SOME PROPERTIES OF THE EXOTIC MULTIPLICATIONS ON THE THREE-SPHERE

By M. ARKOWITZ and C. R. CURJEL[†]

[Received 14 June 1968]

1. Introduction

It is well known that up to homotopy the three-sphere S^3 admits twelve distinct multiplications or *H*-space structures [see (2), or Lemma 2]. In this note we establish some properties of these different multiplications on S^3 by elementary group-theoretic arguments.

We work with path-connected topological spaces with base point and homotopy classes of base-point-preserving maps. As usual [A, B] stands for the collection of such homotopy classes of A into B. For convenience we do not distinguish notationally between a map and its homotopy class. If (G, m) and (H, n) are two H-spaces then a map $f: (G, m) \to (H, n)$ is called an H-map if $n(f \times f) = fm \in [G \times G, H]$. If the H-space (G, m)has a two-sided homotopy inverse then a (two-fold) commutator map $\phi: G \times G \to G$ can be defined by $\phi(x, y) = (xy)(x^{-1}y^{-1})$, where the multiplication is denoted by juxtaposition and the homotopy inverse by the exponent '-1'. A k-fold commutator map $\phi_k: G^k \to G$ is then inductively defined by ϕ_1 = the identity map 1, $\phi_2 = \phi$, and

$$\phi_{k} = \phi(\phi_{k-1} \times 1).$$

The homotopical nilpotency of (G, m) is said to be equal to l if ϕ_{l+1} is nullhomotopic and ϕ_l is not. We write $\operatorname{nil}(G, m) = l$ for $\phi_l \neq 0$ and $\phi_{l+1} = 0$, where 0 is the constant map. In the present paper we determine the *H*-maps and the homotopical nilpotency of S^3 for all possible multiplications.

If m_0 is the standard multiplication on S^3 then it is shown in Lemma 2 that the twelve multiplications on S^3 can be written as

$$m_t = m_0 \phi^t \in [S^3 \times S^3, S^3]$$

Here $t = 0, 1, ..., 11, \phi$ denotes the commutator map, and the exponent and juxtaposition are taken with respect to the group structure in $[S^3 \times S^3, S^3]$ induced by m_0 . Finally we denote by N the map of S^3 into itself of degree N.

 \dagger The first author was supported by a Dartmouth College Faculty Fellowship and the second author partially by the National Science Foundation (NSF-GP5874).

Quart. J. Math. Oxford (2), 20 (1969), 171-6.

THEOREM A. The map $N: (S^3, m_r) \rightarrow (S^3, m_l)$ of degree N is an H-map if and only if $N^2(2t+1) \equiv N(2r+1) \mod 24$.

We also prove

THEOREM B. If r = 1, 4, 7, or 10, then $nil(S^3, m_r) = 2$. If r = 0, 2, 3, 5, 6, 8, 9, or 11, then $nil(S^3, m_r) = 3$.

In the case of the standard multiplication (r = t = 0) Theorem A was proved by us in (1). S. Y. Husseini informs us that he and J. Stasheff have obtained Theorem A by different methods (unpublished). Theorem B was proved by G. J. Porter for m_0 in (5). Some of the steps in the proof of Theorem B can be found in (3), 175-6 and (4), § 10, where they are established in another way.

Our method of proof consists of examining the group-theoretic properties of $[S^3 \times S^3, S^3]$. With this method it is also possible to retrieve rather easily some known theorems on the multiplications of S^3 (see Remark 1). A similar discussion of the group $[S^7 \times S^7, S^7]$ leads to results on the multiplications of S^7 . It would be interesting in our opinion to extend our theorems to other *H*-spaces.

2. Proof of Theorem A

We write S for S^3 and consider the set [A, S] for any space A as a group, the group operation being induced from the standard multiplication m_0 of S. We write this group multiplicatively even though we denote the identity of the group by 0. The commutator of two elements a and b is $(a, b) = aba^{-1}b^{-1}$.

LEMMA 1. The group $[S \times S, S]$ is nilpotent of class ≤ 2 , and so for any $a, b \in [S \times S, S]$ and integer n > 0,

$$(ab)^n = (b, a)^{\frac{1}{2}n(n-1)}a^n b^n.$$

Proof. The first assertion is a result of G. W. Whitehead [see (6), Lemma 2.14 and § 3], and the second is an identity which is known to hold in a group of nilpotency class ≤ 2 .

LEMMA 2. The twelve homotopy classes of multiplications on S can be written as $m_t = m_0 \phi^t \in [S \times S, S]$, t = 0, ..., 11, where $\phi \in [S \times S, S]$ is the commutator map. Moreover, ϕ has order 12.

Proof. Consider the cofibre sequence

$$S \lor S \xrightarrow{f} S \times S \xrightarrow{q} S \land S \approx S^6.$$

172

ON EXOTIC MULTIPLICATIONS ON THE THREE-SPHERE 173

This gives a long exact sequence

$$\longrightarrow [\Sigma(S \times S), S] \xrightarrow{\Sigma j^*} [\Sigma(S \vee S), S] \longrightarrow [S^6, S]$$
$$\xrightarrow{q^*} [S \times S, S] \xrightarrow{j^*} [S \vee S, S],$$

where Σ denotes reduced suspension. It is well known and easily proved that Σj^* and j^* are epimorphisms. Thus we get a short exact sequence of groups and homomorphisms

$$0 \longrightarrow \pi_{6}(S) \xrightarrow{q^{*}} [S \times S, S] \xrightarrow{j^{*}} \pi_{3}(S) \oplus \pi_{3}(S) \longrightarrow 0.$$

A multiplication m on S is an element of $[S \times S, S]$ such that

$$j^*(m) = 1 \oplus 1$$

where $1 \in \pi_{\mathfrak{s}}(S)$ is the homotopy class of the identity map. Thus the collection of multiplications is just the coset of $\operatorname{Ker} j^*$ which contains m_0 . Hence it suffices to show that $\operatorname{Im} q^*$ is a cyclic group of order 12 generated by ϕ . Now it is known that $\pi_{\mathfrak{s}}(S)$ is a cyclic group of order 12 generated by $\langle 1, 1 \rangle$, the Samelson product of $1 \in \pi_{\mathfrak{s}}(S)$ with itself [see (3) 176]. But by the definition of the Samelson product $q^*\langle 1, 1 \rangle = \phi$. This completes the proof of the lemma.

Proof proper of Theorem A. First note that $m_0 = p_1 p_2$ and $\phi = (p_1, p_2)$ in $[S \times S, S]$ where $p_i \in [S \times S, S]$ is the projection on to the *i*th factor. Assume that N > 0. Then

$$egin{aligned} m_l \circ (\mathbf{N} imes \mathbf{N}) &= (p_1 p_2 \phi^l) \circ (\mathbf{N} imes \mathbf{N}) \ &= (\mathbf{N} p_1) (\mathbf{N} p_2) (\mathbf{N} p_1, \mathbf{N} p_2)^l \ &= p_1^N p_2^N (p_1, p_2)^{N^{\mathbf{H}}} \end{aligned}$$

since the commutator is biadditive in a group of nilpotency ≤ 2 . On the other hand,

$$\begin{split} \mathbf{N} \circ m_r &= (p_1 p_2 \phi^r)^N \\ &= (\phi^r, p_1 p_2)^{\frac{1}{2}N(N-1)} (p_1 p_2)^N \phi^{rN}, & \text{by Lemma 1,} \\ &= (p_1 p_2)^N \phi^{rN} \quad \text{since } (\phi^r, p_1 p_2) = 0 \\ &= (p_2, p_1)^{\frac{1}{2}N(N-1)} p_1^N p_2^N \phi^{rN}, & \text{by Lemma 1,} \\ &= p_1^N p_2^N (p_1, p_2)^{rN-\frac{1}{2}N(N-1)}. \end{split}$$

Thus N is an *H*-map if and only if $\phi^{N^*t} = \phi^{rN-\frac{1}{2}N(N-1)}$. Since ϕ has order 12 by Lemma 2, this is the case if and only if

$$N^{2}(2t+1) \equiv N(2r+1) \mod 24.$$

If N < 0 write N = (-N)(-1) and repeat the above argument.

3. Proof of Theorem B

We begin with a simple lemma on homotopy inverses.

LEMMA 3. The map $-1 \in [S, S]$ of degree -1 is a two-sided identity for every multiplication on S.

Proof. A left inverse $v_l \in [S, S]$ for m_l is characterized by the equation $v_l \cdot 1 = 0$ in [S, S], where the dot '.' is the operation in [S, S] induced by m_l . But this operation coincides with the usual group operation in the homotopy group $[S, S] = \pi_3(S)$. Thus $v_l = -1$ is the unique solution of the equation. Similarly the right inverse for m_l is -1.

Next we introduce the following notation: $\phi_k^{(r)}$ is the k-fold commutator map with respect to the multiplication m_r . It is well known that each $\phi_k^{(r)}$ induces a unique homotopy class $\psi_k^{(r)}$: $\wedge^k S \to S$ with $\psi_k^{(r)} \circ q_k = \phi_k^{(r)}$, where $\wedge^k S$ is the smashed product $S \wedge ... \wedge S$ (k times) $\approx S^{3k}$ and q_k is the projection of $S \times ... \times S$ on to $\wedge^k S$. For $\alpha \in \pi_p(S)$ and $\beta \in \pi_q(S)$ denote the Samelson product relative to m_r by $\langle \alpha, \beta \rangle_r \in \pi_{p+q}(S)$. We write ϕ_k for $\phi_k^{(0)}$, $\phi^{(r)}$ for $\phi_2^{(r)}$, ψ_k for $\psi_k^{(0)}$, $\psi^{(r)}$ for $\psi_2^{(r)}$, and $\langle \alpha, \beta \rangle$ for $\langle \alpha, \beta \rangle_0$.

LEMMA 4. (a) $\phi^{(r)} = \phi^{2r+1} \in [S \times S, S];$

- (b) $\psi^{(r)} = \psi^{2r+1} \in [S^6, S];$
- (c) $\langle \alpha, \beta \rangle_r = (2r+1) \langle \alpha, \beta \rangle$ for $\alpha \in \pi_p(S)$ and $\beta \in \pi_q(S)$.

Proof. Clearly (b) implies (c) since $\langle \alpha, \beta \rangle_r = \psi^{(r)}(\alpha \wedge \beta)$. Also (b) is an immediate consequence of (a). Thus it suffices to prove (a): Write '.' for the operation in $[S \times S, S]$ obtained from m_r and use juxtaposition for the standard multiplication in $[S \times S, S]$. Then, by Lemma 3,

$$\phi^{(r)} = (p_1 \cdot p_2) \cdot (p_1^{-1} \cdot p_2^{-1}),$$

where p_1 and p_2 are the two projections $S \times S \to S$ and the exponent '-1' denotes the inverse in $[S \times S, S]$ with respect to the standard multiplication in $[S \times S, S]$. Then

$$\begin{split} \phi^{(r)} &= p_1 p_2 (p_1, p_2)^r \cdot p_1^{-1} p_2^{-1} (p_1^{-1}, p_2^{-1})^r \\ &= p_1 p_2 \phi^r p_1^{-1} p_2^{-1} \phi^r (p_1 p_2 \phi^r, p_1^{-1} p_2^{-1} \phi^r)^r \\ &= \phi^{2r+1} (p_1 p_2 \phi^r, p_1^{-1} p_2^{-1} \phi^r)^r. \end{split}$$

But by repeatedly using the biadditivity of commutators in the group $[S \times S, S]$ of nilpotency class ≤ 2 one easily sees that

$$(p_1 p_2 \phi^r, p_1^{-1} p_2^{-1} \phi^r) = 0.$$

This completes the proof.

174

ON EXOTIC MULTIPLICATIONS ON THE THREE-SPHERE 175

Proof proper of Theorem B. We first note that $\phi_k^{(r)} = 0$ if and only if $\psi_k^{(r)} = 0$. Now $\psi_2^{(r)} = \psi^{(r)} = \langle 1, 1 \rangle_r = (2r+1)\langle 1, 1 \rangle$ for $1 \in \pi_3(S)$. But $\langle 1, 1 \rangle \in \pi_6(S)$ is an element of order 12. Therefore,

Next, $\begin{aligned} \psi_{2}^{(r)} \neq 0 \quad \text{for all } r. \\ \psi_{3}^{(r)} &= \langle \langle 1, 1 \rangle_{r}, 1 \rangle_{r} \\ &= (2r+1)\langle (2r+1)\langle 1, 1 \rangle, 1 \rangle \\ &= (2r+1)^{2}\langle \langle 1, 1 \rangle, 1 \rangle. \end{aligned}$

But $\langle\langle 1,1\rangle,1\rangle \in \pi_9(S^3) \approx Z_3$ is an element of order 3 [see for instance (2) § 3]. Therefore $\psi_3^{(r)}$ (and consequently $\phi_3^{(r)}$) is trivial if and only if r = 1, 4, 7, or 10. Thus $\operatorname{nil}(S, m_r) = 2$ for r = 1, 4, 7, or 10. Finally note that $\langle\langle\langle 1,1\rangle_r,1\rangle_r,1\rangle_r$ is a multiple of $\langle\langle\langle 1,1\rangle,1\rangle,1\rangle$. To complete the proof of Theorem B it suffices to show that this latter Samelson product is trivial.

LEMMA 5. If $1 \in \pi_3(S)$ is the homotopy class of the identity map then $\langle \langle \langle 1, 1 \rangle, 1 \rangle, 1 \rangle = 0 \in \pi_{12}(S)$.

Proof. Let $\theta = \langle \langle \langle 1, 1 \rangle, 1 \rangle$ and $\eta = \langle \langle 1, 1 \rangle, \langle 1, 1 \rangle \rangle$. First note that $3\langle \langle 1, 1 \rangle, 1 \rangle = 0$ by the Jacobi identity and so $3\langle \langle \alpha, \beta \rangle, \gamma \rangle = 0$ for any elements α, β, γ . Thus $3\eta = 0$ and $3\theta = 0$. But $\eta = -\eta$ by anticommutativity, and so $2\eta = 0$. Hence it follows that $\eta = 0$. Now apply the Jacobi identity to the elements $\langle 1, 1 \rangle, 1$, and 1 to obtain $2\theta + \eta = 0$. Thus $2\theta = 0$. But we observed earlier that $3\theta = 0$. Therefore $\theta = 0$.

Remark 1. It is possible with our methods to retrieve some known theorems on the multiplications of S. We can prove that all multiplications on S satisfy the Moufang identity [see (4) § 9] and can determine which of them are homotopy-associative [see (2) Theorem 1.3]. These results require an examination of the group $[S \times S \times S, S]$, which is nilpotent of class ≤ 3 . For example, m_r is homotopy-associative if and only if $q_1 \cdot (q_2 \cdot q_3) = (q_1 \cdot q_2) \cdot q_3$ in $[S \times S \times S, S]$, where q_4 is the projection on to the *i*th factor. This equation, together with facts on commutators in groups of nilpotency class ≤ 3 , reduces to a simple identity in $[S \times S \times S, S]$ in terms of m_0 . We note that the multiplications on S which are homotopy-associative are precisely those which in Theorem B were shown to be of homotopical nilpotency 3.

Remark 2. The definition of homotopical nilpotency for a nonhomotopy-associative H-space depended on the bracketing in the definition of a commutator map. It follows from our proof of Theorem B that the homotopical nilpotency with respect to one bracketing is the same as that with respect to any other bracketing of the commutator.

REFERENCES

- 1. M. Arkowitz and C. R. Curjel, 'On maps of H-spaces', Topology, 6 (1967) 137-48.
- 2. I. M. James, 'Multiplications on spheres (II)', Trans. Amer. Math. Soc. 84 (1957) 545-58.
- 3. ---- 'On H-spaces and their homotopy groups', Quart. J. Math. (Oxford) (2) 11 (1960) 161-79.
- C. W. Norman, 'Homotopy loops', Topology, 2 (1963) 23-43.
 G. J. Porter, 'Homotopical nilpotency of S³', Proc. Amer. Math. Soc. 15 (1964) **681–2**.
- 6. G. W. Whitehead, 'On mappings into group-like spaces', Comm. Math. Helv. 28 (1954) 320-8.

Dartmouth College

Hanover, N.H., and Mathematical Institute Oxford University of Washington Seattle, and Forschungsinstitut für Mathematik, E.T.H. Zürich