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ABSTRACT
The X-ray binary Cygnus X-3 (Cyg X-3) is a highly variable X-ray source that displays a

wide range of observed spectral states. One of the main states is significantly harder than the

others, peaking at ∼20 keV, with only a weak low-energy component. Due to the enigmatic

nature of this object, hidden inside the strong stellar wind of its Wolf–Rayet companion, it has

remained unclear whether this state represents an intrinsic hard state, with truncation of the

inner disc, or whether it is just a result of increased local absorption. We study the X-ray light

curves from RXTE/ASM and CGRO/BATSE in terms of distributions and correlations of flux

and hardness and find several signs of a bimodal behaviour of the accretion flow that are not

likely to be the result of increased absorption in a surrounding medium. Using INTEGRAL
observations, we model the broad-band spectrum of Cyg X-3 in its apparent hard state. We

find that it can be well described by a model of a hard state with a truncated disc, despite

the low cut-off energy, provided the accreted power is supplied to the electrons in the inner

flow in the form of acceleration rather than thermal heating, resulting in a hybrid electron

distribution and a spectrum with a significant contribution from non-thermal Comptonization,

usually observed only in soft states. The high luminosity of this non-thermal hard state implies

that either the transition takes place at significantly higher L/LE than in the usual advection

models, or the mass of the compact object is �20 M�, possibly making it the most-massive

black hole observed in an X-ray binary in our Galaxy so far. We find that an absorption model

as well as a model of almost pure Compton reflection also fit the data well, but both have

difficulties explaining other results, in particular the radio/X-ray correlation.

Key words: radiation mechanisms: non-thermal – gamma-rays: observations – X-rays: bina-

ries – X-rays: general – X-rays: individual: Cygnus X-3 – X-rays: stars.

1 I N T RO D U C T I O N TO C Y G X - 3

Cygnus X-3 (Cyg X-3) is one of the brightest X-ray binaries, discov-

ered already 40 yr ago (Giacconi et al. 1967), extensively studied,

but still poorly understood and usually referred to as a ‘peculiar

source’. The identification of the donor as a Wolf–Rayet (WR) star

(van Kerkwijk et al. 1992) classifies it as a high-mass X-ray binary,

despite its typical low-mass binary period of 4.8 h (Parsignault et al.

1972). It shows signs of unusually strong and complex absorption,

a consequence of the whole system being enshrouded in the wind

of its companion WR star. The problem in separating wind fea-

tures from those arising in the photosphere of the companion makes

�E-mail: nea@astro.su.se

determinations of radial velocity difficult, hence the masses of the

components remain uncertain and the nature of the compact object

unknown. Published results range from a neutron star of 1.4 M�
(e.g. Stark & Saia 2003) to a black hole with a mass of up to 40 M�
(for an inclination of 30◦ and a donor mass of 20 M� using the mass

function derived by Schmutz, Geballe & Schild 1996). Adding to

its peculiarity, Cyg X-3 is also the strongest radio source associ-

ated with an X-ray binary, displaying huge flares and relativistic

jets (Martı́, Paredes & Peracaula 2000; Mioduszewski et al. 2001).

The system is located at a distance of about 9 kpc (Dickey 1983,

assuming 8 kpc for the distance to the Galactic Centre; Predehl et al.

2000), close to the Galactic plane.

The study of the X-ray spectrum and its variability has suffered

severely from the fact that we do not fully understand the prop-

erties of the surrounding medium. As a consequence, a detailed
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Figure 1. Example average spectral shapes of Cyg X-3, not corrected for

absorption, as observed by RXTE (blue dots, magenta short-dashed line, red

long-dashed line and green dot–dashed line, Szostek & Zdziarski 2004),

and INTEGRAL (blue heavy solid and magenta solid lines, Hj04a). The

INTEGRAL spectra have here been re-normalized to the level of SPI, and

therefore differ by a factor of 2 from those in the original publication.

interpretation of the Cyg X-3 intrinsic unabsorbed spectrum and

luminosity is still missing from the literature. The first physical

interpretation of the Cyg X-3 broad-band X-ray spectrum was pre-

sented in Vilhu et al. (2003), hereafter V03, based on simultane-

ous INTEGRAL and RXTE observations in 2002 December, when

the source displayed intermediate to high flux levels. The spec-

trum turned out to be well fitted with thermal Comptonization in-

cluding Compton reflection and with parameters similar to other

X-ray binaries at high accretion rates, with the addition of strong

absorption. In a study of all available RXTE observations between

1996 and 2000, Szostek & Zdziarski (2004) found that they could

be divided into five states, with their absorbed appearances resem-

bling the canonical states of X-ray binaries (see examples in Fig. 1).

Hjalmarsdotter et al. (2004a), hereafter Hj04a, found that two of

these states had also been observed by INTEGRAL on several occa-

sions, the one described in V03 and another state peaking at around

20 keV, resembling the canonical hard state, but with the cut-off

at considerably lower energy. The observed INTEGRAL spectra

could both be fitted using the same model as in V03, including very

strong absorption. Unabsorbed spectral shapes were, however, not

discussed in any of these publications and it was not clear whether

the observed differences between states were due to an intrinsic state

transition or just a result of varying absorption.

An understanding of the nature of the hard state in Cyg X-3 is

crucial for the understanding of this system and its spectral variabil-

ity. In this paper, we investigate the possibility of a state transition in

Cyg X-3, using results from a study of the X-ray light curve as well

as broad-band spectral modelling of recent INTEGRAL data. Our

aim is to determine whether the apparent hard state can be ‘real’ in

the sense that it represents an intrinsic transition into a low accretion

rate state with truncation of the inner disc, despite the ∼20 keV cut-

off energy, which is much lower than that observed in other sources.

The alternative is that the apparent state transition is just an artefact

of increased absorption.

2 T H E X - R AY L I G H T C U RV E

2.1 Flux and hardness correlations

Fig. 2 shows 10 yr of continuous monitoring of Cyg X-3 in soft

X-rays (1.3–12 keV) by the RXTE/ASM together with the 5 yr of

overlapping data in hard X-rays (20–230 keV) from CGRO/BATSE.

The light curves are highly variable and show periods of high and

low flux levels, anticorrelated with each other (McCollough et al.

1997). The (5–12)/(1.3–5) keV hardness in the lower panel is also

anticorrelated with the 1.3–12 keV flux (Watanabe et al. 1994).

Periods with high, soft ASM flux, and low to very low BATSE flux

correspond to the range of observed soft states (red, magenta and

green in Fig. 1), while the periods with low and hard ASM flux and

higher BATSE flux correspond to the apparent hard state (blue in

Fig. 1).

The anticorrelations between the ASM and BATSE fluxes, also

shown in Fig. 3, and between the ASM flux and its hardness, also

shown in Fig. 4, are similar to those found in Cyg X-1 in the hard

state (Zdziarski et al. 2002). In Cyg X-3, these anticorrelations are

present in all states, while their slopes, especially that of the flux–

hardness anticorrelation in Fig. 4, change abruptly at flux levels

corresponding to the apparent state transition.

Figure 2. Top panel: the CGRO/BATSE 20–230 keV three-day flux averages

between 1996 and 2000. Middle panel: the RXTE/ASM 1.3–12 keV light

daily count rate averages between 1996 and 2006. A count rate of 75 counts

s−1 corresponds to 1 Crab. Lower panel: the (5–12)/(1.3–5) keV hardness.

Figure 3. The CGRO/BATSE 20–100 keV flux plotted against the

RXTE/ASM 1.3–12 keV count rate.
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Figure 4. The (5–12)/(1.3–5) keV hardness plotted against the RXTE/ASM

1.3 –12 keV count rate.

2.2 Distributions

In Fig. 5, top left-hand panel, the distribution of soft X-ray flux

(1.3–12 keV) in Cyg X-3 is plotted as a histogram. The distribution

is bimodal, with the two peaks representing the soft and the apparent

hard states, respectively. The flux level varies more in the soft state

than in the hard state, but the distribution within each of the two

states is well described as lognormal. The existence of two well-

defined intensity states in Cyg X-3 was in fact suggested already by

Watanabe et al. (1994), based on Ginga data, who suggested it to be

a sign of a bimodal behaviour of an accretion disc. The distribution
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Figure 5. Flux and hardness distributions of Cyg X-3 (top panels), Cyg X-1 (middle panels) and GRS 1915+105 (bottom panels). Left-hand column: the

distribution of count rates in the RXTE/ASM 1.3–12 keV light curve, daily averages between 1996 and 2006. Middle column: the distribution of the 5–12/1.3–

5 keV hardness created from the RXTE/ASM 1.3–12 keV light curve. Right-hand column: the distribution of photon flux in the CGRO/BATSE 20–100 keV

light curve, daily averages between 1991 and 2000.

of hardness in the top centre panel does not show the same bimodal-

ity, despite its overall anticorrelation with the soft X-ray flux. We

note that the same hardness distribution corrected for absorption

may look different, and further that the observed 5–12/1.3–5 keV

hardness is not a good measure of spectral slope in Cyg X-3 due

to the strong absorption. The distribution of the CGRO/BATSE 20–

100 keV flux also does not show a bimodal behaviour (again de-

spite its overall anticorrelation with the ASM flux). This is due to

the similarity of the spectral shapes above ∼20 keV of both hard

and soft states (cf. Fig. 1), with the exception of the ultrasoft state

which is relatively rare in this source.

It is interesting to make a comparison of the distributions of flux

and hardness in Cyg X-3 to those of other sources that do and to

those that do not show state transitions into a hard state. The second

row of Fig. 5 shows the same distributions for Cyg X-1. In this

source, state transitions are less frequent than in Cyg X-3, and it

spends most time in the hard state. This fact, together with a variable

flux level in its soft state, results in a different flux distribution

from that of Cyg X-3. A clear bimodality is, however, present in

the distribution of hardness, showing the characteristic behaviour

observed in this as well as in many other black hole binaries, in the

transition between a soft, disc-dominated state, and a hard, possibly

advection-dominated, state where the inner disc is truncated and

only a weak disc component is observed. Just as in Cyg X-3, the

bimodality is not present in the distribution of hard X-ray flux in

Cyg X-1, as observed by BATSE, indicating a more continuous

variability pattern at higher energies.

The third row shows the same distributions for GRS 1915 + 105,

the brightest Galactic X-ray binary, harbouring a 14-M� black hole.
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In this source, the luminosity never falls below 0.3LE, which prevents

it from entering a hard state (Done, Wardziński & Gierliński 2004).

Its spectral variability is limited to that of a varying strength of the

emission above 10 keV, with a strong disc component always being

present. Its variability does not show a bimodal pattern in either the

soft or the hard flux nor in the hardness distribution.

2.3 Orbital modulation

Apart from the observed state transitions, the main variability pat-

tern of the light curve at all energies is a strong modulation on the

orbital period of 4.8 h (Parsignault et al. 1972). The modulation is

quasi-sinusoidal in shape and present in both soft and hard X-rays.

The strength of the modulation, here defined as the difference be-

tween the maximum and minimum count rates divided by the maxi-

mum, varies with energy from an average strength of approximately

60 per cent in the ASM bands (below 12 keV) to 50 per cent in

the BATSE range above 20 keV, with the slope of the rising phase

and the place of the minima changing slightly with energy (V03;

Hjalmarsdotter et al. 2004b, hereafter Hj04b). The preferred expla-

nation for the modulation is attenuation in the wind of the companion

(Willingale, King & Pounds 1985; Kitamoto et al. 1987), even if ob-

scuration by a disc bulge or accretion disc corona (White & Holt

1982) still remains a possibility.

If a dense stellar wind serves as the cause of the modulation, any

change in its optical depth and/or distribution would be reflected

in a change in the depth and/or shape of the modulated light curve,

since the wind distribution is centred on the companion WR star and

thus asymmetric to the X-ray source. In particular, if the changes in

absorption were large enough to cause the apparent state transition,

they are also likely to affect the orbital modulation. An important

aspect is therefore whether the modulation is present with the same

strength in both the apparent hard and the soft spectral states. To in-

vestigate this, we selected sections of the ASM light curve, based on

daily averaged ASM flux levels: <10 s−1, representing the apparent

hard state, and >20 s−1, representing soft state(s), and folded them

separately, using the parabolic ephemeris of Singh et al. (2002). The

results are shown in Fig. 6. We find that the modulation is clearly

present in both states, with a strength of approximately 55 per cent

in the hard state and 65 per cent in the soft state, and thus notably

stronger in the soft state.

Figure 6. The ASM 1.3–12 keV light curve from Fig. 2 folded over the or-

bital period for the soft state(s) (ASM count rate >20 s−1), magenta crosses,

and the hard state (ASM count rate <10 s−1), blue diamonds.

2.4 Radio/X-ray correlation

In recent years, a standard scheme for radio/X-ray correlations in

black hole X-ray binaries seems to have been established. According

to this scheme, steady radio emission, presumably from a compact

jet, is present throughout the hard state, and is then positively cor-

related with the soft X-ray flux. In the soft state, the radio emission

becomes strongly suppressed due to the disappearance of the com-

pact jet. A transient jet episode sometimes manifests itself as a radio

flare in the transition phase (e.g. Fender, Belloni & Gallo 2004 and

references therein).

Correlations between radio and X-ray emission in Cyg X-3

have been reported by several authors (e.g. Watanabe et al. 1994;

McCollough et al. 1997; Choudhury et al. 2002). Apart from the

strong flaring episodes, observed at high soft X-ray flux levels in

Cyg X-3, and the very high radio-to-X-ray ratio, about an order of

magnitude higher than in other sources (a part of which is due to

the strong absorption of X-rays in this source), the overall correla-

tion pattern in Cyg X-3 is in fact similar to that of other black hole

X-ray binaries (Gallo, Fender & Pooley 2003). Fig. 7 shows the

radio flux from Cyg X-3, as measured at 15 GHz by the Ryle tele-

scope, plotted against the ASM 1.3–12 keV soft X-ray count rate.

There is a clear difference in the radio behaviour on either side of the

limit marking the apparent state transition. At low ASM flux levels,

the radio emission is rather stable with flux densities ranging from

∼50 to 300 mJy, and positively correlated with the ASM flux. At

ASM flux levels above ∼20 s−1, the radio behaviour is completely

different, ranging from quenching at levels much below 10 mJy,

similar to that observed in other sources, to the giant radio flares

reaching above 10 Jy. It is interesting to compare here once again

the behaviour of Cyg X-3 to that of Cyg X-1 and GRS 1915 + 105.

All three sources are included in the radio versus RXTE/ASM flux

plot in Gallo et al. (2003). Cyg X-1 displays a radio behaviour in ac-

cordance with the scheme outlined in the beginning of this section.

Throughout the hard state, the radio emission is stable and posi-

tively correlated with the ASM flux. At flux levels corresponding to

the soft state, the radio emission is quenched. The same seems

to be true for all Galactic black hole systems which experience

a state transition between a hard state with a truncated disc and

a soft disc-dominated state. The strong radio flares displayed by

Cyg X-3 at high X-ray flux levels are, however, not observed. In

GRS 1915+105, which never displays a hard state, the left-hand

branch of stable radio emission is not present. Its radio behaviour is

instead similar to that of Cyg X-3 at high ASM flux levels, above the

Figure 7. The 15-GHz flux density as observed by the Ryle telescope plotted

against the ASM 1.3–12 keV count rate.
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limit marking the state transition, with a large spread in amplitude

between flares and quenching.

3 M O D E L L I N G T H E A P PA R E N T H A R D S TAT E

3.1 Observations and data reductions

To model the broad-band spectrum of the apparent hard state in

Cyg X-3, we selected an observation of the Cygnus region in 2004

November, where Cyg X-3 was in the field of view of all three

X/γ -ray instruments onboard INTEGRAL for a period of nine days

throughout revolutions 251, 252 and 253, November 2–11, plus a

few pointings from revolution 255, November 14–17. During all

this time, the ASM flux levels were well below 10 s−1. We only

used pointings where Cyg X-3 was within 3.◦5 off-axis for JEM-

X and within 10◦ off-axis for IBIS/ISGRI and SPI, resulting in

64 pointings for JEM-X and 127 for IBIS/ISGRI and SPI (total ex-

posure time of 128 and 254 ks, respectively). The JEM-X and ISGRI

spectra were extracted using version 5.1 of ISDC’s Off-line Scien-

tific Analysis (OSA) software (Courvoisier et al. 2003). For JEM-X,

we used a detector radius limit of 108 mm, to avoid problems with

increasing background close to the edges of the detector. Extrac-

tions were done at source positions determined from the imaging

steps. For each pointing, using the standard pipeline, we extracted

the spectra of all the active sources in the field using a 256-channel

response for JEM-X and a rebinned, 28-channel response matrix for

IBIS/ISGRI. We then averaged the Cyg X-3 single pointing spectra

into a final one for JEM-X, covering 3–25 keV, and for IBIS/ISGRI,

covering 20–300 keV. The SPI data were analysed using image re-

construction and spectral extraction version 9.2 of the SPI Iterative

Removal Of Sources (SPIROS; Skinner & Connell 2003) program.

We applied a background model based on the mean count modula-

tion of the detector array. In order to get precise fluxes, the source

positions of the known sources in the field of view were fixed to

their catalogue values. In addition, we allowed SPIROS to apply time-

dependent normalization to the source fluxes of the other bright and

variable sources in the field of view (Cyg X-1 and EXO 2030 + 375).

For spectral extraction, 50 logarithmic bins in the 20–300 keV en-

ergy range were used to create an SPI spectrum averaged over the

total observation time. The instrumental response function has been

derived from on-the-ground calibration (Sturner et al. 2003) and

then corrected based on the Crab calibration observation.

The resulting broad-band spectrum, covering an energy range of

3–300 keV, is similar in shape to the hard-state spectrum as observed

by INTEGRAL in Hj04a and by RXTE in Szostek & Zdziarski (2004).

However, while those spectra were both co-additions of data from

several different observations, this one is the result of one continuous

block of observations, and thus less affected by effects of averaging.

An inspection of individual JEM-X and ISGRI spectra before co-

addition shows no variability between the different pointings other

than in normalization as a result of the orbital modulation (and a

slight increase in absorption around phases 0.2–0.4, in agreement

with the difference in the shape of the folded light curves of different

energies at those phases, V03; Hj04b). The spectrum was fitted in

XSPEC (Arnaud 1996), version 11.3. A systematic error of 2 per cent

was added to all three data sets. The JEM-X and ISGRI data were

normalized to the SPI data, which has the most accurate absolute

calibration according to the latest cross-calibration documentation,

making the observed spectra agree well with the normalization of

the RXTE spectra observed in similar states. By comparison, the

spectra from V03 and Hj04a, that were normalized to JEM-X, were

shown by V03 to be a factor of 2 too low. The present spectrum has

somewhat better coverage at high energies than previous hard states

as observed by both INTEGRAL and RXTE. We note, however, that

the ISGRI and SPI data do not agree well. SPI detects significantly

higher flux values above 100 keV and the slope is flatter than that

for ISGRI in the whole energy range. The slope difference can be

due to a difference in calibration, but that does not explain why

SPI detects an almost flat (in EFE space) hard tail when ISGRI

does not. Due to the difficulties in background subtraction in the

crowded Cygnus field, the SPI tail has to be taken with caution. The

difference between the two instruments also limits the goodness of

our fits above 100 keV, as it is impossible to find a model that would

fit both data sets.

3.2 Physical model for the intrinsic emission

3.2.1 Comptonization by a hybrid electron distribution

We use a Comptonization model, EQPAIR (Coppi 1992, 1999;

Gierliński et al. 1999). The model assumes a physical scenario

where soft seed photons from an accretion disc are upscattered via

inverse-Compton scattering by electrons in a hot plasma, located

either inside the inner radius of, or on top of, an accretion disc.

The accretion disc is assumed to emit as a multicolour blackbody

(DISKBB, Mitsuda et al. 1984) with the maximum temperature Ts as

a free parameter.

The main fitting parameter in the model, that is, the one that deter-

mines the slope of the Comptonized spectrum, is the ratio between

the luminosities corresponding to the plasma heating rate, Lh, and

to the irradiating seed photons, Ls. These luminosities can be ex-

pressed in dimensionless form as the hard and soft compactnesses,

�h and �s, respectively, where compactness is defined as � ≡ Lσ T/

(rmec3), r is the characteristic size of the X-ray emitting region, σ T

is the Thomson cross-section and me is the electron mass. A value

of �h/�s � 1 describes a hard state, where plasma heating dominates

over cooling by soft seed photons, and �h/�s � 1, a soft state, where

the luminosity in the irradiating seed photons dominates and cool-

ing becomes efficient. The value of the soft compactness, �s, is a fit

parameter as well. However, as our data, covering energies down to

3 keV only, cannot uniquely constrain Ls and thus �s, we assume

a constant �s = 100, corresponding to a luminous source with a

comparably small radius (the same as used for GRS 1915 + 105 in

Zdziarski et al. 2005 and Hannikainen et al. 2005).

In EQPAIR, the electron distribution can be purely thermal or hy-

brid, that is, Maxwellian at low energies and non-thermal at high

energies, if an acceleration process is present. This distribution, in-

cluding the electron temperature, Te, is calculated self-consistently

from the assumed form of the acceleration (if present) and from

the energy balance between the hot electrons and the injected seed

photons. For a hybrid distribution, the power supplied to the elec-

trons in the plasma is the sum of direct heating and acceleration,

so for the hard compactness, �h = �th + �nth, where �th and �nth

denote the corresponding compactnesses of thermal heating (in ad-

dition to Coulomb energy exchange with non-thermal electrons and

Compton heating) and acceleration, respectively. The acceleration

is assumed to have a power-law rate with index �inj, which is a free

parameter in the fit, for Lorentz factors between 1.3 and 1000.

The total plasma optical depth, τ tot, includes contributions from

electrons formed by ionization of the atoms in the plasma, τ e (a

free fit parameter) and from e± pairs, τ tot − τ e, calculated self-

consistently by the model. The importance of pairs depends both

on the value of the compactness and on the shape and strength of

the injection spectrum at high energies. In a case with both a high
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luminosity in seed photons and a significant amount of high-energy

injection, creating a substantial number of photons >511 keV, the

plasma is generally likely to be pair-dominated.

3.2.2 Compton reflection

The code EQPAIR includes Compton reflection, parametrized by an

effective solid angle subtended by the reflector as seen from the hot

plasma, �/2π (Magdziarz & Zdziarski 1995). The value R = �/2π

can also be interpreted as relative reflection compared to the intrinsic

component (see further discussion in Section 3.3.3). The strength of

the reflected component depends on the system inclination, which is

not well known in Cyg X-3. The strong orbital modulation suggests

a high inclination, but not too high since there is no eclipse by the

secondary. For the purpose of modelling the reflection, we use 60◦

(Vilhu et al. 2007). We find that our fits cannot constrain ionization

of the reflecting medium and thus we assume a neutral reflector.

The iron line in Cyg X-3 is unusually strong. It may be a com-

bination of the Fe Kα fluorescent line, arising both from reflection

in the disc and from absorption in the surrounding medium. Obser-

vations by Chandra (Paerels et al. 2000) have revealed lines from

weakly ionized as well as He-like and H-like iron in the spectrum.

The JEM-X instrument onboard INTEGRAL cannot resolve this line

complex. Therefore, we fit it as a single Gaussian line, with the cen-

troid energy, EFe, the width, σ Fe, and line photon flux, FFe, as free

parameters.

3.2.3 Complex absorption

The Cyg X-3 spectrum is heavily absorbed and modelling the ab-

sorption requires the presence of both interstellar and local absorbers

(V03; Hj04a; Szostek & Zdziarski 2005). Since our data only cover

energies above 3 keV, we do not attempt an exact modelling of the

absorption in terms of its ionization structure, density and composi-

tion. Our aim is here to get a correct understanding of the unabsorbed

spectral shape and to be able to derive unabsorbed luminosities. A

full understanding of the complexity of the surrounding medium in

this source requires a more detailed study, taking into account addi-

tional discrete absorption and emission features and using an instru-

ment with higher spectral resolution (Szostek & Zdziarski 2007).

We fix the interstellar absorber to NH,gal = 1.5 × 1022 cm−2 (e.g. Chu

& Bieging 1973). We find that the spectrum at low energies, in all

three scenarios below, requires more than one simple local absorber.

We model the local absorption as a two-fold absorber with one ab-

sorbing medium with column density Ne,0 fully covering the source,

and another with the column density Ne,1, covering a fraction f1 of

the source. Since the donor is a WR star, the abundances in the

Cyg X-3 system are likely to differ from solar abundances. In par-

ticular, little or no hydrogen is present (van Kerkwijk et al. 1992).

We therefore give the column densities as Ne rather than NH. We

find, however, that altering the table abundances in XSPEC does not

improve or significantly alter our fits. We therefore simply use the

abundances of Anders & Ebihara (1982), but with the metal, A>He,

and iron, AFe, abundances as free parameters. The true structure of

the absorber is likely to be much more complex. We do include an

absorption edge with the energy Eedge, and depth τ edge, which we

have found to significantly improve the fit. We interpret it as that

arising from H-like iron in a surrounding ionized medium at Eedge

= 9.28 keV (Reilman & Manson 1979), but allow it to vary be-

tween 9.2 and 9.4 keV due to calibration uncertainties of the JEM-X

instrument.

To account for additional attenuation caused by electron scatter-

ing in the stellar wind, presumably responsible for the strong orbital

modulation, we include a Compton absorber (CABS). We first model

the data with its optical depth frozen to zero. Since our data is phase-

averaged, we then correct for the effect of orbital modulation, which

affects the normalization by a maximum of ∼50 per cent at phase

0 in the hard state, by increasing the normalization by 1/0.75 times

and then fit the corresponding value of the Compton column den-

sity, Ne,scatt. The corrected spectra and unabsorbed luminosities then

roughly correspond to phase maximum. It should be noted that all

quoted luminosities in this paper are lower limits, since it is likely

that the scattering optical depth is non-negligible even outside the

orbit of the compact object, thus affecting the maximum phase as

well.

3.3 Models and results

With the large uncertainties in the parameters of the absorber, black-

body temperature, etc., arising from both the complexity of the

source and the limitations of the instruments, detailed physical mod-

els with many free parameters, like the one used here, have to be

used with caution. Spectral fits suffer from many local minima,

some resulting in unphysical combinations of the parameters, and

the resulting minima found are strongly dependent on the input pa-

rameters. We find that, using the same XSPEC model with different

input parameters, we can fit the data in at least three different ways,

all giving acceptable fits to the data, but each describing a very

different physical and geometrical scenario. In the three models

discussed in this section, the XSPEC model is thus the same: CON-

STANT
∗

WABS
∗

CABS(ABSND
∗

EDGE(EQPAIR)+GAUSSIAN), with only the

parameter values differing between the three cases. In the follow-

ing, when we refer to different models, what we mean by that is thus

different combinations of the model parameters, all with the same

components, but representing different physical situations. Since the

three models presented represent statistically three local minima, no

errors are given for the parameter values. The spectral modelling in

this paper does not pretend to give exact numerical values of all

the parameters, but is rather as a comparison of three conceptually

different ways of interpreting the true nature of the hard state of

Cyg X-3.

3.3.1 Wind absorption model

The assumption in this model is that the apparent hard state is not a

result of a real state transition with truncation of the inner disc, but

simply an effect of increased absorption of the low-energy emis-

sion by local line-of-sight material in the form of a variable stellar

wind. The main argument in favour of this model is the similarity

of the hard-state spectrum above 20 keV to that displayed in the

softer states, and especially between the different spectral states as

observed by INTEGRAL (see Fig. 1 above and fig. 3 in Hj04a). We

know that a strong stellar wind is present in the system (e.g. van

Kerkwijk et al. 1992). If this wind is strongly variable, it could, in

principle, account for the changes in the low-energy end of the ob-

served spectrum while leaving higher energies unaffected, and thus

mimic a state transition.

We find that, just like in Hj04a, such a model indeed gives a

good fit to the data. The model is plotted together with the data in

Fig. 8 and the best-fitting parameters are listed in Table 1. Fig. 9

shows the spectrum corrected for absorption decomposed into its

different spectral components. The intrinsic spectrum is that of a
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Figure 8. The data together with best-fitting absorption model, assuming

strong absorption at the lower energies of an intrinsic soft spectrum. The

observed, absorbed (dashed line) and intrinsic, unabsorbed (solid line) model

spectra are shown. Data points in cyan (3–25 keV) are from JEM-X, in heavy

magenta (20–300 keV) from ISGRI and in blue (20–200 keV) from SPI.

The data from JEM-X and ISGRI were normalized to the level of the SPI

normalization.

Figure 9. The components of the unabsorbed wind absorption model spec-

trum (solid line): the unscattered blackbody (magenta long-dashed line),

Compton scattering (blue short-dashed line) and Compton reflection includ-

ing the Fe K line (green dotted line).

soft state, similar to the soft states of other sources and of Cyg X-3

itself. It is dominated by a strong blackbody component at ∼1 keV,

presumably from an accretion disc extending close to the last stable

orbit. The Comptonized spectrum is that resulting from scattering

off electrons of temperature kTe = 32 keV and optical depth τ =
0.6, values similar to those of Cyg X-1 in its soft state (Gierliński

et al. 1999) as well as in the soft/very high state of GRS 1915 + 105

(Zdziarski et al. 2005). In addition, the model requires strong Comp-

ton reflection and a strong iron line, likely including a strong con-

tribution from the absorbing medium (see Section 3.2.2). It is in-

teresting to note that despite the strong iron line, this model, as

well as the reflection model in Section 3.3.3, requires a low iron

abundance.

The required local two-fold absorber covers 87 per cent of the

X-ray source with an electron column density of 1.6 × 1024 cm−2,

comparable to values observed in highly obscured active galactic

nuclei (AGN) (Matt, Guainazzi & Maiolino 2003), and the intrinsic

luminosity is a factor of 8 higher than that observed. Depending on

the exact shape of the absorption-corrected spectra of the soft states

of Cyg X-3 (Hjalmarsdotter et al., in preparation), this may indi-

cate that, in this interpretation, the apparent lowest-luminosity hard

state may be the most-luminous one of this source, corresponding to

the highest accretion rate. Thus, not even in this interpretation of the

apparent hard state is absorption alone affecting a constant under-

lying spectrum sufficient to explain the spectral variability. Rather,

the overall spectrum would have to increase in strength at the same

time as the low energies become more absorbed to explain the tran-

sition without an intrinsic pivoting or significant change in spectral

shape. This is also in agreement with the observed flux and hardness

anticorrelations in Section 2.1.

To account for the (somewhat dubious) SPI points above 100 keV,

this model (as well as the reflection model in Section 3.3.3) includes

a nearly flat non-thermal tail. If such a tail is real, it may be strong

enough to be detected by GLAST/LAT after one year of operations

(according to the GLAST/LAT performance web page1). Due to the

discrepancy between the ISGRI and SPI data (see Section 3.1), we

refrain from further interpretation of the strength and slope of such a

tail here. There are, however, indications that such a tail may indeed

be present at a similar level in at least one other state of this source

(see ultrasoft spectrum in red in Fig. 1, and Hjalmarsdotter et al.,

in preparation). We note that the existence of such a tail or not is,

although highly interesting, not of crucial importance to our present

study since it cannot by itself be used as a state indicator.

3.3.2 Non-thermal model

The main problem in identifying the hard state of Cyg X-3 as a real

hard state is the fact that its spectrum peaks at much lower energy

than in other sources, implying a much lower electron temperature.

Nevertheless, several results from Section 2 seem to suggest a state

transition similar to that of other sources. Could this still be a ‘real’

hard state in the sense that the inner disc is truncated but without

the presence of high-temperature electrons?

The universal cut-off at ∼100–200 keV observed in both Galac-

tic black holes (Zdziarski & Gierliński 2004) and type 1 Seyfert

AGN (Zdziarski et al. 1996), strongly suggests that the hard state

is characterized by electron temperatures of this order. Neutron star

binaries in the hard state may have somewhat lower electron temper-

atures, but temperatures below 10 keV are only found in soft states

(e.g. Gierliński & Done 2002). Indeed, any attempt to model the

spectral break at ∼20 keV of the Cyg X-3 hard state with thermal

Comptonization requires an electron temperature of the order of a

few keV, more in accordance with temperatures observed in ultra-

soft states. Our preliminary results in addition suggest that such a

low temperature would indeed be lower than that in the soft states

of Cyg X-3 itself, which would not be consistent with a transition

to a hard state according to our present understanding.

If we instead assume that most of the dissipated energy in the

Comptonizing flow goes into particle acceleration, rather than ther-

mal heating, the electrons will be accelerated out of a Maxwellian

into a power-law distribution. In EQPAIR, the importance of acceler-

ation is parametrized by the ratio, �nth/�h, between the non-thermal

1 www-glast.slac.stanford.edu
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Table 1. Model parameters. Since the models represent three local minima, no errors are given.

Wind absorption model Non-thermal model Reflection model

Ne,0 1022 cm−2 11 3.2 6.5

Ne,1 1022 cm−2 150 3.0 110

f1 0.87 0.16 0.16

Ne,scatt 1022 cm−2 42 42 42

AFe 0.58 3.20 0.35

A>He 3.6 1.29 1.23

Eedge keV 9.4a 9.4a 9.4a

τ edge 0.50 0.34 0.39

kTs eV 1014 200 1069

�h/�s 0.26 7.14 0.44

�nth/�h 0.07 0.96 0.12

�inj 2.0 4.0 2.0

τ e 0.58 9.43 1.00

τb
tot 0.61 9.50 1.09

kTb
e keV 32 4.0 24

R = �/2π 1.3 0.0 12

EFe keV 6.46 6.49 6.48

σ Fe 0.14 0.18 0.18

FFe cm−2 s−1 2.8 × 10−2 2.9 × 10−2 4.0 × 10−2

Fc
bol erg cm−2 s−1 8.2 × 10−8 1.9 × 10−8 6.6 × 10−8

Ld
bol erg s−1 7.9 × 1038 1.8 × 1038 6.4 × 1038

χ2/ν 269/207 281/207 259/207

aAllowed between 9.2 and 9.4 due to calibration uncertainties of the JEM-X instrument. bCalculated from

the energy balance, that is, not a free fit parameter. cThe bolometric flux of the unabsorbed model spectrum

normalized to the SPI data. dThe unabsorbed bolometric luminosity assuming a distance of 9 kpc.

and total hard compactnesses (see Section 3.1). Given that most of

these accelerated electrons will Compton-cool before they thermal-

ize, the resulting spectrum will be that of Comptonization from a

hybrid distribution of electrons. Such a distribution can be described

as a Maxwellian at low energies, since those electrons have sufficient

time to thermalize by Coulomb interactions, plus a power-law tail at

high energies. The Comptonized component will thus be made up of

scattering off both thermal and non-thermal electrons. In a situation

where the spectrum is dominated by non-thermal Comptonization,

the peak of the Comptonized spectrum is no longer determined by

the maximum electron temperature but by the energy at which most

electrons are injected. The shape of such a spectrum can vary sig-

nificantly depending on the form of the energy distribution of the

acceleration spectrum (e.g. mono-energetic or power law with dif-

ferent slopes).

We find that applying a model with almost entirely non-thermal

injection in the form of a steep power law with � = 4 and

γ min = 1.3 (γ max being unimportant for such a steep injection),

gives a good fit to the Cyg X-3 hard-state spectrum. The model is

plotted together with the data in Fig. 10. The model reproduces well

the observed peak at ∼20 keV and the shape of the high-energy slope

without the addition of reflection. The equilibrium temperature of

the Maxwellian electrons is only 4 keV and thus no thermal signa-

ture of high-temperature electrons is present. The optical depth of

the thermal part of the distribution is rather high but does not include

a significant fraction of e± pairs, despite the high compactness. This

does not, however, imply that e± pairs are not produced, only that

they annihilate at a fast rate due to the high optical depth and in

fact all our models predict a strong annihilation line at 511 keV.

Such a line has yet to be confirmed in any X-ray binary. With ac-

cess to good coverage at high energies by OSSE, the absence of

any annihilation line in the soft-state spectrum of Cyg X-1 could,

as shown by Gierliński et al. (1999), limit the compactness in this

source to �10. The much higher luminosity of Cyg X-3, together

with a probably much smaller Comptonizing region, due to the small

size of the system, is suggestive of a significantly higher value of

the compactness, and the presence of an annihilation line cannot be

ruled out until sufficiently good data at high energies are available.

If the line is indeed not present, this would limit the compactness

to a lower value in this model, which would result in a somewhat

worse fit.

In Fig. 11, the components of the intrinsic model are plotted.

To show the importance of non-thermal Comptonization, we have

plotted the thermal and non-thermal contributions separately. This

is done by setting the non-thermal compactness to zero, �nth = 0, and

adjusting the cooling rate, �h/�s, to calculate the thermal spectrum

that would have the same τ and kTe as the original hybrid model and

then subtract it from the total model, in the same way as explained

in Hannikainen et al. (2005).

With the INTEGRAL data, covering energies above 3 keV only,

the disc seed photon temperature, especially in this model assuming

a low temperature, is at best badly constrained and very much de-

pendent on the assumed strength and shape of absorption, leaving

the parameters of the absorber and Ts to a large extent degenerate.

We find, however, that a good fit can be achieved with a disc tem-

perature of 200 eV, equal to that of Cyg X-1 in its hard state. Such

a low disc temperature would suggest that the disc is truncated at

a radius r � 6rg, the last stable orbit, where rg = GM/c2 is the

gravitational radius.

Despite the absence of any continuum reflection feature, the pres-

ence of a strong iron line is required by the data. In this model, it is

thus likely that the iron line arises from fluorescence in the absorbing

medium.

3.3.3 Reflection model

We note that the shape of the Cyg X-3 spectrum in its apparent

hard state is very much reminiscent of that arising from Compton
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Figure 10. The data together with best-fitting model of a hard state with

a non-thermal energy injection. The observed, absorbed (dashed line) and

intrinsic, unabsorbed (solid line) model spectra are shown. Data points in

cyan (3–25 keV) are from JEM-X, in heavy magenta (20–300 keV) from

ISGRI and in blue (20–200 keV) from SPI. The data from JEM-X and ISGRI

were normalized to the level of the SPI normalization.

Figure 11. The components of the unabsorbed non-thermal model: the un-

scattered blackbody (magenta long-dashed line), Compton scattering from

thermal (blue short-dashed line) and non-thermal (cyan dot–dashed line)

electrons, and the Fe K line (green dotted line).

reflection off a cool medium. The signatures of Compton reflection,

an Fe Kα line, an Fe absorption edge and a pronounced hump in

the spectrum at energies above 10 keV, seem to be required in fits

of most spectra of both X-ray binaries and AGN. In these sources,

Compton reflection arises when the energetic upscattered photons

from the hot plasma scatters off the cooler accretion disc and be-

comes more important with an increasing solid angle covered by the

disc as seen by the X-ray source (Gilfanov, Churazov & Revnivtsev

1999; Zdziarski, Lubiński & Smith 1999). In some cases, the central

source can be entirely obscured and the observed spectrum is then

that of reflection unknown. This is the case for the so-called obscured

AGN, active galaxies of type 2 Seyferts hidden behind a Comp-

ton thick absorber (e.g. Matt et al. 1996). A Compton reflection

dominated spectrum has also recently been suggested to explain a

low non-pulsating state of the neutron star binary GX 1 + 4 by Rea

et al. (2005). The proposed geometry is a thickened quasi-toroidal

disc, hiding the central source from view but giving rise to strong

reflection. In such a situation, R can greatly exceed 2.0 and should

then be interpreted as the ratio of emission seen only in reflection to

that observed directly, rather than a measure of any physical solid

angle.

We find that while a pure reflection spectrum does not well de-

scribe the lowest-energy data of the Cyg X-3 spectrum, which show

significant excess below 10 keV, a model dominated by reflection,

with the addition of only a weak intrinsic component, reproduces the

observed spectrum very well. The model is plotted together with the

data points in Fig. 12 and corresponds to a situation where R = 12.

Fig. 13 shows the spectral components, including the components

of the required incident spectrum before reflection as calculated by

EQPAIR. We see that for the reflected spectrum to match the shape of

the observed spectrum of Cyg X-3, the incident spectrum has to be a

soft one, slightly harder than the intrinsic spectrum of the absorption

model, but probably very similar to one of the observed soft states

of Cyg X-3 (cf. spectrum in magenta in Fig. 1), once corrected for

absorption (Hjalmarsdotter et al., in preparation). To give rise to

such a strong reflection component, the incident spectrum also has

to be very luminous, and most likely more luminous than the soft

states of the source (again by mere comparison with the flux levels

of the soft-state spectra in Fig. 1). The exact strength depends on the

multiplication factor used, which for R = 12 can be anything �6,

depending on the exact geometry. We have used 6, corresponding to

a large covering factor of the reflector as seen by the X-ray source,

and thus giving a minimum possible luminosity for the incident

spectrum. Since the thickening of the disc is likely to be a response

to very high, possibly super-Eddington, accretion rates (Shakura

& Sunyaev 1973; Jaroszyński, Abramowicz & Paczyński 1980), a

stronger incident spectrum in the ‘reflected’ state is expected in this

scenario. This is also in agreement with the observed anticorrela-

tions of hard and soft X-ray fluxes which, just as in the absorption

model, require the whole spectrum to become stronger to match the

increase in hard X-rays if the shape is not changing in the transi-

tion. In this interpretation, a large portion of the spectral variability

observed in this source could be modelled by varying the relative

amount of emission seen only in reflection against that which can

be observed directly, with an underlying intrinsic spectrum varying

only in normalization.

We note that this model gives the best formal fit to the present

data, followed by the absorption model and the non-thermal model

in order of increasing χ2. Due to the limited energy range and our

approximate treatment of absorption, we, however, do not believe

that the presented models can be ranked based on formal statistics,

but should be evaluated physically together with our other results

concerning the behaviour of the source. In the next section, the

implications of the models and their agreement with our other results

will be discussed.

4 D I S C U S S I O N

4.1 State transitions versus absorption

The spectral variability in X-ray transients and in the best-studied

Galactic black hole binary Cyg X-1 is generally believed to be driven

by transitions between two stable configurations of the accretion

flow: a high accretion rate disc-dominated soft state and a low ac-

cretion rate, possibly advection-dominated, hard state, where the
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Figure 12. The data together with best-fitting reflection model, describing

an almost pure reflection spectrum (dashed line) of an intrinsically soft

spectrum (solid line). Data points in cyan (3–25 keV) are from JEM-X,

in heavy magenta (20–300 keV) from ISGRI and in blue (20–200 keV) from

SPI. The data from JEM-X and ISGRI were normalized to the level of the

SPI normalization.

Figure 13. The components of the reflection model. The observed spectrum

(thin solid line), corrected for absorption, is made up of the part of the un-

scattered blackbody (thin magenta long-dashed line) and its Comptonization

(thin blue short-dashed line) seen directly, plus the strong Compton reflec-

tion component (green dotted line). The much stronger required incident

spectrum before reflection is shown by the heavy solid line with the heavy

magenta long-dashed line for the unscattered blackbody and the heavy blue

short-dashed line for the Comptonized part.

inner disc is truncated and replaced by a hot flow. Many X-ray tran-

sients show a wider range of spectral variability during outbursts,

including several intermediate states and soft states with varying

amplitude of the hard tail (see e.g. examples in Done & Gierliński

2003). The changes between soft disc-dominated and hard non-disc-

dominated states are also accompanied by a distinct change in radio

emission and jet properties (e.g. Fender et al. 2004 and references

therein).

The spectral variability of Cyg X-3 is similar to some tran-

sients (see e.g. a comparison with the spectra of XTE J1550−564

in Zdziarski & Gierliński 2004) and shows a distinct bimodality

between soft and hard states. In Cyg X-3, the observed spectral

states cannot, however, be unambiguously identified with those of

other sources due to presence of strong absorption largely affect-

ing the observed spectra and possibly strong enough in some states

to mimic state transitions. Unlike the transients but like, for ex-

ample, Cyg X-1, Cyg X-3 is a wind-fed system. The difference

between Cyg X-3 and Cyg X-1 as well as other wind-fed systems,

is the extreme proximity to its companion and the presence of a

strong wind. The Cyg X-3 system is very compact with the X-ray

source located almost inside the extended photosphere of its com-

panion. The situation differs from normal wind accretion in that

there is indeed much more matter available to accrete. With such

a constant high supply, it is possible to imagine that the source

would always be in a high accretion rate state and not experi-

ence transitions to some lower accretion rate hard state. Never-

theless, the results from Section 2 show several signs of such a

transition.

The bimodal flux distribution in Cyg X-3 reflects the existence

of two stable configurations and is strongly suggestive of a bimodal

behaviour of the accretion disc. In a wind-accreting system, state

transitions are indeed believed to be a response to a change in mass

loss of the companion, and thereby of the wind parameters, causing

a re-configuration of the accretion flow at some limiting accretion

rate. For the bimodality to be caused instead by absorption effects

alone, as suggested by the absorption model, the wind has to be

strictly bimodal in itself and switch between a state with low wind

density and less absorption in the soft state into a state with much

higher wind density and stronger absorption to cause the appearance

of a hard state. Such a bimodal distribution of the wind density is in

fact known to be present in, for example, Be stars (Porter & Rivinius

2003) and can thus not be entirely ruled out.

The existence of the anticorrelations between hard and soft

X-rays and between flux and hardness shows, however, that the

spectral variability cannot be due to simple variability of absorp-

tion with an underlying intrinsic spectrum of constant shape and

strength. For an increase in hard X-rays in the hard state, the intrin-

sic spectrum and the accretion rate have to be higher in the hard state

in the wind absorption scenario (as well as in the reflection model).

An intrinsic pivot somewhere between 12 and 20 keV would instead

naturally explain the observed anticorrelations without any variable

absorption.

The fact that the shape of the orbital modulation does not change

significantly between the states and that the modulation becomes

stronger in the soft states also speaks against any increase in optical

depth or a re-distribution of the local absorbing matter in the tran-

sition to the hard state. If anything, both this study and preliminary

results based on Chandra data (McCollough et al., in preparation)

suggest a higher wind density in the soft states.

Finally, the existence of a very similar pattern of the radio/X-ray

correlation in the Cyg X-3 hard state to that of other sources, with

the sharp change between radio behaviour at exactly the same flux

level as that corresponding to its apparent transition, is probably

the strongest argument for a real state transition in Cyg X-3. Since

the radio emission originates from jets far away from the compact

object and several orders of magnitude farther out than the size of

the system, these effects cannot be due to absorption.

The reflection model, proposed in Section 3.3.3, offers an alter-

native ‘in between’ the absorption model and a real transition. It

involves a real change in the accretion flow, with the thickening
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of the disc, possibly triggered by super-Eddington accretion rates,

which may well show the observed bimodality. A spectral variability

explained by varying the fraction of the emission seen direct, com-

pared to that seen only in reflection, would explain the observed

anticorrelations between flux and hardness. Since the change in the

accretion flow is intrinsic with respect to the surrounding matter,

the model is also in agreement with the orbital modulation not in-

creasing in the hard state. The reflection model, however, suffers

from the same problem as the absorption model in that the required

incident spectrum is very bright and soft, with a strong disc com-

ponent present. This implies a higher accretion rate in the appar-

ent hard state and does not seem to agree with, for example, the

radio/X-ray correlations, even if the change in radio behaviour in

other systems could, in principle, be a response to other proper-

ties of the hard state than the disappearance of the inner disc. We

note that an additional, independent way to investigate the exis-

tence of a state transition and truncation of the inner disc, would be

a study of the timing behaviour. Such a study could not be done using

the data presented here due to its limited time-resolution, but will

be presented elsewhere, using other data (Hjalmarsdotter et al., in

preparation).

4.2 The origin of the non-thermal electrons

The observed spectra of hard states of Galactic as well as extra-

galactic black hole sources are usually well described by purely

thermal Comptonization. In the soft state, the non-thermal frac-

tion is, however, often significant or dominating. Extended flat

tails in both, for example, Cyg X-1 (McConnell et al. 2002) and

GRS 1915 + 105 (Zdziarski et al. 2001), with no apparent cut-off be-

low 1 MeV, serve as strong evidence for the presence of non-thermal

electrons accelerated to suprathermal energies in these sources. The

precise acceleration mechanism responsible for the observed non-

thermal emission observed in soft states of Galactic X-ray bina-

ries as well as in AGN is not well known. A part of the problem

is our present lack of understanding of the soft state beyond the

thin disc approximation, in particular the location and physical con-

ditions of regions responsible for hard X-ray production in that

state.

The disc in Cyg X-3 is located in a dense wind environment.

It may be subjected to constant collisions with the wind even at

small radii, close to the compact object. Such collisions are likely to

produce shocks resulting in particle acceleration in both the thin disc

and perhaps also in the inner advective flow of a hard state. In fact,

some observations of Cyg X-1 in its hard state seem to require some

small fraction of non-thermal electrons, in the form of a weaker

component in addition to the main thermal one (e.g. McConnell

et al. 2002; Ibragimov et al. 2005). Ibragimov et al. (2005) found

that the addition of such an additional non-thermal component could

explain not only the high-energy tail as observed by CGRO/OSSE,

but also the soft excess, required in fits to the hard state of Cyg X-1

and usually modelled with an additional thermal Comptonization

component. With the improvement in γ -ray instruments, more such

hard tails are likely to be found.

In the scenario of the non-thermal model, the peculiarity of the

Cyg X-3 hard state is thus perhaps not the presence of non-thermal

emission, but rather the absence of a strong hot thermal component.

This means that whatever acceleration mechanism is at work, it must

be efficient enough to dominate entirely over and prevent thermal

heating of the plasma electrons. To understand how this works, the

effect of a strong wind on an advective flow should be studied in

detail.

If the ‘hot’ inner flow in a truncated disc geometry is indeed the

same region as the base of the radio-emitting jets, a highly effi-

cient acceleration process may also be responsible for the unusually

strong radio emission of Cyg X-3. If it is also occasionally capa-

ble of accelerating electrons up to very high energies, it could ex-

plain several early but unconfirmed claims of Cyg X-3 as a source

of ultrahigh-energy γ rays (see the review by Bonnet-Bidaud &

Chardin 1988 and references therein).

4.3 Luminosities and implications for the mass
of the compact object

The Eddington luminosity for an X-ray-emitting compact object is

LE ≡ 4πμeG Mmpc

σT

, (1)

where μe = 2/(1 + X) is the mean electron molecular weight, X is

the hydrogen mass fraction, M is the mass of the compact object,

and σ T is the Thomson cross-section. With the companion being a

WR star, the accreted matter contains no or very little hydrogen, and

LE = 2.5 × 1038 M/M� erg s−1.

Table 1 shows that both the absorption and the reflection models

give a bolometric X-ray luminosity exceeding the Eddington lumi-

nosity for a 1.4-M� neutron star (assuming a distance of 9 kpc).

Both luminosities are within the range for typical luminosities of a

stable soft state for a ∼10 M� black hole and consistent with the

soft spectral shapes. The high luminosities of these models are thus

not a problem in themselves, even if the fact that these models imply

higher luminosities for the apparent hard state than for the observed

soft states of the source does not seem to be in agreement with our

other results. In these two models, a neutron star accretor cannot

be ruled out if accretion is super-Eddington, as explicitly suggested

by the reflection model. For example, the neutron star X-ray binary

Cir X-1 can be as luminous as ∼10L/LE in its soft state (Done &

Gierliński 2003 and references therein).

Without the presence of hydrogen in the accreted matter, the non-

thermal model gives a luminosity below LE for a 1.4-M� neutron

star. This model is, however, not consistent with a neutron star ac-

cretor since it describes a low accretion rate hard state, which is

observed in atoll systems only at luminosities below ∼10 per cent of

LE if no hysteresis effects are present (Gladstone, Done & Gierliński

2007). As a persistent system, Cyg X-3, just like Cyg X-1, does not

show any hysteresis and the luminosity for the state transitions is

constant and the same for the hard-to-soft as for the soft-to-hard

transitions. If the non-thermal model is a correct interpretation of

the Cyg X-3 hard state, a neutron star accretor can thus be ruled

out. For black holes, both observations (e.g. Done & Gierliński

2003) and theoretical models of advective flows, (ADAF, Esin,

McClintock & Narayan 1997) suggest that the transition to a hard

state takes place at a maximum of a few per cent of the Eddington

luminosity (again if no hysteresis effects are present). In order for

the luminosity in this model to be a small enough fraction of LE,

the mass of the compact object would have to exceed 20 M� (for a

transition at 3 per cent LE), thus making Cyg X-3 the most-massive

black hole observed in an X-ray binary in our Galaxy so far. We

note that such a high mass is compatible with the mass function of

Schmutz et al. (1996). If a non-thermal hard state such as described

in Section 2.2, is allowed at slightly higher luminosities, the mass

can be lower and in the range of present mass estimates of the more

massive black hole binaries (like e.g. GRS 1915 + 105, 14 ± 4 M�,

Harlaftis & Greiner 2004).
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Luminous hot accretion flows have been investigated by Yuan

et al. (2007) and shown to be able to explain the large luminosities

in excess of 10 per cent of the Eddington luminosity seen in the

hard state of some transient black hole binaries. The properties of a

non-thermal advective flow have not yet been studied. In addition,

the complex environment in the Cyg X-3 system compared to other

systems may make disc formation difficult. The conditions for stable

disc accretion may not only depend on the properties of the accretion

solution, but may also be limited by dynamical constraints, making

it possible to support a stable inner disc only at higher L/LE than in

other systems.

5 C O N C L U S I O N S

We have studied the X-ray binary Cyg X-3 in its apparent hard state,

characterized by low ASM flux levels (1–12 keV) and a spectrum

peaking at ∼20 keV. Our aim was to determine whether Cyg X-3

experiences a state transition from a disc-dominated state to a state

where the inner disc is truncated and replaced with a hot flow, or

whether this apparent transition is just an effect of increased local

absorption.

From a study of the ASM light curve, we find that the distri-

bution of soft X-ray fluxes is bimodal, reflecting a switching be-

tween this apparent hard and a soft state. The distribution within

each peak is lognormal. The previously reported anticorrelations

between hard and soft X-rays and between soft X-ray flux and hard-

ness are present in both states and are indicative of an intrinsic

spectral pivoting rather than of variable absorption. The radio/X-

ray correlations in Cyg X-3 are very similar to that of other sources

with a distinct change in the radio behaviour at the flux level marking

the state transition. A study of the orbital modulation further shows

that an increase in wind optical depth in the hard state is unlikely.

These results are all strongly suggestive of a real state transition in

Cyg X-3, with a change in the configuration of the accretion flow,

rather than variability of absorbing local wind material in the line

of sight.

We model the broad-band X-ray spectrum in the apparent hard

state, using INTEGRAL data. Due to the strong absorption indeed

present in this system, spectral modelling is not straightforward or

unique, and several interpretations are possible. The main problem

in identifying the apparent hard state in Cyg X-3 with a ‘real’ hard

state has been the unusually low high-energy cut-off, implying a

very low electron temperature, not consistent with a transition to

a ‘hot flow’. We find that allowing for the accreted power to be

transferred to the electrons in the plasma in the form of acceleration

rather than thermal heating, thus producing a spectrum dominated

by non-thermal Comptonization, usually observed in soft states,

gives a good description of the Cyg X-3 hard state spectrum. The

input seed photons originate in a weak low-temperature blackbody

from an accretion disc truncated far away from the innermost stable

orbit. The luminosity in this non-thermal hard state is as high as

∼10 per cent of the Eddington luminosity for a 10-M� black hole.

This means that either it takes place at considerably higher lumi-

nosities than those suggested by the standard ADAF models, or the

compact object is very massive, >20 M�.

We find that a wind absorption model, where the apparent hard

state is created by increased absorption at low energies, as well as a

reflection model, where the spectrum of the hard state is interpreted

as that of almost pure Compton reflection in a geometry with a

thickened disc, obscuring the direct emission from view, both give

good fits to the data, both formally better than our preferred model.

However, both of these models imply a very luminous and soft

intrinsic spectrum, not in agreement with our other results.

In conclusion, we suggest that the observed hard state in Cyg X-3

is indeed a hard state with truncation of the inner disc and involves a

change in accretion solution and disc geometry. The absence of hot

electrons giving rise to a thermal Comptonization peak at ∼100 keV,

as seen in most other sources in their hard states, is explained by the

non-thermal nature of this hard state, with the accreted power being

supplied to the plasma electrons in the form of acceleration rather

than thermal heating. This unusual behaviour may be an effect of

the strong wind interacting with the accretion flow in this extremely

compact system.

A forthcoming study of the full cycle of spectral variability of

this object as well as its timing behaviour (in preparation) will shed

further light on its nature and its classification in the scheme of

Galactic X-ray binary systems.
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