SOME PROPERTIES OF THE EXOTIC MULTIPLICATIONS ON THE THREE-SPHERE

By M. ARKOWITZ and C. R. CURJEL \dagger

[Received 14 June 1968]

1. Introduction

It is well known that up to homotopy the three-sphere S^{3} admits twelve distinct multiplications or H-space structures [see (2), or Lemma 2]. In this note we establish some properties of these different multiplications on S^{3} by elementary group-theoretio arguments.

We work with path-connected topological spaces with base point and homotopy classes of base-point-preserving maps. As usual $[A, B]$ stands for the collection of such homotopy classes of A into B. For convenience we do not distinguish notationally between a map and its homotopy class. If (G, m) and (H, n) are two H-spaces then a map $f:(G, m) \rightarrow(H, n)$ is called an H-map if $n(f \times f)=f m \in[G \times G, H]$. If the H-space (G, m) has a two-sided homotopy inverse then a (two-fold) commutator map $\phi: G \times G \rightarrow G$ can be defined by $\phi(x, y)=(x y)\left(x^{-1} y^{-1}\right)$, where the multiplication is denoted by juxtaposition and the homotopy inverse by the exponent ' -1 '. A k-fold commutator map $\phi_{k}: G^{k} \rightarrow G$ is then inductively defined by $\phi_{1}=$ the identity map $1, \phi_{2}=\phi$, and

$$
\phi_{k}=\phi\left(\phi_{k-1} \times 1\right) .
$$

The homotopical nilpotency of (G, m) is said to be equal to l if ϕ_{l+1} is nullhomotopic and ϕ_{l} is not. We write $\operatorname{nil}(G, m)=l$ for $\phi_{l} \neq 0$ and $\phi_{l+1}=0$, where 0 is the constant map. In the present paper we determine the H-maps and the homotopical nilpotency of S^{3} for all possible multiplications.
If m_{0} is the standard multiplication on S^{3} then it is shown in Lemma 2 that the twelve multiplications on S^{3} can be written as

$$
m_{i}=m_{0} \phi^{t} \in\left[S^{3} \times S^{3}, S^{3}\right] .
$$

Here $t=0,1, \ldots, 11, \phi$ denotes the commutator map, and the exponent and juxtaposition are taken with respect to the group structure in [$S^{3} \times S^{3}, S^{3}$] induced by m_{0}. Finally we denote by N the map of S^{3} into itself of degree N.
\dagger The first author was supported by a Dartmouth College Faculty Fellowship and the second author partially by the National Science Foundation (NSFGP5874).

Theorem A. The map $\mathbf{N}:\left(S^{3}, m_{r}\right) \rightarrow\left(S^{3}, m_{l}\right)$ of degree N is an $H-m a p$ if and only if $N^{2}(2 t+1) \equiv N(2 r+1) \bmod 24$.

We also prove
Theorem B. If $r=1,4,7$, or 10 , then $\operatorname{nil}\left(S^{3}, m_{r}\right)=2$. If $r=0,2$, $3,5,6,8,9$, or 11 , then $\operatorname{nil}\left(S^{3}, m_{r}\right)=3$.

In the case of the standard multiplication ($r=t=0$) Theorem A was proved by us in (1). S. Y. Husseini informs us that he and J. Stasheff have obtained Theorem A by different methods (unpublished). Theorem B was proved by G. J. Porter for m_{0} in (5). Some of the steps in the proof of Theorem B can be found in (3), 175-6 and (4), § 10, where they are established in another way.

Our method of proof consists of examining the group-theoretic properties of $\left[S^{3} \times S^{3}, S^{3}\right]$. With this method it is also possible to retrieve rather easily some known theorems on the multiplications of S^{3} (see Remark 1). A similar discussion of the group [$S^{7} \times S^{7}, S^{7}$] leads to results on the multiplications of S^{7}. It would be interesting in our opinion to extend our theorems to other H-spaces.

2. Proof of Theorem A

We write S for S^{3} and consider the set $[A, S]$ for any space A as a group, the group operation being induced from the standard multiplication m_{0} of S. We write this group multiplicatively even though we denote the identity of the group by 0 . The commutator of two elements a and b is $(a, b)=a b a^{-1} b^{-1}$.

Lemma 1. The group $[S \times S, S]$ is nilpotent of class $\leqslant 2$, and so for any $a, b \in[S \times S, S]$ and integer $n>0$,

$$
(a b)^{n}=(b, a)^{1 n(n-1)} a^{n} b^{n}
$$

Proof. The first assertion is a result of G. W. Whitehead [see (6), Lemma 2.14 and § 3], and the second is an identity which is known to hold in a group of nilpotency class $\leqslant 2$.

Lemma 2. The twelve homotopy classes of multiplications on S can be written as $m_{t}=m_{0} \phi^{\prime} \in[S \times S, S], t=0, \ldots, 11$, where $\phi \in[S \times S, S]$ is the commutator map. Moreover, ϕ has order 12.

Proof. Consider the cofibre sequence

$$
S \vee S \xrightarrow{j} S \times S \xrightarrow{q} S \wedge S \approx S^{6}
$$

This gives a long exact sequence

$$
\begin{aligned}
& \longrightarrow {[\Sigma(S \times S), S] \xrightarrow{\Sigma j^{*}}[\Sigma(S \vee S), S] \longrightarrow\left[S^{6}, S\right] } \\
& \xrightarrow{q^{*}}[S \times S, S] \xrightarrow{j^{*}}[S \vee S, S],
\end{aligned}
$$

where Σ denotes reduced suspension. It is well known and easily proved that $\Sigma_{j}{ }^{*}$ and j^{*} are epimorphisms. Thus we get a short exact sequence of groups and homomorphisms

$$
0 \longrightarrow \pi_{6}(S) \xrightarrow{q^{*}}[S \times S, S] \xrightarrow{j^{*}} \pi_{3}(S) \oplus \pi_{3}(S) \longrightarrow 0
$$

A multiplication m on S is an element of $[S \times S, S]$ such that

$$
j^{*}(m)=1 \oplus 1
$$

where $1 \in \pi_{3}(S)$ is the homotopy class of the identity map. Thus the collection of multiplications is just the coset of Ker j^{*} which contains m_{0}. Hence it suffices to show that $\operatorname{Im} q^{*}$ is a cyclic group of order 12 generated by ϕ. Now it is known that $\pi_{6}(S)$ is a cyclic group of order 12 generated by $\langle 1,1\rangle$, the Samelson product of $1 \in \pi_{3}(S)$ with itself [see (3) 176]. But by the definition of the Samelson product $q^{*}\langle 1,1\rangle=\phi$. This completes the proof of the lemma.

Proof proper of Theorem A. First note that $m_{0}=p_{1} p_{2}$ and $\phi=\left(p_{1}, p_{2}\right)$ in $[S \times S, S]$ where $p_{i} \in[S \times S, S]$ is the projection on to the ith factor. Assume that $N>0$. Then

$$
\begin{aligned}
m_{l} \circ(\mathbf{N} \times \mathbf{N}) & =\left(p_{1} p_{2} \phi^{\prime}\right) \circ(\mathbf{N} \times \mathbf{N}) \\
& =\left(\mathbf{N} p_{1}\right)\left(\mathbf{N} p_{2}\right)\left(\mathbf{N} p_{1}, \mathbf{N} p_{2}\right)^{t} \\
& =p_{1}^{N} p_{2}^{N}\left(p_{1}, p_{2}\right)^{N^{4}}
\end{aligned}
$$

since the commutator is biadditive in a group of nilpotency $\leqslant 2$. On the other hand,

$$
\begin{aligned}
\mathrm{N} \circ m_{r} & =\left(p_{1} p_{2} \phi^{r}\right)^{N} \\
& =\left(\phi^{r}, p_{1} p_{2}\right)^{+N(N-1)}\left(p_{1} p_{2}\right)^{N} \phi^{r N}, \quad \text { by Lemma } 1, \\
& =\left(p_{1} p_{2}\right)^{N} \phi^{r N} \quad \text { since }\left(\phi^{r}, p_{1} p_{2}\right)=0 \\
& =\left(p_{2}, p_{1}\right)^{+N(N-1)} p_{1}^{N} p_{2}^{N} \phi^{r N}, \quad \text { by Lemma } 1 \\
& =p_{1}^{N} p_{2}^{N}\left(p_{1}, p_{2}\right)^{r N-1 N(N-1)} .
\end{aligned}
$$

Thus N is an H-map if and only if $\phi^{N^{2} l}=\phi^{r N-q N(N-1)}$. Since ϕ has order 12 by Lemma 2, this is the case if and only if

$$
N^{2}(2 t+1) \equiv N(2 r+1) \bmod 24
$$

If $N<0$ write $N=(-N)(-1)$ and repeat the above argument.

3. Proof of Theorem B

We begin with a simple lemma on homotopy inverses.
Lemma 3. The map $-1 \in[S, S]$ of degree -1 is a two-sided identity for every multiplication on S.

Proof. A left inverse $\nu_{t} \in[S, S]$ for m_{t} is characterized by the equation $v_{t} .1=0$ in $[S, S]$, where the dot '. ' is the operation in $[S, S]$ induced by m_{r}. But this operation coincides with the usual group operation in the homotopy group $[S, S]=\pi_{3}(S)$. Thus $\nu_{t}=-1$ is the unique solution of the equation. Similarly the right inverse for m_{l} is $\mathbf{- 1}$.

Next we introduce the following notation: $\phi_{k}^{(r)}$ is the k-fold commutator map with respect to the multiplication m_{r}. It is well known that each $\phi_{k}^{(r)}$ induces a unique homotopy class $\psi_{k}^{(r)}: \wedge^{k} S \rightarrow S$ with $\psi_{k}^{(r)} \circ q_{k}=\phi_{k}^{(r)}$, where $\wedge^{k} S$ is the smashed product $S \wedge \ldots \wedge S(k$ times $) \approx S^{s k}$ and q_{k} is the projection of $S \times \ldots \times S$ on to $\wedge^{k} S$. For $\alpha \in \pi_{p}(S)$ and $\beta \in \pi_{q}(S)$ denote the Samelson product relative to m_{r} by $\langle\alpha, \beta\rangle_{r} \in \pi_{p+q}(S)$. We write ϕ_{k} for $\phi_{k}^{(0)}, \phi^{(r)}$ for $\phi_{2}^{(r)}, \psi_{k}$ for $\psi_{k}^{(0)}, \psi^{(r)}$ for $\psi_{2}^{(r)}$, and $\langle\alpha, \beta\rangle$ for $\langle\alpha, \beta\rangle_{0}$.

Lemma 4. (a) $\phi^{(r)}=\phi^{2 r+1} \in[S \times S, S]$;
(b) $\psi^{(r)}=\psi^{2 r+1} \in\left[S^{6}, S\right] ;$
(c) $\langle\alpha, \beta\rangle_{r}=(2 r+1)\langle\alpha, \beta\rangle$ for $\alpha \in \pi_{p}(S)$ and $\beta \in \pi_{q}(S)$.

Proof. Clearly (b) implies (c) since $\langle\alpha, \beta\rangle_{\tau}=\psi^{(r)}(\alpha \wedge \beta)$. Also (b) is an immediate consequence of (a). Thus it suffices to prove (a): Write ' ' for the operation in $[S \times S, S]$ obtained from m_{r} and use juxtaposition for the standard multiplication in $[S \times S, S]$. Then, by Lemma 3,

$$
\phi^{(r)}=\left(p_{1} \cdot p_{8}\right) \cdot\left(p_{1}^{-1} \cdot p_{2}^{-1}\right),
$$

where p_{1} and p_{2} are the two projections $S \times S \rightarrow S$ and the exponent ' -1 ' denotes the inverse in $[S \times S, S]$ with respect to the standard multiplication in $[S \times S, S]$. Then

$$
\begin{aligned}
\phi^{(r)} & =p_{1} p_{2}\left(p_{1}, p_{2}\right)^{r} \cdot p_{1}^{-1} p_{2}^{-1}\left(p_{1}^{-1}, p_{2}^{-1}\right)^{r} \\
& =p_{1} p_{2} \phi^{r} p_{1}^{-1} p_{2}^{-1} \phi^{r}\left(p_{1} p_{2} \phi^{r}, p_{1}^{-1} p_{2}^{-1} \phi^{r}\right)^{r} \\
& =\phi^{2 r+1}\left(p_{1} p_{2} \phi^{r}, p_{1}^{-1} p_{2}^{-1} \phi^{r}\right)^{r} .
\end{aligned}
$$

But by repeatedly using the biadditivity of commutators in the group [$S \times S, S$] of nilpotency class $\leqslant 2$ one easily sees that

$$
\left(p_{1} p_{2} \phi^{r}, p_{1}^{-1} p_{2}^{-1} \phi^{r}\right)=0
$$

This completes the proof.

Proof proper of Theorem B. We first note that $\phi_{k}^{(r)}=0$ if and only if $\psi_{k}^{(r)}=0$. Now $\psi_{2}^{(r)}=\psi^{(r)}=\langle 1,1\rangle_{r}=(2 r+1)\langle 1,1\rangle$ for $1 \in \pi_{3}(S)$. But $\langle 1,1\rangle \in \pi_{0}(S)$ is an element of order 12. Therefore,

Next,

$$
\begin{aligned}
& \psi_{2}^{(r)} \neq 0 \quad \text { for all } r \\
\psi_{3}^{(r)}= & \left\langle\langle 1,1\rangle_{r}, 1\right\rangle_{r} \\
= & (2 r+1)\langle(2 r+1)\langle 1,1\rangle, 1\rangle \\
= & (2 r+1)^{2}\langle\langle 1,1\rangle, 1\rangle .
\end{aligned}
$$

But $\langle\langle 1,1\rangle, 1\rangle \in \pi_{9}\left(S^{3}\right) \approx Z_{3}$ is an element of order 3 [see for instance (2) § 3]. Therefore $\psi_{3}^{(r)}$ (and consequently $\phi_{3}^{(r)}$) is trivial if and only if $r=1,4,7$, or 10 . Thus $\operatorname{nil}\left(S, m_{r}\right)=2$ for $r=1,4,7$, or 10. Finally note that $\left\langle\left\langle\langle 1,1\rangle_{r}, 1\right\rangle_{r}, 1\right\rangle_{r}$ is a multiple of $\langle\langle\langle 1,1\rangle, 1\rangle, 1\rangle$. To complete the proof of Theorem B it suffices to show that this latter Samelson product is trivial.

Limma 5. If $1 \in \pi_{3}(S)$ is the homotopy class of the identity map then $\langle\langle\langle 1,1\rangle, 1\rangle, 1\rangle=0 \in \pi_{12}(S)$.

Proof. Let $\theta=\langle\langle\langle\mathbf{1}, \mathbf{1}\rangle, \mathbf{1}\rangle, \mathbf{1}\rangle$ and $\eta=\langle\langle\mathbf{1}, \mathbf{1}\rangle,\langle\mathbf{1}, \mathbf{1}\rangle\rangle$. First note that $3\langle\langle 1,1\rangle, 1\rangle=0$ by the Jacobi identity and so $3\langle\langle\alpha, \beta\rangle, \gamma\rangle=0$ for any elements α, β, γ. Thus $3 \eta=0$ and $3 \theta=0$. But $\eta=-\eta$ by anticommutativity, and so $2 \eta=0$. Hence it follows that $\eta=0$. Now apply the Jacobi identity to the elements $\langle 1,1\rangle, 1$, and 1 to obtain $2 \theta+\eta=0$. Thus $2 \theta=0$. But we observed earlier that $3 \theta=0$. Therefore $\theta=0$.

Remark 1. It is possible with our methods to retrieve some known theorems on the multiplications of S. We can prove that all multiplications on S satisfy the Moufang identity [see (4) § 9] and can determine which of them are homotopy-associative [see (2) Theorem 1.3]. These results require an examination of the group [$S \times S \times S, S$], which is nilpotent of class $\leqslant 3$. For example, m_{r} is homotopy-associative if and only if $q_{1} \cdot\left(q_{2} \cdot q_{8}\right)=\left(q_{1} \cdot q_{2}\right) \cdot q_{3}$ in $[S \times S \times S, S]$, where q_{i} is the projection on to the i th factor. This equation, together with facts on commutators in groups of nilpotency cless $\leqslant 3$, reduces to a simple identity in [$S \times S \times S, S$] in terms of m_{0}. We note that the multiplications on S which are homotopy-associative are precisely those which in Theorem B were shown to be of homotopical nilpotency 3.

Remark 2. The definition of homotopical nilpotency for a non-homotopy-associative H-space depended on the bracketing in the definition of a commutator map. It follows from our proof of Theorem B that the homotopical nilpotency with respect to one bracketing is the same as that with respect to any other bracketing of the commutator.

REFERENCES

1. M. Arkowitz and C. R. Curjel, 'On maps of H-spaces', Topology, 6 (1987) 137-48.
2. I. M. James, 'Multiplications on spheres (II)', Trans. Amer. Math. Soc. 84 (1957) 545-58.
3. -On H-spaces and their homotopy groups', Quart. J. Math. (Oxford) (2) 11 (1960) 161-79.
4. C. W. Norman, 'Homotopy loops', Topology, 2 (1963) 23-43.
5. G. J. Porter, 'Homotopical nilpotency of S^{3} ', Proc. Amer. Math. Soc. 15 (1964) 681-2.
6. G. W. Whitehead, 'On mappings into group-like spaces', Oomm. Math. Helv. 28 (1954) 320-8.

Dartmouth College
Hanover, N.H., and
Mathematical Institute
Oxford
University of Washington
Seattle, and
Forschungsinstitut für Mathematik, E.T.H. Zürich

