ.
FurthermoreV x V" = 0. We thus conclude that

Fu-—w",vph =0
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This identity, the definition ofv" in (5.19 and the property in5.4) then yield
(U—w", Vo") =3hu—w", V") + (u—w", Vo) = ah(u—w", Vo) =rn(u; Vo) = 0.

This proves the assertion. O
We now estimate the error— w" in the energy norm.

LEMMA 5.2 Letw" be the projection ofi defined in 6.19. Then, we have
lu—w"In < Ceh™ O (|lulls + 1V x ulls),
with a constanCg > 0 that is independent of the mesh size.
Proof. We first use the triangle inequality and obtain
lu—w" I < llu — ZInulln + 178U = W .
From the approximation propert$.8), we immediately conclude that
lu— Inulln < CNh™ S (lulls + 1V x ulls).

It remains to bound /Iyu — w"||. From the stability $.18 of the form o, the definition ofw" and
the approximation results irb(5) and 6.8), we conclude that

min{1, Ceoer | ITnu — W"|[Z < o (TTnu — W, IInu — wh)
=425F,(1'[Nu —u, ITyu — wh) + ,c?h(u — Wh, IInu — wh)
= h(IInu — u, TInu — W) 4 rp(u; TTnu — w')
< (max{1, CeondCn + CRIN™MSA (Jlulls + IV x ulls) | 7Znu — W .
Thus,
17Inu = WMy < Ch™MSE(jujls + |V x ulls).

This completes the proof. O
Next, we state and prove arf-norm estimate fofju — wh |0, using similar ideas to those developed
in Section 6 oHoustonet al. (2009.

LEMMA 5.3 Letu € H3"E(Q)% be so thaV x u € HS(Q)3 for s > 3, and letw" be the projection
of u defined in 6.19. Then, we have the2-norm error bound
lu = WMo < CLA™MSEHE (Ul e + IV x ulls),
with a constanC_ > 0 that is independent of the mesh size.
Proof. Letw¢ e V¢ be the conforming approximation ef" from (5.15) to (5.16). We have
h2
o

h

flu—w"2 = u—w", u—IIyu) + (u = w", w® —w") + (u —w", IIyu — WE).

By the Cauchy—Schwarz inequality, we obtain

|(u —wh, ITyu — wo)|
lu—whg

h C h
lu—w'lo < [lu—IInullo + IlW" —W o +
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From the approximation property ir5.(l5 and the fact that the tangential jumps wfvanish, we
conclude that

Iwe —whF<Cci D /h||[w“]|T|2dA
feZh f

=Ci > /fhl[[u—whllledA<C,ihznu—w“nﬁ. (5.20)

feZn
Therefore,

|[(u—w", ITyu — we)|
lu —wh|g

h h
lu—w'lo < [lu— IInullo + Cahllu — wiih +

We claim that the last term on the right-hand side above can be bounded as follows:

|(u—wh, ITnu — wE)|

U —wo < Cllu — Mnullo + ChE (lu — IInulih + [lu — w"lh). (5.21)

Provided that%.21) holds, the bound fofu — w"||g follows by using the approximation results ffi
in (5.8) and 6.9) and the bound fojju — w" ||y in Lemma5.2

lu —w"jo < ChMNStoeLE gy o 4+ CAMINSOHIE (ujls 4+ |V x ulls).

Here, we have also used tH#tt > Ch for o € (%, 1]. Finally, since we havéiu||s < ||uls+sc and

min{s + og, £ + 1} > min{s, £} + og, the desired bound follows.
Proof of 6.21). It remains to prove the boun&.@1). To do so, we proceed in several steps.
Step 1: Preliminaries: We start by invoking the discrete Helmholtz decompositiob.it?( and
write

IInu — W = wP + Vr, (5.22)

with w9 € X" andr € . Letw = HwW® e Ho(curl; Q) be the exactly divergence-free approximation
of w? from (5.13. The orthogonality property af — w" in Lemmab5.1yields

(u—wh, IIyu —w®) = (u—w", w% = (u—w", Wl —w) + (u—w", w).
Therefore,
h C
. e L < e — wio-+ i (5.23)
and it is sufficient to estimatgn® — w||g and ||w||o.
Step 2: Estimate ofjw® — w/jo: We claim that
W —wllo < Ch7E (flu — Iinulln + lu — w"llh). (5.24)

To prove 6.24), we first note that

Vxw=Vxw =V x (lInu—w°),
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in view of the definition oH and 6.22). Thus, the approximation property._3 of the operatoH and
the triangle inequality yield

IW® — wllo < CHh?E ||V x (IIyu — wO)]lo

< CHPE(|lu — TINulln + lu — W [ln + [IW" — wE]|p).

By using 6.16) and proceeding similarly tc(20), we obtain

- weiE < €3 3 [ neHpw e da
feZh f

=Cai Z /f h=Y[u —w"ltI?dA < CEjlu —w"|2. (5.25)

fe.
This yields

IW® — wilo < ChPE(Jlu — IInulln + lu — W"[|h),

which completes the proof 05(24).
Step 3 Estimate of|w||o: There holds

IWllo < Cllu — IInullo + ChE([lu — TTnulin + [lu — W"||p). (5.26)

We will prove this bound by using a duality approach as in Section 6Haoafstonet al. (2005.
To this end, letz be the solution of the dual problem

Vx(Vx2)+z=w inQ,

nxz=0 on/.
We conclude from4.2) thatzandV x z belong toH € ()3 and satisfy
IZlloe + IV x Zlloe < CslWllo. (5.27)
For later use, we note that we have
h(Z,V) — (W, V) = Ih(z; V) (5.28)
for all v € VM. In the sequel, it is convenient to also introduce the conforming bilinear form
ZU,V)=(Vxu,VxvVv)+(uv), uVveHo(url,Q).

Obviously, we have# (u, v) = An(u, v) for all u, v e Ho(curl; Q). Multiplying the dual problem with
w and integrating by parts, we obtain

W3 = o (z, W) = o (z — [1°2, W) + o/ (IT°Z, W), (5.29)

wherelI¢ is the projection fromg.10.
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SinceV x w = V x w® and by the definition of7¢, we infer that
o (z— 1%, w) = (V x (z—11°), V x W°) + (z— I1°2, W)
=—(z-HI% W0 + (z— I1°2, W) = (z— IT°2, w — WP).
The approximation result faf7¢ in (5.11) and the bound ing.27) yield
lz—= 112l|o < 12— 1I°Z|ln < CNh7E ([1Zllog + IV % Zllog) < CnCsh?E(lw]|o.
For later use, we also point out that the dual boum@7) implies
I117°Zllo < Iz = 11°2llo + l|zllo
< CNhE(l1Zllog + IV X Zllog) + [1Zlloe < Cliwllo.
The Cauchy—Schwarz inequality and the estimate5.24 and 6.31) thus yield
|/ (2= 11°2,w)| < l|z = T°Zl|o|w — WPllo

< Ch?7E [wiio(lu — ITnulln + [lu — W ).
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(5.30)

(5.31)

(5.32)

(5.33)

Finally, we need to bound the terad (172, w) in (5.29. To this end, in view of%.10), (5.22 and

sinceV x w = V x w®, we conclude that
o/ (IT°2, W) = (V x 12, V x W) + (IT°2, w)

= (V x I1°2, V x (IIyu — W°)) + (112, w — W) + (17°2, w°)
= (V x I1°2, V x (IInu — W°)) + (I1°2, w — W) + (I1%Z, ITyu — WE)
= o/ (I1°z, [INu — W°) + (I1°2, w — w°)
= o/ (z, [Inu — WO) + (I1°2, w — WO).

Here, we have also used that

(I1%z,Vr) = (z, Vr) =0,

which follows readily from the definition of7¢ and the fact that is divergence free. Since we have

o (z, [INU — WE) = o7 (z, TINU — U) 4 oh(z, U —W") + 2h(z, W' — W),
we obtain

o (I1°2,w) = (I1°2,w — WP) + o/ (z, [INU — U) + (2, u — W") + o (z, W' — WE).

(5.34)

We now bound the four terms ib34). For the first term, we use the stability estimate [for¢z||o

in (5.32 and the bound folfw — wP|¢ in (5.24):
|(11°2, w — WO)| < [ IT°2]ollw — WOl
< Clwlollw —wOo

< ChE|wlio(llu — Inulln + u = W"[ln).
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From the definition of the dual problem and the Cauchy—-Schwarz inequality, we conclude that the
second term ing.34) can be estimated as follows:

|7 (z, IInu — U)| = |(W, IInu — U)| < [IWllollu — ZZnullo < [Iwllollu — ZInullo.

To bound the third term inx34), we first employ the symmetry ofh (-, )), the definition ofw" in
(5.19 and identity 5.4):

h(z,u—w") = o (u—w",2) = oh(u—w", z— IIN2).

The continuity ofh, the approximation property dffy in (5.8) and the stability .27 of the dual
problem thus give

|h(z, u—w")| < Cllu—w"|Inllz - IInz]n

< CHE U =Wk (1Zllog + 1V % Zllog)

< ChE[Wloflu — wW"|n.
The variational problem in528 implies that the fourth term irb(34) can be written as

h(z, W' —w€) = (w, w" — WO + rp(z; w" — wE).
Then, from 6.5) and the stability of the dual problem i6.@7), we have
| (2, W = WO)| < IWllollW" = WEllo + CRh”E [W" = WE[In[IV x Zlloe
< IWllow" — wCllo + CrRCsh?E [wilo[Iw" — wE|lh.

Recall from 6.20 and 6.25) that

h h
W' — w0 < Cahllu —w"|p,
h h
W' —wC|p < Callu —wW"h.

Hence,

| h(z, W — w®)| < Ch7E [wiloflu — W .
The equality in $.34) and the above four bounds yield
o (IT°2,w) < |Wllollu — ITnullo + Ch’E [wilo(lu — ZINulln + lu — W"[p). (5.35)

The bound in%.26) then follows by combiningg.29), (5.33 and 6.35.
Step 4 The claim in 6.21) now follows from 6.23, (5.24) and 6.26). g

5.3 Proof of Theorend.3

Let now the solutioru of the Maxwell’s equations2(1) satisfy the regularity assumption in Theorem
4.3 We definen"(t) = wh(-, t) e V" by

%(Wh(t), V) = ﬂfh(u(t), V) —rp(u(t);v), ve VP, ae.ind. (5.36)
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It can be readily seen that" e L>(J; V). Moreover, we have!! € L>(J; V") and
;z%(w{‘,v) = gfh(ut,v) —rp(ug;v), Ve Vh, a.e.inJ.
Similarly,
GhW"(0),V) = @h(Uo, V) = h(Uo; V), VeV
Therefore, Lemm&.3immediately implies the following estimates.
LEMMA 5.4 Letw" be defined byg.36). Under the regularity assumptions of Theorér we have
lu— Wh||L0°(J;L2(Q)3) < CLhmin{S’fHUE(||U|||_00(,];HS+JE(Q)3) + IV x u”LOO(J;HS(Q)3))»
l(u— Wh)t|||_oc(J;L2(Q)3) < CLhmin{S’[HUE(”Ut|||_oc(J;HSHTE @3 T IV x Ut|||_00(J;HS(Q)3)),
I(u —w")(O)llo < CL™MSIHE (jjug|lsioe + IV x Uolls) -
The constan€, > 0is as in Lemm&.3andoe € (3, 1] is the stability parameter frond(2).
We consider the errar — up and use the triangle inequality to write

+2ul —wh? (5.37)

lell? < 2|lu oo (0:L2(2)9)-

hy2
Lo (J:L2(2)3) ~ Wil :12(0)3)

The first term can be estimated from th&-bounds in Lemm&.4. To derive an estimate for the second
term, we proceed as follows. First, we fixe L>®(J; V") and assume that € L>®(J; V"). From the
definition ofw", we have

@ W, V) =& (U, V) + U =W, v) = ra(u; V).
Moreover, the error equation i5.€) yields
rh(U, V) — 3h(U —u") = (o, V) + (U — u")e, V).
Therefore, we conclude that
(" =W, v) + B (U — W, v) = (Uf}, v) = Bn(u — u", V) + (U v) — (U —w", v) — (W, v)
= (Utt, V) + (0@, V) — (U= w", v) — (W}, v).
We rewrite this identity as

%((u“ =W, V) = (" =W v) + " - w, )
= %((u — WM, v) = (U =W, vp) + %(ae, V) — (0, vp) — (U—w", V),
which yields
—((u" = WM, vo) + B — W, v) = d%(et,w — (U =W, )

+ %(ae, V) — (oe,vy) — (U —w", v). (5.38)
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Let nowz € [0, T] be fixed, and consider the particular functiogiven by

T
(t) = / UM —wh(s)ds, ted.
t
From the definition of/(t), we infer that
V() =0, Wi(t) =—(u"—wh().
Thus,
||Vt||LDO(J;L2(Q)3) < ||Uh - Wh”LOO(J;LZ(Q)?’)- (5.39)

Moreover,
T h h h
V)l < /0 1" = wh(S)llods < TIU" = Wl so(3.12(02)3)-
Because this bound is independent af also holds for the supremum ovee J, i.e.
VIl oo 3:L2(0)3) < Tu" - Wh||L°°(J;L2(Q)3)' (5.40)
Then, we choose = Vin (5.38, which yields

(UM —why, uM —wh) — &, V) = d%(et,m + ((u—wy, ul —wh)

d
+ a(aeﬁ) + (e, uM —why — (u—w", V).
Since the DG forna, (-, -) is symmetric, we obtain

id_ . d__
= 5TV = @D+ (U=—whu' —wh

1d U —w
2dt

2dt
+ %(aeﬁ) + (e, u —wh) — (u—w", V).
Integration over [0z] and using tha¥(z) = 0 yield

I —wh (@) 13 — 1" —w")(0) 113 + 8 (V(0), V(0))

— _2(&(0),7(0) + 2 / C(U = W, U — wht,
0

— 2(ce(0),V(0)) + 2/ (oe u —wMdt — 2/ (u—wh, V)t
0 0
=T1+ T2+ T3+ Ta+Ts. (5.41)

Sincee (0) = Vo — IThvp andV(0) belongs toV", we conclude thal; = 0. Moreover, the positive
semidefiniteness of the forey, ensures thad, (V(0), V(0)) > 0. This leads to the inequality

UM —wh (@)1 < UM =W (©))3 + T2+ T+ Ta + Ts. (5.42)
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The Cauchy—Schwarz inequality, thélder’s inequality and the geometric—arithmetic mean inequality
yield

T2 < 2T [[(u = Wt ll oo (3,203 1" = Wl Lo 5, L2002)

1
< =|lu
8 l
Employing the Cauchy—Schwarz inequality, the estimatédj and the geometric—arithmetic mean in-

equality, we obtain

- Wh ”foo(‘];LZ(Q)S) + C2||(U - Wh)t Ilsz(J;LZ(Q)S)-

T3 < 207(1€(0)[l0l[V(O)llo

< 20°T[1€0) lolu" — W[l Loo3:L2(0)%)

1
< S =W 5. 0)3) + CallE@)I,

8
Similarly,
T T
Ta= 2/ (o (u—w"), u" —whdt — 2/ (o (UM = wM), u" — wh)dt
0 0
<267 T U = Wl oo (3. L2¢003 UM = W | oo 3.1 2¢013
= *(J;L4(Q)%) Loo(J;L2(2)%)
1
< é”uh - Wh”ioo(J;LZ(_Q)S) + C4||U - Wh”ioo(J;LZ(_Q)S)a
2
where we have also used that”a%(uh - wh)H L2 < 0. Employing the bounds(40), we
obtain ’

Ts < 2T [Ju = W[ oo (3.1.2(0)3) VIl Loo 3 L2(03)

< 2T?|ju — Wh||L0°(J;L2(Q)3)”uh - Wh|||_o<>(J;L2(Q)3)

1o h_ hy2 hyj2
g é”u —-W |||_oo(J;|_2(Q)3) + C5||U —-W |||_oo(J;|_2(_Q)3)'

The upper bounds fof,, T3, T4 andTs are independent af. Taking the supremum over e J in
the inequality $.42, we thus obtain the estimate

1
2 h
5llu

h h
”U —-W |||_co(J;|_2(_Q)3) < 2

— W IE s 51200y F 1N = WO + Clle(O) 3

+C|| (U - Wh)t ||E°°(.];L2(Q)3) + C”U - Wh ”foo(‘];LZ(_Q)S)-
This leads to

Juh — w < Cll(u—uM (O3 + Cli(u —w") ()3

Lo (I;L2(2)3)

HCIU =W o 5. 203 + CIU =W o . 203
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We use this estimate ib(37) and obtain

1€l o 3:L2(0y3) < Clluo — IThUollj + Cli(u — w") (013

+C||(U - Wh)t ||EOO(J;L2(Q)3) + C”U - Wh”ﬁoc(‘];LZ(Q)S)-

From the approximation properties in Lemrbiat and standard results for the?-projection, we con-
clude that

<C h2 min{s+og,f+1

2 2
1€l s 5. 20090) Mol e

+ C hA(min{s,f}-+oe) (||U0||§+(;E + IV % U0||§)

n ChZ(min{s,€}+aE)(”ut||2 + ||V x Ut||i

Lo (3;HHE (2)3) (3;H3(@))

+ ChAMINS ) () 2 + IV x ullg

Lo (3;HSHE (@)%) (I HS@)H)"

As in factu € CO(J; HStE(Q)3) andV x u e CO%J; HS(Q)3), we can absorb the three terms

involving ug andV x ug into the last two. Finally, since mig+ o, £ + 1} > min{s, ¢} + og, the proof
of Theoremé.3follows.

6. Numerical experiments

In this section, we present a series of numerical experiment to validate the error bounds from Theorems
4.1, 4.2 and4.3 Then, we demonstrate the versatility of the DG method for the propagation of time-
dependent electromagnetic waves in complex media or geometry.

In all our tests, we consider the 2D version of our model problem. In this case, 2D vector fields
u(xg, X2) = (U1(Xq, X2), U2(X1, X2)) in R? are identified with their 3D extensions(xi, X, X3) =
(U1(x1, X2, 0), U2(X1, X2, 0), 0) in R3. Hence, we deduce that the curl—curl operatordri)(is given

by
0 ou ou 0 ou ou
Vx (uWxuy=(—pu (22 -2), -2 (22 -22)).
0X2 0X1 O0X2 0X1 0X1 OX2

On the boundary, we havex u = u -t, wheret is the counterclockwise-oriented tangential unit vector;
i.e. if n = (n1, n2), then(ty, t2) = (—ny, n1). Similarly, the tangential jumps are now scalar quantities
definedas{ijr =u* -t" +u™-t".

The 2D version of the interior penalty method is then obtained straightforwardly, and all our theo-
retical results hold true in this case as well.

6.1 Time discretization

The DG discretization of the (2D) model problem leads to a finite system of linear second-order ordinary
differential equations of the form

M(e)u”(t) + M(@)U'(t) + Aut) = f(t), te, (6.1)
with initial conditions
Mu(0) =u,,  MU'(0) = ug. (6.2)

Here, u(t) is the coefficient vector of the finite-element approximatifiit) with respect to a basis of
VN, u, ando, are the coefficient vectors of the discrete initial data &g is the load vector at time
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The matrixA denotes the stiffness matrix associated with the DG faynfior a > amin, it is symmetric
positive semidefinite (see Lemn3al). The matricedVl (¢) andM (o) are the mass matrices, weighted
with ¢ or o, that are related to the time derivatives. We alsadvset M (1). The two mass matriced
andM (¢) are symmetric positive definite.

To obtain a fully discrete approximation d.() and €.2) over the time intervall = (0, T), we
consider a time-stepping scheme with time dteg T/N. Let u,, denote the temporal approximation
tou(t,) attimet, = nk,n =0,1,..., N. In the computations below, we shall consider two different
time integrators depending on the electromagnetic properties of the medium. If the mediirisin
nonconducting, i.ec = 0 everywhere ani{l (¢) = 0, we choose the second-order explicit Newmark
scheme (see, e.g. Sections 8.5-8. Raviart & Thomas 1983, which corresponds to the leap-frog
scheme

2

2
M@m1=(M@r—%A)%+kM@my+giy o5

M(e)Un g = @M(e) = KPA, =M @)U,y +Kf . n=1...,N-1,

with in = f(tn). If © contains a conducting region, i®.> 0 in parts of2 andM (¢) # 0, we instead
opt for the standard explicit fourth-order RK method.

The DG mass matri (¢) is block diagonal, with block size equal to the number of degrees of
freedom per element. In contrast to standard conforming edge-element discretizations (without mass
lumping), we can therefore invel (¢) blockwise during the assembly process. Thus, no solution of
any large linear system is required during time integration and the time marching scheme remains truly
explicit. We have implemented the 2D version of the DG mett®d)(augmented by the above two
explicit time marching schemes, both in Matlab and in the C++ finite-element library de(@elé
Bangerthet al, 2005 2007).

6.2 Example 1: smooth solution, quadrilateral mesh

We letQ = (0,1) x (0,1), J = (0,0.5), and choose homogeneous material parametetsuy = 1.
We consider two separate situations: an insulator witk 0 and a conductor witk = 1. The initial
and source data are chosen so that the solution of the 2D versi@riis(the smooth function

5 .
U, Xo, ) = t_( cos(x X1) Sin(r X2) ) (6.4)

2 \ —sin(z x1) coqx X2)

It satisfiesu - t = 0 on I". We discretize this problem on a sequeficg }i >1 of square meshes of size
h; = 2~ using the polynomial space®’(K), ¢ = 1, 2, 3, with fixed stabilizatiorx = 30. We remark
thatamin generally increases withy for ¢ = 1, 2, a smaller value of is sufficient for stability.

The time stefk; = h; /20 proved to be sufficient for numerical stability for all mesKe%, } and
for all ¢ < 3. In Fig. 1, we display the relative errors in the energy and tRenorm at timeT = 0.5.
Because the two time-stepping methods are (at least) second-order accurate, the time integration of

1sed www.dealii.orfy.
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FiG. 1. Example 1: the relative errors of the DG approximation are shown atTime 0.5 with respect to the energy norm
(---)and theL2-norm (--)fort =1,2,3;0 =0 (left) ande = 1 (right).

TaBLE 1 Example 1: the relative errors at time £ 0.5in the
energy norm and the 4-norm obtained with Bcélec’s second
family of conforming edge elements of polynomial ofler 1

No. of elements Energy error L2-error
4 123x10t%1 — 515x10t00

16 139x10t%° 3,15 490x10791 3.39
64 379x10°91 187 276x10°91 0.83
256 104x10791 186 144x10°1 0.94
1024 330x10792 1.66 725x10°92 0.98
4096 130x10792 1.34 364x10792 1.00
16384 508x10793 1.12 182x10792 1.00

(6.4) is exact and the error consists only of the spatial error component. As the analytical s@ujon (
is arbitrarily smooth, the assumptions of Theorérh are met and we observe the predicted optimal
convergence rates in the DG energy norm at fime 0.5.

The L2-norm convergence rates shown in Figare only suboptimal. We recall, however, that The-
orem4.3 only applies on simplicial meshes, so that we need to invoke Thedrgfior a theoretical
error bound on the error with respect to th&-norm, which yields the observed convergence rates of
order Qh?). This numerical example illustrates that the restriction to simplicial meshes in ThdaBem
is essential.

The same suboptimal convergence rates are obtained with conforming finite-element discretizations
using full polynomial space€’ (K ) on quadrilateral or hexahedral meshes. Indeed, in Thbie dis-
play the convergence rates obtained by approximasng (vith Nédelec’s lowest order edge elements
of the second kind (ciNédeleg 1986. As for the DG discretization in Fidl, the convergence rate for
the energy norm (the norm idg(curl; ©)) is optimal, but it is suboptimal by one order for thé-norm.
This deficiency stems from the fact that the approximation with full polynomial sp2é€K) insuffi-
ciently separates the discrete gradients from discretely divergence-free functions (see, e.g. Section 8.2.3
in Monk, 2003.
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6.3 Example 2: smooth solution, triangular mesh

To demonstrate the optimal convergence of the DG method with respect td-therm, we now con-
sider the DG discretization of the 2D version &f1) on a sequence of triangular meshes with (K )
elements, here with = 10. The computational domain {3 = (0, 1) x (0, 1) and the material param-
eterse = 4 = 1 ande = 0. We choose the initial conditions and the source term to match the smooth
solution

(6.5)

—€"1(x2 coqX2) + Sin(x2))
€41, sin(X2) ’

u(x1, X2, t) = cogt) [

Since the tangential part of is inhomogeneous at the boundary®f we need to impose inhomoge-
neous Dirichlet conditiom - t = g on 6Q within our DG discretization, wherg is the boundary data
(which is scalar in the 2D setting) ahdés the counterclockwise-oriented tangential unit vectofofo
do so, we modify the (2D) semidiscrete formulation as follows: fiid, -): J — V" such that

U V) +anWv) = v+ D /Eg(a(V-t)—,u_lv x V)ds (6.6)

E eé”h@

forallv e V" (see alsd¢Houstonet al., 2004. Here,é"ﬁ% is the set of all boundary edges in the underlying
mesh.

We use the leap-frog scheme in time to approximate the semidiscrete solutiof up &x . Here,
setting the time stefs = h; /4, whereh; denotes the smallest element diameter in the mesh, proved to
be sufficient for numerical stability. In Fi@, we display the maximal (absolute) errors in th&norm
over the time intervall = (0, 27 ), which includes here both the space and time discretization errors.
We observe global second-order convergence both in space and in time of the fully discrete scheme, as
predicted by Theorem.3for the spatial error.

0

10

—e— L2 error
—k— 2

L2 error
=)

107 ;
107 10™"
meshsize h

FiG. 2. Example 2: the maximal error over0t < 2r for the DG approximation with respect to thé-norm.
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6.4 Example 3: singular solution

To validate the error bound in Theoreft2, we consider an analytical solution of the 2D Maxwell’'s
equations2.1) on the L-shaped domai? = (-1, 1)\ (0, 1)? with low spatial regularity. We sei =

¢ = 1lands = 0 everywhere in2 and choose the source and initial data such that the analytical solution
in polar coordinategr, ¢) is given by

2
uer, ¢, t) = %V(rZ/3 sin(2/3¢)). (6.7)

The spatial part ofi corresponds to the gradient of the strongest corner singularity of the Dirichlet—
Laplacian on@, the functionr %/3 sin(2/3¢). Hence, we have € C®(J; H%3~9(Q)?) for all § > 0.

We discretize §.7) with bilinear polynomials{ = 1) on the same sequence of meshes as in Example 1,
with o = 20. For time stepping, we use the leap-frog scheme with timeksteph; /20, which again

yields exact integration of the time dependence of the DG approximation. As the regularity assumptions
in Theoremd.2 are satisfied by the fields(7) with s = 2/3, we expect convergence rates of ord¢s 2

in the energy norm and in the?-norm, as confirmed by the results in TaBle

6.5 Example 4: inhomogeneous medium

Finally, we consider an electromagnetic wave propagating through the dathaimown in Fig.3.
Everywhere inQ we sety = 1, whereas the electric permeabilityand the conductivityy vary as

TABLE 2 Example 3: the relative errors at time & 1 in the
energy norm and the 4=norm for the DG approximation of the
low-regularity solution(6.6) on the L-shapedomain

i No. of elements Energy error L2-error

1 48 213x10791 —  172x10791 —
2 192 132x10790 0.69 116x10°91 0.57
3 768 825x10792 0.68 763x10°%2 0.61
4 3072 517x10792 0.67 493x10°%2 0.63
5 12288 R4x10792 0.67 315x10°92 0.65

]

FiG. 3. Example 4: the domaif? consists of different materials.
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follows:

1, white region
¢ =410, light grey region

[ 0, white and light grey regian
o =
100, dark region

0.3, dark grey region

Both the initial conditions and the source term vanish througlihuwvhile the electromagnetic field
is excited at the top of the domai@ through the time-dependent (scalar) inhomogeneous boundary
condition,

2

e2?, b=02 (6.8)

1
a(x, t) cos(Znt)m
which mimics the entry of a time-harmonic Gaussian beam. The remaining pat o perfectly
conducting so that satisfies homogeneous Dirichlet conditions there.

We discretize this problem by the 2D version of the DG mett®4d) (using polynomials of degree
¢ = 2 on a fixed mest¥;, that consists of nonmatching components (generating at most one hanging
node per edge), which are adapted to the discontinuities(ufcall that the wave speed in the medium

is given by(,us)_%). The mesh%; is composed of 4608 nonuniform rectangles, where the smallest
local mesh size is given blgnin & 0.01. The hanging nodes are naturally incorporated in the DG
method without any difficulty. Compared to the uniform meshes used in the previous examples, the
aspect ratio of the elements #}, has deteriorated, which requires the larger value 50 with a time

stepk = 0.15- hpin for stability.

In Fig. 4, the intensity of the electric fieldy| = ,/(u? + u3), is shown at time$ = 2, 35, 5 and 7.
Attimet = 2, the time-harmonic Gaussian beam excited at the top of the computational d@rham
already impinged upon the slowest part of the scatterer (dark grey region) shown 3y \igle strong
field intensities appear at the corners of the interface between the two media. Then3 &, the wave
front penetrates from the side of the lower part of the scatterer with medium wave speed (light grey
region in Fig.3). At timet = 5, the wave front propagating downwards through the upper (slowest)
part has reached the lower (somewhat faster) part of the scatterer, which leads to interference patterns
beyondt = 5.

7. Concluding remarks

We have presented and analysed the symmetric interior penalty DG method for the space discretiza-
tion of the time-dependent Maxwell's equations in second-order form. The interior penalty DG method
yields optimala priori error bounds in the energy norm either for smooth solutions on arbitrary meshes
(Theorem4.1) or for singular solution on conforming meshes (TheorkR) (seeGroteet al, 2007).
On conforming triangular or tetrahedral meshes, we have derived new and opfniadi error bounds
of the semidiscrete DG formulation with respect to ttfenorm in space (Theorer3). Our numeri-
cal results validate these optimepriori estimates, both on triangular and on quadrilateral meshes. In
fact, on quadrilateral meshes where TheoreBidoes not apply, we obtain the same suboptimal con-
vergence rates with the DG method as with a conforming edge-element discretization adahecls
second family of curl-conforming elements.

When the electromagnetic field is divergence-free, the DG solution will be discretely divergence-
free in the sense of Lemma 5.1. In fact, for divergence-free initial data and wit@, the DG solution
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FiG. 4. Example 4: time-harmonic Gaussian beam entering the domain from above and impinging upon the scatterer displayed in
Fig. 3. The intensity of the DG solution is shown at tintes 2, 3.5 (upper row) and = 5, 7 (lower row).

will remain discretely divergence-free for all time. To obtain a globally divergence-free solution, one
can use locally divergence-free polynomial spaces and then project the corresponding DG solution onto
its globally divergence-free subspace as proposé&bitkburnet al. (2004).

Based on discontinuous finite-element spaces, the proposed DG method easily handles elements
of various types and shapes, irregular nonmatching grids and even locally varying polynomial order.
As continuity is only weakly enforced across mesh interfaces, domain decomposition techniques are
straightforward. Since the resulting mass matrix is essentially diagonal, the method is inherently par-
allel and leads to truly explicit methods when coupled with explicit time integration. Moreover, as
the stiffness matrix is symmetric positive definite, the interior penalty DG method shares the follow-
ing important property with the standard continuous Galerkin approach: the semidiscrete formulation
conserves (a discrete version of) the energy for all time. Therefore, if a judicious (time reversible or
symplectic) time integrator such as the leap-frog scheme is used, the fully discrete scheme will also
conserve (a discrete version of) the energy.
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Finally, we mention that our results are equally valid if the LDG method is used instead of the sym-
metric interior penalty approach presented here. For details, we refer the re®deutpa & Schtzau
(2003.
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