View metadata, citation and similar papers at core.ac.uk

brought to you b
provided by RERO DOC Digital Library

774

Characterization of a Novel Chemotactic Factor for Neutrophils
in the Bronchial Secretions of Patients with Cystic Fibrosis

Tecla S. Dudez, Marc Chanson,
Susanna E. Schlegel-Haueter,
and Susanne Suter

Laboratory of Clinical Investigation 111, Department of Pediatrics,
University Children’s Hospital, Geneva, Switzerland

Chronic airway inflammation is a hallmark of cystic fibrosis (CF). Biological products with
chemotactic activity are essential for neutrophil recruitment to sites of inflammation. The pres-
ence of a factor with chemotactic activity higher than that of interleukin (IL)-8 in the bronchial
secretions of patients with CF has recently been reported. This article reports that the chemotactic
activity of this factor remained unaffected by a variety of physical treatments and could be
distinguished from those of IL-8, formylmethionylleucylphenylalanine, leukotreine B4, and
platelet-activating factor. The factor induced chemotaxis and chemokinesis locomotion of neu-
trophils, and its chemotactic activity was sensitive to pertussis toxin and thapsigargin. Semi-
purified preparation of the chemotactic factor increased transiently intracellular Ca** concen-
tration but failed to stimulate the release of neutrophil primary granules and the production of
superoxide, suggesting that the semipurified chemotactic factor is a Ca**-dependent chemoat-
tractant of neutrophils, acting via pertussin toxin—sensitive G protein—coupled surface receptors,
that directs neutrophil movement toward the airway epithelium.

Chronic airway inflammation and infection in patients with
cystic fibrosis (CF), an autosomal recessive disorder caused by
mutations in the gene encoding the CF transmembrane con-
ductance regulator (CFTR), is a progressively destructive pro-
cess that leads, ultimately, to respiratory failure [1, 2]. In re-
sponse to bacterial or viral infection, airway epithelial cells and
macrophages release a variety of cytokines and chemokines,
which act as mediators of intercellular communication between
the epithelium and inflammatory cells. In CF, the chronic in-
flammatory response was shown to be associated with the de-
creased capacity of the airway epithelium to clear pathogens
[3-5]. Other studies have reported that early inflammation in
the lungs of patients with CF may be associated with an ab-
normally high production of the CXC chemokine interleukin
(IL)-8, an 8.5-kDa peptide that is well known to act as a pow-
erful neutrophil-specific chemotactic agent [6-9]. In several clin-
ical studies, an increased concentration of IL-8 and high num-
bers of neutrophils in the bronchoalveolar lavage fluid (BAL)
of young patients with CF were found even in the absence of
positive bacterial cultures [6-8]. BAL from infected children
with CF contained more IL-8 and neutrophils than BAL from
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infected children with other chronic respiratory conditions [9].
The altered production of inflammatory mediators was ob-
served independently of the type of infectious stimulus, which
suggests that the inflammatory response to bacterial infection
is exaggerated in the airways of patients with CF [9].

The reason for the enhanced inflammatory response to path-
ogens and persistent neutrophil infiltrates into the airways is un-
certain. It has been proposed that the production of proinflam-
matory and/or anti-inflammatory mediators by airway epithelial
cells may be altered in individuals with CF [10-14]. Another
possibility is that chronic bacterial infection, combined with de-
creased clearance of bacterial breakdown products or exoprod-
ucts as a result of altered secretions, may result in the continued
presence in the airways of proinflammatory stimuli [9].

Various functions have been ascribed to chemokines, includ-
ing proinflammatory activities mediated by chemotaxis, che-
mokinesis, integrin activation, adhesion, and degranulation of
distinct leukocyte subsets expressing different chemokine re-
ceptors [15, 16]. In addition to IL-8, several chemotactic factors
have been identified in BAL from patients with CF, including
bacterial chemotactic peptides (FMLP [formylmethionylleucyl-
phenylalanine]), products of the complement cascade (C5a), se-
creted products of stimulated phospholipid metabolism (plate-
let-activating factor [PAF] and leukotreine B4 [LTB4]), and
degradation products derived from the extracellular matrix pro-
tein elastin or from the complex between elastase and its en-
dogenous inhibitor, al-antiprotease [17-21]. The relative im-
portance of these factors, however, is not known, nor is it
known which factors are present simultaneously in bronchial
secretions. Considering the pivotal roles of chemoattractants in
the inflammatory response, the identification of new chemo-
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tactic factors and the characterization of their mechanisms of
action are much needed to improve understanding of the path-
ogenesis of CF.

In a recent study, we determined the chemotactic activity of
bronchial secretions from patients with CF before and after an-
timicrobial treatment. We separated, by gel filtration of these
bronchial secretions, a 0.5-1-kDa fraction (“pool C”) with che-
motactic activity higher than that of IL-8 [22]. To further char-
acterize the bioactivity of pool C, we studied its biological activity
and analyzed its response to a variety of physical treatments. We
have also semipurified the chemotactic factor present in pool C
by Sep-Pak (Waters) fractionation and determined the signal
transduction mechanisms that semipurified chemotactic factor
(SCF) activates on neutrophils. The chemotactic factor evoked
chemotaxis and chemokinesis of neutrophils in the absence of
superoxide production or release of primary granules. This sug-
gests that SCF is a novel chemoattractant that directs neutrophil
movement toward the airway epithelium.

Materials and Methods

Bronchial secretions. ~ Bronchial secretions were collected be-
tween 1992 and 1994 from 8 patients with CF (age range, 12-46
years) hospitalized at the Geneva University Hospital (Geneva).
The diagnosis of CF was established by clinical features and was
confirmed by a sweat test. All patients had moderate-to-severe lung
disease, and the mean (*=SEM) forced expiratory volume in 1 s
(FEV,; given as a percentage of the predicted value) was 41% =+
3%. The mean (*SEM) white blood cell count was 11,923 +
1162 cells/mm?®. All patients were colonized with Pseudomonas aeru-
ginosa and were treated with the combination of an aminoglycoside
and a cephalosporin. This treatment was associated with improved
FEV, (51% = 4%) and lower white blood cell counts (6979 +
210 cellss'mm?®). The patients were in stable condition and had no
clinical signs of exacerbation of respiratory disease. Bronchial se-
cretions collected during a 24-h period were pooled. The secretions
were mixed with an equal volume of sterile 0.9% NaCl. The mixture
was centrifuged, and supernatant was stored at —70°C until assays
were done. The chemotactic factor recovered from the bronchial
secretions of 3 patients was semipurified; 2 of those patients were
homozygous for the AF508 mutation of CFTR.

Gel-filtration chromatography.  For gel-filtration chromatog-
raphy, processed bronchial secretions were heated at 95°C for 15
min, centrifuged, and passed through Millex filters with 0.22-mm
pores (Millipore). Filtered samples were subjected to fractionation
ona 1l X 120-cm Sephadex G75 gel chromatography column (Phar-
macia). The column was eluted with PBS at 4 mL/h, and 1-mL
fractions were collected. Three peaks (A, B, and C) showed che-
motactic activity: peak A corresponded to IL-8, peak B to FMLP-
like peptides, and peak C to a yet-unidentified factor [22]. In con-
trast to peak A (IL-8), peak C was detected in all patients, although
to varying degrees. IL-8 content and peak C activity were not
affected by antibiotic treatment, which indicates that no relation-
ship existed between infection and peak C activity [22]. In 3 pa-
tients, peak C fractions were pooled (pool C) for further assays
and purification.
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Chemotaxis and chemokinesis. ~ Chemotactic activity was de-
termined by a modified Boyden chamber assay, as described else-
where [22]. Polymorphonuclear neutrophils from buffy coats of
citrated blood collected from healthy donors were isolated by dex-
tran sedimentation, followed by density-gradient centrifugation in
Ficoll-Paque (Amersham), according to standard procedure. Neu-
trophils were quantified by a colorimetric determination of the
cleavage of 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-
1,3-benzene disulfonate (Boehringer Mannheim). Results were ex-
pressed as chemotactic index (CI), which was defined as the ratio
between the total number of migrated neutrophils and the number
of neutrophils that migrated nonspecifically. In some experiments,
neutrophils were preincubated for 10 min at 37°C with 500 uM
BocMLP (Sigma), an FMLP antagonist; 1 M Ly293111 (Lilly
Research), an LTB4 antagonist; or 10 uM CV-6209 (Biomol), a
PAF antagonist, before the chemotactic assay. All assays included
10 nM FMLP (Sigma), 100 nM LTB4 (Biomol), and 1 uM PAF
(Bachem) as positive controls. To study the signal transduction
pathway, neutrophils were incubated for 30 min at 37°C with per-
tussis toxin (PTX; 0.5-1 pg/mL), an inhibitor of G, GTP-binding
protein, or thapsigargin (0.01-1 pM), a C**-ATPase inhibitor.

ClIs were also measured for various concentrations of chloride.
Without modification, the incubation medium for neutrophils, re-
ferred to as “normal medium,” contains 130 mM chloride (iso-
tonic). Media were prepared in which the chloride concentration
was decreased to 115 mM (hypotonic) or increased to 170 mM
(hypertonic). To test whether osmolarity itself was a significant
influence, a medium in which the extra chloride was replaced with
glycerol was prepared by addition of 110 mM glycerol (Sigma) to
the low-chloride solution. This procedure produced osmolarity the
same as that of the high-chloride medium.

To distinguish chemotaxis from chemokinesis, chemotactic as-
says were performed with different amounts of pool C, either in
the upper and lower compartments or in the lower compartment
only of a Boyden chamber. The results were collected in checker-
board form and used to calculate chemotaxis (change in the di-
rectional response to the stimulus) and chemokinesis (change in
the extent of the random locomotion), as described in [23].

Analysis of the physical characteristics of the chemical factors.
The stability of the chemotactic factors was tested by evaluation
of the chemotactic activity of pool C in response to different chem-
ical and physical treatments. Results are expressed as a percentage
of the result obtained for the corresponding control. Pool C was
treated for 1 h at 37°C with trypsin (40 pg/mL), chymotrypsin (40
pg/mL), or proteinase K (50 ug/mL). At the end of the incubation
period, enzymatic activity was stopped by heating of the samples
at 95°C for 15 min. To determine the stability of pool C in response
to changes in temperature, the samples were heated (95°C for 15
min) and subjected to 3 freeze (liquid nitrogen)/thaw (37°C) cycles.
Bioactivity was also measured after samples were vacuum dried using
a SpeedVac (Savant) at room temperature for 24 h. To measure the
stability of pool C in response to changes in pH, samples were ex-
posed to 1/1000 trifluoroacetic acid (pH 2) and 1.4 N NH,OH (pH
>10) for 1 h at room temperature and vacuum dried (SpeedVac).

Sep-Pak fractionation. The chemotactic factor present in pool
C was purified further by reverse-phase chromatography using Sep-
Pak CI8 cartridges. Pool C was first acidified with 1/1000 trifluo-
roacetic acid to allow maximum binding on the cartridge. Frac-
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Table 1.
on the chemotactic activity of pool C.
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Effects of FMLP, leukotreine B4 (LTB4), and platelet-activating factor (PAF) antagonists

Response to indicated antagonist, mean + SEM, chemotactic index

No. of
Chemoattractant experiments Control BocMLP Ly293111 CV-6209
Pool C
Patient 1 15 154 = 04 17.35 = 0.4 143 = 0.3 14.8 = 0.45
Patient 2 8 17.1 = 0.5 18 + 0.35 16.5 = 0.4 18 = 0.5
Patient 3 10 14.8 = 0.35 17.9 = 0.35 16.3 = 0.3 18.5 = 0.3
FMLP 4 11.6 = 1.65 231 = 0.8° ND ND
LTB4 4 112 = 1.7 ND 2 + 0.6 ND
PAF 4 6+ 0.8 ND ND 0.7 = 0.15"
NOTE. Pool C from 3 different patients with cystic fibrosis was tested for chemotactic activity in the absence

(control) or presence of antagonists for FMLP (BocMLP, 500 M), LTB4 (Ly293111, 1 uM), and PAF (CV-6209,
10 pM). In parallel experiments, the inhibiting effects of these antagonists on FMLP, LTB4, and PAF, respectively,

were also tested. ND, not determined.
* P<.05, vs. control.

tionation of the samples was performed using an acetonitrile-water
gradient of decreasing polarity. The collected fractions were evap-
orated in a SpeedVac overnight at room temperature and resus-
pended in a volume of phosphate bicarbonate buffer containing 1
mM CaCl,, 1.2 mM MgCl,, 20 mM HEPES, and 0.1% glucose
(pH 7.4), resulting in a sample concentration of 20X-80X. The
chemotactic activity of SCF was preserved in concentrations of
4X-50X (data not shown).

Measurement of intracellular Ca’* ([Ca’*),) concentration. Neu-
trophils were incubated in the presence of 5 uM Oregon-Green 488
BAPTA-1 AM (Molecular Probes), a calcium indicator, for 1 h at
37°C, during which time they became attached to glass coverslips.
Cells were washed with Hank’s balanced salt solution (HBSS) sup-
plemented with 1.3 mM CacCl,, 1 mM MgCl,, and 10 mM HEPES
(pH 7.4) to remove the excess of probe. The coverslips were then
transferred to the stage of an inverted microscope (TMD-300; Nikon
AG) equipped for fluorescence with appropriate filters. A peristaltic

pump was used to continuously superfuse the neutrophils with un-
supplemented HBSS or HBSS supplemented with 5 uM FMLP or
1/5 dilution of SCF (20X-40X). Fluorescent Oregon-Green—loaded
neutrophils were viewed with a 63X/1.25 oil Iris Plan-Neofluar
objective lens (Carl Zeiss). Images were captured every 5 s with a
Visicam digital camera connected to a personal computer running
Metafluor software (Visitron Systems). To follow the time course
of Oregon-Green emission changes, the intensity of the fluorescence
in areas surrounding cells was measured on live images produced
using the Metafluor software. Because Oregon-Green 488 BAPTA-
1 AM is a single-wavelength dye, its emission is a function of both
[Ca®"]; concentration and dye concentration. [Ca”"]; concentration
changes were therefore expressed as the F1/F0 ratio, where fluo-
rescence intensity values (F1) are divided by the initial fluorescence
intensity (FO) measured during the recording [24].

Degranulation assay. — Degranulation of neutrophil primary
granules was assessed by measurement of the activity of released
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Bioactivity of the chemotactic factor in pool C after exposure to a variety of physical treatments. 4, The chemotactic index (expressed

as a percentage of untreated samples) of pool C resisted protease digestion by trypsin (Try), chymotrypsin (C-Try), and proteinase K (PK). B,
Pool C bioactivity was not affected by heating from room temperature (RT) to 95°C, freeze/thaw (F/T) cycles, or vacuum drying (V/D). C, Pool
C bioactivity was not altered at extreme basic pH but showed a modest decrease at pH 2. *P <.05. Values are mean = SEM of 4-6 experiments.
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Figure 2. Chemotaxis and chemokinesis in neutrophils in response

to pool C. The chemotactic index is represented as a function of in-
creasing doses of pool C. Chemotaxis was determined by measurement
of the migration of neutrophils from the upper to the lower compart-
ment of a Boyden chamber after the addition of pool C to the lower
compartment (solid line). Chemokinesis was measured in a similar man-
ner, except that doses of pool C were added to both compartments of
the chamber (dotted lines). As shown, the chemotactic index increased
with larger doses of pool C, indicating that the chemoattractant ex-
hibits chemotaxis and chemokinesis. Values are mean = SEM of 3
experiments.

myeloperoxidase in relation to total myeloperoxidase activity. The
cells were pretreated with 5 pg/mL cytochalasin B for 15 min at
37°C before degranulation was initiated. The degranulation assay
was performed at 37°C for 30 min in the absence or presence of
SCF (72X), 1 uM FMLP as a positive control, or 0.1% Triton X-
100. Triton X-100 was used to lyse the cells so that the total granule
content of the myeloperoxidase could be determined. After cen-
trifugation, the supernatant was assayed for myeloperoxidase with
2,2'-azino-bis(3-ethylbenzthiozoline-6)-sulfonic acid as substrate in
100 mM citrate buffer (pH 4.2). The optical density was measured
at 405 nm with a 3550-UV Bio-Rad ELISA reader.

Superoxide production assay.  The release of superoxide anion
by neutrophils was measured by the reduction of cytochrome c
(Sigma) in a kinetic spectrophotometric microplate assay, using a
Bio-Rad reader. The assay was performed at 37°C and included
the buffer as a negative control, 1 uM FMLP as a positive control,
or SCF (74X). The samples were preheated at 37°C for 15 min
before the reaction was started by the addition of neutrophils and
cytochrome c¢ in excess. The optical density was read at 550 nm
(narrow-bandwidth optical filter) over a period of 2 min. The re-
duction of cytochrome ¢, which is an indicator of superoxide pro-
duction, followed an exponential curve as a function of time. Time
constants (OD/min) were determined in the linear part of the curve.

Statistical analysis.  Myeloperoxydase assay data were com-
pared using Student’s ¢ test. Values are expressed as the mean +
SEM of an individual experiment done in triplicate and repeated
n times. P < .05 was considered to be significant.

Results

Failure of inhibition of FMLP, LTB4, and PAF receptors to
affect neutrophil migration stimulated by pool C.  Sputum sam-
ples from patients with CF were found to be chemotactically
active. The separation by gel filtration of bronchial secretions
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from these patients revealed a 0.5-1-kDa fraction (pool C) with
chemotactic activity that is distinct and greater than that of IL-
8 [22]. The chemotactic activity of pool C from 3 patients was
further examined. As shown in table 1, the CI of pool C was
not affected by the presence of antagonists for FMLP, LTB4,
or PAF. In contrast, the chemotactic activity induced by FMLP,
LTB4, and PAF was inhibited in the presence of their respective
antagonists (table 1). These results indicate that the molecular
identity of the chemotactic factor in pool C is distinct from
FMLP, LTB4, and PAF.

Physical characteristics of pool C bioactivity.  As shown in
figure 1, the bioactivity of pool C appears to be stable after
application of a variety of physical treatments. It is not sig-
nificantly inactivated by proteases, such as trypsin, chymo-
trypsin, or proteinase K (figure 14). The chemotactic activity
of pool C is not abolished after boiling, repeated freeze/thaw
cycles, or vacuum drying (figure 1B). A small but significant
decrease in CI was observed in samples of pool C exposed to
an acidic pH, whereas the bioactivity of pool C remained stable
after exposure to a basic pH (figure 10).

Direct signaling of neutrophils by pool C.  We next sought
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Figure 3. Inhibition of the chemotactic activity of pool C by per-

tussis toxin and thapsigargin. 4, The chemotactic index (expressed as
a percentage of its initial value) is shown as a function of increasing
concentration of pertussis toxin. Neutrophils were incubated in the
presence of pertussis toxin for 30 min before the migration assay was
done. The chemotactic activity of pool C (solid line) markedly de-
creased with increasing concentrations of pertussis toxin. A similar
inhibition was observed when 10 nM FMLP (dotted line) was used.
B, The chemotactic index is shown as a function of increasing con-
centration of thapsigargin. Neutrophils were incubated in the presence
of thapsigargin for 30 min before the migration assay was done. Again,
increasing concentrations of thapsigargin decreased the chemotactic
activity induced by pool C (solid line) and 10 nM FMLP (dotted line).
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Figure 4. Separation of the chemotactic factor from pool C. Pool C

was acidified and loaded onto a Sep-Pak column. The chemotactic ac-
tivity was determined in all fractions after extensive washing elution was
done using a gradient of acetonitrile-water. Chemotactic activity of semi-
purified chemotactic factor was recovered in fractions of 40%—50% ace-
tonitrile (solid line). The latter activity was clearly separated from that
of FMLP, which is also shown, for comparison (dotted line). Values are
mean += SEM of 7 experiments.

to determine the effects of pool C bioactivity on neutrophil
recruitment. For these experiments, the CI was measured in
the lower compartment of a Boyden chamber containing in-
creasing doses of pool C; neutrophils were transferred to the
upper compartment. Neutrophils migrated from the upper to
the lower compartment as the chemotactic gradients of pool C
increased (figure 2). In a second assay, pool C stimulated the
migration of neutrophils from the upper to the lower com-
partment in the absence of a concentration gradient (figure 2).
These results indicate that pool C induces chemotaxis and
chemokinesis.

We next studied the effects of uncouplers of signal trans-
duction pathways on neutrophils exposed to pool C. PTX is a
specific inhibitor of G,; GTP-binding proteins [25]. As shown
in figure 34, increasing concentrations of PTX diminished the
CI for neutrophils exposed to pool C as well as to FMLP. Thap-
sigargin is a specific inhibitor of the endoplasmic reticulum Ca**-
ATPase [26], which induces the depletion of internal Ca*" stores.
Thapsigargin markedly decreased the chemotactic response of
neutrophils induced by pool C and FMLP (figure 3B). These
data suggest that the factor in pool C directly stimulates chemo-
tactic responses in neutrophils through G protein—coupled sur-
face receptors and that the process involves [Ca®'],.

Biological activities of SCF.  To further investigate the biol-
ogical activities of the factor in pool C, the pooled samples

Table 2.
chemotactic factor (SCF).
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were purified and concentrated using a Sep-Pak extraction pro-
cedure. The Sep-Pak columns were eluted with increasing con-
centration of acetonitrile. As shown in figure 4, the chemotactic
activity of SCF was recovered in a fairly hydrophilic fraction
of 40%-50% acetonitrile. This activity was not detected after
extraction with chloroform (data not shown).

The chemotactic activity of pool C and SCF was determined
for various concentrations of chloride and compared with that
of FMLP. As shown in table 2, neutrophil chemotaxis in re-
sponse to FMLP was not influenced by the chloride concen-
tration. The bioactivity of the chemotactic factor was slightly
increased when the NaCl concentration was raised from 115 to
170 mM. This effect appeared to be independent of the change
in the osmolarity of the incubation medium, as evidenced by
addition of glycerol to the low-chloride medium (table 2). How-
ever, the chemotactic factor bioactivity under isotonic condi-
tions did not differ from that seen under hypertonic conditions.

To determine the ability of SCF to mobilize changes in the
[Ca®"], concentration after interaction with surface receptors,
the [Ca®"], concentration was monitored by digital imaging in
neutrophils loaded with the Ca>* probe Oregon-Green. As
shown in figure 5, superfusion of SCF (8 X) induced an increase
in the [Ca**]; concentration in most neutrophils. The time course
of fluorescence changes exhibited a transient response, with a
peak in [Ca®"]; that was reached after 10 s of stimulation and
returned to baseline levels after 1 min. Slow oscillations of
[Ca**]; were also observed during the descending phase of the
fluorescent signal. The amplitude of the [Ca®*]; increase induced
by SCF was similar to that evoked by FMLP.

We next sought to investigate whether SCF could elicit the
release of granules and the production of superoxide by neu-
trophils. As shown in figure 6, SCF (72X) failed to stimulate
degranulation of neutrophil primary granules, in contrast to
FMLP (figure 64). Moreover, SCF (74 X) did not stimulate the
production of superoxide, in contrast to FMLP (figure 6B).
Lower concentrations (40X and 20X) of SCF yield similar re-
sults (data not shown).

Discussion

Polymorphonuclear leukocytes respond to inflammatory me-
diators by migrating to sites of inflammation, where they may
exert their cytotoxic activity. In CF, the migration of neutrophils
into the airways is excessive, leading to a persistent inflammatory

Effects of chloride concentration on the chemotactic activity of pool C and semipurified

Response to indicated antagonist, mean = SEM, chemotactic index (no. of measurements)

Chemoattractant 115 mM NaCl 133 mM NaCl 170 mM NaCl NaCl and glycerol

FMLP 6.6 = 0.6 (8) 6.7 = 1.2(7) 6.2 = 0.7 (12) 6.7 = 0.5(8)

Pool C/SCF 33+ 0503 4.1 £ 0.3 (15) 44 + 0.5 (21) 24 + 0.35(3)
NOTE. Chemotactic activity was determined for FMLP (10 nM) and for SCF in the presence of increasing

concentrations of NaCl (115-170 mM). The effect of osmolarity was evaluated by adding 110 mM of glycerol to
medium containing 115 mM NaCl. Results for pool C and SCF were pooled. Data are from 3 experiments.
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Figure 5. Mobilization of intracellular Ca** ([Ca**];) in adherent neutrophils stimulated by semipurified chemotactic factor (SCF). 4, Neutrophils
were loaded with the fluorescent Ca?*-sensitive probe Oregon-Green. Pseudocolors were used to visualize Ca®" changes. A change of color from
dark blue to yellow-red indicates an increase in the [Ca®*]; concentration. Under control conditions, most neutrophils showed low resting [Ca**];
concentrations (time point 0). After 10 s in the presence of SCF (8X), the fluorescence increased in a large no. of neutrophils. This effect was partially
reversible after 40 s of stimulation. B, Examples of the time course of [Ca®*]; concentration changes monitored in 2 neutrophils stimulated with SCF
(blue traces) or 1 neutrophil stimulated with 1 uM FMLP (red trace). Chemoattractants (added at the time indicated by the arrow) rapidly
increased the [Ca>*]; concentration. [Ca>*]; changes were transient and returned to baseline levels after 1 min of stimulation. The data shown are

from at least 3 experiments.

reaction and progressive destruction of the respiratory epithelium
[1, 2]. Here we report the physical and biological characteristics
of a novel chemoattractant for neutrophils that was semipurified
from the bronchial secretions of patients with CF.
Fractionation by gel filtration of the bronchial secretions of
patients with CF revealed a 0.5-1-kDa fraction (pool C) with
chemotactic activity that remained stable in the presence of a
variety of physical treatments. Pool C bioactivity was resistant
to pH extremes, freeze/thaw, vacuum drying, boiling, and pro-
tease digestion. Because small peptides can be resistant to pro-
teolysis, it is difficult to ascribe pool C bioactivity to a poly-
peptide, as opposed to another type of molecule. Pool C
bioactivity could be recovered in 40%-50% acetonitrile, indi-
cating that SCF is poorly hydrophobic. This was confirmed by
extraction in chloroform, which failed to solubilize SCF bio-
activity (data not shown), suggesting that the chemotactic fac-
tor in pool C is not a lipid. In addition, UV spectral charac-
teristics of SCF differed from those of ATP or cAMP. The low
molecular weight of SCF also clearly distinguished this factor
from the well-known CXC chemoattractant IL-8 [27]. Although
subsets of bacteria-derived n-formyl peptides may well be re-

tained in pool C, the possibility that traces of FMLP or other
low-molecular-weight chemoattractants, such as LTB4 and
PAF, contribute was excluded by the use of specific antagonists
that did not affect the bioactivity of pool C.

Human leukocyte chemoattractant receptors activate che-
motactic and cytotoxic pathways to varying degrees. For ex-
ample, FMLP, PAF, and LTB4 are potent chemoattractants for
neutrophils that operate via the activation of PTX-sensitive G
protein—coupled receptors. The binding of these chemoattrac-
tants to the corresponding cell-surface receptors also promotes
mobilization of Ca®" from intracellular stores, rearrangement
of cytoskeletal elements, exocytosis, induction of surface re-
ceptors, adhesion, and activation of the respiratory burst sys-
tem with release of superoxide anion via NADPH oxidase ac-
tivation [28-30]. There is clear evidence that these biological
responses are determined by expression of different PTX-sen-
sitive and PTX-insensitive G proteins coupled to receptors for
chemoattractants [31].

In this context, SCF appears to share properties with classic
chemoattractants for neutrophils. Thus, the chemotactic activ-
ity of pool C was abolished in the presence of PTX or thap-



780 Dudez et al.

35 A
- 30
58 25 1
EE
2=
SE 15
23 10 i I
SR 1
0
Control SCF FMLP
g 30 .B
@= 25
2% 0 I
B I
Eg 15
as
aE 10
ZE
b5
«
Control SCF FMLP

Figure 6. Effects of semipurified chemotactic factor (SCF) on neu-
trophil degranulation and superoxide production. 4, The degranulation
assay was performed by measurement of the activity of released mye-
loperoxidase in relation to the total myeloperoxidase activity. In con-
trast to 1 uM FMLP, SCF (72X) did not evoke neutrophil degranu-
lation of primary granules. B, The release of neutrophil superoxide
anion was measured by optical density changes during the reduction
of cytochrome c after the production of superoxide by NADPH oxidase.
In contrast to stimulation with 1 uM FMLP, stimulation of neutrophils
with SCF (74X) did not generate superoxide anions. “Control” refers
to nonspecific neutrophil degranulation/superoxide release detected in
medium without chemoattractants. Values are mean = SEM of 5-9
experiments.

sigargin, whereas SCF increased cytosolic free Ca’* in neutro-
phils. However, SCF-based neutrophil activation also differs in
several respects. For example, FMLP and, to a lesser extent,
IL-8 and PAF elicit neutrophil degranulation of primary and
secondary granules and induce a respiratory burst [29, 32]. In
contrast, SCF has no detectable effect on the respiratory burst
or degranulation of primary granules of isolated neutrophils.
The bioactivity of SCF resembles that of a novel class of chemo-
tactic factors represented by the 5-oxo-eicosanoids, which are
thought to act strictly through PTX-sensitive receptors [33, 34].
5-Oxo-eicosanoids are highly hydrophobic metabolites of ar-
achidonic acid that can be extracted in chloroform. A che-
motactic factor (pathogen-elicited epithelial chemoattractant;
PEEC) of 1-3 kDa with similar physical characterization and
profiles of neutrophil activation bioactivity has been described
in a colonic epithelial cell line in response to infection with
Salmonella typhimurium [35]. The loss of SCF-based chemo-
tactic activity in chloroform, however, clearly distinguishes the
factor from 5-oxo-eicosanoids or PEEC. SCF appears to exhibit
a unique profile in terms of neutrophil activation.

Many inflammatory diseases involving pathogen-epithelia in-
teractions are characterized by transepithelial migration of neu-
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trophils, an event that correlates with epithelial dysfunction and
thus with clinical symptoms. It is now clear that bacteria, in-
flammatory cells, and epithelial cells themselves may emit sig-
nals that regulate neutrophil movement and responses at such
surfaces. In CF, loss of CF transmembrane conductance reg-
ulator chloride-channel function by airway epithelial cells re-
sults in abnormal transepithelial electrolyte and fluid transport
[1, 2]. The chloride concentration is an important factor in lung
defense, modulating antimicrobial activity and neutrophil func-
tion [3, 5, 13, 36]. SCF-induced bioactivity was maintained, re-
gardless of whether conditions were hypo-, iso-, or hypertonic,
which suggests that chloride concentration does not interfere with
the migration of neutrophils to sites of inflammation.

Among other treatments, the aggressive use of antibiotic
therapy has been largely responsible for the increased life span
of patients with CF, although efficacy is limited by the emer-
gence of antibiotic-resistant pathogens. In a previous study,
antibiotic treatment of patients with CF with aminoglycosides
and cephalosporins did not result in a decrease in the chemo-
tactic activity of pool C obtained from their bronchial secretions
[22]. Although bacterial pathogens in the airways of patients
with CF are rarely eradicated, this observation may be an in-
dication that origin of SCF is nonbacterial. It is worth men-
tioning that the chemotactic activity of pool C or SCF could
not be recovered in vitro from human neutrophils or from a
human CF airway epithelial cell line (M.C. and T.S.D., un-
published results). Other studies aimed at evaluating the anti-
inflammatory effects of steroids and nonsteroidal drugs in pa-
tients with CF reported adverse effects and increased risks of
dissemination of infection with panresistant bacteria [37-39]. In
this context, the identification of inflammatory mediators is of
importance in designing therapeutic interventions aimed at mod-
ulating the inflammatory response and, thereby, the severity of
airway-wall damage. Thus, the possibility of developing novel
types of anti-inflammatory agents by targeting CF-specific che-
motactic factors may await more-thorough clarification of the in
vivo biological functions of chemoattractants.

In summary, this study showed that bronchial secretions from
patients with CF can be used as a tool to investigate some of
the chemoattractants involved in leukocyte recruitment. The
detection of SCF, a novel chemotactic factor for neutrophils,
provides evidence of its involvement in the pathogenesis of CF.
Although the molecular identification of SCF and its locali-
zation in the airways of individuals with and without CF await
further purification from larger quantities, it is possible that
interference with the SCF-based signaling pathway may provide
a potentially important new therapeutic target for approaches
aimed at lowering chemotactic activity in bronchial secretions
and controlling inflammation and tissue destruction.

Acknowledgments

We thank Edith Pannié and Severine Frutiger for technical assistance
and Dr. Fabienne Dayer Pastore for collecting the patient samples.



JID 2002;186 (15 September)

References

1. Welsh MJ, Tsui L-C, Boat TM, Beaudet AL. Cystic fibrosis. In: Scriver CR,
Beaudet AL, Sly WS, Valle D, eds. The metabolic and molecular basis
of inherited disease. New York: McGraw-Hill, 1995:3779-6.

2. Rosenstein BJ, Zeitlin PL. Cystic fibrosis. Lancet 1998;351:277-82.

3. Smith JJ, Travis SM, Greenberg EP, Welsh MJ. Cystic fibrosis airway epithelia
fail to kill bacteria because of abnormal airway surface fluid. Cell 1996;
85:229-36.

4. Pier GB, Grout M, Zaidi TS. Cystic fibrosis transmembrane conductance
regulator is an epithelial cell receptor for clearance of Pseudomonas aeru-
ginosa from the lung. Proc Natl Acad Sci USA 1997;94:12088-93.

5. Bals R, Weiner DJ, Meegalla RL, Accurso F, Wilson JM. Salt-independent
abnormality of antimicrobial activity in cystic fibrosis airway surface fluid.
Am J Respir Cell Mol Biol 2001;25:21-5.

6. Balough K, McCubbin M, Weinberger M, Smits W, Ahrens R, Fick R. The
relationship between infection and inflammation in the early stages of
lung disease from cystic fibrosis. Pediatr Pulmonol 1995;20:63-70.

7. Kahn TZ, Wagener JS, Bost T, Martinez J, Accurso FJ, Riches DWH. Early
pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit
Care Med 1995;151:1075-82.

8. Noah TL, Black HR, Cheng PW, Wood RE, Leigh MW. Nasal and bron-
choalveolar lavage fluid cytokines in early cystic fibrosis. J Infect Dis
1997;175:638-47.

9. Muhlebach MS, Stewart PW, Leigh MW, Noah TL. Quantitation of inflam-
matory responses to bacteria in young cystic fibrosis and control patients.
Am J Respir Crit Care Med 1999;160:186-91.

10. DiMango E, Ratner AJ, Bryan R, Tabibi S, Prince A. Activation of NF-«xB
by adherent Pseudomonas aeruginosa in normal and cystic fibrosis res-
piratory epithelial cells. J Clin Invest 1998;101:2598-605.

11. Bonfield TL, Konstan MW, Berger M. Altered respiratory epithelial cell cytokine
production in cystic fibrosis. J Allergy Clin Immunol 1999;104:72-8.

12. Tabary O, Zahm JM, Hinnrasky J, et al. Selective up-regulation of chemokine
IL-8 expression in cystic fibrosis bronchial gland cells in vivo and in vitro.
Am J Pathol 1998;153:921-30.

13. Tabary O, Escotte S, Couetil JP, et al. High susceptibility for cystic fibrosis
human airway gland cells to produce IL-8 through the IkB kinase o path-
way in response to extracellular NaCl content. J Immunol 2000; 164:
3377-84.

14. Kube D, Sontich U, Fletcher D, Davis PB. Proinflammatory cytokine re-
sponses to P aeruginosa infection in human airway epithelial cell lines.
Am J Physiol Lung Cell Mol Physiol 2001;280:1.493-502.

15. Murphy PM. The molecular biology of leukocyte chemoattractant receptors.
Annu Rev Immunol 1994;12:593-633.

16. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte em-
igration: the multistep paradigm. Cell 1994;76:301-14.

17. Fick RB Jr, Robbins RA, Squier SU, Schoderbeck WE, Russ WD. Com-
plement activation in cystic fibrosis respiratory fluids: in vivo and in vitro
generation of C5a and chemotactic activity. Pediatr Res 1986;20:1258-68.

18. Suter S, Schaad UB, Roux L, Nydegger UE, Waldvogel FA. Granulocyte
neutral proteases and Pseudomonas elastase as possible causes of airway
damage in patients with cystic fibrosis. J Infect Dis 1984;149:523-31.

19. Suter S, Schaad UB, Morgenthaler JJ, Chevallier I, Schnebli HP. Fibronectin-
cleaving activity in bronchial secretions of patients with cystic fibrosis. J
Infect Dis 1988;158:89-100.

Neutrophil Chemotaxis in Cystic Fibrosis

20

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34,

35.

36.

37.

38.

39.

781

. Banda JM, Rice AG, Griffin GL, Senior RM. The inhibitory complex of
human alphal-proteinase inhibitor and human leukocyte elastase is a
neutrophil chemoattractant. J Exp Med 1988;167:1608-15.

Downey GP, Fukushima T, Fialkow L. Signaling mechanisms in human
neutrophils. Curr Opin Hematol 1995;2:76-88.

Dayer Pastore F, Schlegel-Haueter SE, Belli DC, Rochat T, Dudez TS, Suter
S. Chemotactic factors in bronchial secretions of cystic fibrosis patients.
J Infect Dis 1998;177:1413-7.

Zigmond SH, Hirsch JG. Leukocyte locomotion and chemotaxis. J Exp Med
1973;137:387-410.

Chanson M, Mollard P, Meda P, Suter S, Jongsma HJ. Modulation of pan-
creatic acinar cell to cell coupling during ACh-evoked changes in cytosolic
Ca’*. J Biol Chem 1999;274:282-7.

Snyderman R, Uhing R. Basic principles and clinical correlates. In: Gallin
JI, Goldstein IM, Snyderman R, eds. Inflammation. New York: Raven
Press, 1988:309-15.

Thastrup O, Cullen PJ, Drobak BK, Hanley MR, Dawson AP. Thapsigargin,
a tumor promoter, discharges intracellular Ca** stores by specific inhibition
of the endoplasmic reticulum Ca’*-ATPase. Proc Natl Acad Sci USA
1990;87:2466-70.

Baggiolini M, Dewald B, Moser B. Interleukin-8 and related chemotactic
cytokines—CXC and CC chemokines. Adv Immunol 1994;55:97-179.
Hallet MB, Davies EV, Campbell AK. Oxidase activation in individual neu-
trophils is dependent on the onset and magnitude of the Ca** signal. Cell

Calcium 1990;11:655-63.

Thelen M, Dewald B, Baggiolini M. Neutrophil signal transduction and ac-
tivation of the respiratory burst. Physiol Rev 1993;73:797-821.

Bokoch GM. Chemoattractant signaling and leukocyte activation. Blood
1995;86:1649-60.

Haribabu B, Zhelev DV, Pridgen BC, Richardson RM, Ali H, Snyderman
R. Chemoattractant receptors activate distinct pathways for chemotaxis
and secretion: role of G-protein usage. J Biol Chem 1999;274:37087-92.

Djeu JY, Matsushima K, Oppenheim JJ, Shiotsuki K, Blanchard DK. Func-
tional activation of human neutrophils by recombinant monocyte-derived
neutrophil chemotactic factor/IL-8. J Immunol 1990; 144:2205-10.

O’Flaherty JT, Kuroki M, Nixon AB, et al. 5-Oxo-eicosanoids and hema-
topoietic cytokines cooperate in stimulating neutrophil function and the
mitogen-activated protein kinase pathway. J Biol Chem 1996;271:17821-8.

O’Flaherty JT, Taylor JS, Kuroki M. The coupling of 5-oxo-eicosanoid re-
ceptors to heterotrimeric G proteins. J Immunol 2000; 164:3345-52.

McCormick BA, Parkos CA, Colgan SP, Carnes DK, Madara JL. Apical
secretion of a pathogen-elicited epithelial chemoattractant activity in re-
sponse to surface colonization of intestinal epithelia by Salmonella ty-
phimurium. J Immunol 1998; 160:455-66.

Tager AM, Wu J, Vermeulen MW. The effect of chloride concentration on
human neutrophil functions: potential relevance to cystic fibrosis. Am J
Respir Cell Mol Biol 1998;19:643-52.

Auerbach HS, Williams M, Kirkpatrick JA, Colten HR. Alternate-day pred-
nisone reduces morbidity and improves pulmonary function in cystic fi-
brosis. Lancet 1985;2:686-8.

Rosenstein BJ, Eigen H. Risks of alternate-day prednisone in patients with
cystic fibrosis. Pediatrics 1991;87:245-6.

Ramsey BW. Management of pulmonary disease in patients with cystic fi-
brosis. N Engl J Med 1996;335:179-88.



