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6Joint Institute for Galaxy and Cosmology (JOINGC) of Shanghai Astronomical Observatory and University of Science and Technology of China
7INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, 40127, Bologna

Accepted 2006 September 20. Received 2006 September 18; in original form 2006 July 24

ABSTRACT

Galaxy–galaxy lensing is rapidly becoming one of the most promising means to accurately
measure the average relation between galaxy properties and halo mass. In order to obtain a
signal of sufficient signal-to-noise ratio, one needs to stack many lens galaxies according to
their property of interest, such as luminosity or stellar mass. Since such a stack consists of both
central and satellite galaxies, which contribute very different lensing signals, the resulting shear
measurements can be difficult to interpret. In the past, galaxy–galaxy lensing studies either
have completely ignored this problem, have applied rough isolation criteria in an attempt to
preferentially select ‘central’ galaxies, or have tried to model the contribution of satellites
explicitly. However, if one is able to a priori split the galaxy population in central and satellite
galaxies, one can measure their lensing signals separately. This not only allows a much cleaner
measurement of the relation between halo mass and their galaxy populations, but also allows
a direct measurement of the subhalo masses around satellite galaxies. In this paper, we use
a realistic mock galaxy redshift survey to show that galaxy groups, properly selected from
large galaxy surveys, can be used to accurately split the galaxy population in centrals and
satellites. Stacking the resulting centrals according to their group mass, estimated from the
total group luminosity, allows a remarkably accurate recovery of the masses and density profiles
of their host haloes. In addition, stacking the corresponding satellite galaxies according to their
projected distance from the group centre yields a lensing signal that can be used to accurate
measure the masses of both subhaloes and host haloes. We conclude that an application of
galaxy–galaxy lensing measurements to group catalogues extracted from large galaxy redshift
surveys offers a unique opportunity to accurately constrain the galaxy–dark matter connection.

Key words: gravitational lensing – methods: statistical – galaxies: haloes – dark matter –
large-scale structure of Universe.

1 I N T RO D U C T I O N

Understanding the connection between galaxies and dark matter
haloes is a major challenge in modern astrophysics. From the per-
spective of cosmology, the galaxy–dark matter connection is re-
quired in order to translate observations of galaxy clustering in terms
of the distribution of (dark) matter. From the perspective of galaxy
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formation, it reveals how halo mass impacts on the properties of
the galaxies that form within them, and thus how the various phys-
ical processes that play a role in galaxy formation scale with halo
mass. Consequently, a great amount of effort has been devoted to
establishing the galaxy–halo connection, either through numerical
simulations (e.g. Katz, Weinberg & Hernquist 1996; Fardal et al.
2001; Kay et al. 2002; Springel 2005; Springel et al. 2005), through
semi-analytical modelling (e.g. White & Frenk 1991; Kauffmann,
White & Guiderdoni 1993; Mo & Fukugita 1996; Mo, Mao & White
1998; Somerville & Primack 1999; Cole et al. 2000; Benson et al.
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2002; van den Bosch 2002; Kauffmann et al. 2004; Croton et al.
2006), or via statistical approaches (e.g. Jing, Mo & Börner 1998;
Seljak 2000; White 2001; Berlind & Weinberg 2002; van den Bosch,
Yang & Mo 2003; Yang, Mo & van den Bosch 2003b; Cooray 2005,
2006; van den Bosch et al. 2005c; Zheng et al. 2005). However, nei-
ther of these methods provide a direct diagnostic of the galaxy–halo
connection.

Direct measures of the dark matter haloes around galaxies come
either from dynamical tracers or from gravitational lensing. Galaxy
rotation curves and strong lensing, although extremely powerful,
typically only probe the inner part of the dark matter halo, and are
therefore not well suited to determine the total halo mass. The only
dynamical tracers that probe the gravitational potential sufficiently
far out to allow for an accurate mass estimate are satellite galaxies
(Zaritsky & White 1994; McKay et al. 2002; Brainerd & Specian
2003; Prada et al. 2003; van den Bosch et al. 2004; Conroy et al.
2005). However, arguably the best method to directly probe the dark
matter haloes around galaxies is galaxy–galaxy lensing, whereby
the gravitational field of lensing galaxies induces small tangential
shear distortions in the images of distant background galaxies (e.g.
Natarajan & Kneib 1997). Unfortunately, since the weak-lensing
signal around individual galaxies is too small to be detected, one can
only infer ensemble-averaged properties: by combining the signal
from a large number of lensing galaxies one obtains the galaxy-mass
cross-correlation function, which can be used to infer the mass dis-
tribution around galaxies, but only in a statistical sense. Note, how-
ever, that a similar problem hampers the satellite-dynamics method,
where the number of satellite galaxies of individual host galaxies
is too small to allow for a reliable estimate of the halo mass, and
ensemble averaging has to be used as well.

Since the galaxy–galaxy lensing signal is so weak, and one has
to carefully correct for a number of observational effects, such as
anisotropies in the point-spread function and shear induced by the
camera optics, it took twelve years since the first attempt by Tyson
et al. (1984) until the first detections of galaxy–galaxy lensing
(Brainerd, Blandford & Smail 1996; dell’Antonio & Tyson 1996;
Griffiths et al. 1996). In recent years, however, the progress has
been enormous, largely due to the advent of deep galaxy surveys
with large sky coverage (e.g. Fischer et al. 2000; McKay et al. 2001;
Smith et al. 2001; Wilson et al. 2001; Hoekstra et al. 2003; Hoekstra,
Yee & Gladders 2004; Sheldon et al. 2004; Hoekstra et al. 2005;
Parker et al. 2005; Kleinheinrich et al. 2006; Mandelbaum et al.
2006a,b).

The fact that galaxy–galaxy lensing only yields ensemble aver-
aged properties complicates the interpretation. Since galaxies with
different luminosities and morphologies are expected to reside in
haloes of different masses, the ensemble averages are complicated
sums over large ranges in halo mass. Unless one has a prior knowl-
edge of the relation between galaxy properties and halo mass, an
unbiased interpretation of the measurements is basically impossi-
ble. For example, in the past most studies have used the observed
lensing signal only to constrain the normalization of an assumed
relation between galaxy luminosity, L, and halo mass, M (e.g.
Fischer et al. 2000; Smith et al. 2001; Wilson et al. 2001; Hoekstra
et al. 2003). When redshift information regarding the lenses and/or
sources is available, one can somewhat improve the constraints. For
example, Hudson et al. (1998) were able to simultaneously con-
strain the normalization and the slope of the L–M relation, due
to the fact that they had photometric redshifts available for both
their lenses and their sources. Nevertheless, their results clearly de-
pend on the assumed functional form (a power-law) of the L–M
relation.

Therefore, one of the ultimate goals in galaxy–galaxy lensing is
to be able to measure the lensing signals for galaxies with different
intrinsic properties. This requires not only a very large sample of
galaxies (both lenses and sources), but also redshifts for the lensing
galaxies, in order to be able to (i) convert angular sizes into physical
sizes, (ii) compute the luminosities of the lenses and (iii) reduce
uncertainties in the geometry of the lens-source system. The Sloan
Digital Sky Survey (SDSS) has proven to be ideally suited to make
progress along such a direction, and several measurements of the
galaxy–galaxy lensing signal as function of galaxy luminosity and
morphological type have already been made (e.g. McKay et al. 2001;
Sheldon et al. 2004; Mandelbaum et al. 2006a).

There is one additional problem that complicates the interpreta-
tion of these lensing signals, namely the distinction between ‘cen-
tral’ galaxies, which reside at the centre of a dark matter halo, and
‘satellite’ galaxies, which are located on an orbit around a central
galaxy. In the current paradigm, these satellite galaxies are thought
to be associated with dark matter subhaloes, which are haloes that
reside and orbit within a larger virialized dark matter halo. The
idea that satellite galaxies are related to the population of dark mat-
ter subhaloes is consistent with both observations and numerical
simulations (e.g. Kravtsov et al. 2004; Natarajan & Springel 2004;
Vale & Ostriker 2004, 2006; Kang et al. 2005; Conroy, Wechsler &
Kravtsov 2006; Natarajan, De Lucia & Springel 2006). The lensing
signal around a satellite galaxy does reflect not only the mass dis-
tribution of the dark matter subhalo in which it is located, but also
that of the larger halo that hosts the subhalo (hereafter host halo).
Thus, one expects the lensing signal from a satellite galaxy to be
very different from that of a central galaxy (e.g. appendix B in Yang
et al. 2003a). In addition, the lensing signal from a satellite galaxy
depends not only on the masses of the subhalo and host halo, but
also on the geometrical orientation of these two entities with respect
to each other.

Since a galaxy of a given luminosity and/or morphological type
can be either a central galaxy or a satellite galaxy, even the lensing
signal from a sample of lensing galaxies with a narrow range in lumi-
nosities and morphological types can be difficult to interpret. In the
past, galaxy–galaxy lensing studies either have completely ignored
this problem (e.g. McKay et al. 2001; Hoekstra et al. 2003, 2004),
have applied rough isolation criteria in an attempt to preferentially
select ‘central’ galaxies (e.g. Hoekstra et al. 2005; Mandelbaum
et al. 2006b), or have modelled the contribution of satellites explic-
itly, using either semi-analytical models for galaxy formation (Guzik
& Seljak 2001; Yang et al. 2003a) or a model for the halo occupation
statistics (Guzik & Seljak 2002; Mandelbaum et al. 2005b, 2006a).
None of these approaches have taken into account the weak-lensing
signals around satellite galaxies at different halo-centric distances.

In this paper, we demonstrate that it is actually possible to mea-
sure the lensing signal around satellite galaxies at different pro-
jected halo-centric distances, provided that a well-defined sample
of galaxy groups and clusters is available to represent galaxy distri-
bution in dark matter haloes. This not only allows a much cleaner
measurement of the relation between halo mass and their galaxy
populations, but also allows a direct measurement of the subhalo
masses around satellite galaxies. Using realistic mock galaxy cata-
logues we show that the halo-based group finder, recently developed
by Yang et al. (2005a), allows an accurate identification of central
and satellite galaxies, and that their corresponding lensing signals
allow an accurate recovery of their mean host and subhalo masses,
respectively. Note also that in order to perform such a measurement,
a large spectroscopic sample is needed to group lensing galaxies ac-
cording to their common haloes. Currently, the largest sample of this
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kind is from the SDSS. With about one-third of the eventual SDSS,
significant galaxy–galaxy lensing signals have been detected sepa-
rately for three (seven) subsamples in galaxy luminosity and colour
(e.g. Sheldon et al. 2004; Mandelbaum et al. 2006a). This suggests
that the present SDSS data may already be able to probe the lensing
signals around galaxies in broad bins of halo mass and halo-centric
distances. With the completion of the SDSS, and with future deeper
imaging surveys in the same part of the sky as the SDSS, we an-
ticipate that the effects we are considering here can be studied. In
a forthcoming paper, we will construct shear maps from realistic
mock catalogues taking into account observational effects to test
the feasibility of the method we are proposing here.

This paper is organized as follows. In Section 2 we give a detailed
description of the weak-lensing signal produced by host haloes and
subhaloes, separately. In Section 3 we use realistic mock catalogues
constructed from N-body simulations to demonstrate how to split
the galaxy population in central and satellite galaxies, and how their
lensing signals allow a measurement of their corresponding host
and subhalo masses, respectively. Our conclusions are summarized
in Section 4.

2 L E N S I N G B Y H A L O E S A N D S U B H A L O E S

Galaxy–galaxy lensing measures the profiles of the tangential shear,
γ t(R), azimuthally averaged over a thin annulus of projected radius
R around a set of lens galaxies. This observable quantity is related to
the mean projected surface mass density within the aperture radius
R according to

γt(R)�crit = �(� R) − �(R) ≡ ��(R). (1)

Here �(�R) is the mean surface density within R, �(R) is the az-
imuthally averaged surface density at R and

�crit = c2

4πG
Ds

Dl Dls
(2)

is the critical density, which is determined by the geometry of the
lens-source system (Miralda-Escudé 1991; see Schneider 2005 for
a detailed review). In the above equation, Dl, Ds and Dls are the
angular diameter distances to the lens, to the source and between
the lens and the source, respectively. Since a uniform mass sheet,
such as the mean density of the universe, does not contribute to ��,
it basically measures the excess surface density (hereafter ESD).

The mean ESD around a galaxy is specified by the line-of-sight
projection of the galaxy-matter cross-correlation function, ξ gm(r),
so that

�(R) = 2ρ

∫ ∞

R

ξgm(r )
r dr√

r 2 − R2
, (3)

and

�(� R) = 4ρ

R2

∫ R

0

y dy

∫ ∞

y

ξgm(r )
r dr√
r 2 − y2

(4)

with ρ the average background density of the Universe. Note in both
equations, we have omitted the contribution from the mean density
of the universe, as it does not contribute to the ESD. As we will see
below, it is important to distinguish between the lensing signal due to
host haloes (those haloes that are not embedded in a larger virialized
structure) and subhaloes (haloes embedded in a host halo). In what
follows we refer to galaxies at the centres of host- and subhaloes as
central and satellite galaxies, respectively.

In the halo model, the dark matter distribution consists entirely
of dark matter haloes, and the galaxy-mass cross-correlation func-
tion consists of four terms: three one-halo terms, and one two-halo

term. The first one-halo term is due to the host haloes around cen-
tral galaxies. Satellite galaxies contribute two one-halo terms: one
describing the density distribution of the dark matter subhalo and
one describing the density distribution of the host halo in which the
subhalo is embedded. This latter term also depends on the relative
location of the subhalo with respect to the centre of the parent halo.
Finally, the two-halo term describes the correlation between the lens
galaxy and the large-scale distribution of dark matter haloes. In this
paper we focus only on the expected lensing signal at small R, and
we will therefore ignore this two-halo term in what follows.

From the above, it is clear that central and satellite galaxies yield
different lensing signals (see Hudson et al. 1998; Guzik & Seljak
2002; Yang et al. 2003a). In the past, various studies have used
halo occupation statistics to model the total galaxy-mass cross-
correlation function, due to central and satellite galaxies combined
(Guzik & Seljak 2002; Mandelbaum et al. 2005b, 2006a; Yoo et al.
2005). Here, we adopt a different approach and we investigate the
��(R) of central and satellite galaxies separately. In Section 3 we
show that with a decent galaxy group finder one can identify central
and satellite galaxies, and probe their lensing signals separately.

2.1 Density distribution of haloes and subhaloes

As outlined above, the tangential shear due to galaxy–galaxy lens-
ing can be used to infer the galaxy-mass cross-correlation function
ξ gm(r). On small scales, ξgm(r ) = ρ(r )/ρ − 1, with ρ(r) the az-
imuthally averaged density distribution around the lensing galaxies.
This in turn reflects the density distribution of the host- and sub-
haloes surrounding central and satellite galaxies, respectively. For
simplicity, we will not treat the baryonic masses of the lens galaxies
as separate mass components, but instead consider them included
in the halo components. As shown in Lin et al. (2006), the baryonic
component can change the concentration of the total mass profile
on small scales. We do not expect such effect to have an important
impact on our results, because we are focusing on lensing signals
on scales R � 50 h−1 kpc.

For the host haloes, we adopt the following density profile:

ρ(r ) = ρ0

(r/rc)α(1 + r/rc)3−α
, (5)

where

ρ0 = ρ�vir

3I (c, α)
; I (c, α) ≡ 1

c3

∫ c

0

dx
xα−2(1 + x)3−α

(6)

(see e.g. Zhao 1996; Jing & Suto 2000). Note that α = 1 corre-
sponds to the NFW profile (Navarro, Frenk & White 1997); α =
1.5 corresponds to the profile proposed by Moore et al. (1999) and
α = 0 corresponds to a density distribution with a constant density
core. Although we will mainly focus on haloes with α = 1, we also
briefly discuss the impact of changing the central cusp slope. This is
motivated by the fact that (i) observationally the exact value of the
inner slope α is still uncertain (e.g. Swaters et al. 2003; Bartelmann
& Meneghetti 2004; Gentile et al. 2004; Sand et al. 2004; Gentile
et al. 2005; Meneghetti et al. 2005; Simon et al. 2005), (ii) numerical
simulations suggest that haloes may reveal a fair amount of scatter in
their central cusp slopes (e.g. Jing & Suto 2000; Dahle, Hannestad
& Sommer-Larsen 2003; Power et al. 2003; Navarro et al. 2004)
and (iii) the density distribution is interpreted as including the con-
tribution from the baryons, so that it does not have to be in perfect
accord with that of dark matter haloes.

For a given value of α, the density distribution of a dark matter
host halo is specified by two parameters, a characteristic density ρ0

and a characteristic radius rc. Alternatively, one can parametrize the
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halo by its mass M = (4π/3)�vir ρ r 3
vir and concentration parameter

c = rvir/rc. Here rvir is the virial radius, defined so that the average
density within it is �virρ. Throughout this paper we adopt �vir =
180, and we use Mh and Ms to refer to the masses of host- and
subhaloes, respectively.

Numerical simulations have shown that halo concentration is cor-
related with halo mass. Throughout we adopt the model of Eke,
Navarro & Steinmetz (2001) to model the relation between c and
M, and we assume that it is free of scatter. Therefore, the entire den-
sity distribution of a dark matter (host) halo is completely specified
by its mass alone.

For subhaloes, we follow Hayashi et al. (2003), who, using nu-
merical simulations, found that the density profiles of stripped dark
matter subhaloes can be written as

ρs(r ) = ft

1 + (r/rt,eff)3
ρ(r ). (7)

Here ft is a dimensionless measure for the reduction in central den-
sity, and rt,eff is an ‘effective’ tidal radius that describes the outer
cut-off imposed by tides. For f t = 1 and rt,eff � rc, equation (7)
reduces to the original mass profile ρ(r) given in equation (5), i.e.
the mass profile before the subhalo was accreted by the host halo.
The parameters ft and rt,eff are determined by the mass fraction of the
subhalo that remains bound, fm. Fitting the mass profiles of numer-
ous stripped dark matter subhaloes, Hayashi et al. (2003) obtained
the following relations between rt,eff (in units of the characteristic
radius of the subhalo) and fm:

log

(
rt,eff

rc

)
= 1.02 + 1.38 log fm + 0.37 (log fm)2, (8)

and between ft and fm:

log ft = −0.007 + 0.35 log fm + 0.39(log fm)2 + 0.23(log fm)3.
(9)

Using a large cosmological numerical simulation, Gao et al.
(2004) studied the radial dependence of the retained mass fraction
fm of a large sample of subhaloes. Using the results shown in their
fig. 15, we obtain the following mean relation:

fm = 0.65

(
rs

rvir,h

)2/3

, (10)

where rs is the distance of the subhalo from the centre of the host
halo, and rvir,h is the virial radius of the host halo. The combination of
equations (7)–(10) gives a model for the density profile of a subhalo
with a given original mass located at a given distance from its host
halo.

Note that the above model for the density distribution of the host
and subhaloes is only approximate. For example, host haloes of fixed
mass show a fair amount of scatter in halo concentrations, correlated
with the halo formation time (e.g. Wechsler et al. 2002; Zhao et al.
2003a,b; Lu et al. 2006), which we completely ignore. In addition,
the retained mass fraction of subhaloes is assumed to depend only
on the instantaneous location of the subhalo. In reality, however,
subhaloes with the same rs can have very different fm, depending
on their orbital eccentricities and their time since being accreted
by the host halo. Furthermore, equation (10) was obtained for host
haloes with masses ∼1014 h−1 M�, while we assume that it holds
for haloes of all masses. Some of these shortcomings may affect our
results. For example, as shown in Mandelbaum et al. (2005b), the
scatter in the mass–luminosity relation can cause the derived mass
to deviate from the mean sample halo mass, and so the uncertainty
in the mass model of satellite galaxies may add uncertainty in our

results. Unfortunately, a much more realistic model for the mass and
density is not available at the present time, and we have to live with
such uncertainties here.

2.2 Central galaxies

We first consider the lensing signal around central galaxies. At suf-
ficiently small R we may simply replace ρξgm(r ) in equations (3)
and (4) with the density distribution of the host halo, ρ(r). In what
follows, we use ��c(R) to refer to the ESD of central galaxies.

For NFW profiles (i.e. α = 1) we can write (see Wright & Brainerd
2000),

��c(R) = M
2πr 2

c

I −1(c, 1)

[
g

(
R
rc

)
− f

(
R
rc

)]
, (11)

where

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
x2−1

⎡⎣1 −
ln

(
1+

√
1−x2

x

)
√

1−x2

⎤⎦ if x < 1

1
3 if x = 1

1
x2−1

[
1 − atan

(√
x2−1

)
√

x2−1

]
if x > 1

(12)

and

g(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2
x2

⎡⎣ln
(

x
2

) +
ln

(
1+

√
1−x2

x

)
√

1−x2

⎤⎦ if x < 1

2 + 2 ln
(

1
2

)
if x = 1

2
x2

[
ln

(
x
2

) + atan
(√

x2−1
)

√
x2−1

]
if x > 1.

(13)

As an illustration, Fig. 1 shows ��c as a function of the projected
radius R for dark matter haloes with a mass Mh = 1013 h−1 M�. The
left-hand panel depicts cases in which the halo concentration is fixed
at c = 10, but in which the inner cusp slope α changes from 0 to
2. The right-hand panel, on the other hand, shows results for NFW
profiles (α = 1) but with different concentrations. As expected, for a
given c, a model with smaller α has a shallower ESD at small radii.
For the model with a constant density core (α = 0), the ESD goes
to zero at the centre, because there is no central density gradient
that can cause image distortions. For a given α, more concentrated
haloes have a more concentrated ESD, as expected (see also Guzik
& Seljak 2002). Comparing the results shown in the left- and right-
hand panels, one can see that there is a degeneracy between the
central density gradient and the concentration of a dark matter halo,
at least for realistic observational errors in the tangential shear. A
similar degeneracy also hampers a unique derivation of the density
distribution of dark matter haloes from the rotation curves of disc
galaxies (e.g. van den Bosch et al. 2000).

2.3 Satellite galaxies

The ESD around a satellite galaxy can be written as

��s(R|Rs) = ��s,sub(R) + ��s,host(R|Rs). (14)

Here ��s,sub(R) and ��s,host(R | Rs) are the ESDs due to the dark
matter subhalo and host halo, respectively, and Rs is the projected
distance between the satellite galaxy and the centre of its host halo
(throughout we assume that a satellite resides at the centre of its
subhalo).
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Figure 1. The ESD around central galaxies as a function of radius R. Results are shown for 1013 h−1 M� dark matter haloes with different density profiles.
The left-hand panel shows model predictions for haloes with a concentration parameter c = 10 but with different values for the central cusp slope, α. The
right-hand panel shows the ESDs of NFW profiles (i.e. α = 1) with different concentration parameters, c. Note that in the presence of realistic measurement
errors, there is a significant degeneracy between cusp slope and halo concentration. The arrows in both panels indicate the virial radius rvir of a 1013 h−1 M�
dark matter halo.

The azimuthally averaged, projected surface mass density of the
host halo around a satellite galaxy located at a projected distance Rs

from the halo centre is

�s,host(R ; | ; Rs) = 1

2π

∫ 2π

0

�
(√

R2
s + R2 + 2Rs R cos θ

)
dθ,(15)

where � (R) is the projected density profile of the host halo. By
integrating (15) from 0 to R one obtains �s,host(�R | Rs), and thus
the ESD ��s,host(R | Rs). The azimuthal averaging reflects the
fact that in order to obtain sufficient signal-to-noise ratio to mea-
sure the tangential shear one has to stack many satellite galaxies with
the same Rs. As long as these have random orientation angles θ , the
azimuthal averaging of equation (15) is appropriate.

To illustrate the ESD around satellite galaxies, we first show the
contribution from the host halo, by assuming that the satellite galaxy
has no corresponding subhalo [i.e. �s,sub(R) = 0]. Fig. 2 shows
the model predictions of ��s,host(R | Rs) around satellite galaxies in
NFW host haloes with masses of 1012 h−1 M� (left-hand panel) and
1014 h−1 M� (right-hand panel), respectively. Different line styles
refer to different halo-centric distances, as indicated. For compar-
ison, we also show the results for Rs = 0 (solid lines), which are
equivalent to the ESDs around central galaxies. Clearly, the ESD
around satellite galaxies (without subhaloes) are very different from

Figure 2. The ESD around central galaxies (solid lines) and satellite galaxies as a function of radius R. Here it is assumed that satellite galaxies are not
associated with dark matter subhaloes; i.e. the ESD only reflects the contribution from the host halo. Different line styles correspond to different halo-centric
distances of the satellite galaxies, as indicated. Panels of the left- and right-hand show the results for NFW host haloes with masses of 1012 and 1014 h−1 M�,
respectively.

those around central galaxies. They start with a value close to zero
at R = 0, decrease to a negative minimum near Rs, and then in-
crease rapidly with radius, eventually approaching the ESD of cen-
tral galaxies at R � 3Rs. Note that here we are measuring the ESD
��s,host(R | Rs) = �s,host(�R | Rs) − �s,host(R | Rs) around satellite
galaxies. When �s,host(R | Rs) reaches its maximum value at around
Rs, the ESD decreases to its negative minimum. As expected, the
overall amplitude of ��s,host(R | Rs) at large radii is higher for more
massive haloes. Thus, if the value of Rs is known, the tangential
shear γ t(R) measured around satellite galaxies can be used to con-
strain the mass distribution of their host haloes. We will come back
to this in Section 3.2.

We now include the contribution of the subhalo. For this, we use
the subhalo model described in Section 2.1, which allows us to com-
pute ��s,sub(R) for a given subhalo mass. This mass can be related
to the subhalo mass at the time of accretion, using equation (10)
and the true distance rs of the subhalo from the centre of the host
halo. In order to compute the contribution due to the host halo,
��s,host(R | Rs), one also needs to know Rs, which is the projection
of rs on the plane of the sky (i.e. 0 � Rs � rs).

As an illustration, we consider a simple case in which all
subhaloes have an original mass Ms,0 = 1011.5 h−1 M� at the
time of accretion. We model the tidal mass loss as described in
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Figure 3. Same as Fig. 2, except that this time satellite galaxies are assumed to reside in subhaloes whose mass is equal to Ms,0 = 1011.5 h−1 M� at the time
of accretion. The solid lines correspond to the ESD of a halo of this mass with Rs = 0, and are shown for comparison.

Section 2.1 and adjust their density profiles accordingly. Fig. 3
shows the full ESD (including both the host and the subhalo
terms) around satellite galaxies located at different halo-centric dis-
tances in host haloes of different masses. For simplicity we as-
sume that Rs = rs, i.e. that the radius vector rs is perpendicular
to the line of sight. Comparing Figs 3 and 2, one sees that the
contribution of the subhalo to the ESD dominates at small R,
as expected. As a comparison, the solid curves in Fig. 3 show
the ��s,sub(R) of subhaloes with a mass Ms = 1011.5 h−1 M�
(the contribution from the host term is ignored here). At small radii
these are slightly higher than those represented by the dotted and
dashed curves, because subhaloes are modelled to have lost a frac-
tion 1 − fm of their mass after having been accreted by the host halo.
Note that satellites with smaller Rs have a somewhat lower ESD at
small radii. This owes to the fact that the mass loss is larger for
subhaloes at a smaller halo-centric distance.

3 T E S T U S I N G G A L A X I E S A N D G RO U P S

I N M O C K C ATA L O G U E S

The analysis presented above shows that it is in principle possible to
use galaxy–galaxy lensing to probe the mass distribution of haloes
and subhaloes. Unfortunately, we do not know a priori whether a
galaxy is a central galaxy or a satellite galaxy. Since the expected
galaxy–galaxy lensing signal of individual galaxies is very weak,
one has to combine the shear measured around a large number of
galaxies to obtain a statistically significant detection. The ESD in-
ferred from such a measurement is therefore the average over all
lensing galaxies used. It is clear from the above, that if that average
combines both central and satellite galaxies, the resulting ��(R)
will be difficult to interpret, especially when the satellites have
different Rs.

However, if we could identify central and satellite galaxies a pri-
ori, and if we could also determine Rs for each satellite, we could
measure the tangential shear of central and satellite galaxies sepa-
rately, thus constraining the mean host halo mass as well as the mean
subhalo mass of the satellites directly. Such an identification of cen-
tral and satellite galaxies requires a method to decide which galaxies
belong to the same dark matter halo. In a recent paper, Yang et al.
(2005a) developed a new, halo-based group finder which is particu-
larly successful in grouping galaxies in a redshift survey according
to their common dark matter haloes. In this section, we apply this
group finder to mock redshift catalogues and examine whether the

membership information thus obtained is useful in galaxy–galaxy
lensing studies. In particular, we examine whether the identification
of central and satellite galaxies inferred from such a group catalogue
is sufficiently reliable that it allows an accurate measurement of the
masses of the corresponding host- and subhaloes.

3.1 N-body simulations and mock catalogues

We use the results of a high-resolution N-body simulation to con-
struct mock galaxy catalogues. The simulation was carried out on
the VPP5000 Fujitsu supercomputer of the National Astronomical
Observatory of Japan with the vectorized-parallel P3M code (Jing
& Suto 2002). It evolves the distribution of the dark matter from
an initial redshift of z = 72 down to 0 in a 
 cold dark matter
(
CDM) ‘concordance’ cosmology with �m = 0.3, �
 = 0.7, h =
H0/(100 km s−1 Mpc−1) = 0.7 and with a scale-invariant initial
power spectrum with normalization σ 8 = 0.9. The simulation uses
5123 cold dark matter particles in a periodic cube of 100 × 100 ×
100 h−3 Mpc3. The particle mass is equal to 6.2 × 108 h−1 M�, and
dark matter haloes are identified using the standard FOF algorithm
with a linking length of 0.2 times the mean inter-particle separation.

In order to construct realistic mock galaxy samples, we populate
the haloes with galaxies, using the conditional luminosity function
(hereafter CLF; Yang et al. 2003b; van den Bosch et al. 2003),

(L | M), which gives the average number of galaxies of luminosity
L that reside in a halo of mass M. The CLF model parameters used
to construct the mock galaxy catalogue are given in Table 1 of
van den Bosch et al. (2005c) as ID # 6. We refer the reader to Yang
et al. (2004) for details regarding the construction of these mock
galaxy catalogues. We emphasize though, that by construction, these
mock catalogues match the observed luminosity function and the
observed clustering strength as a function of luminosity.

The CLF model allows us to populate each halo in the simula-
tion with galaxies of different luminosities. We locate the brightest
galaxy in each halo at the halo centre and assume that the other
galaxies (the satellites) are associated with dark matter subhaloes.
Unfortunately, we can not use the actual subhaloes in the numerical
simulation itself, simply because the resolution of the simulation
is not sufficient to resolve subhaloes in low mass host haloes. In
addition, the survival and structure of subhaloes is affected by the
baryonic component, which is not modelled in our dark matter only
simulation. We therefore follow a different approach. We distribute
the satellite galaxies isotropically throughout the host halo, with a
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Figure 4. The left-hand panel shows the un-evolved mass function of dark matter subhaloes from van den Bosch et al. (2005a). Here ‘un-evolved’ means that
the masses correspond to the masses of the subhaloes at the time that they were accreted (i.e. before any mass loss due to tidal stripping occurred). As shown in
van den Bosch et al. (2005a), this mass function is independent of the mass of the host halo. The right-hand panel shows the relation between the luminosity of a
satellite galaxy and the mass of the subhalo at the moment of accretion. This relation is obtained by comparing the number density of satellite galaxies predicted
by the conditional luminosity function with the number density of subhaloes predicted by the un-evolved subhalo mass function shown in the left-hand panel.

number density distribution that reproduces the dark matter density
profile. Note that here we use the spherical NFW profile with the
concentration obtained by Eke et al. (2001) in modelling the spa-
tial distribution of the satellite galaxies relative to the halo centre.
Next, we model the subhalo population associated with these satel-
lite galaxies adopting a prescription similar to that used in Kravtsov
et al. (2004), Vale & Ostriker (2006) and Conroy et al. (2006): we
assume that the luminosity of the satellite has a monotonic rela-
tion with the subhalo mass at the time of its accretion. In order
to establish such a relation, we use the mass function of subhalo
progenitors obtained by van den Bosch, Tormen & Giocoli (2005a),
shown in the left-hand panel of Fig. 4, and the conditional luminosity
function. The subhalo mass function has been studied recently both
in numerical simulations and galaxy–galaxy lensing observations
(e.g. De Lucia et al. 2004; Natarajan & Springel 2004; Natarajan
et al. 2006). The mass–luminosity relations thus obtained are shown
in the right-hand panel of Fig. 4, for four different host halo masses.
Using these luminosity–mass relations and the model of subhalo
structure described in Section 2.1, we assign each satellite a sub-
halo mass depending on (i) its luminosity, (ii) its host halo mass and
(iii) its distance from the centre of the host halo.

Next we construct a mock redshift catalogue. We put the centre
of the simulation box at a comoving distance of 200 h−1 Mpc from
a virtual observer. Each galaxy is given a redshift according to
its distance from this observer and its peculiar velocity along the
corresponding line of sight. We construct a flux-limited sample
by including only those galaxies that have an apparent magnitude
mbJ < 19.30. Finally, we apply our halo-based group finder to this
mock galaxy catalogue in order to construct a catalogue of galaxy
groups. Following Yang et al. (2005b), we assign a halo mass to
each group according to its ranking in total group luminosity and
using the halo mass function for the standard 
CDM cosmology
(see Yang et al. 2005b, for more details). Tests in Yang et al. (2005b)
and Weinmann et al. (2006) have shown that, on average, the group
masses thus obtained are in good agreement with the input halo
masses.

In what follows we refer to the brightest galaxy in each group as
the central galaxy, and to all other group members as satellites. We
use the mock galaxy group catalogue to test how well galaxy–galaxy
lensing measurements around these ‘central’ and ‘satellite’ galaxies
allow a recovery of their host and subhalo masses respectively. Due

to interlopers (group members that do not belong to the same dark
matter halo) and the fact that the group finder may occasionally miss
a halo member, central and satellite galaxies in the group catalogue
are not necessarily also central and satellite galaxies in their real
haloes. If this confusion is too large, it will not be possible to ob-
tain reliable estimates of host and/or subhalo masses. Clearly, the
accuracy of such an approach therefore needs to be tested, which is
the purpose of the mocks constructed here. In the left-hand panel of
Fig. 5, we show the fractions of the false central galaxies and false
satellite galaxies (interlopers) as a function of group mass. The frac-
tion of false central galaxies is completely negligible in groups of
all masses, while that of false satellites is typically well below 20
per cent. As we have pointed out in Section 2.3, the ESDs around
satellite galaxies depend strongly on the projected halo-centric dis-
tances. Therefore, it is also important to check how the interloper
fractions of the satellite galaxies depend on the projected group-
centric distances. The results are shown in the right-hand panel of
Fig. 5. One may note that at small projected group-centric distances
the interloper fractions are rather small, and then increase (due to
the larger area covered) as the projected group-centric distances in-
crease. We will discuss later how and to what extent this interloper
fraction may affect our measurements of the ESDs and the extracted
properties of the subhaloes.

3.2 Lensing by galaxies in groups

3.2.1 The lensing signal around central galaxies

We first consider the lensing signal around the central group galax-
ies. In order to ‘measure’ the ESD we project the positions of galax-
ies and dark matter particles on to a plane perpendicular to the line
of sight, and estimate the mean dark matter surface density contrast
within rings of different radii around the galaxies. Since by defi-
nition the background surface density is subtracted, the ESD thus
derived is independent of the depth of the projection (here equal to
the simulation box size), as long as this depth is much larger than
the dark matter correlation length.

The open circles in Fig. 6 show the ��(R) thus obtained around
the central galaxies in groups with assigned masses in the range
12.0 � log (Mh/h−1 M�) < 12.5 (left-hand panel) and 14.0 �
log (Mh/h−1 M�) < 14.5 (right-hand panel), respectively. These
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Figure 5. The left-hand panel shows the fractions of the false central (solid line) and satellite galaxies (dashed line) as a function of group masses. The
right-hand panel shows the fractions of the false satellite galaxies (interlopers) in groups of different mass bins (as indicated) as a function of the projected
group-centric distances.

Figure 6. The ESDs measured from the N-body simulation around central galaxies (open circles) and around satellite galaxies at different Rs, as indicated
(open triangles and solid squares) Note that here satellite galaxies are modelled without dark matter subhaloes. The two panels correspond to different bins of
assigned group mass, as indicated with masses in h−1 M�. The lines in each panel are the best-fitting models to the ESDs shown: for central galaxies, this
model has two free parameter (Mh and c), while in the case of satellite galaxies it has four free parameters (Mh, c, Ms and Rs). Since we do not have realistic
‘measurement’ errors, we give each ‘data point’ equal weight in the fitting. See text for more details.

ESDs are monotonic functions of radius, and the amplitude is higher
for the more massive haloes, in agreement with the predictions
shown in Section 2. In Section 3.3, we investigate the accuracy
with which these measurements allow a recovery of the mean host
halo mass of these galaxies. Note that the group masses have been
assigned based on the total group luminosity; the lensing signal will
provide a direct test of this mass.

3.2.2 The lensing signal around satellite galaxies

As discussed in Section 2, the galaxy–galaxy lensing signal from
satellite galaxies depends not only on the luminosity of the satel-
lite, but also on the properties of the host halo and the halo-centric
distance. This means that the tangential shear measured around a
large sample of satellite galaxies in a given luminosity bin is very
difficult to interpret. Rather, one can use the actual information from
the group catalogue to sort the satellites according to both the mass
of their host halo (i.e. the assigned group mass) and the projected
distance from the centre of the group. Such a signal is much easier to
interpret, as it tightly constrains the contribution of the ��s,host-term
to the shear measurements.

To illustrate the potential power of this approach we measure the
ESD around satellite galaxies in our mock group catalogue, using
the projected distribution of dark matter particles as in Section 3.2.1
above. Since the simulations do not resolve the majority of sub-
haloes, and since we did not associate satellite galaxies in the mock
with the resolved subhaloes, this ESD reflects the lensing signal
that one would obtain if satellite galaxies are not surrounded by
dark matter subhaloes.

The open triangles and solid squares in Fig. 6 show the ��(R)
around satellite galaxies with different projected distances from their
central group galaxies, as indicated. As demonstrated in Section 2.3,
the ESDs around satellite galaxies are expected to become similar
to those around their central galaxies at radii R � 3Rs. However,
in Fig. 6 the ESDs of the satellite galaxies have slightly higher
amplitudes at large radii than those of the corresponding central
galaxies. This systematic offset is due to the fact that we have com-
bined groups in a finite mass range. Since more massive haloes
(groups) in general contain a larger number of satellite galaxies, any
satellite-averaged mean, such as the ESD, will be biased towards the
more massive haloes. A similar bias occurs when one tries to es-
timate the average halo mass of a stack of host galaxies from the
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Figure 7. Same as Fig. 6, except that here satellite galaxies are associated with dark matter subhaloes, as described in the text. Note that this enhances the ESD
at small R.

velocity dispersion of their satellite galaxies (see van den Bosch et al.
2004).

The ESD around satellite galaxies in groups with 1012 � Mh <

1012.5 h−1 M� and with Rs = 0.2 ± 0.05 h−1 Mpc (solid squares in
left-hand panel) reveals a small upturn at R � 0.1 h−1 Mpc. How-
ever, according to Fig. 2, ��(R) should go to zero at small R.
This disagreement with the theoretical predictions is caused by the
fact that a small number of these satellite galaxies in the group
catalogue are interlopers, which in reality are mainly central galax-
ies in lower mass haloes. Since the interloper fraction increases
with halo-centric distance (shown in the right-hand panel of Fig. 5),
this explains why this peak near R = 0 is more pronounced for
satellites with a larger Rs. Clearly, it is important that any group
finder used for identifying centrals and satellites is properly cali-
brated to yield sufficiently low interloper fractions. As described
in Yang et al. (2005a), the group finder used here has been cali-
brated accordingly. In particular, the interloper fraction is constant
(at ∼20 per cent) with group mass, unlike the more standard FOF

method which typically yields an interloper fraction that increases
systematically with decreasing group mass (see fig. 7 in Yang et al.
2005a).

We now add the contribution of the dark matter subhaloes. The
density distribution of a subhalo surrounding a satellite galaxy of a
given luminosity, located at a given halo-centric distance in a host
halo of a given mass is modelled as described in Section 3.1, and its
contribution to the lensing signal is computed by integrating ρs(r)
along the line of sight. The resulting ESDs are shown in Fig. 7. As
we have seen before, the contribution of the dark matter subhaloes
enhances the ESD around satellite galaxies on small scales.

3.3 Estimating the masses of haloes and subhaloes

from galaxy–galaxy lensing

Having estimated the lensing signal that one could in principle mea-
sure around central and satellite galaxies (given virtually infinite
signal-to-noise ratio in the shear measurements), we now inves-
tigate to what extent such a signal allows to recover the average
masses and concentration parameters of both the host haloes and
the subhaloes.

3.3.1 The masses of haloes

We start by testing how accurately the lensing signal around galaxies
classified as ‘centrals’ by our group finder allows a recovery of the

mean mass and concentration of their host haloes. To that extent we
use the assigned group masses as a ‘pre-selection’, and compute the
��c(R) around central galaxies in three group-mass bins, two of
which are shown in Fig. 6. Assuming that the density distributions of
dark matter haloes are well described by NFW profiles, we fit these
��c(R) using equation (11) with c and Mh as free parameters. The
best fits are shown as solid lines in Fig. 6, and should be compared
to the open circles.

The corresponding best-fitting values of Mh and c are shown in
the left-hand panel of Fig. 8 as the open circles. For comparison,
the asterisks show the true mean halo masses that host the mock
galaxies used to determine ��c(R), while the hatched area indicates
the bin of assigned group masses. Note that the best-fitting Mh is in
good agreement with the true average, and that both lie well within
the range of assigned group masses. The recovered concentration
parameters also match the expected values predicted by Eke et al.
(2001), indicated by the solid line, reasonably well. Although there
are slight deviations, they are significantly smaller than the typical
scatter in c for haloes of a given mass, �log c ∼ 0.14, indicated by
the error bars attached to the asterisks (e.g. Jing 2000; Bullock et al.
2001; Wechsler et al. 2002).

In the case of real galaxy–galaxy lensing data, the errors on
��c(R) will depend on the details of the selection of the lens-
source samples and on the quality of the observational data. We
do not model such errors here; instead we give each data point an
equal weight in the fitting. We have also tested the impact of chang-
ing the weight scheme, the change in the best-fitting parameters is
very small. Note that the error bars from recent galaxy–galaxy lens-
ing measurements show different radial dependences (e.g. McKay
et al. 2001; Mandelbaum et al. 2005a), the absence of realistic error
bars on our ‘measurements’ prevents us from putting meaningful
confidence levels on the best-fitting parameters.

The ESDs measured around satellite galaxies also contain infor-
mation regarding the mass of the host halo. In order to see how well
these lensing measurements allow to recover the masses of their
host and subhaloes we fit with equation (14) the ��s(R | Rs) for a
number of bins in Rs. We have four free parameters in the fit: Mh,
c, Ms and Rs (subscripts ‘h’ and ‘s’ refer to the host and subhaloes,
respectively). Note that c is the concentration of the host halo, not
that of the subhalo. Since the inner part of the ESDs cannot be
measured with high precision, we assume that all subhaloes have a
concentration cs = 10. We will discuss later in Section 3.3.2 how
this assumption may affect the extracted properties (i.e. masses) of
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Figure 8. Properties of host haloes recovered from fitting the ESDs around central galaxies (left-hand panel) and satellite galaxies (right-hand panel) in the
mock group catalogue. The hatched areas in both panels indicate the range of assigned masses of the groups from which the central and satellite galaxies are
selected. The open circles in the left-hand panel indicate the masses and concentrations of the NFW haloes that best fit the ESDs of the central group galaxies.
The asterisks show the true mean host halo masses and the corresponding halo concentrations obtained using the model of Eke et al. (2001; shown as solid
line). The error bars on the asterisks correspond to �log c = 0.14 which reflects the typical scatter in c at a given halo mass. The solid dots and open circles in
the right-hand panel indicate the best-fitting host halo masses and group-centric radii obtained from fitting the ESDs around satellite galaxies with and without
subhalo contributions, respectively. The horizontal error bars on these points indicate the ranges of group-centric radius, Rs, that were used to select the satellite
galaxies from the group catalogue. The asterisks indicate the true mean host halo masses and the true mean Rs, for the corresponding satellite galaxies.

the subhaloes. Note also that we let Rs be a free parameter, even
though we only consider satellite galaxies in a relatively narrow bin
in Rs (as determined from the group catalogue).

The best-fitting curves are given by the solid lines in Figs 6 and
7. Note that these best-fitting models are in reasonable agreement
with the ‘measured’ ESD. The slight deviations are due to interlopers
(i.e. errors associated with the group catalogue) and to the fact that
the model does not account for the fact that the data corresponds
to a range in host and subhalo masses (i.e. ��s(R | Rs) reflects
a linear combination of many slightly different ESDs). The best-
fitting host halo masses are shown in the right-hand panel of Fig. 8:
solid dots are the results obtained using the mock in which we do
not include the analytical subhaloes (Fig. 6), while the open circles
show the results obtained when subhaloes are included (Fig. 7). The
agreement with the true mean host halo masses, indicated by the
asterisks, is extremely good, suggesting that the lensing signal from
satellite galaxies basically yields an equally good measurement of
the host halo mass as that from the central galaxies. Thus, with
a well-defined group catalogue, the properties of the host haloes
can be accurately recovered from the ESDs using both central and
satellite galaxies.

There is one small caveat though. Note that the host halo masses
obtained from the central galaxies are somewhat lower than those
obtained from the satellites. This is again due to the fact that the
ESDs of satellite galaxies are weighted by the number of satellite
galaxies; since there are more satellite galaxies in more massive
groups, more massive systems receive a larger weight in the aver-
aging. In particular, groups that consist only of a single member
(which then by definition is a central galaxy), only contribute to
��c, but not to ��s. Since such a group is likely to have a rel-
atively low mass compared to the other groups in the same mass
bin, this will bias the value of Mh inferred from the satellites high
with respect to the value of Mh inferred from the central galaxies.
Note, however, that this does not reflect an error; the average true
halo mass of systems with at least one satellite is simply larger than
the average true halo mass of all systems (including those with zero
satellites). This is also evident from the fact that the asterisks in the
left- and right-hand panels of Fig. 8 indicate different masses. Thus,

if the host masses inferred from ��c and ��s do not agree with
each other, this does not necessarily indicate an inconsistency. It
may also simply reflect a ‘selection effect’, in that the ESDs around
central and satellite galaxies are contributed by somewhat different
host halo populations. As a simple test, we weight the ESDs for
central galaxies with the number of satellite galaxies at different
group-centric distances. The recovered host halo masses are now in
much better consistent with those recovered from the ESDs around
satellite galaxies.

3.3.2 The masses of subhaloes

The four-parameter fits to the ESDs of satellite galaxies also yield
best-fitting values for the average subhalo mass, Ms and for the pro-
jected distance, Rs. The open circles in Fig. 9 show the best-fitting
values of Ms and Rs as obtained from the mock in which we added
analytical subhaloes around each satellite galaxy (i.e. these corre-
spond to the ESDs shown in Fig. 7). For comparison, the asterisks
show the corresponding true mean values.1 The solid squares in
Fig. 9 indicate the best-fitting values of Ms obtained from the mock
in which no subhaloes are included (i.e. corresponding to the ESDs
shown in Fig. 6). The fact that these best-fitting values are not equal
to zero, as they should be, owes to the presence of interlopers that in
reality are centrals. These best-fitting subhalo masses should there-
fore be considered a contamination of the measurement in the case
with subhaloes. Typically this contamination is much smaller than
the actual mean subhalo mass, especially at small Rs. In the cases
examined here, the largest contamination we find is for the satel-
lites with Rs = 0.3 ± 0.05 h−1 Mpc in groups with 1012 � Mh <

1012.5 h−1 M�, where the best-fitting Ms inferred from the mock
without subhaloes is 38 per cent of that obtained with subhaloes. In
all other cases this fraction is much lower.

The shaded areas in Fig. 9 outline the 90-percentile range of the
real subhalo masses, which clearly is very broad. This owes to the

1 For interlopers that are centrals, rather than satellites, we use the host halo
mass in the computation of the averages.
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Figure 9. Open circles indicate the best-fitting subhalo masses and group-centric radii obtained from fitting the ESDs around satellite galaxies in the mock
group catalogue in which each satellite galaxy has been assigned a dark matter subhalo as described in Section 3. Different panels correspond to groups in
different bins of assigned mass, as indicated, while the horizontal error bars indicate the ranges of Rs that were used to select the satellite galaxies from the
group catalogue. The hatched areas show the 90 percentile ranges of true (retained) subhalo masses. The asterisks indicate the true mean subhalo masses and
the true mean Rs, for the corresponding satellite galaxies. Finally, the solid squares (also with horizontal error bars) indicate the best-fitting values of Ms and
Rs obtained by fitting the ESDs around the satellite galaxies in the mock without dark matter subhaloes. The fact that these best-fitting values are not equal to
zero, as they should be, owes to the contamination due to interlopers. See text for a detailed discussion.

Figure 10. Same as Fig. 9, except that here we show the results for different bins in satellite luminosity Ls, as indicated in h−2 L�. As in Fig. 9 the open circles
show the best-fitting subhalo masses and group-centric radii obtained fitting the ESDs assuming NFW subhaloes with cs = 10. The solid diamonds show the
same quantities but obtained by assuming subhaloes modelled by equation (7) with mean 〈rs〉 ≈ (Rs + rvir,h)/2.

fact that we have added the lensing signal from all satellite galaxies,
irrespective of their luminosity. In our model, and most likely also in
reality, more luminous satellites reside in more massive subhaloes.
This suggests that the actual range of subhaloes probes may be nar-
rowed by selecting satellite galaxies of similar luminosities. Fig. 10
shows the ESDs around satellite galaxies in different luminosity
bins and in groups of different (assigned) masses. As in Fig. 9, the
shaded areas indicate the 90-percentile ranges of the true subhalo
masses. As expected, these are now much narrower. The remaining
width owes to the finite widths of the ranges in satellite luminosity,

Ls, group mass, Mh, and projected separation, Rs, and to the fact that
projection causes systems with different rs to contribute to the same
Rs. Note that in our model the subhalo mass is a function of Mh, Ls

and rs.
The open circles in Fig. 10 indicate the best-fitting sub-

halo masses, obtained by fitting the corresponding ESDs with a
four-parameter model as described above. Note that the recovered
subhalo masses are slightly larger than the input value, especially
for fainter satellite galaxies in massive groups. We propose that the
main reason for this is that a stripped halo has a steeper mass profile
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(see equation 7), and the assumption of a fixed NFW profile with
cs = 10 is not sufficiently accurate. As a simple test of this hypoth-
esis, we consider a simple model in which we assume that the mean
halo-centric distances of the satellite galaxies in each sample is
〈rs〉 ≈ (Rs + rvir,h)/2. Then, we use equation (7) to model the mean
profile of the subhaloes in consideration. This model ensures that
subhaloes with smaller Rs, which are expected to have suffered more
mass loss, are more concentrated. The best-fitting subhalo masses
obtained from this model are shown in Fig. 10 as the solid diamonds.
As can be seen, the best-fitting masses are systematically smaller
than in the case of cs = 10, and are in better agreement with the true
averages.

In conclusion, with a well-defined group catalogue, the ESDs of
satellite galaxies obtained from galaxy–galaxy lensing, with sig-
nals properly stacked according to the group masses (inferred from
the total group luminosities) and the luminosities and group-centric
distances of satellite galaxies, can be used to probe the masses of
subhaloes associated with satellite galaxies.

3.3.3 What if the brightest galaxy is off-centre?

In the analysis presented above, the brightest halo galaxy is assumed
to reside at the halo centre. In reality, the location of the brightest
galaxy may not be exactly at the halo centre, and this may affect the
predicted ESDs around the central and satellite galaxies. Here, we
examine the importance of this effect.

In a recent study of the phase-space distribution of the brightest
halo galaxies in galaxy groups, van den Bosch et al. (2005b) found
that, for haloes with masses Mh > 1013h−1M�, the deviation of
the location of the brightest galaxy from the halo centre is about
3 per cent of the halo virial radius. Based on SPH simulations,
Berlind et al. (2003) also found that the ‘central’ galaxy in a dark
matter halo may deviate from the position of the most bound particle
by 2 per cent of the halo virial radius. In order to quantify how such
deviations impact on the ESDs, we perform the following test. We
construct a new mock catalogue in which we assume that the position
of each brightest halo galaxy deviates from the most bound particle
with an amount given by a Gaussian distribution with a dispersion
equal to 3 per cent of the halo virial radius. Next we run our group
finder over this new mock catalogue, compute the ESDs around the
central and satellites galaxies, and fit them as described above to
determine the best-fitting halo masses and concentrations. We find
that the off-centring of the central galaxies has an almost negligible
effect, except that the best-fitting concentration parameters of host
haloes are reduced by a modest 15 per cent. Such a reduction arises
from the fact that the off-centring decreases the ESD at small radius,
similar to what happens to the ESD around satellite galaxies. Thus,
the ability to measure the host halo masses is not compromised by
the fact that central galaxies may be (slightly) off-centred from the
gravitational centre of their dark matter halo.

4 D I S C U S S I O N A N D C O N C L U S I O N S

The weak galaxy–galaxy lensing signals from central and satel-
lite galaxies (at different halo-centric distances) are very different.
So far, this difference has not been fully exploited. In fact, in all
previous studies it has been considered a nuisance, rather than a
source of valuable information. Most galaxy–galaxy lensing analy-
ses either have simply ignored the differences between central and
satellite galaxies, or have focused on isolated galaxies in an attempt
to minimize the disturbing contribution of satellite galaxies. An al-
ternative approach, pioneered by Guzik & Seljak (2002), is to model

the combined lensing signal from central and satellites. However,
no study to date has attempted to measure the lensing signals of
centrals and satellites at different halo-centric distances separately.
This simply owes to the fact that it is not a priori clear which galaxy
is a central galaxy and which galaxy a satellite. This is unfortu-
nate, as a separation of these two components would allow a much
cleaner measurement of the halo masses (and their detailed density
profiles) hosting central galaxies. In addition, it would allow for a di-
rect measurement of the masses (and density profiles) of subhaloes
hosting satellite galaxies. Furthermore, since the shear around satel-
lite galaxies also harbours information regarding the host haloes in
which their subhaloes reside, one can use their lensing signal to
obtain an independent measurement of the host halo masses.

In order to exploit this richness in information, it is crucial that one
has a reliable technique for separating central and satellite galaxies.
In this paper, we have investigated to what extent this is feasible with
the halo-based group finder developed by Yang et al. (2005a). This
group finder is straightforward to apply to galaxy redshift surveys,
and has been calibrated to yield low interloper fractions. The latter
is important to minimize the confusion of centrals and satellites.
In order to test our methodology, we constructed detailed mock
redshift surveys from N-body simulations that are populated with
galaxies using the conditional luminosity function. Application of
the halo-based group finder to this mock redshift survey yields a
large catalogue of mock galaxy groups, from which central galaxies
are identified as the brightest galaxy in each group. All other group
members are considered to be satellites.

The group catalogue is not only useful to separate centrals from
satellites. It also yields, for each satellite, the projected separation,
Rs, to it central galaxy. This is extremely important, since the con-
tribution of the host halo to the gravitational shear around a satellite
galaxy depends strongly on Rs. Therefore, in order to facilitate a
meaningful interpretation of the shear measurements around satel-
lite galaxies, it is crucial that one only stacks the data from a rela-
tively narrow bin in Rs. Another piece of useful information from
the group finder are the masses that one can assign to each group
based on the total luminosity of all its members. This mass can be
used to ‘pre-select’ central and satellite galaxies in relatively narrow
bins in the group mass, which again facilitates the interpretation of
the lensing measurements.

To test these ideas we computed the ESD, which is the observ-
able that can be obtained from the lensing measurements, around
each central and satellite galaxy in the N-body simulation. We have
demonstrated that by stacking the ESDs around central galaxies
within different group mass bins, the average masses and concentra-
tions of their host haloes can be accurately recovered from the data.
In addition, we have shown that the ESDs around satellite galaxies,
when stacked according to group-centric distance and group mass,
allow an equally accurate recovery of the masses of their corre-
sponding subhaloes, as well as that of their host haloes.

We therefore conclude that a combination of galaxy-galaxy lens-
ing measurements with a galaxy group catalogue extracted from
a large-redshift survey, such as the SDSS, in principle allows for
accurate measurements of the masses and concentrations of host
haloes around central galaxies and subhaloes around satellite galax-
ies. However, it is important to realize that we have not attempted
to mimic realistic observations. Rather, we have simply assumed
infinite accuracy in the measurements of the ESDs. In reality, reso-
lution issues, due to the finite sampling of the shear field and errors
in the shear measurements, may cause a substantial reduction of the
accuracy with which this methodology can be applied. In a forth-
coming paper, we will apply this method to realistic mock shear
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maps taking into account various observational effects to test its
feasibility.
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Allgood B., Primack J. R., 2004, ApJ, 609, 35

Klypin A., Kravtsov A. V., Bullock J. S., Primack J. R., 2001, ApJ, 554, 903
Lu Y., Mo H. J., Katz N., Weinberg M. D., 2006, MNRAS, 368, 1931
Lin W. P., Jing Y. P., Mao S., Gao L., McCarthy I. G., 2006, preprint (astro-

ph/0607555)
McKay T. A. et al., 2001, preprint (astro-ph/0108013)
McKay T. A. et al., 2002, ApJ, 571, L85
Mandelbaum R. et al., 2005a, MNRAS, 361, 1287
Mandelbaum R., Tasitsiomi A., Seljak U., Kravtsov A., Wechsler R. H.,

2005b, MNRAS, 362, 1451
Mandelbaum R., Seljak U., Kauffmann G., Hirata C. M., Brinkmann J.,

2006a, MNRAS, 368, 715
Mandelbaum R., Seljak U., Cool R. J., Blanton M., Hirata C. M., Brinkmann

J., 2006b, preprint (astro-ph/0605476)
Meneghetti M., Bartelmann M., Jenkins A., Frenk C., 2005, preprint (astro-

ph/0509323)
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