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ABSTRACT

The method of Esscher transforms is a tool for valuing options on a stock, if the
logarithm of the stock price is governed by a stochastic process with stationary and
independent increments. The price of a derivative security is calculated as the
expectation, with respect to the risk-neutral Esscher measure, of the discounted
payoffs. Applying the optional sampling theorem we derive a simple, yet general
formula for the price of a perpetual American put option on a stock whose
downward movements are skip-free. Similarly, we obtain a formula for the price of
a perpetual American call option on a stock whose upward movements are
skip-free. Under the classical assumption that the stock price is a geometric
Brownian motion, the general perpetual American contingent claim is analysed, and
formulas for the perpetual down-and-out call option and Russian option are
obtained. The martingale approach avoids the use of differential equations and
provides additional insight. We also explain the relationship between Samuelson's
high contact condition and the first order condition for optimality.
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1. INTRODUCTION

The option-pricing theory of BLACK and SCHOLES (1973) is perhaps the most
important development in the theory of financial economics in the past two decades.
A fundamental insight in advancing the theory is the concept of risk-neutral
valuation introduced by Cox and Ross (1976). Further elaboration on this idea was
given by HARRISON and KREPS (1979), HARRISON and PLISKA (1981) and others
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196 GERBER AND SHIU

under the terminology of equivalent martingale measure. It is now understood that
the absence of arbitrage is "essentially" equivalent to the existence of an
equivalent martingale measure, and some authors (DYBVIG and Ross, 1987;
SCHACHERMAYER, 1992) call this the Fundamental Theorem of Asset Pricing.

Under the assumption that the logarithm of the stock price is governed by a
stochastic process with stationary and independent increments, one may determine
such an equivalent martingale measure by a time-honored technique in actuarial
science — the Esscher transform (ESSCHER, 1932). An Esscher transform induces
an equivalent probability measure on such a stock-price process. The risk-neutral
Esscher parameter (which is unique) is determined so that the stock price,
discounted by the risk-free interest rate less the dividend yield, becomes a
martingale under the new probability measure. The price of a derivative security is
the supremum of the expected discounted payoffs, where the expectation is taken
with respect to this equivalent martingale measure and the discounting is calculated
using the risk-free interest rate.

The pricing of American options with a finite expiration date has been a
challenging problem in the field of financial economics. A main difficulty is the
determination of the optimal exercise boundary. Some papers on American options
in the past decade are BENSOUSSAN (1984), MACMILLAN (1986), BARONE-ADESI

and WHALEY (1987), OMBERG (1987), KARATZAS (1988), JAILLET, LAMBERTON and
LAPEYRE (1990), KIM (1990), JACKA (1991), CARR, JARROW and MYNENI (1992),
MYNENI (1992), CHESNEY, ELLIOT and GIBSON (1993), LAMBERTON (1993), HULL

and WHITE (1993), and TILLEY (1993). In this paper we study the pricing of
American options without expiration date by means of the Esscher transform and
the optional sampling (stopping) theorem. This is a more tractable problem because
the optimal exercise boundary of a perpetual American option does not vary with
respect to the time variable. We derive a simple, yet general formula for the price of
a perpetual American put option on a stock whose downward movements are
skip-free (jump-free). Similarly, we obtain a formula for the price of a perpetual
American call option on a stock whose upward movements are skip-free. In the
appendix, we present a family of stochastic processes for modeling such stock-price
movements. This family includes the Wiener process, gamma process and inverse
Gaussian process, and combinations of such processes.

Under the classical assumption that the stock price is a geometric Brownian
motion, the general perpetual American contingent claim is analysed, and formulas
for the perpetual down-and-out call option and Russian option are obtained. The
martingale approach avoids the use of differential equations and provides additional
insight. We also explain the relationship between Samuelson's high contact
condition and the first order conditions for optimality.

2 . THE RISK-NEUTRAL ESSCHER TRANSFORM

Let S(t) be the price of a stock at time t, t > 0. We assume that the process,
{X(t)}ts.o, defined by

(2.1) S(t) = S(0)eX('\ f > 0 ,
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MARTINGALE APPROACH TO PRICING PERPETUAL AMERICAN OPTIONS 197

is one with stationary and independent increments. Let

(2.2) F(x,t) = Pr[X(t)<x], t>0,

be the distribution of the random variable X(t), and

(2.3) M(z, t) = E[ezX{t)\, t>0,

its moment generating function. Under a mild continuity condition (BREIMAN, 1968,
Section 14.4),

(2.4) M(z,t) = [M(z, 1)]', f > 0 .

While the Esscher transform of a random variable is a well-established concept,
in this paper we consider the Esscher transform of a stochastic process which
satisfies (2.4). The Esscher transform (parameter h) of {X(t)}t > Q is again a process
with stationary and independent increments; the modified distribution of X(t) is
now

F(x, t\h) = Pr[X(t)<X;h]

f ehydF{y,t)

ehydF(y,t)

]1,t) J _ x

1 • ~"dF(y,t).
M(h,

The corresponding moment generating function is

M(z + h,t)
(2.5) M(z,t;h) = — .

M(h, t)

It follows from (2.4) that

[M(z + h, 1)1'(2.6) M(z,t;h) = \\
L M(h,\)

Because the exponential function is positive, the old and new measures have the
same null sets, i.e., they are equivalent probability measures. The appropriate
parameter h - h* is determined according to the principle of risk-neutral valuation
(Cox and Ross, 1976), or, using the terminology of HARRISON and KREPS (1979)
and HARRISON and PLISKA (1981), we seek h = h* to obtain an equivalent
martingale measure.

In this paper we assume that the risk-free force of interest is constant, and it is
denoted by d. We also assume that the market is frictionless and trading is
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198 GERBER AND SHIU

continuous. There are no taxes, no transaction costs, and no restriction on
borrowing or short sales. All securities are perfectly divisible. Furthermore, we
assume that the stock pays a continuous stream of dividends, at a rate proportional
to its price, i.e., there is a nonnegative constant p such that the dividend paid
between time / and t + dt is S(t)pdt. The parameter h = h* is chosen so that the
process {e~

{d~p)t S(t)},>0 is a martingale with respect to the probability measure
corresponding to h*. In particular,

(2.7) S(0) = E[e-(A-p)'S(t);h*];

hence, by (2.1) and (2.6),

= [M(1, 1 ;

or

(2.8) ln[M(l, 1; h*)] = d -p.

The Esscher measure corresponding to the parameter h* is called the risk-neutral
Esscher measure. The price of a derivative security, whose payments depend on
{5(f)}, is calculated as a discounted expected value, where the expectation is taken
with respect to the risk-neutral Esscher measure.

Under some regularity conditions, equation (2.8) has a unique solution. To see
this, consider the function

h, 1)] - In \M (h, 1)].

The formula

— E[X(\); h] = Var [X(l); h]
dh

shows that E[X(l);h] is an increasing function in h. Hence

; l+h]-E[X(\);h]

is positive, showing that g(h) is an increasing function. This proves the uniquencess
of the solution of equation (2.8), which is

g(h) = d-p.

To discuss the existence of the solution, let M and m denote the right and left end
point of the (essential) range of X(l), respectively. (M may be +°° and m may be
- oo). We may assume

m + p<d<M + p,

or

m < d - p < M,
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MARTINGALE APPROACH TO PRICING PERPETUAL AMERICAN OPTIONS 199

because otherwise arbitrage would be possible. Let (a, b) denote the interval of
values of h for which g(h) exists. Under some regularity conditions,

lim g(h)-m, lim g(h)-M,
hia hib

in which case (2.8) does have a solution. It should be noted that, although the
risk-neutral Esscher measure is unique, there may be other equivalent martingale
measures; see DELBAEN and HAEZENDONCK (1989) for a study on equivalent
martingale measures of compound Poisson processes.

The price of a derivative security is taken as the expectation of its discounted
payoffs with respect to the risk-neutral Esscher measure. For example, consider a
European call option on the stock with exercise price K and exercise date t, t > 0.
Let /(•) denote the indicator function and K = In [K/S(0)]. The price of the option
(at time 0) is

(2.9) e~ AlE[(S(t) - K) I(S(t) > K); h*]

= e-A'E[S(t) I(S(t) > K);h*]-e~dtKE[I(S(t) > K);h*].

The second expectation in the right-hand side of (2.9) is

Pr [S(t)>K;h*] = l-F(K,t;h*).

To evaluate the first expectation in the right-hand side of (2.9), note that, for each
measurable function g(-),

E[ehX(n]

_E[g(S(t))S(t)h]

E[S(t)h]

With this formula, the following result can be proved.

Lemma: Let h and k be two real numbers. Assume that the Esscher transforms of
parameters h and h + k exist. Then, for each measurable function ip (•),

(2.11) E[S(t)ky>(S(t));h] =E[S(t)k; h]E[xp{S{t)); h + k].

Applying the Lemma [with k = 1, ip (x) = I(x > K) and h = h*] and (2.7), we
obtain

E[S(t) l(S(t) > K); h*]= E[S(t); h*] E[I(S(t) > K); h* +

= 5(0) e(d-p)1 Pr [(S(t) >K);h* +

Thus the price of the European call option is

(2.12) S(0)e-p'[l -F(K,t;h* + l)]-Ke~d'[l -F(K,C,h*)].
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200 GERBER AND SHIU

If {X(t)} is a Wiener process with variance per unit time a", then (2.12) (with
(4.2) below) yields the expression

„, (-K + {d-p + o2l2)t\ ., (-K + {d-p-o2l2)ts

(2.13) S(0)e'p'<P\ II - \ - Ke-d'0\

where <P (•) denotes the standardized normal distribution. For p = 0 this is the
celebrated Black-Scholes formula. Formula (2.13) is the same as formula (53) in
SMITH (1976).

Remarks:

(1) We assume that the stock pays dividends at a constant proportional rate p. If
all dividends are reinvested in the stock, then each share of the stock at time 0
grows to ept shares at time t; this gives an interpretation for formula (2.7),

= E[e-d'S(t)ep';h*].

On the other hand, we can also consider the situation where none of the dividends
are reinvested in the stock, leading to the intuitive formula:

(2.14) 5(0) = ,

To prove (2.14), we interchange the order of expectation and integration on the
right-hand side and apply the formula

E[e- duS(u); h*]= e~p"5(0);

thus

R.H.S. = S(0) I
= S(0)

= L.H.S.

(2) Formula (2.12) may be used to price currency exchange options, with S(t)
denoting the spot exchange rate at time t, d the domestic force of interest and p the
foreign force of interest. In this context, (2.13) is known as the Garman-Kohlhagen
formula.

3. PRICING PERPETUAL AMERICAN OPTIONS

In this section, by applying the optimal sampling theorem, we derive pricing
formulas for perpetual American put and call options on a stock. We make the
assumptions about stock prices and dividends that were introduced in the previous
section. In addition, when pricing a perpetual American put option, we assume that
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MARTINGALE APPROACH TO PRICING PERPETUAL AMERICAN OPTIONS 201

the downward movements of the stock price are skip-free. Similarly, when pricing a
perpetual American call option, we assume that the upward movements of the stock
price are skip-free. Under these convenient assumptions, attractive formulas can be
obtained.

First, we consider a perpetual American put option with exercise price K. We
temporarily assume that K < 5(0), so that an immediate exercise of the option can
be excluded. The owner of this option exercises it according to some strategy: a
stopping time 7*. Then, at time T, he will get

where x + = Max (x, 0). Thus the value (at time 0) associated with the strategy is

(3.1) E[e-')T(K-S(T))+;h*].

To maximize this expression, we can limit ourselves to stationary strategies of
the form

(3.2) TL = M {t\s(t)<L},

where L < K; the option is exercised the first time when (if ever) the price of the
stock falls below or equals the level L. The price of the option is the maximal value
of

(3.3) E[e-AT'(K-S(TL))+;h*].

With the assumption that the stock-price process, {S(t)}tS:0, is skip-free
downwards, the stock price is equal to L at the time when the option is exercised,
i.e.,

(3.4) L = S(TL) = S{0)ex(TL).

For simplicity, denote the current stock price S(0) by S and expression (3.3) by
V (S, L). Since L<K,

(3.5) V(S, L) = {K-L)E[e-
dT'-; h*].

The expectation in (3.5) is a Laplace transform of TL and can be calculated by the
following classical argument.

Consider the stochastic process {e~d' + 0xil)}is,o. For ? < 7 L , it is a bounded
martingale with respect to the risk-neutral Esscher measure if the coefficient 6 is
the negative solution of the equation

E\e-d'*mt);h*]=l,

or

(3.6) M(d, 1 ;/z*) = eb.

Equation (3.6) has two (real) solutions; one is negative and the other is greater than
one. To see this, consider the function

;h*) = E[eBX0);h*].
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202 GERBER AND SHIU

Since

(p"(9) = E[X(l)2eexa);h*] > 0 ,

the function <p(6) is convex. Consequently, equation (3.6),

has at most two solutions. We note that

0 (0) = 1 < ed

and, because of (2.8),

Let us assume that

P r [ X ( l ) < 0 ] >O

and

P r [ X ( l ) > 0 j > 0 ,

from which it follows that 0 (6) —> + °° for 6 —> - °° and for 0 —> + «;. Thus
equation (3.6) has two solutions, 60 < 0 and 0, > 1.

By the optional sampling theorem, we have

which, because of (3.4), becomes

(3.7) £ [e" d 7 i ; / ; * ] = -

u
Applying (3.7) to (3.5) yields, for S > L and A" > L,

(3.8) V(S,L) = (K-L)\-\ .

For a given current stock price S, we seek the maximal value of (3.8) by varying
the option-exercise boundary L. Let VL denote the partial derivative of V with
respect to L. Solving the equation

VL(S,L) = 0

yields the optimal exercise boundary

(3.9) L = L = ^^-K.

Thus the maximal value is

V(S,L) = - '
i - 0 o Ls ( i - 0 o :
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MARTINGALE APPROACH TO PRICING PERPETUAL AMERICAN OPTIONS 203

This is the price of the perpetual American put option provided that S > L. For
S < L, the option is exercised immediately and the price is simply K - S. Hence the
option price is

(3.10) K
i f

l - 0 o L S ( l - 0 o ) -

K-S if S<L

It may seem surprising that d and p do not appear in (3.10). However, they were
used to determine 8().

Next we study the pricing of a perpetual American call option with exercise price
K, and we temporarily assume that K> S. For M > K, let

(3.11) TM = vaS

and

(3.12) W(S,M) = E[e-dT«(S(TM)-K)+;h*].

With the assumption that the stock-price process, {S(t)}iso, is skip-free
upwards, the stock price is equal to M at the time when the option is exercised, i.e.,
S(TM) = M. Since M > K, formula (3.12) becomes

(3.13) W(S,M) = (M-K)E[e-6T" ;h*].

The expectation in (3.13) is evaluated in the same way as above, except that we
now use 0 , , the positive root of (3.6), to make sure that {exp [ ~dt + 6xX(t)\} is a
bounded martingale (with respect to the risk-neutral Esscher measure) for t <TM.
The resulting formula is

(3.14) E[e -dTu;

For given current

(3.15)

is attained at

(3.16)

and

(3.17)

stock price S, the

W(S, M) =

M = M

W(S,M)-

maximal

(M-K)

0 i

0,-1

r n c {f\

value of

&

K,

- 1 L K6X

This gives the price of the perpetual American call option provided S ̂  M. For
5 > M, the option is exercised immediately and the price is simply S - K. Thus the
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option

(3.18)

price is

K \
0 , - l [

GERBER AND SHIU

if
11

if

S<M

S> M.

Remarks: As the dividend yield p tends to 0, the coefficient 0, tends to 1, the
optimal exercise boundary M tends to °°, and the price of the perpetual American
call option tends to S, the current stock price. These limiting results can be verified
by direct calculations: for p = 0, 0, = 1, (3.15) reduces to

( K\
(3.19) W(S, M) = 1 - — \S, M>K.

{ M)
Since this is a strictly increasing function of M, its supremum is not attained for a
finite value of M, and the maximal value (the value of the option) is S. Thus, if
p = 0, the perpetual American call option will never be exercised, but nevertheless
it has a positive value. To avoid this anomaly (to which INGERSOLL (1987, p. 373)
refers as the problem of "infinities") we might modify the payoff of the call
option as

[(S(T)-K)+]a, 0<a < 1.

Then

S
W(S, M) = (M - Kf — ,

M

which is maximal for

K
M = .

1 -a

3.1. The high contact condition

Each of (3.10) and (3.18), as a function of the current stock price S, has a
continuous first derivative, because

V(L, L) =K- L,
(3.1.1) VS(L, L) = - 1 ,

W(M, M) = M-K,
and

WS(M, M)=\.

Formulas (3.1.1) and (3.1.2) are special cases of the so-called high contact
condition (SAMUELSON, 1965); in the literature about optimal stopping problems
(SHIRAYAYEV, 1978, p. 160) the term is smooth pasting condition. SHEPP and
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MARTINGALE APPROACH TO PRICING PERPETUAL AMERICAN OPTIONS 205

SHIRYAEV (1983) use the term the principle of smooth fit and attribute it to
Kolmogorov. (Shirayayev is the same person as Shiryaev).

MERTON (1973, p. 171, footnote 60; 1990, p. 296, footnote 47) has derived the
high contact condition as a first order condition necessary for optimality. (Merton's
proof is reformulated on page 189 of BREKKE and 0KSENDAL (1991)). Under some
weak conditions, the converse is also true — a solution proposal to an optimal
stopping problem satisfying the high contact condition is in fact an optimal solution
to the problem; a recent paper on this is BREKKE and 0KSENDAL (1991). It is easy
to check that condition (3.1.1) does determine the optimal exercise boundary L,
while (3.1.2) determines M.

We now derive a formula explaining how the high contact condition (3.1.1) and
optimality for V(S, •) are related. Let

(3.1.3) k(S, L) = E[e-dTL;h*].

From (3.7) or simply by interpretation, it follows that, for 0 < x < S — L,

(3.1.4) k(S,L) = k(S,L + x)k(L + x,L)

(cf. Lemma 7.1 on page 243 of KARLIN and TAYLOR (1981)). Differentiating (3.1.4)
with respect to x and setting x = 0 yields

(3.1.5) 0 = kL(S,L) + k(S,L)ks(L,L).

Now, let

(3.1.6) JI(X) = (K-X) +

denote the payoff function. Then (3.5) becomes

(3.1.7) V(S,L) = Ji(L)k(S,L).

Differentiating (3.1.7) with respect to L and applying (3.1.5) yields

(3.1.8) V, (S,L) = n'(L)k (5, L) + n(L) XL(S, L)

= JI' (L) k(S, L) -ji(L)k (S, L) ks(L, L)

= k(S,L)[7i'(L)-Vs(L,L)].

(Formula (3.1.8) can also be derived using (3.8)). Since k(S,L) is positive,
V,(S,L) = Q if and only if

(3.1.9) Vs(L,L) = ji'(L).

Equation (3.1.8) shows explicitly that the optimal exercise boundary L does not
depend on the current stock price S. We note that (3.1.7), (3.1.8) and (3.1.9) are
valid for payoff functions n(-) more general than (3.1.6).

Similarly, one can derive the formula

(3.1.10) WM(S, M)=fi(S, M) \n' (M) - WS(M, M)],

where

available at https:/www.cambridge.org/core/terms. https://doi.org/10.2143/AST.24.2.2005065
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 16:56:55, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.2143/AST.24.2.2005065
https:/www.cambridge.org/core


206 GERBER AND SHIU

4. LOGARITHM OF THE STOCK PRICE AS A WlENER PROCESS

The stochastic process with stationary and independent increments and sample paths
which are both skip-free upwards and downwards (i.e., continuous) is the Wiener
process. In this section we assume that [X(t)},>0 is a Wiener process; this is the
classical geometric Brownian motion model for stock-price movements (SAMUEL-

SON, 1965; BLACK and SCHOLES, 1973). Let fi and o2 denote, respectively, the
mean and variance of {X(t)} per unit time. In terms of a stochastic differential
equation, the assumption is

dS(t) ( o2

Sit) I 2

where {W(t)}tS.o denotes the standardized Wiener process.
Since

M(z, t) = exp [(nz + V2o2z2) t],

it follows from (2.5) that

This shows that the transformed process has modified mean per unit time ft + ho
and unchanged variance per unit time a2. From (2.8) we get

(4.1) (fx + h*o2) + Vio2 = d-p.

Thus to evaluate a derivative security, we use a Wiener process with mean per unit
time

(4.2)

From (3.6) we obtain

or

(4.3) O202 + (2d-2p-o2)6-2d = 0.

The roots of this quadratic equation are

_
2al

and

-(26-2p-a2) +
(4.5)

Formula (4.5) should be attributed to MCKEAN (1965, Section 3) who studied the
pricing of perpetual warrants; at that date of course he did not solve the problem in
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terms of the risk-neutral measure. With zero dividend yield (p = 0), formula (4.4)
becomes

(4.6) 00 = ^ ~ ,

which was first given by MERTON (1973, Section 8; 1990, Section 8.8), who
evaluated the perpetual American put option by adopting MCKEAN'S (1965)
technique. Discussions on pricing perpetual American options can also be found in
the books by KARLIN and TAYLOR (1975, p. 365), INGERSOLL (1987, p. 375) and
LAMBERTON and LAPEYRE (1991, p. 82), and in the recent articles by KARATZAS

(1988, p. 59, e.g. 6.7), KIM (1990) and JACKA (1991, Proposition 2.3). (In formula
(9) of KIM (1990), the denominator 1 -/3 should be 0 - 1).

In the finance literature, the formulas for pricing perpetual American options are
usually derived as follows. Let D denote the value of a derivative security. It
follows from the hedging argument first given by BLACK and SHOLES (1973) that D
satisfies the partial differential equation

(4.7) Vi o2S2 Dss + (d-p)SDs-dD + Dt = 0,

subject to the appropriate boundary conditions. In the case of a perpetual option, we
have D, = 0 and (4.7) becomes a homogeneous, linear, second-order ordinary
differential equation in S,

(4.8) i/2O2S2Dss + (d-p)SDs-dD = 0.

The function D = S" is a solution of (4.8) if the number 6 satisfies the quadratic
equation,

(4.9) l/2O29(d- l) + (d-p)d-d = 0,

which is the same as (4.3). Then any solution of (4.8) is of the form

(4.10) D e 0

where cQ and c, are independent of S.
In this paper we use the martingale approach and avoid differential equations.

Additional insight for (4.10) is provided in the following; see (4.1.16) below.

4.1. Perpetual contingent claims

In this section we consider the pricing of perpetual contingent claims with [/-shaped
payoff functions such as

(4.1.1) ji(x) = a](K{-x)+ + a2(x-K2) + .

For a | = a2 = 1, the contingent claim may be called a perpetual American
strangle if Ks < K2, and called a perpetual American straddle if K\=K2. The
assumption on {X(t)) remains that it is a Wiener process.
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2 0 8 GERBER AND SHIU

Let S = S(O) denote the current stock price. We consider exercise strategies
arising from stopping times of the form

TL M = M {t\S(t) = L or S(t) = M},

where 0 < L < S < M. The value of the contingent claim according to such a
strategy is

(4.1.2) V(S, L,M) = E [JT(S(TL M ) ) e ~ ATL M ; h * } .

Pu t

(4.1.3) X(S, L, M) = E[I(S(TL M) = L) e")T' «; h*]

and

(4.1.4) fi (S, L, M) = E[I(S(TL M)=M)e~'"' "; h*].

Then

(4.1.5) V(S, L, M) = JI{L)X(S, L, M) + JI(M)H (S, L, M).

For 6 - 60<mA6 = 6t (the roots of equation (4.3)), the process {e ~ dl + oxu>} is a
bounded martingale (with respect to the risk-neutral measure) for / < TL M.
Applying the optional sampling theorem to these two martingales yields the
equations

(4.1.6) X(S,L,M)\—\ +fi(S,L,M)\—\ =1

[sj [s)
and

(4.1.7) X(S,L,M)\-\ +n(S,L,M)\—\ = 1 ,
V0 J VJ

respectively, from which we obtain

(4.1.8) X(S, L, M) =
M0' Le" - M°"Le>

and

(4.1.9) n(S,L,M) =
Me>LB°-Mo»L0>

Note that

(4.1.10) lim X(S,L,M) = \-\ = -
L \S

available at https:/www.cambridge.org/core/terms. https://doi.org/10.2143/AST.24.2.2005065
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 16:56:55, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.2143/AST.24.2.2005065
https:/www.cambridge.org/core


MARTINGALE APPROACH TO PRICING PERPETUAL AMERICAN OPTIONS 209

which confirms (3.7), and

( s Y'(4.1.11) lim (SLM) \ \
i

which is (3.14).
The remaining problem is to optimize V(S, L, M), considered as a function of the

exercise boundaries L and M. The first order conditions are

VL(S,L,M) = 0

and
VM(S,L,M) = 0.

These conditions do not depend on S (as long as S is between L and M). At first this
seems surprising, but it follows immediately from the formulas

(4.1.12) V,(S,L,M) = X(S,L,M) [jt' (L)-VS(L, L,M)]

and
(4.1.13) VM (S,L,M)=fi (S, L, M) \jt' (M) - Vs (M, L, M)],

which generalize (3.1.8) and (3.1.10), respectively. Thus the first order conditions
become

(4.1.14) Vs(L, L, M) = jt' (L)

and

(4.1.15) Vs(M,L,M) = jt'

which are the high contact conditions. The optimal exercise boundaries L and M are
determined by solving (4.1.14) and (4.1.15) simultaneously. For L < S < M, the
price of the perpetual contingent claim is

(4.1.16) V(S, L, M) = 7i (L) I (S, L,M) + Jt (M) fi (S, L, M)

'Le<> C '
= (S " S ')

Me>

To prove (4.1.12), consider the identities

X(S, L,M) = X(S, L + x,M)X(L + x, L, M)

and

H(S, L, M)=/i(S,L + x, M)+k(S, L + x,M)n(L + x, L, M)

where 0 < x < S - L. Differentiating these equations with respect to x and setting
x = 0 yields

(4.1.17) 0 = XL(S, L, M) + X{S, L, M) XS(L, L, M)
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210 GERBER AND SHIU

and

(4.1.18) 0 = juL(S, L, M) + X(S, L, M) XS(L, L, M),

respectively. Differentiating (4.1.5) with respect L and applying (4.1.17) and
(4.1.18), we have

VL(S, L, M) = JX'(L)X (S, L,M) + n(L) XL{S, L, M) + JI(M) fiL(S, L, M)

= X(S, L, M) [JT' (L)-JT(L) XS(L, L, M)-JT(M)/is(L, L, M)]

= X (S, L, M) [JT' (L) - VS(L, L, M)],

which is (4.1.12). The proof of (4.1.13) is similar.

Remarks: For general payoff functions, there might be several disjoint optimal
non-exercise intervals. For a matrix derivation of the results in this Section, see
Section 5 of GERBER and SHIU (1994). There are closed-form formulas for deferred
perpetual American call and put options; see GERBER and SHIU (1993b).

4.2. Perpetual down-and-out option

In this section we consider the pricing of a perpetual ' ' down-and-out'' American
call option with exercise price A". The option contract becomes null and unexercis-
able, if the stock price declines to the knock-out price L, L < K. When this occurs, a
rebate or refund of amount R is given. For M > K, it follows from (4.1.5) that the
value of the strategy to exercise the call option when the stock price increases to M
for the first time is

Note that the lower exercise boundary L is fixed, and the problem is to maximize V
as a function of the upper exercise boundary M.

We now consider the special case where the stock pays no dividends (hence
6>, = 1 and 60= -2d/o2). We shall show that the maximal value of (4.2.1) is
obtained for M —> °° and that it is

(LYe°
(4.2.2) V(S, L, o=) = S + (R - L) -

U.
= S + (R-L)\-

This result can also be found in MERTON (1973, (57); 1990, (8.57)) and INGERSOLL

(1987, p. 372, (39)).
For the proof we first observe that X (S, L, M) is an increasing function of M and

hence the first term on the right-hand side of (4.2.1) is bounded by

(LYe<>
RX (S, L, oo) = R _
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MARTINGALE APPROACH TO PRICING PERPETUAL AMERICAN OPTIONS 211

The second term on the right-hand side of (4.2.1) may be estimated as follows:

SL®° — S^° L
(M-K)fi (S, L, M) = (M- K)

MLe"-Me"L

M-K [ (L
\S-L -

A/ - I — I L

<S-L\- u
= lim (M-K)fi(S,L,M).

4.3. The Russian option

Let M be a number such that M > S. Let

(4.3.1) A/(r) = max [M, max [S(u) |o < u < f]},

which can be interpreted as the historical maximum of the stock prices at time t.
Note that the pair {S(t), M(t)\ t > 0} is a homogeneous Markov process. The term
"Russian option" was coined by SHEPP and SHIRAYAEV (1993) to describe a
perpetual American option whose payoff is M(t), if it is exercised at time t, t > 0.
That is, the holder of a Russian option has the privilege of receiving the historical
maximum of the stock prices up till when he chooses to exercise the option. The
price at time 0 of the option is the supremum, over all stopping times 7 > 0 , of

(4.3.2) E[e~6TM(T);h*].

SHEPP and SHIRYAEV (1993) show that there is a number k, which depends only on
d, p and o, such that (if 5(0) > k~M) the optimal strategy is to exercise the option at
the first time t when

(4.3.3) S(t) = icM(t).

Here we shall show how k can be determined in a very transparent fashion. Let k
be a number, 0 < k < 1. For a current stock price S = S (0) with kM < S, we
consider the strategy to exercise the option at the stopping time

(4.3.4) Tk = \nf{

The value of this strategy is denoted by R(S,M; k); we note that

R(S,M;k) = MR(S/M, l;k).

From this and the definitions (4.1.3) and (4.1.4) it follows that

(4.3.5) R(S,M;k) = MX(S, kM, M) + R(M,M;k) fx(S, kM, M)

= M [A (5, kM, M) + R(l, 1; k) fi(S, kM, M)].
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212 GERBER AND SHIU

Applying (4.1.8) and (4.1.9), we obtain

(4.3.6) R(S,M; k) = M[1(S/M, k, 1) + R(\, 1; k)n(SIM, k, 1))

{[(S/Mfu-(S/Mf<] +R(l, \;k) \k°"(S/M)"' - k"< (SIM')""]},
ke'<-ke'

where R(\, 1; k) needs to be determined by the boundary condition at S = M. This
condition can be derived by the following heuristic argument. If the current stock
price S is very close to M, we can be "almost sure" that the stock price will attain
the level M (and hence that the maximum will be increased) before the option is
exercised. Thus, if S is close to M, R(S, M; k) does not depend on the exact value
of M,

(4.3.7) RM(M,M;k) = 0.

From this and (4.3.6) we get the condition

{ [ 1 0 ) U 0 ) l * 0 l * ) [ * e ( l 0 * " ( l 0 ) l } O
ke°-kel

which yields

(4.3.8) R(l,l;k) = -

We substitute this expression into formula (4.3.6) and obtain after simplification the
result that

(1 - 0O) (SIM)0' + (0, - 1) (SIM)""
(4.3.9) R(S,M;k)=M- — — — — .

Now it is clear that the optimal value of k is the one that minimizes the
denominator, whose derivative is

( l -0 o )0 1 / f e e ' - | + (0 1 - l )0 o / f c e ° - 1 .

Hence the optimal value is

(4.3.10) Jt=

and the price of the Russian option is

R(S,M;k) if k~M < S < M
(4.3.11)

[M if 5 < kM

Formulas (4.3.10) and (4.3.11) are equivalent to (2.3) and (2.4) of SHEPP and
SHIRYAEV (1993).
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APPENDIX

Al. Semi-continuous sample paths

In the rest of this paper, we consider the assumption that the sample paths of
{S(t)}, or equivalently, those of {X(t)}, are skip-free downwards. (This assumption
was used in deriving (3.10)). Then the following decomposition holds:

(A.I.I) X(t) = Y(t) + v2W(t)-ct, f > 0 .

Here, {F(?)l is either a compound Poisson process with positive increments or the
limit of such processes; {W(r)} is an independent standardized Wiener process
(with zero drift and unit variance per unit time); the last term, ct, represents a
deterministic drift. The cumulant generating function of the random variable X(t) is
of the form

(A.1.2) \n[M(z, t)] = t\ I {eu-\)[-dQ{x)]
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where Q(x) is some nonnegative and nonincreasing function with <2(co) = 0. Note
that, for each positive number e, the integral

as a function in z, is the cumulant generating function of a compound Poisson
distribution with Poisson parameter

and jump amount distribution

D. , Q(e)-Q(x)
P(x;e) = , x>e.

Q(£)

For notational simplicity, we assume that

-dQ(x) = q{x)dx

for some nonnegative function q(x). Let fi and a~ denote, respectively, the mean
and variance of [X(t)} per unit time. Then

(A.1.3) fit = E[X(t)]=\ f xq(x)dx~c\t,

x 2 q{x) dx + v2 \t,
Jo J

(A. 1.4) alt = Var[Ar(r)] =

and

(A.1.5) E\(X(t)-ntf}=t \ x3q(x)dx.
Jo

In general, for n > 3, the n-th cumulant of X{t) is given by

t x"q(x)dx.
Jo

If follows from (2.5) and (A. 1.2) that

( A . 1.6) In \ M ( z , t ; h ) \ = In \M(z + h , t)} - In [M(h, t)]

e:j( - 1) ehx q(x)dx + v2z2/2-(c-v2h)z\ .
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Thus the Esscher transform (parameter h) of a process defined by (A. 1.1) is of the
' same type, with the following modifications:

(A. 1.7) q(x)^ehxq(x),

(A. 1.8) v2 —> v2 (unchanged),

(A. 1.9) c -*c-v2h.

Furthermore, it follows from (A. 1.6) that (2.8) and (3.6) can be written as

(A.I.10) ( e x - l ) e h " x q ( x ) d x + v 2 h * = c + d-p - ~
Jo 2

a n d

(A.I.11) [ (eex-\)eh'xq{x)dx + - (c - v2h*)9 = d,
Jo 2

respectively.

A2. A particular family

For the model defined by (2.1) and (A.1.1), we now assume that v = 0, i.e.,

S(t) = S(P)eUl)-",

and that

axa-le-b\ x>0,

where a > 0, a > - 1, and b > 0 are three parameters. In the context of risk theory,
DUFRESNE, GERBER and SHIU (1991) have considered such a q(x) function.

According to (A. 1.7), for h < b, the Esscher transform of a process defined by
(A.2.1) is a member of the same family, with b replaced by

(A.2.2) b(h) = b-h.

The moment generating function of Y(t) is

r r i r r
( A . 2 . 3 ) e x p \ t \ ( e z x - l ) q ( x ) d x \ = e x p \ a t \ {e:x - \ ) x a ' ' e " * ' d x

L Jo J L Jo

if a =
b-.
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Thus, for a - 0, (K(f)|,>0 is a gamma process; for a > 0, it is a compound
Poisson process with Poisson parameter

and gamma jump density

p(x; a, b)

A (a,

i

a,

ba

b)~

xa~

ba

xe'b\ , x > 0 .
r(a)

For - 1 < a. < 0, the most prominent case is a = — Vi, where {^(Ol/ao is an
inverse Gaussian process and the density function of Y(t) is

at f - (W* - wtat)21H I x>0-
The condition for

becomes

(A.2.4)

and

(A.2.5)

Solving (A.2.4)

(A.2.6)

b*

b*- 1

1

(b*-\)a

yields

b*

c + A-

e «

1

b*a

b*-

= b(h*) = b-h*

-p
if a =

c + d - p

ar(a)

1
1 „ ' (<• + ft - P)la

if

which, with p = 0, is formula (3.1.7) in GERBER and SHIU (1993a). In general,
equation (A.2.5) does not yield a closed-form solution for b*. However, if a = 1
(exponential jump amounts), one finds

I 4a
1 + M +

' c + d - p
(A.2.7) b*= — .

2

A discussion of the case where a = -Vi can be found in GERBER and SHIU

(1993a).
For each fixed a, we might determine the parameters, a, b and c, by the method

of moments. Thus we assume that we know /A, O and the third central moment of
X(l), which we write as yo7" (y being the coefficient of skewness). Matching the

available at https:/www.cambridge.org/core/terms. https://doi.org/10.2143/AST.24.2.2005065
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 16:56:55, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.2143/AST.24.2.2005065
https:/www.cambridge.org/core


218 GERBER AND SMU

first three moments (by means of formulas (A. 1.3), (A. 1.4) and (A. 1.5)) yields the
equations:

r ar(a+\)
u= x q(x) dx - c = r,

h" + '

>
a-=

Jo

and

yo'= x-q(x)dx=

From these equations we obtain

o o

a + 2

yo

(to be replaced by b* for the evaluation of a derivative security),

(A.2.8) a ••

and

a + 2 a
(A.2.9) c = — - pi.

a+\ y
These formulas generalize (and explain!) the formulas in Sections V.2 and V.3 of

GERBER and SHIU (1993a). We note that HESTON (1993) has independently
introduced the gamma process for modeling stock-price movements; his for-
mula (10a) is the same as formula (4.1.7) of GERBER and SHIU (1993a).

A3. Formulas for the negative root

With the assumptions v = 0 and

q{x) = a x a ~ ' e ~ h \ x > 0 ,

equation (A. 1.11) becomes

a f (eOx-l)eh"xxa-ie-'"!dx-cO = d,
Jo

or

(A.3.1) r
(e x -

Jo
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The value of the integral in the left-hand side of (A.3.1.) can be read off from
(A.2.3).

If a = Q, then (A.3.1) becomes

b* ^ 1
(A.3.2) =e " .

b*-6

Substituting b* in (A.3.2) with formula (A.2.6) yields

(A.3.3) e ~ Ma + 6 [edl" - e ~<c ~ p)la] = ebla.

By (A.2.8) and (A.2.9),

a 4

and

c y ( uy

a 2 { 2

For example, assume that d = 0.1, p = 0, p. = 0.1, o = 0.2 and y = 1. Then (A.3.3)
becomes

from which we obtain

0O= -7.559609675.

Note that, in the Wiener process model (with (5 = 0.1 and o = 0.2), 0O= - 5 by
formula (4.6).

If a ^ 0 and a > - 1, then (A.3.1) becomes

(A.3.4)
(ft* - Of b*a

 ar(a)

where b* is defined by (A.2.5). In the special case where a = 1, (A.3.4) simplifies
as

1 1 d
(A.3.5) b*-6 b* a

which is a quadratic equation in 6, where b* is given by (A.2.7),

27
a = -

2y3o

and

3 o
c =

2 y
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220 GERBER AND SHIU

Now, consider the zero dividend case (p = 0), then the positive root of (A.3.5) is
#i = l, and the negative root is

60= -db*lc;

using the same numerical values as above, d = 0.1, fi = 0.1, a = 0.2 and y = 1, we
obtain

1
b* =

2

and

60= -7.75416551.
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