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Summary
This review tries to summarize the efforts over the past 20 years to construct a tissue-engineered trachea. After illustrating the main technical
bottlenecks faced nowadays, we discuss what might be the solutions to these bottlenecks. You may find out why the focus in this research field
shifts dramatically from the construction of a tubular cartilage tissue to reepithelialization and revascularization of the prosthesis. In the end we
propose a novel concept of ‘in vivo bioreactor’, defined as the design of a perfusion system inside the scaffold, and explain its potential
application in the construction of a tissue-engineered trachea.
# 2006 Published by Elsevier B.V.
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1. Introduction

Tissue engineering has emerged as a thriving new field in
medical science. It is an interdisciplinary field in which the
principles of engineering and life science meet each other to
generate biological substitutes for creation, preservation or
restoration of lost organ functions [1]. Unlike organ
transplantation, tissue engineering offers off-the-shelf tissue
and organ substitutes by seeding a patient’s own cells on a
biodegradable scaffold, representing a promising future of
medical science.

The experimental and clinical tracheal repair dates back to
as early as the late 19th century, yet till today no clinically
convincing tracheal replacementmethodhas beenestablished
[2—6]. Belsey [7] summarized the requirements for tracheal
replacement to consist of, first, a laterally rigid but long-
itudinally flexible tube; second, a surface covered with
ciliated respiratory epithelium. At the very beginning, many
scientists were led to believe in the illusionary simplicity in
tissue-engineered trachea reconstruction and took it as no
more than developing a tubular cartilage tissue. Later, animal
examinations demonstrated the importance of an intact
epithelial line since itprevents the in-growthofgranulomatous
tissue, which leads to fatal airway obstruction. The cilia also
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help to expel the mucosal fluids and the adhering micro-
particles. Therefore, the focus in the tissue-engineered
trachea researches today has been shifted towards the
substitute reepithelialization [8—12]. In this review we will
discuss what has been done, what is going on, where the
obstacles are, and what might be the practical solutions in the
reconstruction of a tissue-engineered trachea.
2. What has been achieved: formation of a tubular
cartilage tissue

Although the techniques of tubular cartilage tissue
construction are available, there are still some problems
involved in each step.

2.1. Sources of chondrocytes

Reconstruction of cartilage tissues has become one of the
most popular research topics today in tissue engineering,
mainly due to the fact that chondrocytes rely on the
permeation of tissue fluid for nutrition supply, and thus
exempting cartilage tissues from revascularization. Thanks
to their low antigenicity, allogeneic chondrocytes can be
used to repair cartilage tissue defects [13,14]. In many
countries, scientists are exploring the possibility of establish-
ing cell banks to guarantee a stable supply of chondrocytes
[15,16]. Regarding autologous sources, besides mature
chondrocytes isolated from nose or rib hyaline cartilage
tissues, adult stem cells (ASCs), with their high rate of
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proliferation and ease of isolation, have proven to be a
promising alternative. While the ideal donor site for the
isolation of ASCs remains controversial, bone marrow
aspirates and adipose-derived stem cells so far stand out
as appropriate sources [17]. The antigen markers can be used
for ASCs isolation including CD166, CD105, CD55, CD54, CD44
and CD13, among which CD105, the transforming growth
factor-ß (TGF-ß) receptor, is identified as chondrogenic
potential related cell marker [18]. Meanwhile recent
researches demonstrated that CD14+ mononuclear cells
obtained from peripheral blood can also differentiate into
a mesenchymal progenitor phenotype [19]. Many research
teams around the world have successfully induced ASCs into
chondrocytes in vitro. Theoretically, ASCs can be obtained
without limitation but the induction rate is still on the low
side these days [20—22].

2.2. Scaffolds

Tissue engineers favor porous biodegradable scaffolds for
they can facilitate the penetration of seeded cells, nutrients,
and the clearance of biological waste products. But a high
porous rate will inevitably sacrifice the initial stiffness of the
scaffold, which is of utmost importance in the case of the
tissue-engineered trachea. Researchers have tried many
materials, both synthetic and natural, including polyglycolic
acid (PGA), polylactide-co-glycolide acid (PLGA), DegraPol,
Pluronic F-127, acellular cartilage tissue matrices, as well as
some combination of them all [23—32]. Unfortunately, none
of these materials has worked wonder. For example, the
biodegraded molecules from PGA often leads to a low pH
environment, which is detrimental for the survival of seeded
cells; the porous rate of acellular tracheal matrices is hard to
be controlled; and nearly all these scaffolds show inadequate
mechanical strength for a circumferential trachea replace-
ment and usually need an external support device such as a
silicon tube.

2.3. Bioreactors

Bioreactors play a key role in almost every step in the
reconstruction of tissue-engineered tissues: cell prolifera-
tion on a large scale, cell seeding process, 3D cell-scaffold
constructs culture [33]. There are various designs ranging
from the simplest stirred vessels to much more complex
double chamber bioreactors for composite tissue formation.
Regarding their application in cell culture, microcarriers are
frequently used to increase the culture surface with the
advantage of less enzymatic subcultivation steps, which turn
out to be the main cause of cell dedifferentiation [34].
Recent studies have demonstrated that perfusion of a cell
suspension directly through the pores of 3D scaffolds resulted
in higher efficiencies and more uniform cell distributions
inside the scaffold [35]. In spite of all these improvements, in
most cases the cartilage tissues formed in these bioreactors
are thinner and softer than native ones. This is mainly due to
the insufficient infiltration of nutrition and oxygen into the
center part of newly-formed tissues, as well as the
obstruction of biological waste elimination [36,37]. In
addition, contamination remains another critical issue
especially when a long-term in vitro culture is required.
The essential purpose of bioreactor designs, effectively
simulating the in vivo regeneration condition in vitro for the
off-the-shelf tissues formation, has proven to be extremely
difficult to achieve. One possible makeshift is to use nude
mice as living bioreactors [38,39]. The results are inspiring,
however this approach has a serious limitation in terms of the
tissue size: since a tracheal resection less than 6 cm in length
can be handled easily by direct anastomosis, tissue-
engineered cartilage tissues of small size are therefore
clinically irrelevant in tracheal replacement.
3. Problems faced: reepithelialization and
revascularization

Now that a tubular bioengineered cartilage tissue is
available, is it really a perfect tracheal prosthesis? Earlier
animal experiments underwent circumferential replacement
of trachea with tubular cartilage tissues only to show
frustrating results: most recipients died within 1 week from
airway obstruction caused by either the in-growth of
granulation tissues or the sputum retention [40]. These
results were not surprising at all, since the entire history of
trachea replacement has highlighted the importance of a
complete reepithelialization process in building a functional
tracheal substitute. The experience gained from tissue-
engineered skin demonstrated that epithelial cells have
better survival chances on awell vascularized wound surface,
a clear proof that revascularization is the essence of
reepithelialization [41—44].

Oncologists have also done lots of researches on the
angiogenesis and vasculogenesis mechanisms, however, with
an ironically opposite purpose: they go all out to prevent the
in-growth of capillary networks into tumor tissues. On the
other hand, tissue engineers work hard to facilitate and
accelerate these processes based on the same biological
mechanisms [45—48]. Two approaches are frequently used to
accelerate the revascularization process these days. In one
approach, various growth factors (GFs), such as vascular
endothelial growth factor (VEGF), basic fibroblast growth
factor (BFGF), and platelet-derived growth factor (PDGF) are
administrated into the ischemia area to induce the in-growth
of vessels from surrounding normal tissues [49—53]. In the
other approach, endothelial cells or their progenitors are
applied either systemically or topically in the hope that these
cells may contribute to the reconstruction of the capillary
network inside the ischemia tissues or organs [54—58]. Many
studies showed that both hypotheses work well but some
disadvantages still exist.

Regarding the first approach, there are two main
challenges, namely, how to maintain the working concentra-
tion of these GFs after implantation, and how to terminate
their function in time to avoid side effects caused by the GFs
over expression? Biochemical engineers suggest integrating
GFs into biodegradable scaffolds in the hope that these
embedded GFs will be slowly released during the scaffold
biodegradation process after implantation. This technique,
often known as ‘in situ tissue engineering’, however, is not
only technically demanding but has size limitation in neo-
tissue formation without pre-seeded cells inside the scaffold
[59—63]. Meanwhile, many promising experiments suggest
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Fig. 1. Sketch of novel tissue-engineered tracheal scaffold with a perfusion
system inside. This ‘in vivo bioreactor’ contains two layers with different
density. The inner low-density layer (B) is embedded with porous catheters (C)
and allows for in-growth of capillary net, while the outer high-density layer (A)
provides the scaffold with desirable mechanical strength.
the possibility of GFs gene delivery. Unfortunately in these
experiments, both viral method (transduction) and nonviral
method (transfection) showed technical limitations: the
former often goes with likelihood of mutagenesis, carcinogen-
esis and immune response to viral infection or viral proteins
while the latter still suffers from low efficiency of gene
delivery into the target cell population [64—68]. The tragic
death of a patient due tomassive cytokine release gives rise to
heated ethical debate in trial gene therapy recently.

Regarding the endothelial cell delivery approach, the
dilemma is whether it is really worth to make time-
consuming efforts to add the endothelial cells that hardly
culture and usually die soon after implantations due to
insufficient nutrient supply inside the scaffold.

In addition to revascularization, we still face many other
problems in reepithelialization, such as the harvest and
proliferation of human respiratory epithelial cells, which are
mainly terminal cells unsuitable to be further passaged [69].
Even if we could identify the epithelial stem cell, there are
still no widely accepted seeding methods, which can
facilitate these cells to rapidly spread and completely cover
the inner surface of tubular scaffolds. In early experiments,
epithelial cells were simply injected into the lumen of a
tubular scaffold placed subcutaneously on the back of a nude
mouse. The results, with amaximal surface cover rate of 80%,
were disappointing and unacceptable for clinic applications.
Recent studies suggested directly suturing cell sheets onto
the inner surface of the tissue-engineered trachea sub-
stitutes [70], but how to maintain the survival of these
epithelial cells during the initial ischemia period remains a
challenge.

All these being said, what next?
4. Future perspectives

Let’s get down to fundamentals and take a look at normal
histological structure of trachea. Between the epithelial layer
and thehyaline cartilage tissueswecanfinda submucosal layer
of capillary networks. Normal cartilage tissue preventing the
in-growth of capillary vessels is separated from other
connective tissues (i.e., submucosa) by a fibrous membrane
[71,72]. Unlike parenchymal organs, the trachea is supplied
with a network of small vessels inaccessible to direct
revascularization through vessel anastomosis. Even immediate
autologous orthotropic trachea replacement is bound to fail,
despite that such a fresh autograft substitute is far more
physiological than even the most optimal tissue-engineered
trachea. The capillary net can only penetrate into the implant
across the two anastomoses for no more than 2 cm (4 cm
bilaterally) and this revascularization process easily takes
months [2]. In an implant longer than 3—4 cm, the epithelial
cell in themiddle will die and thus failing tomaintain an intact
basement membrane. As a result, granulation tissue hyper-
plasia into the lumen causes tracheal stenosis.

Such being the case we advanced a novel concept of ‘in
vivo bioreactor’ defined as the design of a perfusion system
inside the scaffold for tissue-engineered trachea reconstruc-
tion. [Fig. 1] In our opinion, a tissue-engineered trachea
scaffold, ideally, should follow the physiological structure
mentioned above and leave a porous middle layer facilitating
blood vessels’ in-growth between the cartilage and epithelial
layers. It may also be of advantage if we would add 3 or 4
porous feeding tubes inside this middle layer with lower
density. These feeding tubes will be connected to an
extracorporeal pump system after implantation in order to
form a perfusion system. Through this perfusion system we
continuously administrate medium into the scaffold. The
medium infiltrates throughout the scaffold and thus main-
tains the survival of both epithelial cells seeded on the inner
surface and the chondrocytes seeded on the outer layer,
which has a relatively high density to prevent the tissue-
engineered trachea from a collapse.

Contrary to traditional bioreactors where the medium
immerses cell-scaffold composites, in our design the medium
actually flows inside the scaffold to mimic the way blood
stream flows inside the normal tissue. Since we are not yet
able to imitate in vivo regeneration environment successfully
in vitro, this in vivo bioreactor seeded with cells needs to be
implanted as soon as possible to leverage on the recipient’s
regenerative capabilities. Thus, the recipient serves as her
own bioreactor for thematuration of tissue-engineered organ
and that is how we are inspired to name our design ‘in vivo
bioreactor’. To avoid the coagulation-related problems, the
perfusion system will be connected to two extracorporeal
pumps instead of being directly anastomosed to the
recipient’s circulation system. One pumpwill deliver medium
while the other will drain the waste. Like a heart—lung
machine widely used in cardiac operations, this in vivo
bioreactor is supposed to work as an ‘artificial heart’ to the
tissue-engineered trachea until normal revascularization is
established. Obviously GFs and epithelial cells can be added
into the perfusate to facilitate revascularization process;
artificial oxygen carriers, in addition, such as perfluorocar-
bon (PFC) emulsion, can be added to increase the oxygen
incidence inside the medium. The expression level of the GFs
can be readily adjusted by changing their medium concen-
trations. By combining the in vivo and the in vitro parts of
tissue engineering researches, which were traditionally
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separated, this concept of ‘in vivo bioreactor’ would
hopefully be applied as a more physiological and more
clinically practical way in organ regeneration.

Regarding the epithelial cell source for reepithelializa-
tion, our hypothesis is as follows: the key issue for a clinically
successful reepithelialization of the tissue-engineered tra-
chea may not be the original type of the epithelial cells but
rather the environmental signals and an intact basement
membrane layer. Allogenic trachea transplantation, in
addition to preclinical and clinical research work using
autologous skin or aorta, clearly showed that no matter what
kind of epithelial cell type was initially chosen they would be
replaced by normal tracheal epithelial as long as there was a
sufficient blood supply and an intact basement membrane
underneath [73—76]. Therefore for the epithelial cell source,
we suggest using autologous skin keratinocytes instead of the
ciliated tracheal epithelial cells. Fortunately, in the field of
tissue engineering, tissue-engineered skin is by far the most
successful branch.

To summarize, the tissue-engineered tracheal substitute
is still far away from wide clinical application. The source of
epithelial cells, and the retarded revascularization and
reepithelialization process of the tissue-engineered tracheal
substitute are currently the main obstacles. With the idea of
‘in vivo bioreactor’ we organically combine the traditionally
separated in vivo and in vitro parts of tissue engineering
research. In our opinion, the inner structure of the scaffolds
might be the key to solve some of these pertinent problems.
Being a more physiological way in tissue reconstruction, this
novel approach may also find itself in clinic applications in
many other areas of tissue engineering research, such as
tissue-engineered bone.
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