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Let P be a monotone increasing graph property, let G = (V , E) be a graph, and let q be a positive
integer. In this paper, we study the (1 : q) Maker–Breaker game, played on the edges of G, in
which Maker’s goal is to build a graph that satisfies the property P . It is clear that in order for
Maker to have a chance of winning, G itself must satisfy P . We prove that if G satisfies P in
some strong sense, that is, if one has to delete sufficiently many edges from G in order to obtain a
graph that does not satisfy P , then Maker has a winning strategy for this game. We also consider
a different notion of satisfying some property in a strong sense, which is motivated by a problem
of Duffus, Łuczak and Rödl [6].

1. Introduction

Let X be a finite set and let F ⊆ 2X be a family of subsets. In the (p : q) Maker–Breaker game
(X,F), two players, called Maker and Breaker, take turns in claiming previously unclaimed
elements of X, with Maker going first. The set X is called the ‘board’ of the game and the
members of F are referred to as the ‘winning sets’. Maker claims p board elements per turn,
whereas Breaker claims q. The game ends when every board element has been claimed by some
player. Maker wins the game if he occupies all elements of some winning set; otherwise Breaker
wins. We say that a (p : q) game (X,F) is a Maker’s win if Maker has a strategy that ensures his
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win in this game against any strategy of Breaker, otherwise the game is a Breaker’s win. Note
that p, q, X, and F determine whether the game is a Maker’s win or a Breaker’s win.

In this paper we are interested in the following family of Maker–Breaker games. Let P be a
monotone increasing graph property, let G = (V , E) be a graph, and let q be a positive integer. In
the (1 : q) Maker–Breaker game (E,FP ), Maker’s goal is to build a subgraph of G that satisfies
the property P , that is, FP = {E ′ ⊆ E : G[E ′] ∈ P }. We are interested in characteristics of the
graph G which guarantee that the (1 : q) game (E,FP ) is a Maker’s win. Since P is a monotone
increasing property, it is clear that Maker will lose the game (E,FP ) if G /∈ P . On the other
hand, it seems plausible that if G satisfies P in a ‘sufficiently robust’ manner, then Maker should
be able to retain some of this initial advantage and win the game. This notion of ‘robustness’ is
made precise in the following definition.

Definition. Let ε > 0, let P be a monotone increasing graph property, and let G = (V , E) be
a graph with m edges. G is said to be ε-robust with respect to P if one has to delete at least εm
edges from G in order to obtain a graph that does not satisfy P .

Remark. A graph G with m edges is ε-robust with respect to a monotone increasing property
P if and only if G is ε-far from satisfying the (monotone decreasing) complement property P̄

(that is, one has to delete at least εm edges from G in order to obtain a graph that does satisfy P̄ ).

We prove the following general result.

Theorem 1.1. Let ε > 0, let P be a monotone increasing graph property, and let G = (V , E)

be a graph with n vertices and m = Θ(n2) edges. If G is ε-robust with respect to P and n is
sufficiently large, then there exist positive constants c and α = α(ε, P ), such that Maker has a
winning strategy for the (1 : q) game (E,FP ) for every q � cnα.

The bound on q given in Theorem 1.1 is clearly best possible up to the value of α. For some
properties, such as the property PH of admitting a copy of H , the value of α obtained in the
proof of Theorem 1.1, is best possible as well. That is, one can determine the largest value of q
for which the (1 : q) game (E,FPH

) is a Maker’s win, up to a multiplicative constant factor (we
discuss this fact in more detail in Section 4). For general properties, however, this is not the case.
Indeed, for the special case in which P is the property of being not-r-colourable, we prove the
following stronger result.

Theorem 1.2. Let r be a positive integer and let P (r) be the property of being not-r-colourable
(that is, of having chromatic number at least r + 1). Let ε > 0 and let G = (V , E) be a graph
with n vertices and m edges, where n is sufficiently large. If G is ε-robust with respect to P (r),
then Maker has a winning strategy for the (1 : q) game (E,FP (r)), for every q � cε2m

n log r
, where

c > 0 is an appropriate constant.

The bound on q given in Theorem 1.2 is not far from being tight, at least for fixed values of r.
This is discussed further in the final section.
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A different notion of ‘robustness’ was considered by Duffus, Łuczak and Rödl in [6]. They
study the (1 : q) Maker–Breaker (E,FP (r)) game, where P (r) is the property of being not-r-
colourable, and G= (V , E) is a graph on n vertices with chromatic number χ. Duffus, Łuczak
and Rödl asked how large should χ be in order to ensure that this game is a Maker’s win. They
conjectured that this value of χ is independent of n. We prove the following weaker result.

Theorem 1.3. Let q and r be positive integers. There exists a constant c = c(q, r) such that, if
G is a graph on n vertices and χ(G) � c log n, then Maker has a winning strategy for the (1 : q)

game (E,FP (r)).

In fact Duffus, Łuczak and Rödl consider the somewhat different setting, in which G is a
hypergraph, and the players claim vertices of G. However, they mention that the case where G

is a graph and q = r = 2 is open. In the special case where G = (V , E) is a graph, they consider
the game (V ,FP (r)) rather than (E,FP (r)) (that is, the players claim vertices and not edges).
However, we feel that, for graphs, the edge version is the more natural one. Still, the result stated
in Theorem 1.3 holds for the vertex version as well.

Note that for q = 1 one can easily obtain a stronger result than that ensured by Theorem 1.3, by
using a strategy stealing argument. Indeed, let G be a graph on n vertices satisfying χ(G) > r2.
Let GM and GB = G \ GM denote the subgraphs of G, built by Maker and Breaker, respect-
ively, during the game (played according to certain strategies). Clearly χ(GM)χ(G \ GM) � χ(G).
Hence, either χ(GM) > r or χ(GB) > r. Assume for the sake of contradiction that no strategy of
Maker guarantees χ(GM) > r. It follows from the above that there exists a strategy SB of Breaker
that ensures χ(GB) > r, regardless of Maker’s strategy. However, Maker can ‘steal’ SB , that is,
he can claim an arbitrary first edge and then play according to SB , pretending to be the second
player (whenever he is supposed to claim an edge that is already his, he claims an arbitrary free
edge). It follows by the definition of SB that χ(GM) > r, contrary to our assumption. Note that
strategy stealing is a purely existential argument: we do not know of any explicit strategy for
Maker that ensures his win in the game with these parameters. On the other hand, Theorem 1.3
gives the currently best bound for any q � 2 and r � 2.

One can apply the Duffus, Łuczak and Rödl notion of robustness to other graph proper-
ties besides the property of being not-r-colourable. Consider the property Pk of being k-edge-
connected. Is there a function f : N × N → N, such that, for every f(k, q)-edge-connected graph
G = (V , E), Maker has a winning strategy for the (1 : q) game (E,FPk

)? For q = 1 the answer
is yes. Indeed, a classical theorem of Nash-Williams [12] and of Tutte [13] asserts that 4k-edge-
connectivity ensures the existence of 2k pairwise edge-disjoint spanning trees. These trees, in
turn, ensure Maker’s win by the classical theorem of Lehman [11]. Hence, f(k, 1) = 4k suffices
for every k ∈ N. For q � 2 and relatively small values of k, the answer is no. Indeed, consider a
complete bipartite graph G = (A ∪ B,E), where |A| = c log n and |B| = n − c log n, for an ap-
propriate constant c > 0. By using a Box Game strategy (see [5]), we conclude that Breaker can
isolate some vertex of B and thus win the game. For ‘large’ values of k we prove the following.

Theorem 1.4. Let G = (V , E) be a graph on n vertices, and let q � 2 and k = k(n) � log2 n

be integers. If G is (100kq log2 q)-edge-connected, then Maker has a winning strategy for the
(1 : q) game (E,FPk

).
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There is a striking relation between the theory of positional games and the theory of random
graphs, known as the Erdős paradigm. Roughly speaking, it asserts that, in some games, playing
randomly and playing according to an optimal strategy yield the same outcome. Theorem 1.4
is an example of this paradigm. It asserts, in particular, that if G = (V , E) is (c log2 |V |)-edge-
connected for an appropriate constant c > 0, then if Maker follows his optimal strategy, he will
win the (1 : 2) game (E,FP1

) (that is, succeed in constructing a connected graph), regardless
of Breaker’s strategy. If, on the other hand, both players play randomly, then the graph built by
Maker can be viewed as a random subgraph of G with |E|/3 edges. The fact that such a graph
is almost surely connected follows from a result of [1]. The aforementioned assumption on edge
connectivity of G is easily seen to be tight for the random game, up to the value of c.

1.1. Notation and preliminaries
For the sake of simplicity and clarity of presentation, we do not make a particular effort to
optimize the constants obtained in our proofs. We also omit floor and ceiling signs whenever
these are not crucial. Most of our results are asymptotic in nature, and whenever necessary we
assume that n is sufficiently large. Throughout the paper, log stands for the natural logarithm,
unless stated otherwise. Our graph-theoretic notation is standard and follows that of [14]. In
particular, we use the following.

For a graph G, let V (G) and E(G) denote its sets of vertices and edges respectively, and put
v(G) = |V (G)| and e(G) = |E(G)|. For a set A ⊆ V (G), let EG(A) denote the set of edges of G
with both endpoints in A, and let eG(A) = |EG(A)|. For disjoint sets A,B ⊆ V (G), let EG(A,B)

denote the set of edges of G with one endpoint in A and one endpoint in B, and let eG(A,B) =

|EG(A,B)|. Sometimes, if there is no risk of confusion, we discard the subscript G in the above
notation. For a set S ⊂ V (G), let S̄ = V (G) \ S . Let (S, S̄ ) denote the edge-cut that separates S
from S̄ , that is, (S, S̄) = EG(S, S̄ ). For a set S ⊆ V (G), let G[S] denote the subgraph of G induced
on the vertices of S . For a set E ′ ⊆ E(G), let G[E ′] denote the subgraph of G spanned by the
edges of E ′. For a graph H , let

m2(H) := max

{
e(G) − 1

v(G) − 2
: G ⊆ H, v(G) � 3

}

denote its 2-density. Let G = (V , E) be a graph with m edges, and let 0 � t � m be an integer.
The random graph G(t) is the graph obtained from G by randomly deleting m − t edges from
G uniformly among all elements of

(
E

m−t

)
. For positive integers r and k, and for a fixed graph

H , let P (r), Pk and PH denote the property of being not-r-colourable, the property of being
k-edge-connected, and the property of admitting a copy of H , respectively.

The following fundamental theorem, due to Beck [3], is a useful sufficient condition for
Breaker’s win in the (p : q) game (X,F).

Theorem 1.5. Let X be a finite set and let F ⊆ 2X . If
∑

B∈F (1 + q)−|B|/p < 1
1+q

, then Breaker
(as first or second player) has a winning strategy for the (p : q) game (X,F).

The rest of the paper is organized as follows. In Section 2 we prove Theorems 1.1 and 1.2,
and in Section 3 we prove Theorems 1.3 and 1.4. Finally, in Section 4 we present some open
problems.
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2. Monotone properties

Proof of Theorem 1.1. Maker’s strategy is to build a graph that contains a relatively small
subgraph satisfying P . Since P is monotone increasing, this will ensure his win. The existence
of such a subgraph is guaranteed by the main result of [2].

Theorem 2.1. Let ε > 0 and let P be a monotone increasing property. Let G be a graph with
n vertices and Θ(n2) edges, which is ε-robust with respect to P . Then there exists a graph H

on h = h(ε, P ) vertices that satisfies P , and a constant γ = γ(ε, P ) > 0, such that G contains at
least γnh copies of H .

Remark. In [2], this result is stated in terms of monotone decreasing properties and ε-farness.
The statement of Theorem 2.1, as it appears here, is obtained via the equivalence indicated in the
previous remark (see page 2).

If there exists a forest F that satisfies P , then Maker wins regardless of his strategy, for every
sufficiently large n and q = o(n). Indeed, Maker’s graph will have ω(n) edges, and will thus
contain every fixed forest. Hence, we assume that P contains no forests. Let H and γ be as in
Theorem 2.1; by the above we can assume that H contains a cycle. We will prove that Maker can
claim a copy of H in G. In order to do so, we need the following lemma.

Lemma 2.2. Let G = (V , E) be a graph with n vertices and m � c1n
2 edges, where c1 > 0 is

a constant. Let H be a fixed graph on h vertices that contains a cycle, and let 0 < γ < 1 be a
constant. Assume that G contains at least γnh copies of H . Then, there exist constants c2 > 0 and
0 < δ < 1 such that, with probability at least 2/3, a random graph G(t) with t = c2mn

−1/m2(H)

edges is such that every subgraph of it with at least (1 − δ)t edges contains a copy of H .

The proof of Lemma 2.2 is a straightforward adaptation of the proof of a lemma of Bednarska
and Łuczak (see Lemma 4 in [4]), where a similar result is proved for the special case G = Kn.
For the sake of completeness we include a short sketch of the proof.

Proof. We will use the following fact, which can be proved through standard methods: for
t′ := t/2, there exists a constant c′ > 0 such that Pr(H 	⊆ G(t′)) � e−c′t.

Let 0 < δ < 1/2 be a constant, small enough to satisfy δ − δ log δ < c′. We count pairs
(F, F ′) such that F is a subgraph of G with t edges, and F ′ is a subgraph of F with (1 − δ)t � t′

edges that does not contain a copy of H . Counting from the viewpoint of F ′ and using the above
fact, we conclude that the number of such pairs is at most

e−c′t

(
m

(1 − δ)t

)(
m − (1 − δ)t

δt

)
.

Hence, we conclude that the number of such pairs is at most(
m

t

)(
t

δt

)
e−c′t � (e/δ)δte−c′t

(
m

t

)

� 1

3

(
m

t

)
,
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where the last inequality holds for sufficiently large n. It follows that the probability that G(t)

contains a subgraph on (1 − δ)t vertices which does not contain a copy of H is at most 1/3, as
claimed.

We are now ready to describe Maker’s strategy. Let c2 > 0 and 0 < δ < 1 be the constants
whose existence is guaranteed by Lemma 2.2, and let q = δ

2c2
n1/m2(H) − 1. In the first t :=

δm/(2q + 2) = c2mn
−1/m2(H) rounds, Maker plays randomly, that is, before the game starts Maker

draws uniformly at random t edges of G. Let {ei}ti=1 be an arbitrary ordering of the chosen edges;
these edges are kept secret from Breaker until they are claimed. In his ith move, for 1 � i � t,
Maker claims the edge ei. If ei has been previously claimed by him or by Breaker, then he claims
an arbitrary free edge. If ei is claimed by Breaker, then it is declared a failure. In his ith move,
for i > t, Maker claims an arbitrary free edge.

Let SM denote the aforementioned strategy of Maker, and let SB be an arbitrary fixed strategy
of Breaker. We claim that if Maker follows SM and Breaker follows SB , then Maker wins with
positive probability. First we prove the following lemma.

Lemma 2.3. With probability at least 1/2, there are at most δt failures.

Proof. During the first t rounds, both players claim together at most t(q + 1) = δm/2 edges. It
follows that, for every 1 � i � t, the probability that ei is a failure is at most δ/2. Let X be the
random variable that counts the number of failures. Then E(X) � δt/2. It follows by Markov’s
inequality that Pr(X � δt) � 1/2.

We are now ready to prove our claim. Let Mt denote the graph built by Maker during the first
t rounds and let M̃t := Mt ∩ {e1, . . . , et}. The graph M̃t can be viewed as a random graph G(t)

from which an adversary has removed some edges, namely, all the edges that were declared a
failure. By Lemma 2.3, with probability at least 1/2 there are at most δt failures, that is, there
are at least (1 − δ)t edges in M̃t. Assuming e(M̃t) � (1 − δ)t, it follows by Lemma 2.2 that
M̃t contains a copy of H with probability at least 2/3. Thus, M̃t contains a copy of H with
probability at least 1/6.

Hence, with positive probability, Maker has won the game. Since this is a finite perfect inform-
ation game with no chance moves, it follows that there exists a deterministic winning strategy
for Maker to win this game, assuming Breaker follows SB . However, since SB was arbitrary, this
holds for any strategy of Breaker. It follows that the game is a Maker’s win, as claimed.

Proof of Theorem 1.2. Maker plays as follows. Let δ = ε/4. In the first t := δm/(q + 1)

rounds, Maker plays randomly, that is, before the game starts Maker draws uniformly at random
t edges of G. Let {ei}ti=1 be an arbitrary ordering of the chosen edges; these edges are kept secret
from Breaker until they are claimed. In his ith move, for 1 � i � t, Maker claims the edge ei. If
ei has been previously claimed by him or by Breaker, then he claims an arbitrary free edge. If ei
is claimed by Breaker, then it is declared a failure. In his ith move, for i > t, Maker claims an
arbitrary free edge.
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Denote the aforementioned strategy of Maker by SM , and let SB be an arbitrary fixed strategy
of Breaker. We claim that if Maker follows SM and Breaker follows SB , then Maker wins with
positive probability. First we prove two lemmas.

Lemma 2.4. Let G = (V , E) be as in Theorem 1.2. Let γ = δ/(q + 1), and let R ⊆ E be a set
of size γm, drawn uniformly at random among all such sets. Then, with probability at least 2/3,
GR := (V , R) is ε/2-robust with respect to being not-r-colourable, that is, one has to delete at
least εγm/2 edges from GR in order to obtain an r-colourable graph.

Proof. Let V = V1 ∪ · · · ∪ Vr be an arbitrary fixed partition of V into r parts. Since G is ε-
robust with respect to being not-r-colourable, it follows that f :=

∑r
i=1 eG(Vi) � εm. Let Y =∑r

i=1 eGR
(Vi). Then Y is a hypergeometric random variable with parameters m, f and γm; in

particular, E(Y ) = γf � εγm. It follows by standard bounds on the tail of the hypergeometric
distribution (see, e.g., [8]) that

Pr(Y � εγm/2) � Pr(Y � E(Y )/2)

� e−εγm/8

� 1

3
r−n,

where the last inequality follows by the upper bound on q, assumed in Theorem 1.2. Since there
are at most rn such partitions, the result follows by a union bound argument.

Lemma 2.5. The probability that there are at least εδm/(2q + 2) failures is at most 1/2.

Proof. During the first t rounds, both players claim together at most t(q + 1) = δm edges. It
follows that, for every 1 � i � t, the probability that ei is a failure is at most δ. Let X be the
random variable that counts the number of failures. Then E(X) � δt = δ2m/(q + 1). It follows
by Markov’s inequality that Pr(X � εδm/(2q + 2)) � 1/2.

We are now ready to prove our claim. Let Mt denote the graph built by Maker during the first
t rounds and let M̃t := Mt ∩ {e1, . . . , et}. The graph M̃t can be viewed as a random graph G(t)

from which an adversary has removed some edges, namely, all the edges that were declared a
failure. It follows by Lemma 2.4 that the probability that one has to delete at least εδm/(2q + 2)

edges from G(t) in order to obtain an r-colourable graph is at least 2/3. However, by Lemma 2.5,
with probability at least 1/2, a smaller number of edges were removed from G(t) to obtain M̃t.
Thus, M̃t is not r-colourable with probability at least 1/6.

Hence, with positive probability, Maker has won the game. Since this is a finite perfect inform-
ation game with no chance moves, it follows that there exists a deterministic winning strategy
for Maker to win this game, assuming Breaker follows SB . However, since SB was arbitrary, this
holds for any strategy of Breaker. It follows that the game is a Maker’s win, as claimed.

3. Chromatic number and edge connectivity

Proof of Theorem 1.3. We first prove a few simple but useful facts.
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Proposition 3.1. Let q � 1 and r � 2 be integers and let G = (V , E) be a graph on n vertices,
where n is sufficiently large. Each of the following is a sufficient condition for Maker’s win in the
(1 : q) game (E,FP (r)).

(a) Maker can win the same game on some subgraph of G.

(b) G contains a clique of size 1000qr log r.

(c) α(G) � n/(10qr log r).

Proof. (a) Let H be a subgraph of G on which Maker can win the (1 : q) game (E(H),FP (r)).
Let SH be an arbitrary winning strategy of Maker in this game. When playing the (1 : q) game
(E,FP (r)), Maker follows SH while ignoring E \ E(H). That is, if in some move Breaker claims
q′ < q edges of E(H), then Maker (in his mind) gives Breaker q − q′ additional free edges of
E(H), and then plays according to SH . Clearly, by the time every edge of E(H) is claimed, Maker
has built a non-r-colourable subgraph of H , which is also a non-r-colourable subgraph of G.

(b) Let s = 1000qr log r and let H be a copy of Ks in G. It was proved in [7] that if q � �
1000r log r

,
then, by playing a (1 : q) game on the edge set of K�, Maker can build a graph with chromatic
number at least r + 1. The claim now follows by condition (a) of this proposition.

(c) Let s = 10qr log r, and assume that α(G) � n/s. Maker’s goal is to build a graph that does not
admit an independent set of size n/r, and so, in particular, is not r-colourable. Let A ⊆ V be an
arbitrary set of size n/r. By our assumption α(G[A]) � n/s. It follows by Turán’s theorem that
e(G[A]) � 4.5qn log r/r. Let IG denote the family of edge-sets of all induced subgraphs of G on
n/r vertices. It is clear that if Breaker can win the (q : 1) game (E, IG), then Maker can win the
(1 : q) game (E,FP (r)) by ensuring that the independence number of his graph is strictly smaller
than n/r. In order to prove that Breaker can win (E, IG), we apply Theorem 1.5. We have

∑
B∈IG

2−|B|/q �
(

n

n/r

)
2−4.5n log r/r

� (er)n/re−3n log r/r

� (e1−2 log r)n/r

= o(1),

where the last equality holds since r � 2.

We are now ready to prove Theorem 1.3. We assume r � 2 as the assertion of the theorem is
trivial for r = 1.

Let a = 10qr log r and let k = k(q, r) be the smallest positive integer such that, for every graph
G on n � k vertices satisfying α(G) � n/a, Maker has a winning strategy for the (1 : q) game
(E(G),FP (r)) (the existence of such an integer k is guaranteed by part (c) of Proposition 3.1).
Let b = a

a−1
, and let n0 be the largest integer satisfying n0 � k + logb n0. For every i � 0, let

ni = n0b
i.

Claim 3.2. Let i � 0 be an integer, and let G be a graph on ni vertices such that χ(G) � k +

logb ni. Then there exists a subgraph G∗ ⊆ G such that v(G∗) � k and α(G∗) � v(G∗)/a.
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Proof. We proceed by induction on i. The claim clearly holds for i = 0, as then we have v(G) =

n0 � k + logb n0 � χ(G). It follows that G is a complete graph and thus α(G) = 1. Hence, since
n0 � k � a, we conclude that G∗ := G satisfies the assertion of the claim. Next, let G be a
graph on ni vertices, for some i � 1, such that χ(G) � k + logb ni. If α(G) � ni/a, then G∗ := G

satisfies the assertion of the claim. Otherwise, let I ⊆ V (G) be an arbitrary independent set of
size ni/a, and let G′ = G[V (G) \ I]. Note that v(G′) = ni − ni/a = nib

−1 = ni−1 and χ(G′) �
χ(G) − 1 � k + logb ni − logb b = k + logb ni−1. Hence, by the induction hypothesis, there ex-
ists a subgraph G∗ ⊆ G′ ⊆ G such that v(G∗) � k and α(G∗) � v(G∗)/a.

Let G be a graph on n > n0 vertices, such that χ(G) � k + logb n + 1. Let i be the integer for
which ni < n � ni+1. Let G′ be the graph obtained from G by adding ni+1 − n isolated vertices.
Note that v(G′) = ni+1 and χ(G′) = χ(G) � k + logb ni+1. It follows by Claim 3.2 that there
exists a subgraph G∗ ⊆ G′ such that v(G∗) � k and α(G∗) � v(G∗)/a. Hence, by the choice of k,
it follows that Maker has a winning strategy for the (1 : q) game (E(G∗),FP (r)). By part (a) of
Proposition 3.1 we conclude that Maker also wins this game when played on G′. Since G′ \ G

consists of isolated vertices, it follows that the (1 : q) game (E(G),FP (r)) is a Maker’s win, as
claimed.

Proof of Theorem 1.4. We will make use of the following theorem of Karger [10].

Theorem 3.3. Let G = (V , E) be a graph on n vertices, which is r-edge-connected. Then, for
every t � 1, the number of cuts of size at most rt in G is at most cn2t for some positive constant c.

Consider the following auxiliary Maker–Breaker game (E,F), which we refer to as the Cut
Game. Two players, called CutMaker and CutBreaker, take turns in claiming free edges of G =

(V , E). CutBreaker, who is the first player, claims 1 edge per turn, whereas CutMaker claims q
edges. The family F consists of all edge-sets L ⊆ E for which there exists a cut (S, S̄ ) of G such
that L ⊆ E(S, S̄ ) and |L| = e(S, S̄ ) − k + 1. CutMaker wins the game if he claims all edges of
some element of F ; otherwise CutBreaker wins. It is easy to see that the (1 : q) game (E,FPk

)

is a Maker’s win if and only if the (q : 1) Cut Game is a CutBreaker’s win. By Theorem 3.3
we have

∑
B∈F

2−|B|/q �
n2∑

i=100kq log2 q

|{S ⊂ V : e(S, S̄ ) = i}|
(

i

k − 1

)
2−(i−k+1)/q

�
n2∑

i=100kq log2 q

cn
2i

100kq log2 q (ei/k)k2(k−i)/q

� c

n2∑
i=100kq log2 q

2
i

50q − i
2q +2k log(i/k)

= o(1),

where the third inequality holds since k � log2 n, and the last equality holds since k = ω(1).
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Hence, it follows by Theorem 1.5 that the (q : 1) game (E,F) is indeed a CutBreaker’s
win.

4. Concluding remarks and open problems

(1) In Theorem 1.1, we have proved that there exists a winning strategy for Maker in the (1 : q)

game (E,FP ) for every dense graph G = (V , E) on n vertices that is robust with respect to P , and
for every q � cnα for some constants c > 0 and α > 0. For the special case in which P = P (r)

is the property of being not-r-colourable, Theorem 1.2 provides a stronger result: namely, the
requirement that G is dense becomes redundant, and the upper bound on q is improved to c(r) |E|

|V | .
Both theorems are existential in nature. It would be interesting to find explicit, efficient and
deterministic winning strategies for Maker in these games, under similar conditions.

(2) As mentioned in the Introduction, Theorem 1.1 is essentially best possible for some proper-
ties. One witness of this fact is the property PH of admitting a copy of H , for some fixed graph
H . Indeed, let G = (V , E) be a graph with n vertices and Θ(n2) edges, which is ε-robust with
respect to PH . It is well known that G contains γnv(H) copies of H , where γ > 0 is a constant.
Hence, it follows from the proof of Theorem 1.1 that Maker has a winning strategy for the
(1 : q) game (E,FPH

) for every q � c1n
1/m2(H), where c1 > 0 is an appropriate constant. Now

assume that q � c2n
1/m2(H) for some sufficiently large constant c2. We claim that for such a q,

Breaker has a winning strategy for the (1 : q) game (E,FPH
). Clearly it suffices to prove this

for the (1 : q) game (E(Kn),FPH
). This, however, has been proved in [4]. On the other hand,

Theorem 1.2 shows that for some properties, such as being not-r-colourable, the upper bound
given in Theorem 1.1 is far from being best possible. It would be interesting to obtain tighter
bounds for additional monotone properties.

(3) The bound on q given in Theorem 1.2 is not far from being tight, at least for fixed values of
r. Indeed, consider for example the graph G, which consists of n/d disjoint copies of Kd, where
n � d > r = 3. Clearly, one has to delete a constant fraction of the edges of every d-clique of
G in order to obtain an r-colourable graph. Thus G is Ω(1)-robust with respect to being not-r-
colourable. However, if q � 2d/(r − 2), then Breaker can make sure that the maximum degree
in Maker’s graph will be at most r − 1, and thus Maker’s graph will be r-colourable. Breaker’s
strategy is very simple: whenever Maker claims an edge (u, v), Breaker responds by claiming
q/2 arbitrary free edges that are incident with u and q/2 arbitrary free edges that are incident
with v. For large r, the maximum possible value of ε is only Θ(1/r), as any graph can be made
r-colourable by deleting at most an O(1/r) fraction of its edges. Here, however, one can show
that for q � Cd/(r log r), Breaker has a winning strategy for some graphs. Indeed, let d be an
integer satisfying d � r log r. Let G = G(n, d/n) be a random graph on n vertices. Delete from
G all edges that are incident with vertices of degree higher than 2d; denote the resulting graph by
G′ = (V , E). One can easily show that |V | = n, and almost surely |E| = Θ(d)n and G′ is Θ(1/r)-
robust with respect to being not-r-colourable. However, if q � Cd/(r log r), for an appropriate
constant C > 0, then Breaker can make sure that Maker’s graph will be triangle-free, and with
maximum degree at most c̃r log r, where c̃ > 0 is sufficiently small. It follows by Johansson’s
theorem [9] that Maker’s graph will be r-colourable. Breaker plays as follows: in each move
he first claims every free edge that closes a triangle in Maker’s graph. Denote the number of

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0963548310000064
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 14:31:50, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0963548310000064
https:/www.cambridge.org/core


Playing to Retain the Advantage 491

such edges by q1 and let q2 = q − q1. Since the triangles in G(n, d/n) are almost surely edge-
disjoint, we can assume in fact that q1 = 1. Then, if the last edge claimed by Maker was (u, v),
then Breaker responds by claiming q2/2 arbitrary free edges that are incident with u and q2/2

arbitrary free edges that are incident with v. This strategy is quite similar to that suggested by
Chvátal and Erdős in [5] (see Theorem 5.2 there).
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