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and S. Gottlöber5
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ABSTRACT

Dynamical dark energy (DE) is a viable alternative to the cosmological constant. Constructing

tests to discriminate between � and dynamical DE models is difficult, however, because the

differences are not large. In this paper we explore tests based on the galaxy mass function,

the void probability function (VPF), and the number of galaxy clusters. At high z, the number

density of clusters shows large differences between DE models, but geometrical factors reduce

the differences substantially. We find that detecting a model dependence in the cluster redshift

distribution is a significant challenge. We show that the galaxy redshift distribution is poten-

tially a more sensitive characteristic. We do this by populating dark matter haloes in N-body

simulations with galaxies using well-tested halo occupation distributions. We also estimate

the VPF and find that samples with the same angular surface density of galaxies, in different

models, exhibition almost model-independent VPF which therefore cannot be used as a test

for DE. Once again, geometry and cosmic evolution compensate each other. By comparing

VPFs for samples with fixed galaxy mass limits, we find measurable differences.

Key words: methods: analytical – methods: numerical – galaxies: clusters: general – cosmol-

ogy: theory.

1 I N T RO D U C T I O N

High-redshift supernovae, anisotropies of the cosmic microwave

background (CMB), and data on the large-scale distribution of

galaxies (Riess et al. 1998; Perlmutter et al. 1999; Tegmark,

Zaldarriaga & Hamilton 2001; De Bernardis et al. 2000; Hanany

et al. 2000; Halverson et al. 2001; Spergel et al. 2003; Percival

et al. 2002; Efstathiou et al. 2002) indicate that ∼70 per cent of

the energy density in the Universe arises from a smooth compo-

nent with largely negative pressure. This component is dubbed dark

energy (DE). Recently, Macciò, Governato & Horellou (2005) pre-

sented further arguments in favour of DE based on the local (∼5

Mpc) Hubble flow of galaxies. The nature of DE is still open to

debate. Candidates range from a positive cosmological constant �

– yielding a �CDM cosmology – to models with a slowly evolving

self-interacting scalar field φ (dynamical DE; Ratra & Peebles 1988;

Wetterich 1988), to even more exotic physics of extra dimensions

(e.g. Dvali & Turner 2003).

�CDM cosmologies are easy to study and fit most data. Unfortu-

nately, to give a physical motivation to the value of �, we need a fine-

�E-mail: solevi@mib.infn.it (PS); andrea@pegasus.physik.unizh.ch (AVM)

tuning of vacuum energy at the end of the last phase transition. To

rival the success of �CDM, models with different kinds of DE tend

to make predictions very close to it, and therefore discriminatory

tests on DE nature are not easy to devise. Until now, most tests based

on large-scale structure have dealt with the evolution of the cluster

distribution. Using Press–Schechter-type approximations (Press &

Schechter 1974, PS hereafter; Sheth & Tormen 1999, 2002, here-

after ST; Jenkins et al. 2001), the expected dependence of the cluster

mass function on DE nature has been extensively studied (see, for

example, Wang & Steinhardt 1998; Haiman, Mohr & Holder 2000;

Majumdar & Mohr 2004; Mainini, Macciò & Bonometto 2003a).

The results were used to predict the redshift dependence of various

observables, such as temperature (T) or photon counts (N). In Sec-

tion 2, we compare the (virial) mass functions for different DEs. An

important – and often overlooked – factor is the dependence of halo

concentration c on the DE equation of state. For a given virial mass,

the concentration varies with DE nature by up to 80 per cent, as

shown by simulations (Klypin et al. 2003; Linder & Jenkins 2003;

Kuhlen et al. 2005). The model dependence of c is so strong that

it can be used as a possible discriminatory test for strong lensing

measurements (Dolag et al. 2004; Macciò 2005).

This paper focuses on galactic ∼1012h−1 M� scales, which

are also interesting for testing models of DE. In order to make a
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prediction we first need to know how to generate a distribution of

galaxies, not just dark matter haloes. There are various ways of

doing this. We decided to use recent results on the halo occupa-

tion distribution (HOD): the probability of finding N galaxies in a

halo of mass M. The HOD properties have been studied in detail

(Seljak 2000; Benson 2001; Bullock, Wechsler & Somerville 2002;

Zheng et al. 2002; Berlind & Weinberg 2002; Berlind et al. 2003;

Magliocchetti & Porciani 2003; Yang, Mo & van den Bosch 2003;

van den Bosch, Yang & Mo 2003). Numerical simulations, includ-

ing gas dynamics (White, Hernquist & Springel 2001; Yoshikawa

et al. 2001; Pearce et al. 2001; Nagamine et al. 2001; Berlind et al.

2003; Yang et al. 2004) and semi-analytical models of galaxy forma-

tion (Kauffmann, Nusser & Steinmetz 1997; Governato et al. 1998;

Kauffmann et al. 1999a,b; Benson et al. 2000a,b; Sheth & Diaferio

2001; Somerville et al. 2001; Wechsler et al. 2001; Benson et al.

2003; Berlind et al. 2003), were used to find a law describing how

haloes split in subhaloes hosting individual galaxies.

In this way, we formulate predictions on galaxy mass functions

and their z-dependence. In order to compare predictions with data

we then need to disentangle the evolution of the mass function from

the evolution of the M/L ratio, because observations provide lumi-

nosities of galaxies while our estimates give us halo masses. In this

respect, one of the aims of this work is to estimate how precisely

the M/L evolution should be known in order to use data on galactic

scales to test DE nature. Potentially, M/L evolution can be predicted

using galactic evolution models (see, for example, Bressan, Chiosi

& Fagotto 1994; Portinari, Sommer-Larsen & Tantalo 2004, and

references therein). Such predictions can be compared with weak

lensing results or satellite dynamics (Prada et al. 2003). The latter

methods will provide estimates of virial M/L for samples of galaxies

at different z. This is exactly what we need in order to test different

models for DE. Here we find that, for some statistics, the expected

signal, i.e. the difference between models, is rather large. Hence,

there is hope of detecting DE effects in spite of uncertainties in

M/L ratios. Certainly, if galactic evolution predictions and high-z
M/L estimates are compared, one can hardly prescind from taking

into account accurately the impact of DE nature.

We run a series of N-body simulations with different equations

of state. In these models, the ratio w = pde/ρ de of the DE pressure

to the energy density varies with z according to field dynamics. The

models considered here are the Ratra–Peebles (RP, Ratra & Peebles

1988) models, and the models with supergravity (SUGRA, Brax &

Martin 1999; Brax & Martin 2000; Brax, Martin & Riazuelo 2000).

Appendix A gives a short summary of these models. Each model is

specified by an additional parameter – the energy scale � of the self-

interacting potential of the scalar field. Here we take � = 103 GeV

for both models. In RP (SUGRA), w shows slow (fast) variations

with z.

The void probability function (VPF) is an obvious candidate for

discriminating between models. Fluctuations grow differently in

different models. So, one may expect some differences in VPF. We

use galaxy distributions to estimate the VPF at different redshifts.

Whilst measuring VPF in simulations is straightforward, mimicking

observations is slightly more complicated because it requires cor-

rections for geometrical effects and because the answer depends on

a definition of galactic populations. At z = 0 no model dependence

of the VPF is expected or found. Predictions at higher z depend on

how galaxy samples are defined. In particular, we show that, if equal

angular density samples are considered, VPF results are indepen-

dent of the DE nature. On the other hand, if we select samples above

a fixed galactic mass M, a significant signal is found, which can be

useful for testing the DE nature.

The plan of the paper is as follows. In Section 2 we discuss how

geometry and galactic evolution affect the redshift distributions of

galaxies and clusters. In Sections 3 and 4 we discuss the simulations

and prescriptions of populating haloes with galaxies. In Sections 5

and 6 results on redshift distributions and the VPF are given. Finally,

Section 7 is devoted to discussing our results and future perspec-

tives.

2 G E O M E T R I C A L A N D E VO L U T I O NA RY

FAC TO R S

Let us consider a set of objects whose mass function is n(>M, z).

In a spatially flat geometry, their number between z and z + �z, in

a unit solid angle, is given by

N (> M, z, �z) =
∫ z+�z

z

dz′ D(z′) r 2(z′) n(> M, z′), (1)

with D(z) = dr/dz. For flat models,

D(z) = c

H0

√
�m(z)

�m0(1 + z)3
, r (z) =

∫ z

0

dz′ D(z′). (2)

Here, �m(z) is the matter density parameter at the redshift z. The

Friedman equation can be written in the form

H 2(z) = 8π

3
G

ρm0(1 + z)3

�m(z)
= H 2

0

�m0(1 + z)3

�m(z)
. (3)

Along the past light cone, a dr =− c dt. So, by dividing the two sides

by dz = −da/a2, one finds that a dr/dz = a2c dt/da. Accordingly,

D(z) = dr/dz = c/H(z) is derived from equation (3).

When w is a constant, a useful expression, namely

D2(z) = (c/H0)(1 + z)−3[�m0 + (1 − �m0)(1 + z)3w]−1, (4)

can be obtained, which allows one to see that the geometrical factors

increase both when w decreases and when �m0 decreases in models

with w < 0.

An extension to dynamical DE can be performed either by us-

ing the interpolating expressions yielding �m (z), for RP and

SUGRA models, provided by Mainini et al. (2003b), or, equiva-

lently, through direct numerical integration. We obtain the geomet-

rical factor r 2(z)D(z) shown in the upper panel of Fig. 1.

Figure 1. Geometrical and evolutionary terms on the cluster mass scale.

In both panels, �CDM with �m0 = 0.2 is above �CDM with �m0 = 0.3.

In contrast, in the upper and lower panels RP and SUGRA lie on opposite

sides of �CDM. In the latter cases, cancellation between geometrical and

evolutionary effects is therefore expected.
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Here, �m0 = 0.3 or 0.2 for �CDM, while �m0 = 0.3 for SUGRA

and RP models (for which � = 103 GeV). H0 is 70 km s−1 Mpc−1 in

all models (h = 0.7). In the absence of number density evolution, the

upper panel of Fig. 1 shows the dependence of the angular number

density on z.

In the PS formulation, the expected differential cluster number

density n(M), at a given time, is then given by the expression

f (ν)νd log ν = M

ρm

n(M)Md log M . (5)

Here ρm is the matter density, ν = δc/σ M is the bias factor, and M is

the mass scale considered. σ M is the rms density fluctuation on the

scale M, and δc is the amplitude that, in linear theory, fluctuations

have in order that, assuming spherical evolution, full recollapse is

attained exactly at the time considered (in a standard CDM model

this value is ∼1.68; in other models, δc is slightly different by a few

per cent). As usual, we take a Gaussian f (ν) distribution.

Together with equation (5), we must take into account the virial-

ization condition, which yields significantly different density con-

trasts �v in different DE models. Further details can be found in

Mainini, Macciò & Bonometto (2003a).

In the lower panel of Fig. 1 we show the evolution of the number

of haloes of mass >1014h−1 M� in comoving volumes. All models

are normalized to the same cluster number today, and the redshift

dependence of n(>M, z) is clearly understandable on qualitative

bases: when �CDM models are considered, the evolution is faster

as we approach standard CDM. RP and SUGRA, however, yield a

slower evolution than �CDM.

The important point is that, while both the geometrical factor

and the evolutionary factor of �CDM (with �m0 = 0.2) lie above

�CDM (with �m0 = 0.3), the RP and SUGRA factors lie on the

opposite sides of �CDM.

When the two factors are put together, this causes the effect shown

in the upper panel of Fig. 2: a strong signal on �m0 and a widespread

Figure 2. The upper panel shows how the redshift distribution on the cluster

mass scale depends on the models. The cancellation expected from Fig. 1

has occurred and the models with �m0 = 0.3 are quite close, while �CDM

allows large differences with varying �m0. In the lower panel, similar curves

are shown for haloes on galactic mass scales. In this case, evolution is almost

model-independent and the geometrical factor causes an appreciable differ-

ence. On these scales, a lower �m0 yields a different halo density, unless

the spectrum is normalized to unphysical levels. Hence, only models with

�m0 = 0.3 are shown.

cancellation for DE models, compared with �CDM. Discriminating

between different DE natures, from this starting point, is unavoid-

ably a significant challenge.

Geometrical factors do not depend on the mass scale. On the con-

trary evolutionary factors are known to have a stronger dependence

on the model for larger masses. As cancellation is almost complete

on cluster scales, it is to be expected that geometrical factors yield a

significant signal on lower mass scales. This is shown in the lower

panel of Fig. 2, where haloes of 1012h−1 M� are considered. A

halo of this mass is expected to host a normal galaxy. More massive

haloes are expected to host many galaxies. Hence, this plot cannot

be directly compared with observations. Its main significance is that

such lower mass scales deserve to be inspected because DE signals

are expected to be strong enough on these scales.

3 S I M U L AT I O N S

The simulations run for this work are based on a �CDM model and

two dynamical DE models, with the same matter density and Hub-

ble parameters (�m0 = 0.3 and h = 0.7). The simulations were run

using the adaptive refinement tree code (ART; Kravtsov, Klypin

& Khokhlov 1997). The ART code starts with a uniform grid,

which covers the whole computational box. This grid defines the

lowest (zeroth) level of resolution of the simulation. The standard

particles–mesh algorithms are used to compute density and gravi-

tational potential on the zeroth-level mesh. The ART code reaches

high force resolution by refining all high-density regions using an

automated refinement algorithm. The refinements are recursive: the

refined regions can also be refined, each subsequent refinement

having half of the cell size of the previous level. This creates a

hierarchy of refinement meshes of different resolution, size, and

geometry covering regions of interest. Because each individual cu-

bic cell can be refined, the shape of the refinement mesh can be

arbitrary and can match effectively the geometry of the region of

interest.

The criterion for refinement is the local density of particles: if the

number of particles in a mesh cell (as estimated by the cloud-in-

cell method) exceeds the level nthresh, the cell is split (‘refined’) into

eight cells in the next refinement level. The refinement threshold

may depend on the refinement level. The code uses the expansion

parameter a as the time variable. During the integration, spatial re-

finement is accompanied by temporal refinement. That is, each level

of refinement, l, is integrated with its own time-step �al = �a0/2l ,

where �a0 is the global time-step of the zeroth refinement level.

This variable time-stepping is very important for the accuracy of

the results. As the force resolution increases, more steps are needed

to integrate the trajectories accurately. Extensive tests of the code

and comparisons with other numerical N-body codes can be found

in Kravtsov et al. (1997) and Knebe et al. (2000).

The code was modified to handle DE of different types, according

to the prescription of Mainini et al. (2003b). Modifications include

effects arising from the change in the rate of the expansion of the

Universe and from initial conditions, taking into account spatial

fluctuations of the scalar field before they enter the horizon.

In this paper we use four new simulations. The models are nor-

malized assuming σ 8 = 0.9. They are run in a box of 100 h−1 Mpc.

We use 2563 particles with mass m p = 4.971 × 109 h−1 M�. The

nominal force resolution is 3 h−1 kpc. All models are spatially flat,

while �m0 = 0.3 and h = 0.7. The two �CDM models start from dif-

ferent random numbers and are indicated as �CDM1 and �CDM2.

The two DE models, named RP3 and SUGRA3, are started from the

same random numbers as �CDM1.
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Figure 3. The halo mass function at z = 0. Results for �’3CDM (dashed

line), RP (solid line), and SUGRA (dotted line) overlap.

4 G A L A X I E S I N H A L O E S

Haloes made by more than 30 particles were found in simulations

by the spherical overdensity (SO) algorithm used in Klypin et al.

(2003). The algorithm locates all non-overlapping largest spheres

where the density contrast attains a given value�v. Density contrasts

are assigned the virialization values, which depend on the redshift

z and on parameters of the DE. For instance, at z = 0, �v = 101.0

for �CDM, 119.4 for SUGRA3 and 140.1 for RP3; �v values for

higher z can be found in Mainini, Macciò & Bonometto (2003a; see

also Mainini et al. 2003b).

Fig. 3 shows the halo mass function in the LCDM1, SUGRA3,

and RP3 models at z = 0. Differences between the models result

only from different w(z), while their σ 8 is identical. Accordingly,

at z = 0 their mass functions almost overlap and are well fitted by

the Sheth–Tormen (ST, Sheth & Tormen 1999) approximation.

When we consider galaxies, however, we need to use another ap-

proach, because individual haloes may host many galaxies of differ-

ent masses and luminosities. In order to assign galaxies to haloes we

use a HOD. This is a relatively novel approach to locating galax-

ies in each halo. It can be used in a number of ways. Full-scale

semi-analytical methods can predict quantities such as the luminos-

ity, colours and star formation rates. Unfortunately, many important

mechanisms are still poorly understood, making the results less re-

liable. It therefore seems advisable to minimize the physical input,

leaving apart non-gravitational effects.

In this paper we use a prescription consistent with the results

of Kravtsov et al. (2004). We utilize an analytical expression re-

cently proposed by Vale & Ostriker (2004), but the parameters of

the approximation are different from Vale & Ostriker (2004) and are

tuned to produce a good fit to the results of Kravtsov et al. (2004).

The approximation is based on the assumption that the probability

P s(N s|M) for a halo of mass M to host N s subhaloes is approxi-

mately universal. We take the Schechter approximation

N (m|M) dm = A
dm

βM

(
m

βM

)−α

exp

(
− m

βM

)
(6)

Figure 4. Comparison of different halo occupation distributions. The solid

line is the halo occupation distribution given by Kravtsov et al. (2004). Other

curves are obtained from equation (8) for various parameters γ as indicated

in the plot.

for the number of subhaloes with masses in the range m to m + dm,

for a parent halo of mass M. A must be such that the total mass in

subhaloes,
∫ ∞

0
dm m N (m|M), is a fraction γ M of the parent halo

mass. Therefore A = γ /β �(2 − α), so that the number of subhaloes

of mass m is

nsh(m) =
∫ ∞

0

dM N (m|M)nh(M), (7)

where nh (M) is the halo mass function, independently of the par-

ent halo mass. The expression (6) yields the following number of

subhaloes with mass >m in a halo of mass M:

Nsh(> m, M) = γ

β�(2 − α)

∫ ∞

m/βM

dxx−α exp(−x). (8)

Subhaloes will be then identified with galaxies. Fig. 4 shows that

the expression approximates the results of Kravtsov et al. (2004)

once we fit the parameters α, β, γ and add to the expression (8)

a unity; that is, the halo as a subhalo of itself. For large haloes, to

be interpreted as galaxy clusters, this subhalo could be the central

cD, but adding an extra object, in such large galaxy sets, is just a

marginal reset. For small haloes, on the other hand, it is important

not to forget that they represent a galaxy, as soon as they exceed the

galaxy mass threshold.

In a different context, Vale & Ostriker (2004) use the values γ =
0.18, β = 0.39. Owing to the use we make of equation (8), γ = 0.7

appears more adequate.

If the (differential) halo mass function nh(M) is known, the sub-

halo mass function is

Nsh(> m) = γ

β�(2 − α)

×
∫ ∞

m/γ

dM nh(M)

∫ ∞

m/βM

dx x−α exp(−x). (9)

If we perform non-linear predictions, nh(M) is obtained from ex-

pression (5) or from the corresponding expressions in the ST case.
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Figure 5. Galaxy (cumulative) mass function at z = 0 from simulations

(dots) versus an integral Schechter function, with �o, α and M∗ shown in

the frame.

When we deal with simulations, halo masses have discrete values

m ν = νm p, appearing n(ν)
h times, up to a top mass ν M m p. Then

Nsh(> m) = γ

β�(2 − α)

×
νM∑

ν= m
γ mp

n(ν)
h

∫ ∞

νm/βM

dx x−α exp(−x). (10)

In Fig. 5 we plot the galaxy mass function obtained with equa-

tion (10), using the mass function of haloes in the simulations, and

identifying subhaloes with galaxies. At z = 0 model differences are

indiscernible, and the plotted function holds for all models. We also

plot a Schechter function with the parameters shown in the frame,

selected to minimize the ratios between differential values at all

points. As expected, the two curves are close. In fact, there must

be some relation between masses and luminosities, but the Mg/L g

ratio should not be a constant.

5 G A L A X Y A N G U L A R D E N S I T Y I N M O D E L S

W I T H D I F F E R E N T DA R K E N E R G Y

Let us now consider the galaxy mass function at higher z, for the

various models. According to equation (1), the number of galaxies

with mass >m, in a solid angle �θ 2(�θ � 1), between redshifts z
and z + �z, is

Ng(> m, z; �z, �θ )

�z�θ2
	 c

r 2(z)

H (z)
ng(> m, z), (11)

where ng(>m, z) is the comoving number density of galaxies with

mass >m at a redshift z. The galaxy density can be obtained from

the subhalo mass functions (9) and (10). Accordingly, the average

angular distance θ gg is given by

θgg(> m, z)
√

�z 	 1

r (z)

[
H (z)

ng(> m, z)

]1/2

. (12)

Figure 6. The redshift dependence of the mean fractional angular separation

in different models. Points with error bars show the results of simulations.

Curves indicate ST predictions. The plot shows a strong dependence of the

galaxy redshift distribution on the dark energy nature.

Thus, the expression on the left-hand side is independent of the

particular volume considered.

Such θ gg(>m, z) therefore depends on geometry, halo mass func-

tion and HOD. We expect, however, that the redshift dependence

mostly arises from geometry, while evolution plays a significant role

at higher z. In fact, the main difference between this and the cluster

case is that evolution is mild and discrepancies between models, in

comoving volumes, up to z ∼ 2, are even weaker.

Let θ �(z), θ SU(z) and θ RP(z) be the mean angular distances be-

tween galaxies at redshift z for the �CDM, SUGRA and RP models,

respectively. Besides these functions, let us also consider the angular

distance θ geo(z) obtained from equation (12), keeping the value of

ng(>m, z = 0) at any redshift and the �CDM geometry. Therefore,

θ geo(z), although the symbol has no reference to �CDM, describes

the behaviour of the angular separation in a �CDM model, in the

limit of no halo evolution.

In Fig. 6, we compare results obtained from simulations with the

ST predictions in different models. Rather than presenting θ mod(z)

(where mod = λCDM, RP, SUGRA), we plot the fractional differ-

ence (θ mod − θ geo)/θ geo. In principle, error bars can be evaluated in

two ways: (i) by comparing �CDM1 with �CDM2 (cosmic vari-

ance); and (ii) by comparing the differences between models. The

latter evaluation can be done only at present because the models

have the same power spectrum only at z = 0. The differences be-

tween models exist because the fluctuations grow differently in the

past. At larger z, this evolutionary variance should be smaller, but

is not easy to evaluate. We use differences between models at z =
0 as a rough estimate of error bars at all redshifts. Judging by the

differences between �CDM1 and �CDM2, the cosmic variance

seems to be smaller by a factor of 3 than the evolutionary differ-

ences. We find similar behaviour for different galaxy masses. In all

cases, differences between models can be clearly seen.

The largest differences between models are attained at z ∼ 1. Let

us recall that the plot shows the fractional differences between DE

models and the z-dependence due to the mere �CDM geometry.
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At z 	 1, this difference is just 	5 per cent for �CDM, while

for SUGRA it is ∼20 per cent, because of the different geometry

and a still slower cosmological evolution. The difference with RP

is even larger. This compares with an evolutionary variance hardly

exceeding ∼2 per cent, if the effective comoving volume inspected

is ∼106h−3 Mpc3. For �z ∼ 0.1, this corresponds to δθ ∼ 30◦–40◦.

The discriminating power of this theoretical prediction is to be

compared with two possible sources of error: (i) peculiar velocities,

setting individual galaxies into an apparent redshift band different

from the one to which they belong; and (ii) luminosity evolution.

Overcoming the latter point is critical to the use of galaxies as

indicators of DE nature, and we shall devote the whole of the next

section to the impact of luminosity evolution. The conclusion of

this discussion is that galaxies are indeed a possible indicator of DE

nature, but more work is needed before they can be efficiently used

for this purpose.

In this section we shall report the results of a test performed to

evaluate the impact of redshift displacements resulting from peculiar

velocities.

We divided the volume L3 of the box into cells of side 10−1 L ,

with volume 10−3 L3. 50 such cells were selected at random at each

redshift and replaced by the cells at the closest redshift considered

with their galaxy contents. The redshift displacement between the

original cell and the replaced cell is ± 0.5. For a change of 5 per

cent in galaxy contents, the average shift of θ gg is ∼1.2 per cent.

This shift lies well below the error bars shown in Fig. 6. However,

the average errors resulting from evolutionary and cosmic variance

plus peculiar velocities are ∼2.4 per cent, and the whole error never

exceeds 2.6–2.7 per cent. We therefore argue that these sources of

error do not affect the robustness of the results.

6 D E P E N D E N C E O N T H E M A S S – L U M I N O S I T Y

R E L AT I O N

Let us now consider galaxy evolution, which is expected to cause

a z-dependence of the average M g/L g ratio, but can also yield a

z-dependence of the M g/L g distribution about such an average, in

a way that may depend on the mass range considered. From an

observational point of view, when we consider galaxies of various

luminosities Lg, we must take into account that their expected mass

Mg could be distributed with different laws at different z and L g.

Let us therefore consider the galaxy distribution on the (M g, L g)-

plane at a given z, yielding the galaxy number

dN = D(Mg, Lg, [z]) dMg dLg (13)

in the infinitesimal area dM gdL g about the point (M g, L g). We put z
in brackets to emphasize that, in respect to it, D is not a distribution
but a function. Obviously we expect a strong correlation between

M g and L g, at any z, so that it makes sense to consider an average

M g/L g ratio.

Once the distribution D is assigned, the distributions on Mg(at

fixed L g) and on Lg(at fixed Mg) read

φ(Mg, [z]) =
∫

dLg D(Mg, Lg, [z]),

ψ(Lg, [z]) =
∫

dMg D(Mg, Lg, [z]).

The number dN is the product of φ(M g, [z]) times the distribution

on luminosities at fixed mass Mg:

dN = φ(Mg, [z]) Q(Lg; [Mg, z]) dMg dLg. (14)

Equating the right-hand sides of equations (13) and (14) yields

Q(Lg; [Mg, z]) = D(Mg, Lg, [z])∫
dl D(Mg, l, [z])

, (15)

and, similarly, the distribution on masses at given Lg reads

P(Mg; [Lg, z]) = D(Mg, Lg, [z])∫
dm D(m, Lg, [z])

. (16)

We can now use P to work out the average M g/L g at fixed Lg, and

the distribution on M g/L g about such an average. Clearly,〈
Mg

Lg

〉
Lg,z

= 1

Lg

∫
dm m P(m; [Lg, z]) =

= 1

Lg

∫
dm m D(m, Lg, [z])∫
dm D(m, Lg, [z])

, (17)

while the distribution

D(Mg; [Lg, z]) = Mg

Lg

D(Mg, Lg, [z])∫
dm D(m, Lg, [z])

(18)

tells us how M g/L g is distributed around 〈M g/L g〉Lg,z .

The impact of the evolution of stellar populations (or other mech-

anisms) on the M g/L g ratio can be fully expressed through the dis-

tribution D(M g, L g ;[z]) in equation (13). From it we can work out

an average mass/luminosity ratio 〈M g/L g〉 and the distribution on

masses D; they both depend on Lg and z.

Let us now try to discover how such a variable D distribution

affects our results, taking into account that we mostly ignore how

such variations occur. Accordingly, we shall proceed as follows: we

define a ‘wild’ distribution, which we expect to spread the M g/L g

ratio, at fixed Lg, farther from average than any physical D, at any z,

will do. The effects caused by such a wild distribution should then

be an overestimate of the effects of the actual distributions. Should

they cause just a minor perturbation in estimates, all we have to

worry about is the redshift dependence of the average 〈M g/L g〉Lg .

In more detail, we shall allow that a galaxy of given mass Mg has

a luminosity in an interval L 1, L 2, with L 2 ∼ 20 L 1. We test this

prescription without direct reference to luminosities: in the sample

of galaxies obtained through the HOD, at each z, each galaxy mass

(m) is replaced by a mass m′ = m + �m R, R being a random number

with normal distribution and unit variance. We take �m = 0.8 m,

but replace all m′ < 0.1 m with 0.1 m, as well as all m′ > 1.9 m
with 1.9 m. The shift is therefore symmetric on m (not on log m).

The operation causes a slight increase of the mass function above

M̄ ∼ 2.8×1011 h−1 M� (by a few per cent), as there are more lighter

galaxies coming upwards than heavier galaxies going downwards

[below M̄ , the low-mass cut-off of the mass function, set by the

mass resolution of our simulations (see Section 3), begins to cause a

shortage of transfers upwards]. The operation is then completed by

reducing all masses by a (small) constant factor, so that, summing

up all masses of objects with mass Mg > M̄ , we have the same total

mass as before the operation. This lowers the limit below which the

mass function preserves its initial shape, but we never use galaxy

samples including masses below 3 × 1011h−1 M�.

We re-estimated θmod

√
�z using the new masses, for the same

mass limits as before, and compared the changes obtained in this

way with the Poisson uncertainty arising from the finite number of

galaxies in each sample.

We find that the error obtained from the above procedure ranges

between 20 and 40 per cent of the Poisson error.

This output tells us that the evolution of the physical distribu-

tion can be expected to redistribute results well inside the Poisson
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uncertainty. If we expect this redistribution to be random, the top

value of the whole expected error is then 3 per cent; if we attribute

a systematic character to it and refrain from performing a quadratic

sum with the other error sources considered, the overall possible

error is still within 3.8 per cent. It should be emphasized that here

we pushed all error sources to their maximum; thus, we believe that

the above estimates are safely conservative.

Let us now discuss how the evolution of the average M g/L g

ratio can affect the use of galaxies to detect DE nature. In princi-

ple, one could use the z-dependence of D(M g, L g) to obtain the

z-dependence of the 〈M g/L g〉Lg ratio. More realistically, suitable

data sets can directly provide the z-dependence of 〈M g/L g〉Lg , with

some residual uncertainty. The basic issue is then: how well does

the z evolution of 〈M g/L g〉Lg need to be known in order that DE

nature can be tested? Fig. 6 is devised to provide a direct reply to

this question: if we double the values of δ θ gg/θ gg provided there,

we have a fair estimate of the difference between evolution rates

of R = 〈Mg/Lg〉Lg (z)/〈Mg/Lg〉Lg (z = 0) needed just to cover the

differences between geometry and dynamics for the �CDM model

or to compensate the differences between the �CDM geometry and

whole evolution for dynamical DE models (in the limit M g �M ∗,

where M∗ is the mass-scale appearing in a Schechter-like expres-

sion). Fig. 6 can be interpreted in both senses, by changing the name

of the ordinate.

For instance, at z = 0.5, an uncertainty ∼20 per cent (35 per cent)

on the evolution of M g/L g is needed to hide the difference between

�CDM and SUGRA (RP).

Let us demonstrate this point. From equation (12), θ gg ∝ n−1/2
g ,

so that a shift δ θ gg in the observed angular distance arises from a

shift

δng

ng

	 2
δθgg

θgg

(19)

in the galaxy number density

ng(> Mg) = ng

(
> Lg

Mg

Lg

)
. (20)

The latter shift, as shown in equation (20), can arise from a shift on

M g/L g, being

δng = ng(Mg)Lg δ

(
Mg

Lg

)
; (21)

here, ng(M g) is the differential mass function, obtained by differ-

entiating the integral mass function ng(>M g). Therefore,

δng(> Mg)

Mgng(Mg)
	 δ(Mg/Lg)

(Mg/Lg)
(22)

and

δ(Mg/Lg)

(Mg/Lg)
	 δng(> Mg)

ng(> Mg)

ng(> Mg)

Mgng(Mg)
. (23)

If we approximate the integral mass function by a Schechter expres-

sion, it is |m n(m)/n(>m)| = 1 + m/M ∗, so that

δ(Mg/Lg)

(Mg/Lg)
	 δng(> Mg)

ng(> Mg)

(
1 + Mg

M∗

)−1

. (24)

Using this equation together with equations (19) and (23), we have

the relation

δ(Mg/Lg)

(Mg/Lg)
	 2

(
1 + Mg

M∗

)−1
δθgg

θgg

, (25)

telling us how to use Fig. 6 to estimate the evolution of M g/L g

needed to yield the same effects as a change in DE nature. This

equation also tells us how to use Fig. 6 for masses approaching M∗.

7 T H E VO I D P RO BA B I L I T Y F U N C T I O N

Let us randomly throw spheres of radius R in a space where objects

of various masses M are set. The probability P 0(R) of finding no

object with M > M tr in them, is the VPF for objects of mass >M tr.

We expect and find no model dependence in the galaxy VPFs at

z = 0. At z > 0, a critical issue is how M tr is set. One can simply plan

to determine the galaxy masses Mg from data (e.g. from Lg values),

so to select galaxies with M g >M tr. As widely outlined, this choice

involves several complications. Another option is to take the most

luminous galaxies up to an average angular distance θ gg.

Each threshold M tr, for any z and �z, yields a value of θ gg. Fig. 6

shows how θ gg depends on the model at a fixed threshold. Vice versa,

if we keep, for that z and �z, a fixed θ gg, the relative M tr varies with

models. We can compare models either at fixed M tr or at fixed θ gg.

Dealing with observations, the latter option is easier, but mixes up

the intrinsic VPF dependence on the model and other features that

also depend on the model.

Besides the threshold setting, another issue has a great operational

relevance. In principle, VPFs can be evaluated in the comoving

volumes where galaxies are set and compared there with VPFs from

data. This is, however, inadequate to evaluate how discriminatory

the VPF statistics are. To do so, we follow the following steps.

(i) From cartesian coordinates x̄i (i = 1, 2, 3) in comoving vol-

umes we work out the redshift and the celestial coordinates z, θ , φ

that an observer, set at z = 0, would measure. This is achieved by

using the geometry of the model.

(ii) Data also give z, θ , φ for each galaxy. To estimate the VPF,

however, they must be translated into Cartesian coordinates xi. An

observer can only perform such a translation by using the geometry

of a fiducial model, for example �CDM. The second step, to forge

predictions, therefore amounts to re-transforming z, θ , φ into Carte-

sian coordinates xi, but using now the fiducial �CDM geometry;

xis coincide with the x̄i s only for a �CDM cosmology. Let us call

fiducial space the environment where galaxies are now set.

(iii) We then estimate the VPFs, for all models, in the fiducial

space; these VPFs should be compared with observational data, but

can also be compared with one another to assess how discriminatory

these statistics can be.

Although comparing predictions for VPFs in comoving volumes,

therefore, has little discriminatory meaning, our outputs are more

easily explained if we start from comoving-space VPFs. Let us recall

that, on galaxy scales, evolutionary differences up to z ∼ 2 are

modest. Accordingly, for an assigned M tr, we find just marginal

discrepancies, as is shown in Fig. 7 for M tr = 6 × 1011 M� h−1.

Differences among VPFs arise, of course, if we do not fix M tr, but

θ gg, as a reflex of θ gg differences. These VPFs are shown in Fig. 8.

VPFs in respect of comoving coordinates bear a strict analogy

with mass functions in comoving volumes. The fact that geometry

erases almost any signal on the cluster mass function is analogous to

what happens for the VPF when we pass from comoving to fiducial

space. This fact is far from trivial. Let us compare these VPFs with

the VPFs in a Poisson sample with the same θ gg (Fig. 9) and recall

that

P0(R) = exp

[
−N̄R +

∞∑
n=2

(−N̄R)n

n!
ξ (n)(R)

]
. (26)

Here, N̄R is the average number of points in a sphere of radius R;

ξ (n)(R) are the n-point functions averaged within the same sphere.

For the Poisson sample P0(R) = exp(−N̄R), as all ξ (n)(R) vanish.
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Figure 7. Void probability functions in comoving volumes for M tr = 6 ×
1011 M� h−1. The four panels refer to redshifts 0.5, 1, 1.5 and 2, as indicated

in the frames. The galaxy numbers in the simulation box are reported for

each model. Solid, dashed and dotted lines as in Fig. 6.

Figure 8. Void probability functions in comoving volumes for fixed

angular density. The four panels refer to redshifts 0.5, 1, 1.5 and 2, as indi-

cated in the frames. Numbers in the frames as in Fig. 7. Solid, dashed and

dotted lines as in Fig. 6.

The difference between Poisson VPF and model VPF is to be fully

ascribed to ξ (n), as N̄R is set equal. This difference is huge, in respect

of the differences between models, expected to arise because of ξ (n)

shifts. The paucity of the shifts indicates that density renormalization

almost erases the shifts in correlation functions of all orders.

The cancellation between geometrical and θ gg effects, shown in

Fig. 10, indicates that the passage from comoving to fiducial co-

ordinates bears a weight comparable with the differences shown in

Fig. 8. It therefore comes as no surprise that VPFs, for fixed M tr,

almost absent in the comoving space, are significant in the fiducial

Figure 9. Differences between void probability functions of various models

and the void probability function for a Poisson sample, in fiducial volumes

for fixed angular density. They arise from the sum of n-point correlation

functions in equation (26). Tiny residual differences between models, almost

indiscernible in the previous plot, arise from differences between their n-

point functions, clearly almost erased by geometrical renormalization.

Figure 10. Void probability functions in fiducial volumes for fixed angular

density. Numbers in the frames as in Fig. 7. Solid, dashed and dotted lines

as in Fig. 6.

Figure 11. Void probability functions in fiducial volumes for a fixed mass

limit (see text). Numbers in the frames as in Fig. 7. Solid, dashed and dotted

lines as in Fig. 6.

space. They are shown in Fig. 11 and, as expected, the curves of the

different models appear in the opposite order in respect to Fig. 8.

If the redshift dependence of the M g/L g ratio is under control,

Fig. 11 shows a discriminatory prediction that can be compared
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with data. Once again, the problem concerns both the evolution of

the mean M g/L g ratio and single galaxy deviations from average.

Supposing that the average M g/L g evolution is under control, we

can estimate the impact of individual deviations by replacing the

sharp threshold on Mg with a soft threshold, substituting each galaxy

mass Mg with M g + �M g R, as in the previous section. This test

was performed for samples as wide as those in our 100 h−1 Mpc

box, and the effects of such replacements are modest, amounting to

∼10 per cent of the difference found between �CDM and SUGRA.

Accordingly, the critical issue concerns the mean M g/L g ratio.

By comparing VPFs for different thresholds, we can see that, in

order that the shift of M tr induces a VPF shift similar to differences

between models, M tr is to be displaced by a factor of 1.7–1.8. Uncer-

tainties of ∼10 per cent on the mean M g/L g ratio would therefore

leave intact the discriminatory power of the VPF statistics.

Before concluding this section, let us finally comment on sample

variance. All �CDM VPFs were estimated on the �CDM1 sim-

ulation. Differences between �CDM1 and �CDM2 are, however,

small, and could not be appreciated in the above plots. Accordingly,

sample variance is not a relevant limit to the use of VPFs.

8 C O N C L U S I O N S

Dark energy modifies the rate of cosmic expansion in the epoch when

a substantial fraction of fluctuations on cluster scales reach their

turnaround. Therefore, it seems quite natural to trace the redshift

dependence of w(z) = pde/ρ de using the cluster mass function at

different redshifts.

Unfortunately, the situation is more complicated. The evolution

of w(z) affects observations in two ways. First, it causes objects to

form and evolve at different rates. Secondly, it results in a different

mapping of comoving coordinates of galaxies to observed angu-

lar positions and redshifts. In conclusion on a cluster-mass scale

(∼1014h−1 M�), the evolutionary and geometrical effects tend to

cancel, which makes clusters somewhat problematic for testing the

equation of state.

In this paper we discuss the use of scales on which the evolu-

tionary effects are minimized, so that the geometrical effects leave

a clearer imprint. In a sense, this is not a new procedure: an anal-

ogous idea is utilized when the DE equation of state is tested by

using a standard candle. Obviously, galaxies are not standard can-

dles themselves, but they can provide a ‘standard meter’ through

their (almost) model-independent abundance and evolution.

Previous analysis, which focused on clusters, tried to overcome

the above difficulties by making recourse to various features. For

example, the evolutionary dependence on w is preserved if one con-

siders masses well above 1014h−1 M�. Unfortunately, clusters with

masses ∼1015h−1 M� or larger are rare today, and surely are even

more rare in the past. Some analysis (see, for example, Haiman,

Mohr & Holder 2000) stressed a possible role of very massive clus-

ters at large z. However, the number of such clusters cannot be large,

and thus comparing such predictions with observations is a signif-

icant challenge. There is also another problem with using cluster

masses. Usually, the mass function is estimated with PS-like ap-

proximations, which are well tested with simulations. The ‘virial’

radius Rv is defined so that inside Rv the density contrast is �v.

The value of �v depends on the redshift and on the DE model. On

the other hand, data are typically analysed with a standard density

contrast �c 	 180 (or 200). Increasing �c reduces the amplitude

of the mass function. If mass functions defined with variable �v

(almost) overlap one another, mass functions defined with constant

�c can be different. In order to account for these differences in the

definitions, it is necessary to assume some shape for the density

profile in the outskirts of clusters. This is typically done by using

a Navarro, Frenk & White (NFW) profile with concentration cs 	
5. As we deal with rather peripheral (virial) cluster regions, we can

neglect the spread of actual values of concentration. However, when

different w(z) are considered, the mean cs changes substantially, by

up to 80 per cent (Klypin et al. 2003; Kuhlen et al. 2005). The dif-

ferences between M200 and Mv are not large – 10 to 15 per cent.

Approximately the same percentage of the difference depends on

w. This may still be important. Neglecting these corrections may

lead to substantial systematic errors.

As an alternative to using galaxy clusters, and so avoiding these

and other problems, here we suggest exploiting the dependence on

the DE nature of the redshift distribution of galaxies, and argue that

the difficulties of this approach can be overcome.

A first problem is that it is necessary to know how to treat sub-

haloes of more massive haloes, because a large fraction of galaxies

are hosted by subhaloes. To populate massive haloes with galaxies

we use recent results on the HOD. Accordingly, we believe that this

difficulty can be readily overcome.

Dealing with galaxies also requires knowledge of their masses

Mg. The M g –L g relation is more complex than the relation between

Mv, X-ray flux and T in clusters.

Galactic evolution studies and/or techniques aiming to compare

dynamical or lensing masses with luminosities can be used for this

purpose (Bressan et al. 1994; Portinari et al. 2004; Prada et al. 2003).

It is also known that there is no one-to-one correspondence between

Lg and Mg, as the luminosities of two galaxies of the same mass can

be quite different, by up to one order of magnitude. We then consid-

ered two distinct issues. (i) How well must we know the evolution

of 〈M g/L g〉Lg ? (ii) What could the impact be of fluctuations about

such an average value, taking into account that the distribution about

average can depend on z and mass?

How precisely 〈M g/L g〉Lg is to be known in order that differ-

ent cosmologies can be safely discriminated is shown by Fig. 6.

According to Section 6, if we double the values of δθ gg/θ gg pro-

vided there, we have a fair estimate of the evolution rate R =
〈Mg/Lg〉Lg (z)/〈Mg/Lg〉Lg (z = 0) just covering the differences be-

tween models. Typically, if the estimated 〈M g/L g〉Lg evolution is

reliable at a ∼10 per cent level, different models could be discrimi-

nated.

To reach this goal, fresh observational material is needed, but no

conceptual difficulty is apparently involved in its acquisition.

The spread of the M g/L g ratio around its average value also must

be treated carefully, as it could cause systematics. Here we reported

the effect of a random spread of Lg in a luminosity interval L 1, L 2

with L 2 	 20 L 1. If the physical distribution of luminosities, for

any mass and at any redshift, is within these limits, then possible

systematics are well within errors arising from other effects.

Further tests on Lg spread were performed, but are not reported

in detail in this paper. They apparently indicate that really wide and

ad-hoc distributions are necessary, in order that possible systematics

exceed the Poisson uncertainty.

Bearing these reservations in mind, we conclude that estimates

of the redshift dependence of the average M g/L g, reliable within

∼10 per cent, can enable us to obtain reasonable information on DE

nature.

In this paper we also discuss various tests based on the VPF. We

find that the VPF is almost model-independent when estimated for

samples with a constant angular number density of galaxies. This

result apparently suggests that n-point functions are almost model-

independent, at any z, once distances are suitably rescaled. If the
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mean M g/L g is known, with a residual uncertainty not exceeding

10 per cent, we can also state that VPFs, for samples with a given

Mtr, allow us to put in evidence the geometrical differences between

models and are, therefore, a discriminatory statistic.

Combining the simulated halo distribution with the HOD provides

an effective tool for testing the equation of state of DE. More work

is needed to define the L g–M g relationship and, possibly, to reduce

systematic effects. It is justifiable to expect that the z-dependence

of the galaxy distribution, in deep galaxy samples, will allow us

to constrain the DE nature even more reliably than the density of

galaxy clusters in future compilations, sampling them up to large

zs.
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A P P E N D I X A : DY NA M I C A L DA R K

E N E R G Y M O D E L S

Dynamical DE is to be ascribed to a scalar field, φ, self-interacting

through an effective potential V(φ), whose dynamics is set by the

Lagrangian density:

LDE = −1

2

√−g
(
∂μφ∂μφ + V (φ)

)
. (A1)

Here, g is the determinant of the metric tensor gμν =
a2(τ )dx μdx ν(τ is the conformal time). In this work we need to

consider just a spatially homogeneous φ (∂iφ � φ̇; i = 1, 2, 3; dots

denote differentiation with respect to τ ). The equation of motion is

then

φ̈ + 2
ȧ

a
φ̇ + a2 dV

dφ
= 0. (A2)

Energy density and pressure, obtained from the energy–momentum

tensor T μν , are

ρ = −T 0
0 = φ̇2

2a
+ V (φ), p = 1

3
T i

i = φ̇2

2a
− V (φ), (A3)

so that the state parameter

w ≡ p

ρ
= φ̇2/2a − V (φ)

φ̇2/2a + V (φ)
(A4)

changes with time and is negative as soon as the potential term V(φ)

takes large enough values.
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The evolution of dynamical DE depends on details of the effec-

tive potential V(φ). Here we use the model proposed by Ratra &

Peebles (1988), which yields a rather slow evolution of w, and the

model based on supergravity (Brax & Martin 1999, 2001; Brax &

Martin 2000). The latter gives a much faster evolving w. The RP

and SUGRA potentials

V (φ) = �4+α

φα
R P, (A5)

V (φ) = �4+α

φα
exp(4πGφ2) SU G R A (A6)

cover a large spectrum of evolving w. These potentials allow tracker

solutions, yielding the same low-z behaviour that is almost indepen-

dent of initial conditions. In equations (A5) and (A6), � is an energy

scale in the range 102–1010 GeV, relevant for the physics of funda-

mental interactions. The potentials depend also on the exponent

α. Fixing � and α, the DE density parameter �de,0 is determined.

Here we use � and �de,0 as independent parameters. In particular,

numerical results are given for � = 103 GeV.

The RP model with such a � value is in slight disagreement with

low-l multipoles of the CMB anisotropy spectrum data. Agreement

may be recovered with smaller �s, which, however, loose signifi-

cance in particle physics. The SUGRA model considered here, on

the other hand, is in reasonable agreement with all available data.

This paper has been typeset from a TEX/LATEX file prepared by the author.

C© 2005 The Authors. Journal compilation C© 2005 RAS, MNRAS 366, 1346–1356


