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1. Introduction

It is well known that up to homotopy the three-sphere S® admita twelve
distinct multiplications or H-space structures [see (2), or Lemma 2].
In this note we establish some properties of these different multiplica-
tions on §3 by elementary group-theoretic arguments.

We work with path-connected topological spaces with base point and
homotopy classes of base-point-preserving maps. As ususl [4, B] stands
for the collection of such homotopy classes of 4 into B. For convenience
we do not distinguish notationally between a map and its homotopy
class. If (@, m)and (H,n) are two H-spaces then a map f: (G, m) > (H,n)
ig called an H-map if n(fXf) = fm € (@ x G, H]. If the H-space (G, m)
has a two-sided homotopy inverse then a (two-fold) commutator map
¢: @X G~ @ can be defined by ¢(x,y) = (zy)(z-'y~!), where the
multiplication is denoted by juxtaposition and the homotopy inverse
by the exponent ‘—1’. A k-fold commutator map ¢,: G* > G is then
inductively defined by ¢, = the identity map 1, ¢, = ¢, and

b = P11 X 1).

The homotopical nilpotency of (@, m) is said to be equal to I if ¢, is
nullhomotopic and ¢; is not. We write nil{&,m) = [ for ¢; # 0 and
¢141 = 0, where 0 is the constant map. In the present paper we deter-
mine the H-maps and the homotopical nilpotency of S® for all possible
multiplications.

If m, is the standard multiplication on S2 then it is shown in Lemma 2
that the twelve multiplications on S® can be written as

m, = my¢t € [S®x 83, §3).
Heret=0,1,..., 11, ¢ denotes the commutator map, and the exponent
and juxtaposition are taken with respect to the group structure in
[8%x 83, 8%] induced by m,. Finally we denote by N the map of S® into
itself of degree N.
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THEOREM A. The map N: (83,m,) > (83, m,) of degree N 18 an H-map
if and only if N¥(2t+4+1) = N(2r+1) mod 24.

We also prove

TarEOoREM B. Ifr =1, 4, 7, or 10, then nil(S3,m,) = 2. Ifr =0, 2,
3,5,6,8,9, or 11, then ni(S3,m,) = 3.

In the case of the standard multiplication (r = ¢ = 0) Theorem A
was proved by usin (1). S. Y. Husseini informs us that he and J. Stasheff
have obtained Theorem A by different methods (unpublished). Theorem
B was proved by G. J. Porter for m, in (5). Some of the steps in the
proof of Theorem B can be found in (3), 1756-6 and (4), § 10, where they
are established in another way.

Our method of proof consists of examining the group-theoretic
properties of [S?x 8%, 8%]. With this method it is also possible to
retrieve rather easily some known theorems on the multiplications of §%
(see Remark 1). A similar discussion of the group [S? X 87, §7] leads to
results on the multiplications of §7. It would be interesting in our
opinion to extend our theorems to other H-spaces.

2. Proof of Theorem A

We write S for S® and consider the set [4, S] for any space 4 as a
group, the group operation being induced from the standard multiplica-
tion m, of 8. We write this group multiplicatively even though we denote
the identity of the group by 0. The commutator of two elements @ and b
is (a,b) = aba-1b-1.

LeMMA 1. The group [SX S, 8] 18 nilpotent of class < 2, and so for
any a, b e [Sx S, §] and integer n > 0,
(ab)™ = (b, a)inin-Dgnpn,

Proof. The first assertion is a result of G. W. Whitehead [see (6),
Lemma 2.14 and § 3], and the second is an identity which is known to
hold in a group of nilpotency class < 2.

LeMMa 2. The twelve homotopy classes of multiplications on S can be
written as m; = myPF e [SX S, 8], t =0,..., 11, where $ € [SX S, 8] s
the commutator map. Moreover, ¢ has order 12.

Proof. Consider the cofibre sequence

Sv8 s Sx8-Ls SAS = Se.
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This gives a long exact sequence

e (28X 8), 8] 25 (28 8), 5] —> [, 8]

2, 8% 8, 8] [Sv S, 8],

where T denotes reduced suspension. It is well known and easily proved
that Zj* and j* are epimorphisms. Thus we get a short exact sequence
of groups and homomorphisms

* v

0 —> m(8) > [8 8, 8] L my(8) @ my(S) —> 0.

A multiplication m on S is an element of [§x S, 8] such that
Hm) =101,

where 1 € 7g(8S) is the homotopy class of the identity map. Thus the
collection of multiplications is just the coset of Ker j* which contains m,.
Hence it suffices to show that Im ¢* is a cyclic group of order 12 generated
by ¢. Now it is known that m¢(S) is a cyclic group of order 12 generated
by (1, 1), the Samelson product of 1 e 7y(S) with itself [see (3) 176].
But by the definition of the Samelson product ¢*(1,1) = ¢. This com-
pletes the proof of the lemma.

Proof proper of Theorem A. First note that my = p, p,and ¢ = (P4, Ps)
in [§x 8, 8] where p, €[S x 8, 8] is the projection on to the ith factor.
Assume that ¥ > 0. Then

my o (NXN) = (p,p,¢#) o (NXN)
= (Np,)(Npy)(Np,, Npy)!
= P{JZ’?(Pl,Pz)N‘I

since the commutator is biadditive in a group of nilpotency < 2. On
the other hand,

Nom, = (p,p:¢")
= (¢", Py Do) N¥-V(p, p,)¥¢™V, by Lemma 1,
= (p, e}V since (¢, p,p,) = 0
— (py, p,)NN-DpNpNGeN| by Lemma 1,
= PYPY (1, pg) VIV,

Thus N is an H-map if and only if ¢V = ¢rN-+¥™-D, Since ¢ has
order 12 by Lemma 2, this is the case if and only if

N2t-+1) = N(2r+1) mod 24.
If N < 0 write N = (—N)(—1) and repeat the above argument.
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3. Proof of Theorem B

We begin with a simple lemma on homotopy inverses.

Levma 3. The map —1 €[S, 8] of degree —1 18 a two-sided identsty
SJor every multiplication on S.

Proof. A left inverse v, € [S, 8] for m, is characterized by the equation
v,.1 = 0 in [S, S], where the dot ‘.’ is the operation in [8, §] induced
by m;. But this operation coincides with the usual group operation in
the homotopy group [8,S] = 74(8). Thus »,= —1 is the unique
solution of the equation. Similarly the right inverne for m, is —1.

Next we introduce the following notation: ¢{” is the k-fold commutator
map with respect to the multiplication m,. It is well known that each
#{" induces a unique homotopy class y§{?: A¥S — S with Y’ o g, = ¢{",
where AXS is the smashed product SA ... A S (k times) =~ S°* and ¢, is
the projection of §Xx...xS on to A*¥S. For a€n,(8) and B & my(S)
denote the Samelson product relative to m, by (x,8), € m,,,(S). We
write ¢, for ¢, ¢ for ¢§, ¥, for Y, Y for Y, and («, B) for (x, 8),-

LEMMA 4. (a) ¢0 = ¢¥+1e [SX 8, S];
(B) Y = yPr+1 e [86, 8];
(©) (o B), = (2r+1)(, B) for a € my(S) and B € 7,(8).
Proof. Clearly (b) implies (¢) since (&, B), = ¢ a AB). Also (b) is an
immediate consequence of (¢). Thus it suffices to prove (a): Write ‘.’
for the operation in [Sx 8, 8] obtained from m, and use juxtaposition
for the standard multiplication in [S X S, §]. Then, by Lemma 3,
¢ = (p1-p)- (P11 25Y),
where p, and p, are the two projections SX S —» § and the exponent
‘—1’ denotes the inverse in [8x S, 8] with respect to the standard
multiplication in [§x S, §]. Then
¢ = 1 po(P1, o) - p1 P77 P
= P10 ¢'P1 D3 ' (01224, P1 03 H)
= ¥ p1 p: ¢, P1 D7 )"
But by repeatedly using the biadditivity of commutators in the group
[8x 8, §] of nilpotency class < 2 one easily sees that
(P1D: ¢, p1 'Pg '¢7) = 0.
This completes the proof.
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Proof proper of Theorem B. We first note that ¢f’ = 0 if and only if
YN = 0. Now ) = 0 = (1,1), = (2r+1)({1,1) for 1 € =y(S). But
(1,1) € m4(8) is an element of order 12. Therefore,

PP #£0 forallr.

P = (1, 1), 1),

= (2r41)((2r+1)(1, 1), 1)

= (2r+1)%(1,1),1).
But ((1,1),1) € my(8%) =~ Z, is an element of order 3 [see for instance
(2) § 3]. Therefore ¢{’ (and consequently ¢{") is trivial if and only if
r=1, 4, 7, or 10. Thus nil(8,m,) = 2 for r = 1, 4, 7, or 10. Finally
note that ({(1,1),,1), 1), is a multiple of ({(1,1),1),1). To complete
the proof of Theorem B it suffices to show that this latter Samelson
product is trivial.

LeMMa 5. If 1 € n4(S) 18 the homotopy class of the identity map then
(((1,1),1),1) = 0 € m,(S).

Proof. Let 6 = (((1,1),1%,1) and n = ((1,1), (1,1)). First note
that 3((1,1),1) = 0 by the Jacobi identity and so 3{{x, 8),y) = 0 for
any elements «, 8, y. Thus 3n = 0 and 36 = 0. But » = —7 by anti-
commutativity, and so 29 = 0. Hence it follows that n = 0. Now apply
the Jacobi identity to the elements (1,1), 1, and 1 to obtain 2647 = 0.
Thus 26 = 0. But we observed earlier that 3¢ = 0. Therefore § = 0.

Remark 1. It is possible with our methods to retrieve some known
theorems on the multiplications of §. We can prove that all multiplica-
tions on § satisfy the Moufang identity {see (4) § 9] and can determine
which of them are homotopy-associative [see (2) Theorem 1.3]. These
results require an examination of the group [Sx S x 8, S], which is
nilpotent of class < 3. For example, m, is homotopy-assoociative if and
only if ¢,.(¢s.93) = (¢1-92)-95in [S X 8 X S, §], where g, is the projection
on to the ith factor. This equation, together with facts on commuta-
tors in groups of nilpotency class < 3, reduces to a simple identity in
[Sx 8% 8, 8] in terms of m,. We note that the multiplications on §
which are homotopy-associative are precisely those which in Theorem B
were shown to be of homotopical nilpotency 3.

Remark 2. The definition of homotopical nilpotency for a non-
homotopy-associative H-space depended on the bracketing in the
definition of a commutator map. It follows from our proof of Theorem B
that the homotopical nilpotency with respect to one bracketing is the
same a8 that with respect to any other bracketing of the commutator.

Next,
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