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We consider the symmetric, interior penalty discontinuous Galerkin (DG) method for the time-dependent
Maxwell’s equations in second-order form. InGroteet al. (2007, J. Comput. Appl. Math.,204, 375–
386), optimala priori estimates in the DG energy norm were derived, either for smooth solutions on
arbitrary meshes or for low-regularity (singular) solutions on conforming, affine meshes. Here, we show
that the DG methods are also optimally convergent in theL2-norm, on tetrahedral meshes and for smooth
material coefficients. The theoretical convergence rates are validated by a series of numerical experiments
in two-space dimensions, which also illustrate the usefulness of the interior penalty DG method for time-
dependent computational electromagnetics.
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1. Introduction

With the need to simulate electromagnetic phenomena of increasing realism and complexity comes the
need for more general numerical methods that easily handle complicated geometric features and dif-
ferent material properties. The first method for the numerical simulation of time-dependent electromag-
netic waves, the finite-difference time domain (FDTD) scheme, was proposed byYee(1966). Based on a
finite-difference discretization of Maxwell’s equations on two regular Cartesian grids, staggered both in
space and in time, the FDTD method remains popular due to its simplicity and efficiency. However, like
most finite-difference methods, the FDTD method is difficult to generalize to unstructured nonCartesian
grids and suffers from the inaccurate representation of the solution on curved boundaries (staircase ap-
proximation; seeCangellaris & Wright, 1991; Taflove, 1995). Moreover, its extension to higher order
results in wider difference stencils, which require special treatment near physical boundaries.

In contrast, finite-element methods (FEMs) can handle unstructured grids and complex geometry;
they easily extend to higher order, even in the vicinity of physical boundaries. They also provide rig-
orousa posteriori error estimates which are useful for local adaptivity and error control. Different
finite-element discretizations of Maxwell’s equations are available, such as the edge-element methods of
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Néd́elec(1980, 1986), the node-based first-order formulation ofLee & Madsen(1990), the node-based
curl–curl formulation ofPaulsen & Lynch(1991) or the node-based least-squares FEM ofJianget al.
(1996) (see alsoMonk, 1992).

Two difficulties typically arise when standard (conforming) finite elements are used in practice.
First, they are generally intended for use on a globally conforming mesh, i.e. a mesh without hanging
nodes or mismatch of mesh points along internal boundaries. Unfortunately, the generation of high-
quality globally conforming meshes in arbitrary 3D geometry remains a formidable task, often done by
hand, which can be more time consuming than the simulation itself. Second, although Néd́elec element
methods may be the most satisfactory from a theoretical point of view (seeMonk, 2003), in particular
near re-entrant corners, they are less attractive for time-dependent computations because the solution of
a linear system is required at every time iteration. Indeed, in the case of triangular or tetrahedral edge
elements, the entries of the diagonal matrix resulting from mass lumping are not necessarily strictly
positive (seeElmkies & Joly, 1997); therefore, explicit time stepping cannot be used in general. In
contrast, nodal elements naturally lead to a fully explicit scheme when mass lumping is applied both in
space and in time, but cannot correctly represent corner singularities in general.

Discontinuous Galerkin (DG) FEMs offer an attractive alternative to Néd́elec’s elements for the
numerical solution of Maxwell’s equations, in particular for time-dependent problems. Not only do
they accommodate elements of various types and shapes, irregular nonmatching grids and even locally
varying polynomial order, and hence offer great flexibility in the mesh design, but they also lead to
(block) diagonal mass matrices and therefore yield fully explicit, inherently parallel methods when
coupled with explicit time stepping. Indeed, the mass matrix arising from a DG discretization is always
block diagonal, with block size equal to the number of degrees of freedom per element; hence, it can
be inverted at very low computational cost. In fact, for constant material coefficients, the mass matrix is
truly diagonal for a judicious choice of (locally orthogonal) shape functions. Because continuity across
element interfaces is weakly enforced merely by adding suitable bilinear forms (the so-called numerical
fluxes) to the standard variational formulation, the implementation of DG methods is straightforward
within existing finite-element software libraries.

For the first-order hyperbolic systems, various DG FEMs are available. For instance,Cockburn &
Shu(1989) use a DG method in space combined with a Runge–Kutta (RK) scheme in time to discretize
hyperbolic conservation laws; see also the survey article ofCockburn & Shu(2001) and the references
therein. In the work ofKopriva et al. (2000), DG methods are developed, which combine high-order
spectral elements with a fourth-order low-storage RK scheme. A similar approach is used in the RK DG
methods ofWarburton(2000) andHesthaven & Warburton(2002), which combine high-order spatial
accuracy with a fourth-order low-storage RK scheme. While successful, their schemes do not conserve
energy due to upwinding.Fezouiet al. (2005) used central fluxes instead, yet the convergence rate of
their scheme remains suboptimal. A stabilized central flux formulation was proposed inHesthaven &
Warburton(2004) for the Maxwell eigenvalue problem, which yields additional control over spurious
eigenmodes.

Recently,Chenet al. (2005) developed a high-order RKDG method for Maxwell’s equations in
first-order hyperbolic form, which achieves high-order convergence both in space and in time by using
a strong stability-preserving (low-storage) RK scheme. By using locally divergence-free polynomials,
Cockburnet al. (2004) developed a locally divergence-free DG method for the first-order Maxwell
system. For the second-order (scalar) wave equation,Rivière & Wheeler(2001, 2003) proposed a non-
symmetric formulation, which required additional stabilization for optimal convergence. A symmetric
interior penalty DG method was first proposed byGroteet al. (2006), where optimal convergence rates
in the energy norm andL2-norm were shown; the usefulness of the method was also demonstrated via
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numerical experiments. Recently,Chung & Engquist(2006) proposed a hybrid discontinuous/continuous
finite-element approach for the acoustic wave equation.

In this paper, we continue and complete the work started inGroteet al.(2007) on symmetric interior
penalty DG methods for the spatial discretization of Maxwell’s equations in second-order form. Second-
order formulations indeed halve the number of unknowns and hence permit to achieve second- or higher
order accuracy with the least amount of work and storage. They are also inherently time reversible, while
both their semidiscrete and fully discrete approximations preserve (a discrete version of) the energy.

Our previous results (Groteet al., 2007) establish optimala priori error estimates in a natural energy
norm. Here, we shall show that the method also converges optimally in theL2-norm (in space and time)
on regular and shape-regular tetrahedral meshes and for smooth material coefficients. The proof of this
result is based on suitable duality arguments and follows along the lines of theL2-norm error analysis
presented inHoustonet al. (2005) for the time-harmonic Maxwell’s equations. In fact, it heavily relies
on some of the auxiliary technical lemmas presented there.

The outline of the paper is as follows: after stating the model problem in Section2, we describe
the interior penalty DG variational formulation in Section3. In Section4, we first review the error
estimates ofGroteet al. (2007), cf. Theorems4.1and4.2, and then state our newL2-norm error bound
in Theorem4.3. The proof of Theorem4.3 is given in Section5. In Section6, numerical experiments
in two-space dimensions illustrate the performance of our DG method and validate the theoretical error
bounds. Finally, some concluding remarks are presented in Section7.

2. Model problem

The evolution of a time-dependent electromagnetic fieldE(x, t), H(x, t) propagating through a linear
isotropic medium is determined by Maxwell’s equations:

εEt = ∇ × H − σE + j ,

μHt = −∇ × E.

Here, the coefficientsμ, ε andσ denote the relative magnetic permeability, the relative electric permit-
tivity and the conductivity of the medium, respectively. The source termj corresponds to the applied
current density. By eliminating the magnetic fieldH, Maxwell’s equations reduce to a second-order
vector wave equation for the electric fieldE:

εEt t + σEt + ∇ × (μ−1∇ × E) = j t .

If the electric field is eliminated instead, one easily finds that the magnetic fieldH satisfies a similar
vector wave equation, when bothσ andε are constant orσ is identically zero.

Thus, we consider the following model problem: find the (electric or magnetic) fieldu(x, t) such
that

εut t + σut + ∇ × (μ−1∇ × u) = f in Ω × J,

n × u = 0 onΓ × J,

u|t=0 = u0 in Ω,

ut |t=0 = v0 in Ω.

(2.1)
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Here,J = (0, T) is a finite time interval andΩ is a bounded Lipschitz polyhedron inR3 with boundary
Γ = ∂Ω and outward unit normaln. For simplicity, we assumeΩ to be simply connected andΓ to be
connected. The right-hand sidef is a given source term inL2(J; L2(Ω)3).

Here, we denote byL2(Ω)3 the Lebesgue space of square-integrable vector fields. The inner product
and norm associated with this space are given by

(u, v) =
∫

Ω
u ∙ v dx and ‖u‖0 = (u, u)

1
2 .

The Bochner spaceL2(J; L2(Ω)3) then consists of time-dependent functionsu(x, t) such that

‖u‖L2(J;L2(Ω)3) =
(∫

J
‖u(t)‖2

0 dt

) 1
2

< ∞,

with u(t) being short-hand notation for the functionx 7→ u(x, t).
The functionsu0 andv0 in (2.1) are prescribed initial data withu0 ∈ H0(curl; Ω) andv0 ∈ L2(Ω)3,

where

H0(curl; Ω) = {v ∈ L2(Ω)3: ∇ × v ∈ L2(Ω)3, n × v = 0 onΓ }.

Finally, we assume that the coefficientsμ, ε andσ are scalar positive functions that satisfy

0 < μ? 6 μ(x) 6 μ? < ∞, 0 < ε? 6 ε(x) 6 ε? < ∞, x ∈ Ω, (2.2)

and

06 σ(x) 6 σ? < ∞, x ∈ Ω,

respectively. For simplicity, we also assume thatμ is piecewise constant.
It follows from the results inLions & Magenes(1972) that problem (2.1) is well-posed and has a

unique weak solutionu(x, t) with u(t) ∈ H0(curl; Ω) andut (t) ∈ L2(Ω)3 for all t ∈ J.

3. DG discretization

3.1 Meshes and finite-element spaces

We consider meshesTh that partition the domain into disjoint tetrahedral or hexahedral elements{K },
suchthatΩ = ∪K∈Th K . We assume that every elementK of the triangulationT is affine equivalent
(see Section 2.3 ofCiarlet, 1978) to either a reference tetrahedron or a reference cube. We always assume
that the partition is aligned with the discontinuities of the coefficientμ.

For eachK ∈ Th, we denote byhK the diameter ofK and byρK the diameter of the biggest ball
included inK ; as usual, the mesh sizeh of Th is given byh = maxK∈Th hK . We assume the meshes
Th to be shape regular. That is, they form a family{Th}h of triangulations such that

hK

ρK
6 ρ1 ∀ K ∈ Th, ∀ h, (3.1)

with a constantρ1 > 0 that is independent ofK ∈ Th and the mesh sizeh. We allow for irregular
meshes with hanging nodes, but assume that the local mesh sizes are of bounded variation. That is, there
is a second constantρ2 > 0 such that

ρ2hK 6 hK ′ 6 ρ−1
2 hK (3.2)

for all neighbouring elementsK andK ′ in Th and mesh sizesh.
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Finally, we callTh regular if theintersectionK ∩ K
′
of two elementsK andK ′ is empty, a vertex,

an entire edge or an entire face of both elements, i.e. the meshes do not contain irregular nodes. Clearly,
regular and shape-regular meshes satisfy the bounded variation property (3.2).

We now introduce the finite-element space

Vh = {v ∈ L2(Ω)3: v|K ∈ S `(K )3, K ∈ Th},

whereS `(K ) is the spaceP`(K ) of polynomials of total degree at most` on K if K is a tetrahedron
and the spaceQ`(K ) of polynomials of degree at most` in each variable onK if K is an affine hexadron.

3.2 Trace operators

Next, we define the trace operators needed for the DG discretization of the Maxwell operator (cf.
Houstonet al., 2004; Houstonet al., 2005). To that end, letTh be a triangulation ofΩ. An interior
face f = ∂K ∩ ∂K ′ is the (nonempty) intersection of the boundaries of two neighbouring elementsK
andK ′ ofTh. Similarly, a boundary face is given byf = ∂K ∩Γ for a boundary elementK . We denote
byFI

h the set of all interior faces, byFB
h the set of all boundary faces and defineFh = FI

h ∪FB
h .

For a piecewise smooth vector-valued functionu, we introduce the following trace operators. Let
f = ∂K ∩ ∂K ′ ∈ FI

h be an interior face shared by the two elementsK + and K −. We write
n± to denote the unit outward normal vectors on the boundaries∂K ±, respectively. Denoting byu±

the traces ofu taken from withinK ±, respectively, we define the tangential jumps and averages ofu
acrossf by

[[u]]T = n+ × u+ + n− × u−, {{u}} = (u+ + u−)/2, (3.3)

respectively. On a boundary facef = ∂K ∩ Γ ∈ FB
h , we set [[u]]T = n × u and{{u}} = u. Here, the

trace ofu is taken from within the boundary elementK .

3.3 DG semidiscretization

For a given partitionTh of Ω, an approximation order̀ > 1 andt ∈ J, we wish to approximate the
exact solutionu(∙, t) of (2.1) by a discrete functionuh(∙, t) ∈ Vh. Thus, we consider the following
(semidiscrete) DG finite-element formulation: finduh: J × Vh → R such that

(εuh
tt , v) + (σuh

t , v) + ah(uh, v) = (f, v), v ∈ Vh, t ∈ J,

uh|t=0 = Πhu0,

uh
t |t=0 = Πhv0.

(3.4)

Here,Πh is theL2-projection ontoVh. The discrete bilinear formah, defined onVh × Vh, is given by

ah(u, v) =
∑

K∈Th

∫

K
μ−1(∇ × u) ∙ (∇ × v)dx −

∑

f ∈Fh

∫

f
[[u]]T ∙ {{μ−1∇ × v}}dA

−
∑

f ∈Fh

∫

f
[[v]]T ∙ {{μ−1∇ × u}}dA +

∑

f ∈Fh

∫

f
a[[u]]T ∙ [[v]]T dA.



Copy Edited Manuscript drm038

INTERIOR PENALTY DG METHOD FOR MAXWELL’S EQUATIONS 445

The interior penalty functiona penalizes the tangential jumps ofuh over the faces of the triangula-
tion. To define it, we first introduce the functionsh andmby

h| f =

{
min{hK , hK ′ }, f ∈ FI

h , f = ∂K ∩ ∂K ′,

hK , f ∈ FB
h , f = ∂K ∩ Γ ,

m| f =

{
min{μK , μK ′ }, f ∈ FI

h , f = ∂K ∩ ∂K ′,

μK , f ∈ FB
h , f = ∂K ∩ Γ .

Here,μK is the restriction of the coefficientμ to elementK . On each facef ∈ Fh, we then set

a| f = αm−1h−1, (3.5)

whereα > 0 is chosen sufficiently large, independently of the mesh size and the magnetic permeability,
see Lemma3.1 below. This completes the semidiscrete formulation of the interior penalty DG method
for the model problem in (2.1).

3.4 Well-posedness

To discuss the well-posedness of (3.4), we introduce the seminorm

|v|2h =
∑

K∈Th

∥
∥
∥μ− 1

2 (∇ × v)
∥
∥
∥

2

0,K
+
∑

f ∈Fh

∥
∥
∥a

1
2 [[v]]T

∥
∥
∥

2

0, f
, (3.6)

with ‖∙‖0,K and‖∙‖0, f denoting theL2-norms over an elementK and a facef , respectively.
The following stability result holds (seeArnold et al., 2001, or Lemma 3.1 inHoustonet al., 2004).

LEMMA 3.1 There is a threshold parameterαmin > 0, independent of the mesh size and the permeability
μ, such that forα > αmin,

ah(u, u) > Ccoer|u|2h ∀ u ∈ Vh,

with a coercivity constantCcoer > 0 that is independent of the mesh size and the coefficientμ.

The result in Lemma3.1 implies that the discrete problem in (3.4) is well-posed and uniquely solv-
able provided thatα > αmin (see, e.g.Arnold et al., 2001; Groteet al., 2006). We note that larger values
of α result in a more restrictive CFL condition in (explicit) time discretizations of (3.4).

REMARK 3.2 When the interior penalty DG method is used for time-dependent computations, the finite-
element solution consists of a superposition of discrete eigenmodes. Because of symmetry, the energy of
the semidiscrete formulation (3.4) is conserved, so that all the discrete modes neither grow nor decay in
time. For eigenvalue computations,Buffa & Perugia(2006) recently proved that the interior penalty DG
discretization of the Maxwell operator is asymptotically free of spurious modes: the discrete spectrum
will eventually converge to the continuous spectrum ash → 0. Nonetheless, on any fixed mesh some
of the discrete eigenmodes will not correspond to physical modes.Hesthaven & Warburton(2002) and
Warburton & Embree(2006) showed that larger values of the penalty parameter in central flux or local
discontinuous Galerkin (LDG) discretizations increase the separation between spurious and physical
eigenmodes. Certainly as the mesh is refined, the energy present in the spurious modes will decrease
and eventually vanish, as the numerical solution obtained with the interior penalty DG method converges
to the exact solution (see Section4).
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4. A priori error bounds

In this section, we state optimala priori bounds for the error in the energy norm and theL2-norm.
For a domainD ⊂ R3, we let Hs(D) be the Sobolev space of (possibly noninteger) orders > 0.

The norm associated with this space is denoted by‖∙‖s,D. Sobolev spaces of vector-valued functions are
denoted byHs(D)3. For simplicity, we write‖∙‖s,D for the product norm as well. IfD = Ω, we omit
the dependence on the domain and simply write‖∙‖s. Let X be a function space defined overΩ, and let
‖∙‖? be its associated norm. For a time-dependent vector functionv(x, t), we define

‖v‖L p(J;X) =






(∫
J ‖v(t)‖p

? dt
)1/p

, 16 p < ∞,

ess supt∈J‖v(t)‖?, p = ∞.

The corresponding Bochner space isL p(J; X) = {v(x, t): ‖v‖L p(J;X) < ∞}.

4.1 Energy norm error bounds

We setV(h) = H0(curl; Ω) + Vh, and equip this space with the norm

‖v‖2
h =

∥
∥
∥ε

1
2 v
∥
∥
∥

2

0
+ |v|2h,

with |∙|h defined in (3.6).
The following error bound has been shown in Theorem 2 ofGroteet al.(2007). It bounds the error in

L∞(J; V(h)) and the time derivative of the error inL∞(J; L2(Ω)3). This is an energy-type norm that
is naturally associated with the discrete wave problem in (3.4). The error bound holds for shape-regular
meshes of bounded variation consisting of tetrahedra and/or affine hexahedra (see (3.1) and (3.2)).

THEOREM4.1 Let the meshesTh be shape regular and of bounded variation. Let the solutionu of (2.1)
satisfy

u ∈ L∞(J; H1+s(Ω)3), ut ∈ L∞(J; H1+s(Ω)3), ut t ∈ L1(J; Hs(Ω)3),

for s > 1
2. Let uh be the semidiscrete DG approximation obtained withα > αmin. Then, the error

e = u − uh satisfies
∥
∥
∥ε

1
2 et

∥
∥
∥

L∞(J;L2(Ω)3)
+ ‖e‖L∞(J;V(h)) 6 C

(∥∥
∥ε

1
2 et (0)

∥
∥
∥

0
+ |e(0)|h

)

+ Chmin{s,`} (‖u‖L∞(J;H1+s(Ω)3) + ‖ut‖L∞(J;H1+s(Ω)3) + ‖ut t‖L1(J;Hs(Ω)3)

)
,

with a constantC > 0 that is independent of the mesh size.

In Theorem4.1, we implicitly assume thatu0 ∈ H1+s(Ω)3 andv0 ∈ Hs(Ω)3. Hence, standard
approximation properties of theL2-projection imply that

∥
∥
∥ε

1
2 et (0)

∥
∥
∥

0
6 Chmin{s,`+1}‖v0‖s, |e(0)|h 6 Chmin{s,`}‖u0‖1+s.

As a consequence, Theorem4.1yields optimal convergence of order O(hmin{s,l }) in the energy norm.
In many instances, solutions to the Maxwell’s equations have singularities that do not satisfy the

regularity assumptions in Theorem4.1. Indeed, it is well-known that the strongest Maxwell singularities
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may have smoothness belowH1(Ω)3 (cf. Amroucheet al., 1998; Hiptmair, 2002; Monk, 2003). The
following result from Theorem 3 ofGroteet al. (2007) shows that DG methods converge in the energy-
type norm under weaker regularity assumptions, provided the meshes are regular and shape regular
(consisting of tetrahedral and/or affine hexahedral elements). The restriction to regular meshes is due
the use of curl-conforming Ńed́elec interpolants of the first kind in the proof.

THEOREM 4.2 Let the meshesTh be regular and shape regular. Let the solutionu of (2.1) satisfy

u, ut , ∇ × u, ∇ × ut ∈ L∞(J; Hs(Ω)3)

and

ut t , ∇ × ut t ∈ L1(J; Hs(Ω)3),

for s > 1
2. Let uh be the semidiscrete DG approximation obtained withα > αmin. Then, the error

e = u − uh satisfies
∥
∥
∥ε

1
2 et

∥
∥
∥

L∞(J;L2(Ω)3)
+ ‖e‖L∞(J;V(h))

6 C
(∥∥
∥ε

1
2 et (0)

∥
∥
∥

0
+ |e(0)|h

)

+ Chmin{s,`}(‖u‖L∞(J;Hs(Ω)3) + ‖∇ × u‖L∞(J;Hs(Ω)3)

+ ‖ut‖L∞(J;Hs(Ω)3) + ‖∇ × ut‖L∞(J;Hs(Ω)3)

+ ‖ut t‖L1(J;Hs(Ω)3) + ‖∇ × ut t‖L1(J;Hs(Ω)3)),

with a constantC > 0 that is independent of the mesh size.

If we additionally assume thatu0 ∈ H1+s(Ω)3 for s > 0, the bound in Theorem4.2 yields again
optimal convergence of the order O(hmin{s,`}) for the error in the energy-type norm. For initial conditions
with the lower regularityu0 ∈ Hs(Ω)3 and∇ × u0 ∈ Hs(Ω)3, s > 1

2, we obtain the same result,
provided the Ńed́elec projection is used to approximate the initial datum instead of theL2-projection.

4.2 L2-norm error bounds

Theorems4.1 and4.2 immediately imply a (suboptimal) bound of order O(hmin{s,`}) for the L2-error,
i.e. for‖u−uh‖L∞(J;L2(Ω)3). We will now show that this estimate can be improved and that convergence
of the optimal order O(h`+1) can be obtained for smooth solutions and convex domains. For simplicity,
we will assume that

μ ≡ 1, ε ≡ 1, (4.1)

while no additional assumption onσ is necessary. We remark that our proof immediately generalizes
to smoothly varyingμ, but not to piecewise smoothμ, because it is based on the duality techniques of
Houstonet al.(2005). In contrast toHoustonet al.(2005), however, our proof also extends to arbitraryε.
We further note that our error estimate only holds on regular and shape-regular tetrahedral meshes. The
same restriction on the underlying meshes appears in the conforming case where the Néd́elec elements
of the second kind are known to converge suboptimally in theL2-norm (see Section 8.2.3 inMonk
(2003) and Example 1 in Section6 below).
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TheL2-error estimate depends on the regularity of the solution to the following problem:
Let w ∈ H0(curl; Ω) be divergence free and letz be the solution of the problem

∇ × (∇ × z) + z= w in Ω,

n × z = 0 onΓ.

We conclude from Lemma 7.7 inMonk (2003) and the embedding results of Proposition 3.7 in
Amroucheet al. (1998) that there is a parameterσE ∈

(1
2, 1

]
and a stability constantCS > 0 such

that

z ∈ HσE (Ω)3, ∇ × z ∈ HσE (Ω)3

and

‖z‖σE + ‖∇ × z‖σE 6 CS‖w‖0. (4.2)

The maximal value ofσE is closely related to the regularity properties of the Laplacian in polyhedra; in
the case of constant coefficients considered here, it depends only on the opening angles at the corners
and edges of the domain (cf.Amroucheet al., 1998). In particular, we haveσE = 1 for a convex domain.

THEOREM 4.3 Assume (4.1), and let the meshesTh be regular and shape regular, and consist of tetra-
hedra. Let the solutionu of (2.1) satisfy

u ∈ L∞(J, Hs+σE (Ω)3), ∇ × u ∈ L∞(J, Hs(Ω)3),

ut ∈ L∞(J, Hs+σE (Ω)3), ∇ × ut ∈ L∞(J, Hs(Ω)3),

for s > 1
2 and the regularity exponentσE ∈

(1
2, 1

]
from (4.2). Let uh be the semidiscrete DG approxi-

mation obtained onTh with α > αmin. Then, the errore = u − uh satisfies

‖e‖L∞(J;L2(Ω)3) 6Chmin{s,`}+σE (‖u‖L∞(J;Hs+σE (Ω)3) + ‖∇ × u‖L∞(J;Hs(Ω)3)

+‖ut‖L∞(J;Hs+σE (Ω)3) + ‖∇ × ut‖L∞(J;Hs(Ω)3)),

with a constantC > 0 that is independent of the mesh size.

For smooth solutions on convex domains (σE = 1), Theorem4.3 thus yields optimal convergence
in theL2-norm:

‖e‖L∞(J;L2(Ω)3) 6 Ch`+1.

The proof of Theorem4.3will be given in Section5.

5. Proof of L2-estimate

In this section, we present the proof of Theorem4.3. The analysis follows the ideas used byBaker(1976)
andGroteet al. (2006) for the scalar second-order wave equation. However, to overcome the additional
difficulties caused by the Maxwell operator, we shall employ techniques similar to those developed by
Houstonet al. (2005) for the time-harmonic case.
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5.1 Preliminaries

We start by establishing and reviewing some auxiliary results. Recall thatμ = ε = 1 (cf. the assumption
in (4.1)).

5.1.1 Auxiliary form and error equation. As in Groteet al. (2007) andHoustonet al. (2005), we
introduce the auxiliary form̃ah by setting

ãh(u, v) =
∑

K∈Th

∫

K
(∇ × u) ∙ (∇ × v)dx −

∑

f ∈Fh

∫

f
[[u]]T ∙ {{Πh(∇ × v)}}dA

−
∑

f ∈Fh

∫

f
[[v]]T ∙ {{Πh(∇ × u)}}dA +

∑

f ∈Fh

∫

f
a[[u]]T ∙ [[v]]T dA,

whereΠh is theL2-projection ontoVh. Clearly, the form̃ah is well-defined overV(h) × V(h).
Sinceah(u, v) = ãh(u, v) for u, v ∈ Vh, it follows immediately from Lemma3.1that, forα > αmin,

ãh(u, u) > Ccoer|u|2h , u ∈ Vh. (5.1)

Furthermore, there exists a constantCcont > 0 independent of the mesh size and the coefficientμ such
that

|̃ah(u, v)| 6 Ccont |u|h |v|h (5.2)

for all u, v ∈ V(h) (cf. Lemma 5 inGroteet al., 2007).
Next, foru ∈ Hs(Ω)3, with ∇ × u ∈ Hs(Ω)3 for s > 1

2, we define

rh(u; v) =
∑

f ∈Fh

∫

f
[[v]]T ∙ {{∇ × u − Πh(∇ × u)}}dA, (5.3)

for anyv ∈ V(h). Obviously,

rh(u; v) = 0 ∀ v ∈ H0(curl; Ω). (5.4)

The following approximation result has been proved in Lemma 4.9 ofHoustonet al. (2005):

|rh(u; v)| 6 CRhmin{s,`+1} |v|h ‖∇ × u‖s, v ∈ V(h), (5.5)

with a constantCR > 0 that is independent of the mesh size.
Next, let u(x, t) be the solution of the Maxwell’s equation (2.1) and suppose that it satisfies the

regularity assumption in Theorem4.3. Let uh be the semidiscrete DG approximation obtained with
α > αmin. Then, the errore = u − uh satisfies

(et t , v) + (σet , v) + ãh(e, v) = rh(u; v), v ∈ Vh, a.e. inJ, (5.6)

seeGroteet al. (2007).
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5.1.2 Néd́elec space of the second kind.The largest conforming space underlyingVh,

Vc = Vh ∩ H0(curl; Ω), (5.7)

is Néd́elec’s space of the second kind (seeNéd́elec, 1986, or Section 8.2 inMonk, 2003).
We denote byΠN the Ńed́eléc interpolant of the second kind (seeNéd́elec, 1986). To review its

approximation properties, lets > 1
2 and consideru ∈ H0(curl; Ω) ∩ Hs(Ω)3 with ∇ × u ∈ Hs(Ω)3.

Then, we have

‖u − ΠNu‖h 6 CNhmin{s,`}(‖u‖s + ‖∇ × u‖s),

‖∇ × (u − ΠNu)‖0 6 CNhmin{s,`}‖∇ × u‖s,

(5.8)

for a constantCN > 0 that is independent of the mesh size. Additionally, ifs > 0 andu ∈ H0(curl; Ω)∩
H1+s(Ω)3, then

‖u − ΠNu‖0 6 CNhmin{s,`}+1‖u‖1+s. (5.9)

A proof of the first two bounds in (5.8) can be found in Theorem 5.41, Remark 5.42 and Theorem 8.15
in Monk (2003). A proof of (5.9) has been given in Lemma 4.1 ofHoustonet al. (2005).

We further define the projectionΠcu ∈ Vc = Vh ∩ H0(curl; Ω) by

(∇ × (u − Πcu), ∇ × v) + (u − Πcu, v) = 0 ∀ v ∈ Vc. (5.10)

An immediate consequence of this definition is that

‖u − Πcu‖h = inf
v∈Vc

‖u − v‖h.

The approximation properties in (5.8) thus yield

‖u − Πcu‖h 6 CNhmin{s,`}(‖u‖s + ‖∇ × u‖s). (5.11)

The Ńed́elec spaceVc in (5.7) can be decomposed into

Vc = Xh ⊕ ∇Sh, (5.12)

where

Sh = {q ∈ H1
0 (Ω): q|K ∈ P`+1(K ), K ∈ Th},

Xh = {v ∈ Vc
h: (v, ∇q) = 0 ∀ q ∈ Sh},

respectively. The spaceXh is referred to as the space of discretely divergence-free functions. By con-
struction, the decomposition (5.12) is orthogonal inL2(Ω)3 (cf. Section 8.2 inMonk, 2003).

The following approximation result can be established by proceeding as in Lemma 4.5 inHiptmair
(2002) and Lemma 7.6 inMonk (2003). For anyu ∈ Xh, there is a divergence-free vector fieldHu ∈
H0(curl; Ω) such that∇ × Hu = ∇ × u and

‖u − Hu‖0 6 CH hσE‖∇ × u‖0, (5.13)



Copy Edited Manuscript drm038

INTERIOR PENALTY DG METHOD FOR MAXWELL’S EQUATIONS 451

with CH > 0 independent of the mesh size andσE denoting the parameter from (4.2). Moreover, we
have

‖Hu‖0 6 ‖u‖0. (5.14)

Finally, we recall the approximation property of Proposition 4.5 inHoustonet al. (2005) for
discontinuous functions. For anyu ∈ Vh, there is a functionuc ∈ Vc such that

‖u − uc‖06CA




∑

f ∈Fh

∫

f
h |[[u]]T|2 dA





1
2

, (5.15)

‖u − uc‖h 6CA




∑

f ∈Fh

∫

f
h−1 |[[u]]T|2 dA





1
2

, (5.16)

with a constantCA > 0 independent of the mesh size.

5.2 Approximation properties of a Galerkin projection

We are now ready to introduce a Galerkin-type projection similar to that in Lemma 2.1 ofBaker(1976),
using the bilinear form

Ãh(u, v) = ãh(u, v) + (u, v). (5.17)

This form clearly satisfies

Ãh(u, v) 6 max{1, Ccont}‖u‖h‖v‖h, u, v ∈ V(h),

Ãh(u, u) > min{1, Ccoer}‖u‖2
h, u ∈ Vh,

(5.18)

with Ccoer andCcont denoting the constants from (5.1) and (5.2), respectively.
Let nowu ∈ Hs(Ω)3, with ∇ × u ∈ Hs(Ω)3 for s > 1

2. We define the projectionwh ∈ Vh of u by

Ãh(wh, v) = Ãh(u, v) − rh(u; v) ∀ v ∈ Vh. (5.19)

In view of the approximation property in (5.5) and the stability ofÃh in (5.18), the standard Lax–
Milgram theorem implies thatwh is well defined. We further note the following key property of the
erroru − wh, namely, that it is discretely divergence free.

LEMMA 5.1 Letwh be the projection ofu defined in (5.19). Then, we have

(u − wh, ∇ϕh) = 0 ∀ ϕh ∈ Sh.

Proof. Let ϕh ∈ Sh. Since∇Sh ⊂ Vc ⊂ H0(curl; Ω), we have that [[∇ϕh]]T = 0 over any face inFh.
Furthermore,∇ × ∇ϕh = 0. We thus conclude that

ãh(u − wh, ∇ϕh) = 0.
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This identity, the definition ofwh in (5.19) and the property in (5.4) then yield

(u − wh, ∇ϕh) = ãh(u − wh, ∇ϕh) + (u − wh, ∇ϕh) = Ãh(u − wh, ∇ϕh) = rh(u; ∇ϕh) = 0.

This proves the assertion. �
We now estimate the erroru − wh in the energy norm.

LEMMA 5.2 Letwh be the projection ofu defined in (5.19). Then, we have

‖u − wh‖h 6 CEhmin{s,`}(‖u‖s + ‖∇ × u‖s),

with a constantCE > 0 that is independent of the mesh size.

Proof. We first use the triangle inequality and obtain

‖u − wh‖h 6 ‖u − ΠNu‖h + ‖ΠNu − wh‖h.

From the approximation property (5.8), we immediately conclude that

‖u − ΠNu‖h 6 CNhmin{s,`}(‖u‖s + ‖∇ × u‖s).

It remains to bound‖ΠNu − wh‖h. From the stability (5.18) of the formÃh, the definition ofwh and
the approximation results in (5.5) and (5.8), we conclude that

min{1, Ccoer}‖ΠNu − wh‖2
h 6 Ãh(ΠNu − wh,ΠNu − wh)

= Ãh(ΠNu − u,ΠNu − wh) + Ãh(u − wh,ΠNu − wh)

= Ãh(ΠNu − u,ΠNu − wh) + rh(u; ΠNu − wh)

6 (max{1, Ccont}CN + CR)hmin{s,`}(‖u‖s + ‖∇ × u‖s)‖ΠNu − wh‖h.

Thus,

‖ΠNu − wh‖h 6 Chmin{s,`}(‖u‖s + ‖∇ × u‖s).

This completes the proof. �
Next, we state and prove anL2-norm estimate for‖u−wh‖0, using similar ideas to those developed

in Section 6 ofHoustonet al. (2005).

LEMMA 5.3 Letu ∈ Hs+σE (Ω)3 be so that∇ × u ∈ Hs(Ω)3 for s > 1
2, and letwh be the projection

of u defined in (5.19). Then, we have theL2-norm error bound

‖u − wh‖0 6 CLhmin{s,`}+σE (‖u‖s+σE + ‖∇ × u‖s),

with a constantCL > 0 that is independent of the mesh size.

Proof. Let wc ∈ Vc be the conforming approximation ofwh from (5.15) to (5.16). We have

‖u − wh‖2
0 = (u − wh, u − ΠNu) + (u − wh, wc − wh) + (u − wh,ΠNu − wc).

By the Cauchy–Schwarz inequality, we obtain

‖u − wh‖0 6 ‖u − ΠNu‖0 + ‖wc − wh‖0 +

∣
∣(u − wh,ΠNu − wc)

∣
∣

‖u − wh‖0
.
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From the approximation property in (5.15) and the fact that the tangential jumps ofu vanish, we
conclude that

‖wc − wh‖2
0 6 C2

A

∑

f ∈Fh

∫

f
h|[[wh]]T|2 dA

= C2
A

∑

f ∈Fh

∫

f
h|[[u − wh]]T|2 dA 6 C2

Ah2‖u − wh‖2
h. (5.20)

Therefore,

‖u − wh‖0 6 ‖u − ΠNu‖0 + CAh‖u − wh‖h +

∣
∣(u − wh,ΠNu − wc)

∣
∣

‖u − wh‖0
.

We claim that the last term on the right-hand side above can be bounded as follows:
∣
∣(u − wh,ΠNu − wc)

∣
∣

‖u − wh‖0
6 C‖u − ΠNu‖0 + ChσE (‖u − ΠNu‖h + ‖u − wh‖h). (5.21)

Provided that (5.21) holds, the bound for‖u − wh‖0 follows by using the approximation results forΠN
in (5.8) and (5.9) and the bound for‖u − wh‖h in Lemma5.2:

‖u − wh‖0 6 Chmin{s+σE,`+1}‖u‖s+σE + Chmin{s,`}+σE (‖u‖s + ‖∇ × u‖s).

Here, we have also used thathσE > Ch for σE ∈
(1

2, 1
]
. Finally, since we have‖u‖s 6 ‖u‖s+σE and

min{s + σE, ` + 1} > min{s, `} + σE, the desired bound follows.
Proof of (5.21). It remains to prove the bound (5.21). To do so, we proceed in several steps.
Step 1: Preliminaries: We start by invoking the discrete Helmholtz decomposition in (5.12) and

write

ΠNu − wc = w0 + ∇r, (5.22)

with w0 ∈ Xh andr ∈ Sh. Let w = Hw0 ∈ H0(curl; Ω) be the exactly divergence-free approximation
of w0 from (5.13). The orthogonality property ofu − wh in Lemma5.1yields

(u − wh,ΠNu − wc) = (u − wh, w0) = (u − wh, w0 − w) + (u − wh, w).

Therefore,
∣
∣(u − wh,ΠNu − wc)

∣
∣

‖u − wh‖0
6 ‖w0 − w‖0 + ‖w‖0, (5.23)

and it is sufficient to estimate‖w0 − w‖0 and‖w‖0.
Step 2: Estimate of‖w0 − w‖0: We claim that

‖w0 − w‖0 6 ChσE (‖u − ΠNu‖h + ‖u − wh‖h). (5.24)

To prove (5.24), we first note that

∇ × w = ∇ × w0 = ∇ × (ΠNu − wc),
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in view of the definition ofH and (5.22). Thus, the approximation property (5.13) of the operatorH and
the triangle inequality yield

‖w0 − w‖06CH hσE‖∇ × (ΠNu − wc)‖0

6CH hσE (‖u − ΠNu‖h + ‖u − wh‖h + ‖wh − wc‖h).

By using (5.16) and proceeding similarly to (5.20), we obtain

‖wh − wc‖2
h 6 C2

A

∑

f ∈Fh

∫

f
h−1|[[wh]]T|2 dA

= C2
A

∑

f ∈Fh

∫

f
h−1|[[u − wh]]T|2 dA 6 C2

A‖u − wh‖2
h. (5.25)

This yields

‖w0 − w‖0 6 ChσE (‖u − ΠNu‖h + ‖u − wh‖h),

which completes the proof of (5.24).
Step 3. Estimate of‖w‖0: There holds

‖w‖0 6 C‖u − ΠNu‖0 + ChσE (‖u − ΠNu‖h + ‖u − wh‖h). (5.26)

We will prove this bound by using a duality approach as in Section 6.1 ofHoustonet al. (2005).
To this end, letz be the solution of the dual problem

∇ × (∇ × z) + z= w in Ω,

n × z = 0 onΓ.

We conclude from (4.2) thatz and∇ × z belong toHσE (Ω)3 and satisfy

‖z‖σE + ‖∇ × z‖σE 6 CS‖w‖0. (5.27)

For later use, we note that we have

Ãh(z, v) − (w, v) = rh(z; v) (5.28)

for all v ∈ Vh. In the sequel, it is convenient to also introduce the conforming bilinear form

A (u, v) = (∇ × u, ∇ × v) + (u, v), u, v ∈ H0(curl; Ω).

Obviously, we haveA (u, v) = Ãh(u, v) for all u, v ∈ H0(curl; Ω). Multiplying the dual problem with
w and integrating by parts, we obtain

‖w‖2
0 = A (z, w) = A (z − Πcz, w) +A (Πcz, w), (5.29)

whereΠc is the projection from (5.10).
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Since∇ × w = ∇ × w0 and by the definition ofΠc, we infer that

A (z − Πcz, w) = (∇ × (z − Πcz), ∇ × w0) + (z − Πcz, w)

= −(z − Πcz, w0) + (z − Πcz, w) = (z − Πcz, w − w0). (5.30)

The approximation result forΠc in (5.11) and the bound in (5.27) yield

‖z − Πcz‖0 6 ‖z − Πcz‖h 6 CNhσE
(
‖z‖σE + ‖∇ × z‖σE

)
6 CNCShσE‖w‖0. (5.31)

For later use, we also point out that the dual bound (5.27) implies

‖Πcz‖0 6 ‖z − Πcz‖0 + ‖z‖0

6 CNhσE (‖z‖σE + ‖∇ × z‖σE ) + ‖z‖σE 6 C‖w‖0. (5.32)

The Cauchy–Schwarz inequality and the estimates in (5.24) and (5.31) thus yield
∣
∣A (z − Πcz, w)

∣
∣ 6 ‖z − Πcz‖0‖w − w0‖0

6 Ch2σE‖w‖0(‖u − ΠNu‖h + ‖u − wh‖h). (5.33)

Finally, we need to bound the termA (Πcz, w) in (5.29). To this end, in view of (5.10), (5.22) and
since∇ × w = ∇ × w0, we conclude that

A (Πcz, w) = (∇ × Πcz, ∇ × w) + (Πcz, w)

= (∇ × Πcz, ∇ × (ΠNu − wc)) + (Πcz, w − w0) + (Πcz, w0)

= (∇ × Πcz, ∇ × (ΠNu − wc)) + (Πcz, w − w0) + (Πcz,ΠNu − wc)

= A (Πcz,ΠNu − wc) + (Πcz, w − w0)

= A (z,ΠNu − wc) + (Πcz, w − w0).

Here, we have also used that

(Πcz, ∇r ) = (z, ∇r ) = 0,

which follows readily from the definition ofΠc and the fact thatz is divergence free. Since we have

A (z,ΠNu − wc) = A (z,ΠNu − u) + Ãh(z, u − wh) + Ãh(z, wh − wc),

we obtain

A (Πcz, w) = (Πcz, w − w0) +A (z,ΠNu − u) + Ãh(z, u − wh) + Ãh(z, wh − wc). (5.34)

We now bound the four terms in (5.34). For the first term, we use the stability estimate for‖Πcz‖0
in (5.32) and the bound for‖w − w0‖0 in (5.24):

|(Πcz, w − w0)| 6 ‖Πcz‖0‖w − w0‖0

6 C‖w‖0‖w − w0‖0

6 ChσE‖w‖0(‖u − ΠNu‖h + ‖u − wh‖h).
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From the definition of the dual problem and the Cauchy–Schwarz inequality, we conclude that the
second term in (5.34) can be estimated as follows:

|A (z,ΠNu − u)| = |(w,ΠNu − u)| 6 ‖w‖0‖u − ΠNu‖0 6 ‖w‖0‖u − ΠNu‖0.

To bound the third term in (5.34), we first employ the symmetry ofÃh(∙, ∙), the definition ofwh in
(5.19) and identity (5.4):

Ãh(z, u − wh) = Ãh(u − wh, z) = Ãh(u − wh, z − ΠNz).

The continuity ofÃh, the approximation property ofΠN in (5.8) and the stability (5.27) of the dual
problem thus give

|Ãh(z, u − wh)| 6 C‖u − wh‖h‖z − ΠNz‖h

6 ChσE‖u − wh‖h
(
‖z‖σE + ‖∇ × z‖σE

)

6 ChσE‖w‖0‖u − wh‖h.

The variational problem in (5.28) implies that the fourth term in (5.34) can be written as

Ãh(z, wh − wc) = (w, wh − wc) + rh(z; wh − wc).

Then, from (5.5) and the stability of the dual problem in (5.27), we have

|Ãh(z, wh − wc)| 6 ‖w‖0‖wh − wc‖0 + CRhσE‖wh − wc‖h‖∇ × z‖σE

6 ‖w‖0‖wh − wc‖0 + CRCShσE‖w‖0‖wh − wc‖h.

Recall from (5.20) and (5.25) that

‖wh − wc‖06CAh‖u − wh‖h,

‖wh − wc‖h 6CA‖u − wh‖h.

Hence,

|Ãh(z, wh − wc)| 6 ChσE‖w‖0‖u − wh‖h.

The equality in (5.34) and the above four bounds yield

A (Πcz, w) 6 ‖w‖0‖u − ΠNu‖0 + ChσE‖w‖0(‖u − ΠNu‖h + ‖u − wh‖h). (5.35)

The bound in (5.26) then follows by combining (5.29), (5.33) and (5.35).
Step 4. The claim in (5.21) now follows from (5.23), (5.24) and (5.26). �

5.3 Proof of Theorem4.3

Let now the solutionu of the Maxwell’s equations (2.1) satisfy the regularity assumption in Theorem
4.3. We definewh(t) = wh(∙, t) ∈ Vh by

Ãh(wh(t), v) = Ãh(u(t), v) − rh(u(t); v), v ∈ Vh, a.e. inJ. (5.36)
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It can be readily seen thatwh ∈ L∞(J; Vh). Moreover, we havewh
t ∈ L∞(J; Vh) and

Ãh(wh
t , v) = Ãh(ut , v) − rh(ut ; v), v ∈ Vh, a.e. inJ.

Similarly,

Ãh(wh(0), v) = Ãh(u0, v) − rh(u0; v), v ∈ Vh.

Therefore, Lemma5.3 immediately implies the following estimates.

LEMMA 5.4 Letwh be defined by (5.36). Under the regularity assumptions of Theorem4.3, we have

‖u − wh‖L∞(J;L2(Ω)3) 6 CLhmin{s,`}+σE (‖u‖L∞(J;Hs+σE (Ω)3) + ‖∇ × u‖L∞(J;Hs(Ω)3)),

‖(u − wh)t‖L∞(J;L2(Ω)3) 6 CLhmin{s,`}+σE (‖ut‖L∞(J;Hs+σE (Ω)3) + ‖∇ × ut‖L∞(J;Hs(Ω)3)),

‖(u − wh)(0)‖0 6 CLhmin{s,`}+σE
(
‖u0‖s+σE + ‖∇ × u0‖s

)
.

The constantCL > 0 is as in Lemma5.3andσE ∈
(1

2, 1
]

is the stability parameter from (4.2).

We consider the erroru − uh and use the triangle inequality to write

‖e‖2
L∞(J;L2(Ω)3)

6 2‖u − wh‖2
L∞(J;L2(Ω)3)

+ 2‖uh − wh‖2
L∞(J;L2(Ω)3)

. (5.37)

The first term can be estimated from theL2-bounds in Lemma5.4. To derive an estimate for the second
term, we proceed as follows. First, we fixv ∈ L∞(J; Vh) and assume thatvt ∈ L∞(J; Vh). From the
definition ofwh, we have

ãh(wh, v) = ãh(u, v) + (u − wh, v) − rh(u; v).

Moreover, the error equation in (5.6) yields

rh(u, v) − ãh(u − uh) = (σet , v) + ((u − uh)t t , v).

Therefore, we conclude that

((uh − wh)t t , v) + ãh(uh − wh, v) = (uh
tt , v) − ãh(u − uh, v) + rh(u; v) − (u − wh, v) − (wh

tt , v)

= (ut t , v) + (σet , v) − (u − wh, v) − (wh
tt , v).

We rewrite this identity as

d

dt
((uh − wh)t , v) − ((uh − wh)t , vt ) + ãh(uh − wh, v)

=
d

dt
((u − wh)t , v) − ((u − wh)t , vt ) +

d

dt
(σe, v) − (σe, vt ) − (u − wh, v),

which yields

−((uh − wh)t , vt ) + ãh(uh − wh, v) =
d

dt
(et , v) − ((u − wh)t , vt )

+
d

dt
(σe, v) − (σe, vt ) − (u − wh, v). (5.38)
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Let nowτ ∈ [0, T ] be fixed, and consider the particular functionv̂ given by

v̂(t) =
∫ τ

t
(uh − wh)(s)ds, t ∈ J.

From the definition of̂v(t), we infer that

v̂(τ ) = 0, v̂t (t) = −(uh − wh)(t).

Thus,

‖̂vt‖L∞(J;L2(Ω)3) 6 ‖uh − wh‖L∞(J;L2(Ω)3). (5.39)

Moreover,

‖̂v(t)‖0 6
∫ T

0
‖(uh − wh)(s)‖0 ds6 T‖uh − wh‖L∞(J;L2(Ω)3).

Because this bound is independent oft , it also holds for the supremum overt ∈ J, i.e.

‖̂v‖L∞(J;L2(Ω)3) 6 T‖uh − wh‖L∞(J;L2(Ω)3). (5.40)

Then, we choosev = v̂ in (5.38), which yields

((uh − wh)t , uh − wh) − ãh(̂vt , v̂) =
d

dt
(et , v̂) + ((u − wh)t , uh − wh)

+
d

dt
(σe, v̂) + (σe, uh − wh) − (u − wh, v̂).

Since the DG form̃ah(∙, ∙) is symmetric, we obtain

1

2

d

dt
‖uh − wh‖2

0 −
1

2

d

dt
ãh(̂v, v̂) =

d

dt
(et , v̂) + ((u − wh)t , uh − wh)

+
d

dt
(σe, v̂) + (σe, uh − wh) − (u − wh, v̂).

Integration over [0, τ ] and using that̂v(τ ) = 0 yield

‖(uh − wh)(τ )‖2
0 − ‖(uh − wh)(0)‖2

0 + ãh(̂v(0), v̂(0))

= −2(et (0), v̂(0)) + 2
∫ τ

0
((u − wh)t , uh − wh)dt,

− 2(σe(0), v̂(0)) + 2
∫ τ

0
(σe, uh − wh)dt − 2

∫ τ

0
(u − wh, v̂)dt

= T1 + T2 + T3 + T4 + T5. (5.41)

Sinceet (0) = v0 − Πhv0 and v̂(0) belongs toVh, we conclude thatT1 = 0. Moreover, the positive
semidefiniteness of the form̃ah ensures that̃ah(̂v(0), v̂(0)) > 0. This leads to the inequality

‖(uh − wh)(τ )‖2
0 6 ‖(uh − wh)(0)‖2

0 + T2 + T3 + T4 + T5. (5.42)



Copy Edited Manuscript drm038

INTERIOR PENALTY DG METHOD FOR MAXWELL’S EQUATIONS 459

The Cauchy–Schwarz inequality, the Hölder’s inequality and the geometric–arithmetic mean inequality
yield

T26 2T‖(u − wh)t‖L∞(J;L2(Ω)3)‖uh − wh‖L∞(J;L2(Ω)3)

6
1

8
‖uh − wh‖2

L∞(J;L2(Ω)3)
+ C2‖(u − wh)t‖

2
L∞(J;L2(Ω)3)

.

Employing the Cauchy–Schwarz inequality, the estimate (5.40) and the geometric–arithmetic mean in-
equality, we obtain

T3 6 2σ?‖e(0)‖0‖̂v(0)‖0

6 2σ?T‖e(0)‖0‖uh − wh‖L∞(J;L2(Ω)3)

6
1

8
‖uh − wh‖2

L∞(J;Ω)3)
+ C3‖e(0)‖2

0.

Similarly,

T4 = 2
∫ τ

0
(σ (u − wh), uh − wh)dt − 2

∫ τ

0
(σ (uh − wh), uh − wh)dt

6 2σ?T‖u − wh‖L∞(J;L2(Ω)3)‖uh − wh‖L∞(J;L2(Ω)3)

6
1

8
‖uh − wh‖2

L∞(J;L2(Ω)3)
+ C4‖u − wh‖2

L∞(J;L2(Ω)3)
,

where we have also used that−
∥
∥
∥σ

1
2 (uh − wh)

∥
∥
∥

2

L∞(J;L2(Ω)3)
6 0. Employing the bound (5.40), we

obtain

T56 2T‖u − wh‖L∞(J;L2(Ω)3)‖̂v‖L∞(J;L2(Ω)3)

6 2T2‖u − wh‖L∞(J;L2(Ω)3)‖uh − wh‖L∞(J;L2(Ω)3)

6
1

8
‖uh − wh‖2

L∞(J;L2(Ω)3)
+ C5‖u − wh‖2

L∞(J;L2(Ω)3)
.

The upper bounds forT2, T3, T4 andT5 are independent ofτ . Taking the supremum overτ ∈ J in
the inequality (5.42), we thus obtain the estimate

‖uh − wh‖2
L∞(J;L2(Ω)3)

6
1

2
‖uh − wh‖2

L∞(J;L2(Ω)3)
+ ‖(uh − wh)(0)‖2

0 + C‖e(0)‖2
0

+C‖(u − wh)t‖
2
L∞(J;L2(Ω)3)

+ C‖u − wh‖2
L∞(J;L2(Ω)3)

.

This leads to

‖uh − wh‖2
L∞(J;L2(Ω)3)

6C‖(u − uh)(0)‖2
0 + C‖(u − wh)(0)‖2

0

+C‖(u − wh)t‖
2
L∞(J;L2(Ω)3)

+ C‖u − wh‖2
L∞(J;L2(Ω)3)

.
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We use this estimate in (5.37) and obtain

‖e‖2
L∞(J;L2(Ω)3)

6C‖u0 − Πhu0‖
2
0 + C‖(u − wh)(0)‖2

0

+C‖(u − wh)t‖
2
L∞(J;L2(Ω)3)

+ C‖u − wh‖2
L∞(J;L2(Ω)3)

.

From the approximation properties in Lemma5.4 and standard results for theL2-projection, we con-
clude that

‖e‖2
L∞(J;L2(Ω)3)

6 Ch2 min{s+σE,`+1}‖u0‖
2
s+σE

+ Ch2(min{s,`}+σE)
(
‖u0‖

2
s+σE

+ ‖∇ × u0‖
2
s

)

+ Ch2(min{s,`}+σE)(‖ut‖
2
L∞(J;Hs+σE (Ω)3)

+ ‖∇ × ut‖
2
L∞(J;Hs(Ω)3)

)

+ Ch2(min{s,`}+σE)(‖u‖2
L∞(J;Hs+σE (Ω)3)

+ ‖∇ × u‖2
L∞(J;Hs(Ω)3)

).

As in fact u ∈ C0(J; Hs+σE (Ω)3) and ∇ × u ∈ C0(J; Hs(Ω)3), we can absorb the three terms
involving u0 and∇ × u0 into the last two. Finally, since min{s+σE, `+1} > min{s, `}+σE, the proof
of Theorem4.3follows.

6. Numerical experiments

In this section, we present a series of numerical experiment to validate the error bounds from Theorems
4.1, 4.2 and4.3. Then, we demonstrate the versatility of the DG method for the propagation of time-
dependent electromagnetic waves in complex media or geometry.

In all our tests, we consider the 2D version of our model problem. In this case, 2D vector fields
u(x1, x2) = (u1(x1, x2), u2(x1, x2)) in R2 are identified with their 3D extensionsu(x1, x2, x3) =
(u1(x1, x2, 0), u2(x1, x2, 0), 0) in R3. Hence, we deduce that the curl–curl operator in (2.1) is given
by

∇ × (μ−1∇ × u) =
(

∂

∂x2
μ−1

(
∂u2

∂x1
−

∂u1

∂x2

)
, −

∂

∂x1
μ−1

(
∂u2

∂x1
−

∂u1

∂x2

))
.

On the boundary, we haven × u = u ∙ t, wheret is the counterclockwise-oriented tangential unit vector;
i.e. if n = (n1, n2), then(t1, t2) = (−n2, n1). Similarly, the tangential jumps are now scalar quantities
defined as [[u]]T = u+ ∙ t+ + u− ∙ t−.

The 2D version of the interior penalty method is then obtained straightforwardly, and all our theo-
retical results hold true in this case as well.

6.1 Time discretization

The DG discretization of the (2D) model problem leads to a finite system of linear second-order ordinary
differential equations of the form

M(ε)u′′(t) + M(σ )u′(t) + Au(t) = f (t), t ∈ J, (6.1)

with initial conditions

Mu(0) = u0, Mu′(0) = v0. (6.2)

Here,u(t) is the coefficient vector of the finite-element approximationuh(t) with respect to a basis of
Vh, u0 andv0 are the coefficient vectors of the discrete initial data andf (t) is the load vector at timet .
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The matrixA denotes the stiffness matrix associated with the DG formah; for α > αmin, it is symmetric
positive semidefinite (see Lemma3.1). The matricesM(ε) andM(σ ) are the mass matrices, weighted
with ε or σ , that are related to the time derivatives. We also setM = M(1). The two mass matricesM
andM(ε) are symmetric positive definite.

To obtain a fully discrete approximation of (6.1) and (6.2) over the time intervalJ = (0, T), we
consider a time-stepping scheme with time stepk = T/N. Let un denote the temporal approximation
to u(tn) at timetn = nk, n = 0, 1, . . . , N. In the computations below, we shall consider two different
time integrators depending on the electromagnetic properties of the medium. If the medium inΩ is
nonconducting, i.e.σ = 0 everywhere andM(σ ) = 0, we choose the second-order explicit Newmark
scheme (see, e.g. Sections 8.5–8.7 inRaviart & Thomas, 1983), which corresponds to the leap-frog
scheme

M(ε)u1 =

(

M(ε) −
k2

2
A

)

u0 + kM(ε)v0 +
k2

2
f

0
,

M(ε)un+1 = (2M(ε) − k2A)un − M(ε)un−1 + k2 f
n
, n = 1, . . . , N − 1,

(6.3)

with f
n

= f (tn). If Ω contains a conducting region, i.e.σ > 0 in parts ofΩ andM(σ ) 6= 0, we instead
opt for the standard explicit fourth-order RK method.

The DG mass matrixM(ε) is block diagonal, with block size equal to the number of degrees of
freedom per element. In contrast to standard conforming edge-element discretizations (without mass
lumping), we can therefore invertM(ε) blockwise during the assembly process. Thus, no solution of
any large linear system is required during time integration and the time marching scheme remains truly
explicit. We have implemented the 2D version of the DG method (3.4), augmented by the above two
explicit time marching schemes, both in Matlab and in the C++ finite-element library deal.II1 (see
Bangerthet al., 2005, 2007).

6.2 Example 1: smooth solution, quadrilateral mesh

We letΩ = (0, 1) × (0, 1), J = (0, 0.5), and choose homogeneous material parametersε = μ = 1.
We consider two separate situations: an insulator withσ = 0 and a conductor withσ = 1. The initial
and source data are chosen so that the solution of the 2D version of (2.1) is the smooth function

u(x1, x2, t) =
t2

2

(
cos(πx1) sin(πx2)

− sin(πx1) cos(πx2)

)

. (6.4)

It satisfiesu ∙ t = 0 onΓ . We discretize this problem on a sequence
{
Thi

}
i>1 of square meshes of size

hi = 2−i using the polynomial spacesQ`(K ), ` = 1, 2, 3, with fixed stabilizationα = 30. We remark
thatαmin generally increases with̀; for ` = 1, 2, a smaller value ofα is sufficient for stability.

The time stepki = hi /20 proved to be sufficient for numerical stability for all meshes
{
Thi

}
and

for all ` 6 3. In Fig.1, we display the relative errors in the energy and theL2-norm at timeT = 0.5.
Because the two time-stepping methods are (at least) second-order accurate, the time integration of

1See www.dealii.org.

http\\www.dealii.org
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FIG. 1. Example 1: the relative errors of the DG approximation are shown at timeT = 0.5 with respect to the energy norm
(– – –) and theL2-norm (∙ ∙ ∙) for ` = 1, 2, 3; σ = 0 (left) andσ = 1 (right).

TABLE 1 Example 1: the relative errors at time T= 0.5 in the
energy norm and the L2-norm obtained with Ńed́elec’s second
family of conforming edge elements of polynomial order` = 1

No. of elements Energy error L2-error

4 1.23×10+01 — 5.15×10+00 —
16 1.39×10+00 3.15 4.90×10−01 3.39
64 3.79×10−01 1.87 2.76×10−01 0.83

256 1.04×10−01 1.86 1.44×10−01 0.94
1024 3.30×10−02 1.66 7.25×10−02 0.98
4096 1.30×10−02 1.34 3.64×10−02 1.00

16 384 5.98×10−03 1.12 1.82×10−02 1.00

(6.4) is exact and the error consists only of the spatial error component. As the analytical solution (6.4)
is arbitrarily smooth, the assumptions of Theorem4.1 are met and we observe the predicted optimal
convergence rates in the DG energy norm at timeT = 0.5.

The L2-norm convergence rates shown in Fig.1 are only suboptimal. We recall, however, that The-
orem4.3 only applies on simplicial meshes, so that we need to invoke Theorem4.1 for a theoretical
error bound on the error with respect to theL2-norm, which yields the observed convergence rates of
order O(h`). This numerical example illustrates that the restriction to simplicial meshes in Theorem4.3
is essential.

The same suboptimal convergence rates are obtained with conforming finite-element discretizations
using full polynomial spacesQ`(K ) on quadrilateral or hexahedral meshes. Indeed, in Table1, we dis-
play the convergence rates obtained by approximating (6.4) with Néd́elec’s lowest order edge elements
of the second kind (cf.Néd́elec, 1986). As for the DG discretization in Fig.1, the convergence rate for
the energy norm (the norm inH0(curl; Ω)) is optimal, but it is suboptimal by one order for theL2-norm.
This deficiency stems from the fact that the approximation with full polynomial spacesQ`(K ) insuffi-
ciently separates the discrete gradients from discretely divergence-free functions (see, e.g. Section 8.2.3
in Monk, 2003).
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6.3 Example 2: smooth solution, triangular mesh

To demonstrate the optimal convergence of the DG method with respect to theL2-norm, we now con-
sider the DG discretization of the 2D version of (2.1) on a sequence of triangular meshes withP1(K )
elements, here withα = 10. The computational domain isΩ = (0, 1) × (0, 1) and the material param-
etersε = μ = 1 andσ = 0. We choose the initial conditions and the source term to match the smooth
solution

u(x1, x2, t) = cos(t)

[
−ex1(x2 cos(x2) + sin(x2))

ex1x2 sin(x2)

]

. (6.5)

Since the tangential part ofu is inhomogeneous at the boundary ofΩ, we need to impose inhomoge-
neous Dirichlet conditionn ∙ t = g on ∂Ω within our DG discretization, whereg is the boundary data
(which is scalar in the 2D setting) andt is the counterclockwise-oriented tangential unit vector onΓ . To
do so, we modify the (2D) semidiscrete formulation as follows: finduh(t, ∙): J → Vh such that

(uh
tt , v) + ah(uh, v) = (f, v) +

∑

E∈EBh

∫

E
g(a(v ∙ t) − μ−1∇ × v)ds (6.6)

for all v ∈ Vh (see alsoHoustonet al., 2004). Here,EBh is the set of all boundary edges in the underlying
mesh.

We use the leap-frog scheme in time to approximate the semidiscrete solution up toT = 2π . Here,
setting the time stepki = hi /4, wherehi denotes the smallest element diameter in the mesh, proved to
be sufficient for numerical stability. In Fig.2, we display the maximal (absolute) errors in theL2-norm
over the time intervalJ = (0, 2π), which includes here both the space and time discretization errors.
We observe global second-order convergence both in space and in time of the fully discrete scheme, as
predicted by Theorem4.3for the spatial error.

FIG. 2. Example 2: the maximal error over 0< t < 2π for the DG approximation with respect to theL2-norm.
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6.4 Example 3: singular solution

To validate the error bound in Theorem4.2, we consider an analytical solution of the 2D Maxwell’s
equations (2.1) on the L-shaped domainΩ = (−1, 1)2\(0, 1)2 with low spatial regularity. We setμ =
ε = 1 andσ = 0 everywhere inΩ and choose the source and initial data such that the analytical solution
in polar coordinates(r, φ) is given by

u(r, φ, t) =
t2

2
∇(r 2/3 sin(2/3φ)). (6.7)

The spatial part ofu corresponds to the gradient of the strongest corner singularity of the Dirichlet–
Laplacian onΩ, the functionr 2/3 sin(2/3φ). Hence, we haveu ∈ C∞(J; H2/3−δ(Ω)2) for all δ > 0.
We discretize (6.7) with bilinear polynomials (̀ = 1) on the same sequence of meshes as in Example 1,
with α = 20. For time stepping, we use the leap-frog scheme with time stepki = hi /20, which again
yields exact integration of the time dependence of the DG approximation. As the regularity assumptions
in Theorem4.2 are satisfied by the field (6.7) with s = 2/3, we expect convergence rates of order 2/3
in the energy norm and in theL2-norm, as confirmed by the results in Table2.

6.5 Example 4: inhomogeneous medium

Finally, we consider an electromagnetic wave propagating through the domainΩ shown in Fig.3.
Everywhere inΩ we setμ = 1, whereas the electric permeabilityε and the conductivityσ vary as

TABLE 2 Example 3: the relative errors at time T= 1 in the
energy norm and the L2-norm for the DG approximation of the
low-regularity solution(6.6) on the L-shapeddomain

i No. of elements Energy error L2-error

1 48 2.13×10−01 — 1.72×10−01 —
2 192 1.32×10−01 0.69 1.16×10−01 0.57
3 768 8.25×10−02 0.68 7.63×10−02 0.61
4 3072 5.17×10−02 0.67 4.93×10−02 0.63
5 12 288 3.24×10−02 0.67 3.15×10−02 0.65

FIG. 3. Example 4: the domainΩ consists of different materials.
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follows:

ε =






1, white region,

10, light grey region,

100, dark region,
σ =

{
0, white and light grey region,

0.3, dark grey region.

Both the initial conditions and the source term vanish throughoutΩ, while the electromagnetic field
is excited at the top of the domainΩ through the time-dependent (scalar) inhomogeneous boundary
condition,

g(x, t) = cos(2π t)
1

√
2πb

e
−x2

2b2 , b = 0.2, (6.8)

which mimics the entry of a time-harmonic Gaussian beam. The remaining part of∂Ω is perfectly
conducting so thatu satisfies homogeneous Dirichlet conditions there.

We discretize this problem by the 2D version of the DG method (3.4) using polynomials of degree
` = 2 on a fixed meshTh that consists of nonmatching components (generating at most one hanging
node per edge), which are adapted to the discontinuities ofε

(
recall that the wave speed in the medium

is given by(με)−
1
2
)
. The meshTh is composed of 4608 nonuniform rectangles, where the smallest

local mesh size is given byhmin ≈ 0.01. The hanging nodes are naturally incorporated in the DG
method without any difficulty. Compared to the uniform meshes used in the previous examples, the
aspect ratio of the elements inTh has deteriorated, which requires the larger valueα = 50 with a time
stepk = 0.15 ∙ hmin for stability.

In Fig. 4, the intensity of the electric field,|u| =
√

(u2
1 + u2

2), is shown at timest = 2, 3.5, 5 and 7.
At time t = 2, the time-harmonic Gaussian beam excited at the top of the computational domainΩ has
already impinged upon the slowest part of the scatterer (dark grey region) shown in Fig.3, while strong
field intensities appear at the corners of the interface between the two media. Then, att = 3.5, the wave
front penetrates from the side of the lower part of the scatterer with medium wave speed (light grey
region in Fig.3). At time t = 5, the wave front propagating downwards through the upper (slowest)
part has reached the lower (somewhat faster) part of the scatterer, which leads to interference patterns
beyondt = 5.

7. Concluding remarks

We have presented and analysed the symmetric interior penalty DG method for the space discretiza-
tion of the time-dependent Maxwell’s equations in second-order form. The interior penalty DG method
yields optimala priori error bounds in the energy norm either for smooth solutions on arbitrary meshes
(Theorem4.1) or for singular solution on conforming meshes (Theorem4.2) (seeGroteet al., 2007).
On conforming triangular or tetrahedral meshes, we have derived new and optimala priori error bounds
of the semidiscrete DG formulation with respect to theL2-norm in space (Theorem4.3). Our numeri-
cal results validate these optimala priori estimates, both on triangular and on quadrilateral meshes. In
fact, on quadrilateral meshes where Theorem4.3 does not apply, we obtain the same suboptimal con-
vergence rates with the DG method as with a conforming edge-element discretization using Néd́elec’s
second family of curl-conforming elements.

When the electromagnetic field is divergence-free, the DG solution will be discretely divergence-
free in the sense of Lemma 5.1. In fact, for divergence-free initial data and withf = 0, the DG solution
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FIG. 4. Example 4: time-harmonic Gaussian beam entering the domain from above and impinging upon the scatterer displayed in
Fig. 3. The intensity of the DG solution is shown at timest = 2, 3.5 (upper row) andt = 5, 7 (lower row).

will remain discretely divergence-free for all time. To obtain a globally divergence-free solution, one
can use locally divergence-free polynomial spaces and then project the corresponding DG solution onto
its globally divergence-free subspace as proposed inCockburnet al. (2004).

Based on discontinuous finite-element spaces, the proposed DG method easily handles elements
of various types and shapes, irregular nonmatching grids and even locally varying polynomial order.
As continuity is only weakly enforced across mesh interfaces, domain decomposition techniques are
straightforward. Since the resulting mass matrix is essentially diagonal, the method is inherently par-
allel and leads to truly explicit methods when coupled with explicit time integration. Moreover, as
the stiffness matrix is symmetric positive definite, the interior penalty DG method shares the follow-
ing important property with the standard continuous Galerkin approach: the semidiscrete formulation
conserves (a discrete version of) the energy for all time. Therefore, if a judicious (time reversible or
symplectic) time integrator such as the leap-frog scheme is used, the fully discrete scheme will also
conserve (a discrete version of) the energy.
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Finally, we mention that our results are equally valid if the LDG method is used instead of the sym-
metric interior penalty approach presented here. For details, we refer the reader toPerugia & Scḧotzau
(2003).
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