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USING THE CENSORED GAMMA DISTRIBUTION FOR MODELING 

FRACTIONAL RESPONSE VARIABLES WITH AN APPLICATION

TO LOSS GIVEN DEFAULT 
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ABSTRACT

Regression models for limited continuous dependent variables having a non-neg-
ligible probability of attaining exactly their limits are presented. The models differ 
in the number of parameters and in their l exibility. Fractional data being a special 
case of limited dependent data, the models also apply to variables that are a frac-
tion or a proportion. It is shown how to i t these models and they are applied to 
a Loss Given Default dataset from insurance to which they provide a good i t.
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1. INTRODUCTION

Proportions or fractions are of considerable interest in economics as well as other 
sciences. They are usually bounded by 0 and 1 (or 100%). Often, such quantities 
show a substantial probability for adopting one or both of the boundary values. 
Such variables have been termed “fractional response variables” by Papke and 
Woolridge (1996). In a recent survey paper on modeling fractional data, Ramalho 
et al. (2011) list pension plan participation rates, i rm market share, proportion 
of debt in the i nancing mix of i rms, fraction of land area allocated to agricul-
ture, and proportion of exports in total sales as examples. Another example is 
illustrated in Papke and Woolridge (2008), where test pass rates are analyzed.

In insurance, losses are frequently restricted to be positive and below an 
upper bound dei ned by a contract. We analyze a Loss Given Default dataset 
from an insurance category called “surety”. In this example, claims cannot 
exceed a prespecii ed insured maximum, i.e., the ratio of loss over maximum 
is bounded by 1. On the other hand, for several reasons, the claims often do 
not lead to ultimate losses. The interest is in relating the distribution of this 
variable to a set of explanatory variables by a regression model.
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674 F. SIGRIST AND W.A. STAHEL

For a fractional response variable Y, an important type of models focuses 
on the conditional mean E [Y |x] given a vector of  covariates x. A popular 
choice is to use the logistic function as a link function between a linear predic-
tor and E [Y|x], but other cumulative distribution functions can also be used. 
Another semiparametric approach relies on assumptions about quantiles
(see, e.g., Powell (1984), Khan and Powell (2001) or Chen and Khan (2001)). 
Whereas these approaches are sufi cient for the purpose of many studies, in 
other cases, other aspects of the distribution of Y given x, like upper quantiles 
or probabilities of  attaining the limits, are of  interest, as is the case in our 
application. In that case, parametric models are advantageous. On the other 
hand, since semiparametric models rely on less assumptions, they have the 
advantage that they are less prone to misspecii cation.

When there is a non-zero probability that the boundary values are attained, 
it is natural to use models based on censored random variables. These models 
are used in different i elds of application. In economics, analyzing household 
expenditure on durable goods, Tobin (1958) i rst introduced such a model 
which later was coined Tobit model by Goldberger (1964). In climate science, 
precipitation can be modelled using censored distributions (see, e.g., Bardossy 
and Plate (1992) or Sanso and Guenni (2004)). 

The Tobit model describes the distribution of Y given x as a censored nor-
mal with expectation m  =  x�b. It is therefore often perceived as a model for 
censored data, which it is in the detection limit case. However, it is perfectly 
adequate to use the censored normal distribution as a probability model in 
situations where no actual censoring occurs and the zeros are genuine values 
of the response, as is the case for the original application of Tobin (1958). The 
use of censored distributions is then a device to obtain a tractable model even 
though the data is not actually censored.

To support our thinking about the situation to be modeled, it is often helpful 
to attach the idea of a “potential” to a latent, uncensored response variable Y*, 
of which Y is the censored version. In the case of precipitation, this potential 
measures a tendency for rain which may move from zero to way below, indicating 
that the weather develops from cloudy to very dry. For the standardized losses 
in our insurance example, the latent variables can be thought of  as a loss 
potential. We note that Wooldridge (2010) calls models for variables that have 
a discrete and a continuous part, without actual censoring occurring, corner 
solution models. In Wooldridge (2002, Chapter 16), it is stated that an additional 
advantage of using a parametric distribution for modeling corner solution out-
comes is that estimates of quantities such as E [Y |x] are efi cient.

The Tobit model is easily adjusted to the case of an additional upper limit 
for Y (Rosett and Nelson (1975)) and thus to fractional data, and the gener-
alization to replacing the normal distribution by any other suitable family is 
conceptually straightforward. In fact, when using censored distributions, one can 
model all quantities of interest, such as the mean, quantiles, and probabilities 
of attaining limits, together. We will focus on this approach in the following, 
using a shifted gamma distribution instead of the normal. The gamma distribution 
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 CENSORED GAMMA REGRESSION MODELS 675

is a l exible distribution that is popular in insurance, and it will be shown to 
i t our data well (see, e.g., Figure 2).

Models based on a single random variable, such as the Tobit model or the 
censored gamma model, have the advantage of having a parsimonious param-
eterization entailing easier and more consistent interpretation. However, there 
are situations in which the frequencies of the limits do not follow this parsi-
monious description. We therefore also introduce two extensions of the model. 
For instance, in our example there may even be administrative reasons for an 
excessive number of zero losses, due to incentives to place a claim with little 
justii cation. Such preventive i ling may result in a large number of “additional 
zeros”. This idea suggests a mixture model, consisting of a censored part, as 
introduced above, and a model for the additional zeros.

An other approach to tackle this problem is called two-part models by 
Ramalho et al. (2011). These are extensions of the models of Papke and Wool-
dridge (1996). Here, a i rst model describes the occurrence of boundary values. 
Then, the continuous part can be modeled, for instance, by using the beta dis-
tribution (see Paolino (2001) and Ferrari and Cribari-Neto (2004)). Ramalho 
and da Silva (2009) and Cook et al. (2008) present empirical applications of two-
part fractional response models. We also introduce an alternative extension
of  the censored gamma model based on this two-part modeling idea. Here, 
the probabilities of attaining the boundary value(s) are modelled separately 
from the continuous part in between them. 

The rest of the paper is organized as follows. In Section 2, we introduce 
the censored gamma model, show how it can be interpreted, and derive an 
estimation procedure for it. In Section 3, two possible generalizations are pre-
sented. In Section 4, we illustrate an application of the models to the dataset 
mentioned above.

2. THE CENSORED GAMMA MODEL

In order to establish ideas, consider the Tobit model in its two sided version 
as developed by Rosett and Nelson (1975). It is assumed that there exists a 
latent variable Y* which is, conditional on some covariates x  =  (x1,  …,  xp)  !  R

p
, 

normally distributed. This variable is observed only if  it lies in the interval 
[0, 1]. Otherwise, we observe 0 or 1, depending on whether the latent variable is 
smaller than 0 or greater than 1, respectively. If  Y denotes the observed vari-
able, this can be expressed as 

 | ( ,xY N
2

+ m s )*  (1)

and
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Furthermore, the expectation m of  the latent variable Y* is related to the 
covariates x through 

 .b
p

� ,x b R=m !

For more details, e.g., on inference, we refer to Maddala (1983), Chapter 6, 
and Amemiya (1985), Chapter 10. Furthermore, Breen (1996) and Long (1997) 
give overviews of models for limited dependent variables.

Clearly, the assumption of a normal distribution for Y* is not adequate for
all data. It is well known that the Tobit model is sensitive to distributional 
assumptions (see, e.g., Arabmazar and Schmidt (1982) or Maddala and Nelson 
(1975)). A natural alternative is to replace the normal distribution by another 
one. We choose a shifted gamma distribution since it is a l exible distribution 
that is applied in many areas, especially in insurance. Further, it provides a 
good i t to the dataset of insurance claims mentioned above. This choice relies 
on distributional assumptions which have to be checked when applying the 
model to data. 

To avoid unnecessary inl ation of notation, we let the boundaries of the 
observed variable be 0 and 1. The model is easily generalized for variables 
whose range of values is any interval [ yl, yu ] with yl  <  yu, though. This might 
be done either by i rst applying a linear transformation to the respective vari-
able or by reformulating the model. The case where the observations are only 
bounded from below is included by letting yu "  3.

2.1. The Model

Generalizing the Tobit model specii ed in (1) and (2), it is assumed that there 
exists a latent variable Y* which has, conditional on x, a distribution with 
density fq*

* (y*) and cumulative distribution function Fq*
* (y*), q* being a vector 

of parameters. The observed dependent variable Y then depends on the latent 
variable as in (2).

It follows that the distribution of such a censored variable Y can be char-
acterized by 
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Consequently, the density of the observed variable Y can be written as 

   q qq( ( ( ( ((1)q {+) (0) ) ) ) ( ) ), 0 1,f y F y f y y F y y}y0 0 1 1< <1 # #= + -d d* * * *1* **  (4)

where d0(y) and d1(y) are Dirac measures and where 1{0  <  y  <  1}(y) denotes the 
indicator function equaling 1 if  0  <  y  <  1 and 0 otherwise.
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In order to extend the model to the regression case, we relate the distribution 
of Y* to the covariates x. This is done by assuming that the main parameter 
‡ of  the distribution of Y*, which might be the mean or a scale parameter, is 
related through a link function g to the covariates,

 b�q( ) .xg =  (5)

In the following, we will focus on the case where the distribution of  Y* is 
specii ed as a gamma distribution with a shifted origin. The density and the 
distribution function of a gamma distributed variable with shape parameter a 
and scale parameter ‡ are denoted by ga,‡ (y) and Ga,‡ (y), respectively. The 
density of a shifted gamma distribution is then 

 z1 )+z
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where z,  ‡,  a  >  0, and its distribution function is Ga,‡ (y*  +  z).
The density of the observed Y can be expressed as 
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The use of a gamma distribution with a shifted origin, instead of a standard 
gamma distribution, is motivated by the fact that the lower censoring occurs 
at zero. In this case, the shift z is needed to obtain a positive probability of 
Y  =  0.

For the regression case, we assume that the scale parameter ‡ is related to 
the covariates via the logarithmic link function 

 bq( ) .xlog = �  (7)

Henceforth and if  not otherwise stated, we assume that Y* (and Y) follow a 
(censored) shifted gamma distribution. We will refer to this model as the “cen-
sored gamma model”.

Note that if  no censoring occurred and z was set to zero, the censored 
gamma model would be a generalized linear model (McCullagh and Nelder 
(1983)) for a gamma distributed variable with a logarithmic link function.

2.2. Interpretation

If the focus lies on the latent response variable Y*, the interpretation is straight-
forward. Since 

 x ,a[ | ]E Y = zq-*  (8)
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the marginal effect of a continuous predictor xj on E [Y*|x] is 

 
| x

j
a

[E Y
j2

2
= b q
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x

*
 (9)

On the other hand, one might be primarily interested in the observed variable Y, 
rather than the latent variable Y*. Its mean and corresponding marginal effects 
are calculated in the following lemma.

Lemma 2.1. The following holds true.
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and for a continuous covariate xj,
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The derivation of these two equations is shown in Appendix A.
We note that the marginal effect of xj on E [Y|x] is a scaled version of the effect 

on E [Y*|x], with the scaling factor depending nonlinearly on the covariates.
If the interest lies on, say, the probability of Y being zero, P [Y  =  0]  =  Ga,‡ (z), 

one can also calculate partial effects on this quantity. For a continuous xj, 
using similar ideas as in the proof of the above lemma, it is easily shown that 
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Finally, one can also consider quantiles. The quantile function a q, ,z (q)F
! , for 

q  !  [0,1], of Y is given by 
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The partial effect of  a continuous covariate xj on the q-quantile a q, ,z (q)F
!  is 

therefore
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Note that for the cases q  =  Ga, ‡ (z) and q  =  Ga, ‡ (1  +  z), the function a q, ,z (q)F
!  

is not differentiable with respect to xj and, consequently, partial effects cannot 
be calculated.

2.3. Estimation

In this section, it is shown how to perform maximum likelihood estimation for 
the censored gamma model using a Newton-Raphson method known as Fisher’s 
scoring algorithm (see, e.g., Fahrmeir and Tutz (2001)).

Denoting generically by q all parameters that are to be estimated and by 
(q) the log-likelihood, Fisher’s scoring algorithm starts with an initial esti-
mate q 4(0) and iteratively calculates (until convergence is achieved)

 q 4(k  +  1)   =   q 4(k)  +  I (q 4(k))
– 1 

s(q 4(k)),   k  =  0, 1, 2  …,  

where 
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)^ h
denotes the score function, i.e., the i rst derivative of the log-likelihood, and 

 q q qI E s sq
T

=^ ^ ^h h h9 C
is the Fisher Information Matrix. How these two quantities are calculated for 
the censored gamma model is shown in the following.

First, we reparametrize the shape parameter a through 

 �a (log= a) (15)

to ensure that a attains only positive values. The parameters that are to be 
estimated, therefore, consist of q  =  (a�, b, z).

Assuming that we have independent data y1  …,  yn with covariates x1  …,  xn, 
the log-likelihood function can be written as 
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Lemma 2.2. The following relations hold true.

 (16)a

a

H

H

z

(
(

(

{

2

z
z

i

i

(

(

ii
i

i
i

=
i

a
a a

q

a q a

a a
q

(
) ,

( ) ( )

( )
) ( ) , ,

q
c

c

c

log log

G
G

G
G

0

1
1 0

1

a q
a q

a q
a q

,
,

( )
}

{ }

,
,

( )
{ }

y

i i y

i

1
0

0 1

1
1

< <

i
1

1

1

2
= - +

+ - + +

-
- +

- + +
+

=

z
z

z

z

)
)

1

,

-

�

)

y

)

y

cc
^

cc

mm
h

mm

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.2143/AST.41.2.2136992
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 14:39:04, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.2143/AST.41.2.2136992
https:/www.cambridge.org/core


680 F. SIGRIST AND W.A. STAHEL

 
(17)i

i

ai i

i

+

z

2

2

+

+

i

i

i i

i

i

i

i

i

i

i

i

i

i

=

=

q

a
q

(
( )

( )
( )

,

(
( )

( )

( )
,

q

q

x
G

g
x

y

x
G

g

G

g

y G

g

1
1 1

1

1 1
1 1

1

a q

a q

a q

a q

a q

a q

a q

a q

,

,
{ } { }

,

,
{ }

,

,
{ } { }

,

,
{ }

k

i
k y k y

k

i
y y

0 0 1

1

0 0 1 1

< <

< <

i

i

1 1

1

1 1 1

2

2

= - + -

+ +
- +

+

= +
-
- -

- +

+

=

=

b
z

z

z z

z

z

z z

z

z z

z

)

)

,

,

y

y

^ c
^

c ^

h m
h

m h
 (18)

where 
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denotes the digamma function (see Abramowitz and Stegun (1964)) and the func-
tions Ha

(1) and Ha
(2) are dei ned as1
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The derivation of the scoring functions is shown in the following.
At i rst, we infer from (3) that the likelihood function of an interval cen-

sored gamma distribution can be written as 
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which is equivalent to writing 
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It follows that we can write the log-likelihood function i(q) of an observation yi 
as 
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1 We note that the functions Ha
(1)(l, u) and Ha

(2)(l, u) can be calculated using numerical integration.

In our application, we did this by adaptive quadrature using the QUADPACK routines ‘dqags’ and 

‘dqagi’ (Piessens et al. (1983)) available from Netlib.
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The derivative of i with respect to the parameter a� in (16) is then calculated 
using the following identity.
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Next, using 
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and (41), differentiating i(q) with respect to bk gives the result in (17). The 
calculation of the derivative with respect to z in (18) is straightforward.

For the Fisher-scoring algorithm and for asymptotic inference, we calculate 
the Fisher Information Matrix 
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The specii c calculations of the entries E
( (q q

k

i i

l2

2

q
2

2

, ,

q q

) ): D are shown in Section S.1 
in the supplementary material. 

As mentioned before, the Fisher Information Matrix I (q) is used in the 
Fisher-scoring algorithm for i tting the model and for asymptotic inference, in 
particular to estimate standard errors of the coefi cients b.

3. TWO EXTENSIONS OF THE MODEL

A salient feature of the model dei ned in (3) and of the Tobit model is the 
assumption that the same parameters govern both the behaviour of the uncen-
sored values as well as the probabilities of being censored from below or above. 

In order to relax this assumption, various extensions have been proposed. 
Sample selection models, i rst introduced by Heckman (1976), are one 
approach. Cragg (1971) came forward with another proposal relaxing the 
aforementioned assumption of  one set of  parameters governing the entire 
model. 

For count data, similar problems can arise: there may be more zeros than 
expected by a simple model, which would otherwise i t well. Basically, two 
different kinds of solutions have been put forward there. 

Aitchison (1955) i rst proposed to model the zeros and the values bigger 
than zero separately. Mullahy (1986) used a mixture consisting of a distribu-
tion for the whole range of data, including zeros, and a point mass at zero to 
capture extra zeros. These two types of models have been extensively applied 
in various areas of research including manufacturing defects (Lambert (1992)), 
patent applications (Crepon and Duguet (1997)), road safety (Miaou (1994)), 
species abundance (Welsh et al. (1996)), medical consultations (Gurmu (1997)), 
use of recreational facilities (Gurmu and Trivedi (1996); Shonkwiler and Shaw 
(1996)), and sexual behaviour (Heilbron (1994)). Ridout et al. (1998) give an 
overview of these models.

Our two extensions are based on similar ideas. The main difference is the 
way in which the zeros are modeled. In the i rst extension, the zeros and the 
non-zero values are modeled separately assuming that the mechanisms that 
govern the probability of  Y being zero and the non-zero part are different.
In the second extension, the zeros are modelled as a mixture of two mecha-
nisms. One is responsible for artii cial or extra zeros whereas the other part is 
the censored gamma model introduced in Section 2.

3.1. The Two-tiered Gamma Model 

Inspired by the approach of Cragg (1971), we extend the model in (3) by allow-
ing for two different sets of parameters, one governing the probability of Y 
being zero, and the other the behaviour for 0  <  Y  #  1.

Alternatively, the model could also be extended by allowing for a differ-
ent set of parameters governing the probability of Y being one. The extension 
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presented here, which we will call two-tiered gamma model, is mainly motivated 
by the presumption that zeros are generated by another mechanism than
the one that governs the rest of the data. We remark that the extension to a 
“three-tiered” model including a different set of parameters for governing the 
probability of Y being one is straightforward.

More specii cally, in the two-tiered gamma model, it is assumed that there 
exist two latent variables 

 1 gza,
p

�q( ), with ( ),xexpY G Rq+ !+ = g1
*y* u

u

and

 2 b(a,
p

�q( ) truncated at 0, with ), .xexpY G q 2+ + =z b R*y* !

The i rst latent variable Y1
* is again following a shifted gamma distribution, 

whereas the second variable Y2
* has shifted gamma distribution that is lower 

truncated at zero. These two latent variables are then related to Y through
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In other words, the two-tiered gamma model i rst decides whether Y is zero or not. 
This is modeled in the style of a probit model, using, however, a cumulative 
gamma distribution function instead of a normal one. It is then assumed that, 
conditional on Y  >  0, 0  <  Y  #  1 has a lower truncated and upper censored 
gamma distribution.

The distribution of Y can then be characterized as follows.
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 (24)

with 

 b g
p

�q q a( ), ( ), , , 0.x x bexp exp g >R!= = � , zu

Again, ga, ‡ (y) denotes the density of a Gamma(a, ‡) distributed variable and 
Ga, ‡ (y) is the corresponding distribution function. 

We remark that the distributions in both parts of the two-tiered model, i.e., 
the part modeling the probability of Y being zero and the part governing the 
behaviour of 0  <  Y  #  1, are assumed to have the same shape parameter a and 
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the same location parameter z. Consequently, if  b  =  g, or ‡  =  qu , the two-tiered 
gamma model presented here and the aforementioned censored gamma model 
coincide, which means that these two models are nested. This is convenient for 
model comparison since it allows to use a likelihood ratio test to compare the 
two models.

3.2. Estimation of the Two-tiered Gamma Model

Having in mind that the censored gamma model is nested in the two-tiered 
gamma model, we restrict ourselves to estimating the coefi cients b and g
of  the two linear predictors using Fisher’s scoring algorithm. The shape 
parameter a and the location parameter z could be estimated via numerical 
optimization in an outer loop with starting values obtained from i rst i tting 
a censored gamma model. 

With q  =  (b, g), the log-likelihood function of the model can be written as   
) )i 1=( (q qi, ,=
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The score functions are 
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and 
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The entries of the Fisher Information Matrix I(q) are presented in Appendix S.2.

3.3. The Zero-Inl ated Gamma Model

The extension presented in this section is motivated by the following idea. 
Assume that our quantity of interest follows indeed a censored, shifted gamma 
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 CENSORED GAMMA REGRESSION MODELS 685

distribution. However, additional, artii cial zeros occur by some other mecha-
nism and thus there are more zeros than expected. Deaton and Irish (1984) used 
such an extension of the Tobit model for modeling expenditures in household 
budgets. Recently, a zero-inl ated model for censored continuous data has also 
been presented by Couturier and Victoria-Feser (2010). 

These additional zeros are now allowed to follow their own model, in 
 contrast to the two-tiered model where all zeros were described together. This
view may make sense in specii c applications like insurance, where some of the 
claims that result in zero losses may be cases which were i led in order not to 
miss a formal deadline or for similar artii cial reasons.

In the zero-inl ated model, the existence of two latent variables is again 
assumed,

 1 2 z,m( 1) and ( )Y N Y Ga q, 2+ - ++ ** * y

with m  =  x�g and ‡  =  exp(x�b). 
We note that the censored gamma model is not nested in the zero-inl ated 

model in the classical sense. However, the zero-inl ated model coincides with 
the censored gamma model at the boundary of its parameter space, namely
if  m "  – 3. For the reason of simplicity, we opt for the normal distribution.
I.e., the extra zeros are model using a probit model. Alternatively,
one could also use the logit distribution.

These two variables are then related to Y through
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The variable Y1
* i rst decides whether the observed response variable Y is zero, 

i.e., if  Y1
*  #  0 it follows that Y  =  0. Next, conditional on Y1

*  >  0, Y is distrib-
uted according to a censored, shifted gamma distribution. 

This means that the zeros are governed by two different components of the 
model. First, zeros can arise if  Y1

* is smaller than zero. And secondly, they
can occur if, conditional on Y1

*  >  0, Y2
* is smaller than zero. Metaphorically 

speaking, we add extra mass at zero to the censored gamma distribution, 
which can account for potential extra zeros. This approach allows us to distin-
guish structural and extra zeros.

Note that the main distinctive feature of this model, in contrast to the two-
tiered model presented in the previous section, is that the distribution of the 
second tier of the model is lower censored instead of lower truncated. 

As stated above, we choose to model the extra zeros using a probit model, 
i.e.,
 1 g0 g: [ 0] ( ) .P Y R

p
# !F= = �x ,p *  (27)
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Consequently, the distribution of Y can be characterized by 
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where 

 b ,g= (
p

�q a( ) ), , 0.x bexpp R0 F =,�x >,g ! z

We note that the zero-inl ated model reduces to the censored Gamma model 
in the limit m  "   – 3, i.e., at the boundary of the parameter space. This means 
that a straightforward likelihood ratio test for model selection does not apply 
here. In Section 4.2 in the application, we use a simulation based testing pro-
cedure to compare these two models. 

3.4. Estimation of the Zero-Inl ated Gamma Model

Since the EM (Dempster et al. (1977)) algorithm lends itself  naturally when it 
comes to i tting mixtures of distributions and because calculations of scores 
and the Fisher Information Matrix would be overly complicated, we use the 
EM algorithm here.

The EM algorithms presented in the following i nds the maximum like-
lihood estimators of the parameters q  =  (a, b, g). The location parameter z is 
i xed and assumed to be known. Again, z could be obtained from i rst i tting 
the censored gamma model or it could be estimated through numerical opti-
mization in an outer loop. Alternatively, the values obtained from the EM 
Algorithm together with the estimated z from the censored gamma model can 
be used as starting values for generic optimization algorithms such as, for 
instance, quasi-Newton methods. We note that in some examples we observed 
convergence problems when using quasi-Newton methods without reasonable 
starting values. 

With regard to the EM algorithm, we introduce two latent data variables Z 
and Y*. For each i, Zi indicates whether the observation belongs to the extra zero 
part of the model (Zi  =  0) or to the censored gamma distribution (Zi  =  1). The 
second missing data variable Yi

* is for the censored gamma part of the model.
It denotes the value of the underlying latent variable Yi

* which then is censored 
at zero and one. The complete data W therefore consists of (Z1,Y1

*)  …,  (Zn,Yn
*).

Using this, the complete-data likelihood can be written as 
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where log(‡i)  =  xi�b and q  =  (a, b, g), and the complete-data log-likelihood is 
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(30)

The EM algorithm produces a sequence of  estimates {q (t), t  =  0, 1, 2, …} by 
alternatively applying two steps:

E-step. Compute the expected value of the log-likelihood, with respect to the 
conditional distribution of W given y under the current estimate of the param-
eters q (t): 

 ( ) ( | .yq qQ E(
Wq( )t ,= ))t 1+ 6 @

M-step. Update the parameter estimated according to:

 arg ( ) .q qmax Q( )
q

t 1
=

+( )t 1+

From (30), we infer that in the E-step three different expectations have to be 
calculated: Eq

(t)
[Zi |y], Eq

(t)
[Yi

* + z|y], and Eq
(t)

[log(Yi
* + z)|y]. For the sake of 

notational brevity, we introduce the following two abbreviations:
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and
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 (33)

Concerning the M-step, we note that the log-likelihood in (30) splits into two 
terms which can be maximized separately. The i rst term contains the param-
eters of the extra zero model part (g) and the other contains the parameters 
of the censored gamma distribution (a and b ).

4. AN APPLICATION

4.1. Loss Given Default Data

We apply the models presented above to a dataset from insurance. A surety 
bond is a contractual agreement among three parties: the contractor who 
 performs an obligation, the obligee who receives the obligation, and the surety 
provider, in our case the insurance company, who covers the risk that the 
contractor fails to fuli ll the obligation.

The dataset consists of  European surety bonds that resulted in a claim.
The ultimate loss for these claims is called “Loss Given Default” (LGD).
For each bond, the maximal amount that is covered by the insurance company, 
a quantity called “face value” (FV), is a priori determined. This allows us to 
standardize the LGD by dividing it by the face value, such that our variable 
of interest lies between 0 and 1

 0 1.
FV

LGD
# #  (34)

We have worked with the original dataset, but for coni dentiality reasons the 
results presented here are obtained on the basis of a subsample of the original 
set. The subsample, consisting of more than 5000 bonds, is obtained by using 
a random selection mechanism, with selection probabilities that depend on 
certain characteristics of the respective bonds, so that the value of the average 
standardized loss LGD/FV is altered in order not to reveal the true average. 
As a consequence, the results presented in this paper are not the real ones but 
are close enough to rel ect the major phenomena. We assure that the i t the 
models provide to the original data is at least as good as for the subsample.

The standardized losses are shown in Figure 1. Since the insurance com-
pany can often recover costs, observations with no ultimate loss at all are 
frequent. In fact, about 52% of  all bonds in the subsample have no loss.
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FIGURE 1: Histogram of LGD/FV and i tted censored gamma model with no covariates.
The numbers above the blue arrows represent the percentage of LGD/FV’s being exactly zero or one, 

respectively. In parentheses are the corresponding numbers as predicted by the censored gamma model. 
The dashed red line represents the i tted model.

FIGURE 2: Scatter plot of face value (on a logarithmic scale) vs. LGD/FV. The jittered points in
the bars below 0.0 and above 1.0 represent bonds with LGD/FV being exactly zero and one,

respectively. The colored solid lines are non-parametrically i tted quantiles and mean.
The dashed lines represent quantiles and mean of the i tted censored gamma (CG) model.

The green dotted line represents the i tted conditional mean of the fractional response (FR) model. 
Logarithmic and squared logarithmic face value are taken as covariates.

On the other hand, there is a major proportion (15%) of bonds that have full 
loss, i.e., a LGD/FV equaling 1.

Apart from providing a probabilistic model for the surety LGD, the pur-
pose is also to explore the relation of the losses to certain covariates which are 
shortly described in the following.

The relative default time (RDT) of a bond is the proportion of time that 
has passed at default since its issuance over the total life span of a bond. This 
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quantity allows us to explore the time development of  the losses from the 
issuing date to the end date (maturity). Experience and size are two categorical 
variables, each attaining three different levels, which represent the experience 
(low, mid, high) and the size (small, medium, large) of the contractor. There 
are three different types of  surety bonds called maintenance, performance,
and hybrid bonds. Hybrid bonds are bonds that are both maintenance and per-
formance bonds. There is an additional category denoted “other bonds” for a 
small number of bonds of various other categories. Usually, European surety 
bonds do not cover the whole amount of an underlying contract but only a certain 
fraction. Information about his percentage is included as an additional covariate. 
In Table 2 in the supplementary material, we report summary statistics for the 
continuous covariates and relative frequencies for the categorical variables. 

4.2. Results

We i rst estimate the censored gamma model of Section 2 with no covariates 
and illustrate its i t in Figure 1. The dashed red line represents the i tted model. 
The numbers in parentheses above the bars show the i tted probabilities of 
being zero and one. Apparently, the plain model with no covariates i ts the data 
well. The observed and the modeled probabilities of being zero or one are very 
similar and the continuous part of the model accurately i ts the histogram2.
For comparison, we have also i tted the standard normal Tobit model in its two-
sided version, as well as a corresponding model using a skewed t distribution 
(Azzalini and Capitanio (2003)). See the supplementary material for more 
details. Both models provide worse i ts than the censored gamma model. A plot 
(Figure 4) illustrating the i ts can be found in the supplementary material. 

Next, we i t a model using only the face value, more specii cally the loga-
rithm and the squared logarithm of the face value, as covariate. We illustrate the 
i tted model in Figure 2. The colored continuous lines are non-parametrically 
i tted quantile (see Koenker (2005)) and mean curves (calculated using local 
polynomial regression, see Chambers and Hastie (1992), Chapter 8). The dashed 
lines represent the corresponding quantiles and mean of the i tted model cal-
culated using the result in Lemma 2.1. We also i t the conditional mean model 
for fractional response (FR) of Papke and Wooldridge (1996). Here, i tting is 
done using quasi-maximum likelihood (see Gourieroux et al. (1984) for details) 
based on the Bernoulli log-likelihood function. 

The non-parametrically i tted mean and the mean of the i tted censored 
gamma model are very close together. This indicates that the censored gamma 
model provides a good i t to the conditional mean. Moreover, the non-para-
metrically estimated quantiles and the quantiles from the i tted censored 
gamma model match well. I.e., the censored gamma model not only models 
the mean appropriately but the entire distribution. In addition, the i tted mean 

2 Due to the large number of observations, a chi-square goodness of i t test still shows signii cant devia-

tions.
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of fractional response model is very close the mean of  the i tted censored 
gamma model. Again, we have also i tted the Tobit model and the skewed t 
version. Compared to the censored gamma model, both models provide worse 
i ts (see Figure 5 in the supplementary material). 

Finally, we i t the censored gamma and its two extensions, i.e., the two-
tiered and the zero-inl ated model including all covariates. For the two ordinal 
factorial variables experience and size, we use orthogonal polynomial contrasts. 
Concerning the categorical variable type, we use treatment contrasts with 
maintenance as baseline level. For the censored gamma model, we use the 
Fisher scoring algorithm presented above. In the case of the two-tiered and 
zero-inl ated models, we use the algorithms presented in this paper to deter-
mine good starting values for quasi-Newton methods. Starting values for the 
parameters that are not estimated with these methods, i.e., the shape param-
eter a and the location parameter z, respectively, are obtained by taking the 
values from the ones in the i tted censored gamma model. We then estimate the 
two models using quasi-Newton methods. Concerning the censored gamma 
model, estimates of standard errors are calculated using the Fisher information. 
For the other two models, standard errors are obtained by numerically approx-
imating the Fisher Information Matrix at the optimum. 

The results are reported in Table 1. The log-likelihood of both the two-tiered 
and zero-inl ated models are considerably higher than the one of the censored 
gamma model. This is also rel ected in considerably smaller AIC values,
the zero-inl ated model having the lowest AIC. A likelihood ratio test clearly 
favors the two-tiered model over the censored gamma model. This is also true 
for the zero-inl ated model. For the latter, the null hypothesis is on the boundary 
of the parameter space, and the usual asymptotics do not apply. We therefore 
use a simulated test instead. To be more specii c, the distribution of the difference 
in log-likelihoods between the two models under the null hypothesis is character-
ized by 1000 simulated values. A sample from this distribution is generated by 
simulating data from the null hypothesis, i.e., from the estimated censored 
Gamma model, then i tting both models, and calculating the difference in the two 
log-likelihoods. The lowest simulated difference obtained out of the 1000 samples 
was about 28.6. We conclude that the observed difference of more than 200 is 
clearly signii cant. Next, for discriminating between the two extended models, we 
apply Vuong’s test (Vuong (1989)). Since we know that the zero-inl ated model 
does not reduce to the censored gamma model, it follows that we are not in the 
overlapping case. Thus, we can use the Vuong’s non-nested hypothesis test. The 
test statistic has a value of  – 2.26 under the null hypothesis that both models are 
equally close to the true model. Thus, at a 5% level, the null hypothesis is rejected 
in favor of the zero-inl ated model. This gives support to the idea that there are 
indeed extra zeros in the data. These extra zeros are interpreted as zero losses from 
claims that were i led for administrative reasons and not because there was a true 
default event. As before, we have also i tted the Tobit model and skewed t distribu-
tion model using all covariates. The Results are reported in Tables 3 and 4 in the 
supplementary material. In all cases, the gamma models have considerably lower 
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TABLE 1

FITTED CENSORED, TWO-TIERED, AND ZERO-INFLATED GAMMA MODELS INCLUDING ALL COVARIATES.
CODES FOR SIGNIFICANCE LEVELS: ‘***’: p  <  0.001, ‘**’: 0.001  #  p  <  0.01, ‘*’: 0.01 # p  <  0.05, ‘.’: 0.05 # p  <  0.1.

Model Censored Two-Tiered Zero-Inl ated

Covariate Coef Std. Err. Coef(b) Std. Err. Coef(g) Std. Err. Coef(b) Std. Err. Coef(g) Std. Err. 

Intercept 3.9 0.34*** 3.9 0.33*** – 3.2 0.61*** 4.1 0.35*** 0.023 0.18 

RDT
Lin – 0.17 0.10  · 0.30 0.10** – 0.45 0.079*** 0.29 0.10** 0.35 0.057*** 

Quad 0.074 0.35 1.6 0.35*** – 1.1 0.26*** 1.6 0.35*** 0.88 0.20*** 

Experience
Lin – 0.82 0.076*** – 0.39 0.064*** – 0.67 0.066*** – 0.38 0.065*** 0.42 0.037*** 

Quad 0.12 0.051* 0.064 0.045 0.068 0.041  · 0.059 0.046 – 0.017 0.026 

Size
Lin 0.56 0.32   · 0.35 0.37 0.44 0.24  · 0.34 0.38 – 0.36 0.19  · 

Quad 0.66 0.20** – 0.17 0.24 0.85 0.15*** – 0.18 0.24 – 0.68 0.12*** 

Face Value
Lin – 0.80 0.071*** – 0.96 0.065*** – 0.0048 0.050 – 0.99 0.070*** – 0.054 0.047 

Quad 0.50 0.068*** 0.15 0.053** 0.49 0.064*** 0.18 0.054** – 0.33 0.043*** 

Type

Hybrid 2.9 1.5  · 2.0 1.2  · 2.7 1.2* 1.7 1.1 – 1.9 0.80* 

Performance 0.015 0.12 0.16 0.11 – 0.12 0.099 0.17 0.11 0.12 0.070  · 

Other 0.23 0.16 0.52 0.17** – 0.20 0.12 0.57 0.17** 0.19 0.095* 

Ins. Frac. 1.2 0.56* 1.5 0.49** – 0.43 0.39 1.6 0.49*** 0.40 0.28 

Value Std. Err. Value Std. Err. Value Std. Err.

Gamma Par.
log(a) – 1.5 0.050 – 0.54 0.067 – 0.57 0.073

log(z) – 2.4 0.093 – 4.5 0.47 – 4.3 0.44

Log-Likelihood – 7898.4 – 7684.9 – 7680.5

AIC 15826.8 15425.9 15417.1

https://doi.org/10.2143/AST.41.2.2136992
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 14:39:04, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.2143/AST.41.2.2136992
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms
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AICs, and the corresponding differences in log-likelihood are always larger than 
100, except when comparing the two-tiered gamma model with the two-tiered 
skewed t model where the differences is about 8 in favor of the gamma model. 
This means that Vuong’s test favors the gamma model in all cases. 

4.3. Interpretation of Results

Having come to the conclusion that the zero-inl ated model provides the
best i t to our data, we interpret the obtained results. Interpretation is not
as straightforward as, for instance, in the basic censored gamma model case 
(see Section 2.2). In contrast to that, in the zero-inl ated extension there are 
two linear predictors j  =  x�b and m  =  x�g. Partial effects on, say, the conditional 
mean therefore include both sets of  coefi cients b and g. We will focus on 
E [Y|x] and P[Y  =  0|x] in the following. These two quantities and their cor-
responding partial effects are calculated in the following lemma.

Lemma 4.1. For the zero-inl ated model, the following relations hold true. 

 ( a,q,))xE Y C1
F- m[ z| ] (= 1  (35)
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1,a, (

(

z z

z

q, a q a q

a q a q

1,

, ,

+ +aq ( ) )

(1 (1 1 )

C G G

G G

1
= + -

+ + - + - -z z z

z 1 ,

) 1 ) ,

`
` `

j
j j  (36)

and

 | x0 ( ( (F +[ ] ( )) .P Ga q,$F= = -m m z) )Y 1  (37)

For a continuous covariate xj, we have 
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The lemma follows from (28) together with Lemma 2.1. We see that the partial 
effects contain b and g, both entering in a non-linear manner and interacting 
with each other. This follows from the fact that ‡  =  exp(x�b ) and m  =  x�g. 
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FIGURE 3: Illustration of effects of main covariates for the zero-inl ated model. On the left hand side,
a contour plot of the conditional expectation, E [Y |x], as a function of the two linear predictors j  =  x�b and 
m  =  x�g is shown. On the right hand side, the same contour plot is shown for the probability of being zero, 
P [Y  =  0 | x]. The arrows represent the effects of changing covariates. For the two continuous covariates face 

value (FV) and relative default time (RDT), the arrows are obtained by increasing the variables by one 
standard deviation from their mean. For the factorial variable experience (Exp), the two arrows indicate

the changes when moving from the lowest level to the middle one and then to the highest level.

Because of this we came to the conclusion that interpretation is best done in 
a graphical way. This is done as described in the following.

In Figure 3, contour plots of the conditional expectation, E [Y |x], and the 
probability of  being zero, P[Y  =  0|x], for the i tted zero-inl ated model are 
shown. Contour levels are obtained with respect to varying values of the two 
linear predictors j  =  x�b and m  =  x�g. The arrows represent the effects of the 
covariates. The middle point of  the arrows are the levels of  E [Y |x] and 
P[Y  =  0 |x], respectively, attained when taking all continuous covariates at their 
mean and the categorical variables at their most frequent level. We focus on 
the three variables face value (FV), relative default time (RDT), and experience 
(Exp) since these are believed to be the most important variables from a prac-
tical point of view. Interpretation for the other covariates is analogous. For 
the two continuous covariates face value (FV) and relative default time (RDT), 
the blue and red arrows in Figure 3 are obtained by increasing the variables 
by one standard deviation from their mean. For the categorical variable expe-
rience (Exp), the green arrows illustrate the changes in E [Y |x] and P[Y  =  0 |x]
when moving from the lowest level to the middle one and then to the highest 
level of experience.

Concerning the conditional expectation, the blue arrow of the FV shows that 
an increase of  FV by one standard deviation leads to an increase in E [Y |x ] 
by about 0.05. RDT, on the other hand, has virtually no effect on the mean. 
Even though both linear predictors change considerably when increasing RDT, 
the change is along a contour level and has no effect on the value of E [Y |x ]. 
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Concerning the experience, we observe strong effects when going from low 
experience to middle and high, with a total decrease of about 0.17. 

For the probability of  being zero, the picture is slightly different. FV has 
only a small effect on P [Y  =  0 |x ], whereas increasing RDT by one standard 
deviation results in an increase of about 6% in P [Y  =  0 |x ]. Experience again 
has a strong effect. P [Y  =  0 |x ] increases by more than 20% when going from 
low to high experience.

5. CONCLUSION

Three special regression models for fractional response variables that attain 
their boundaries frequently were presented. The i rst model determines the 
distribution of the values between the limits and the frequency of the limiting 
values in a parsimonious way. Two extensions of this model to cover cases in 
which the frequencies of the limits do not follow this parsimonious description 
were introduced as well. The models were applied to a LGD dataset from 
insurance. They were found to i t the data in a specii c insurance application 
better than other popular parametric models.
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APPENDIX

A. Proof of Lemma 2.1

Firstly, a censored gamma distribution with density as in (6) has expectation
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 (41)

where in the third line we have used the identity (47) given in the supplementary 
material.
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Secondly, for a continuous xj, using 

 
(

(
a, qz

z
q

q q q q q

) ( / )
),

G G
g g

a
a a q

,1
,1 ,22

2

2

2
= = - = -

z z zz c m  (42)

or 

 1,a-
(

(
z

z
a q,

q

)
),a q

2

2
= +

G
g  (43)

and the fact that 

 
j

j
q q ,
2

2
=

x
b

we can compute the partial derivatives of E [Y |x] with respect to xj as
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SUPPLEMENTARY MATERIAL

S.1. Fisher Information Matrix for the Censored Gamma Model

In the following derivations, we will often use some identities and results on 
integrals that we list in Section S.3 below.

With (16), it follows that 
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Using (51) and (52), the middle summand of this expression is calculated as 

(

a

a

a

a a

(

(

(

(

a

a

a

a a

(

z z
1

2

i

i

i i
i i

i i
i i

i i

i i i i

(

(

(

+

+

+

+

z z

z z

z z

z z

a q

a q a q

a q a q

a q a q

a q a q

,

, ,

, ,

, ,

, ,

a q

a q

a q q
q q

a q a q
q q

a
q q

a a
q q

a
q q

( ) ( ) ( )

( ( )) ( ( ) ))

( ( )) ( ( ( ) )) ,

( ( ( ) )) ( ) ,

,

) ( ( ) )) ) , , .

c

c

c

c c

log log

log

log log

log log

g d

G G

G G H

G G H

H

G G H H

2
1

2
1

1

2
1 1

i i i

2

0

2

2

2 2 2

2

2 2 2 2

i

i i

i i

i i

i i

+ + +

= + -

- + - +
+

+ - +
+

+
+

= - -
+

+
+

z z

z z

z z

z z z z

-)

)

) )

)

1

1

1

1

y-

( )

( )

( )

( ) ( )

1

1

1

2

2

y y_`

ef
e

e
e e

ij

op
o

o
o o

#

From this follows that 

a(a
i(

(

q

z
z

a q
a q

,
,

i i

a
q)

) ) ,c

E

G
G H 0

2
2

i
i

2

2,

2

2,

= - +
z

a a� �

( )1 ef op
< F

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.2143/AST.41.2.2136992
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 14:39:04, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.2143/AST.41.2.2136992
https:/www.cambridge.org/core


700 F. SIGRIST AND W.A. STAHEL

a a

a

( (

(

a a

a

i i i i

i

a, (+

+
+

z z

z
z

a q q

a q
a q

,

,
,

a
q q q q

a
q

) ( ( ) )) ) , ,

( )
) ( ) , .

c c

c

G G H H

G
G H

2
1 1

1
0

1

2 2

2 2

i i

i
i

+ - -
+

+
+

+
-

- +
+

z z z z

z

1

1
1

( )

( )

1

1

( )2c cc
cc

m mm
mm

For the remaining entries of the Fisher Information Matrix, the calculation 
procedure is similar to the one made before. That is, the computation of each 
expectation can be split in to three terms of which the middle term, correspond-
ing to the non-censored part of the model, requires more effort to compute. 
In the following, we therefore i rst calculate the corresponding middle term in 
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Using this result and (17), we see that 
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Moreover, with (49), (51), (54), and (45), we get 
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With this equation, (16), and (18), we calculate 
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With (47), (49), and (45), we calculate 
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Finally, using this result, we have 
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S.2. Fisher Information Matrix for the Two-tiered Gamma Model

First, with (47) and (48), we get 
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Next, with (47) and the identity in (46), we get 
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S.3. Useful Identities and Integrals

By partial integration, we calculate
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And from this follows 

 , 1,1 ( ( (a,+ +z z zq) ) )G G ga q q a q= --  (45)
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or 
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 , ,1 1( (y a q, (u l
u

a q a q+ +a) ( ) )) .g y dy G G= q
l

-#  (47)

 , ,( 22
2y g

u

a q a q+ +q a) ( 1)( ( ( )) .y dy a G u Ga q,
2

= + -) l
l
#  (48)

 , 1,1(
u

( --y a q a qa q
)

( 1)
( ( )) .g y dy G u G1 1

a q, =
-

- l
l

)#  (49)

 2, 2,( (- -

u

y a a q
)

( 1)( 2)
( ( )) .g y dy G u G1 1

a q a q a q,2 2=
- -

)- l
l
#  (50)

 a(
u

( (q
q q

) ) ( ( ( )) , .log logy g y dy G u G H l u
a q a q a q, , ,= - +) )

l
l

( )1 c m#  (51)

 

a a

2
( ( (

q

u
q

q q q q

) ) ( ) ( ( ))

2 ( ) .

log log

log

y g y dy G u G

H l u H l u

a q,
2

, ,a q a q= -

+

) l

, ,
2( ) ( )1

l

+c cm m
#

 (52)

 

, ,1 1

a 1+

(( (
u
y a q a q+ +a q

aq
q q

) ) ( ) ( ( ))

, .

log logg y dy G u G

H l u

a q, = -

+

lqy )
l

( )1 c m
#

 (53)

 

(
( , ,1 1

1

(
1

q
u

a-

q

a q q q

)
)

( )
( ) ( ) ( ))

( )
, .

log
logy

y
g y dy G u G l

H l u

1

1
1

a q a q a q, =
-

-

+
-

- -al

( )1 c m
#

 (54)

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.2143/AST.41.2.2136992
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 14:39:04, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.2143/AST.41.2.2136992
https:/www.cambridge.org/core


 CENSORED GAMMA REGRESSION MODELS 707

FIGURE 4: Comparison of i tted censored gamma, normal Tobit, and skew t Tobit models with no 
covariates. The numbers above the blue arrows represent the percentage of LGD/FV’s being exactly zero

or one, respectively. In parentheses are the corresponding numbers as predicted by the models.

S.4. Descriptive statistics for covariates

TABLE 2

DESCRIPTIVE STATISTICS FOR COVARIATES.
FOR CATEGORICAL VARIABLES, THE FREQUENCY (IN %) OF THE LEVELS ARE GIVEN.

Mean Standard Deviation

RDT 0.65 0.30 

Face Value (log) 3.84 0.54

Insured Fraction 0.06 0.03

Low / Small Mid / Medium High / Large

Experience 15.52 55.38 29.10

Size 85.06 9.95 4.98

Maintenance Hybrid Performance Other

Type 88.05 6.85 4.42 0.67

S.5. Additional Plots Illustrating Other Fitted Models

Additionaly, two different types of  models have been i tted two the data.
First, the two-limit version of the normal Tobit model and its corresponding 
two-tiered and zero-inl ated extensions. Further, we i tted models using the 
skewed t-distribtion (Azzalini and Capitanio (2003)) where, in each model, the 
shifted Gamma distribution is replaced by a skewed t-distribution. The degrees 
of freedom were chosen to be 1 since this provided the best i t in general.
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FIGURE 5: Scatter plot of LGD/FV versus face value (on a logarithmic scale).
The jittered points in the bars below 0.0 and above 1.0 represent bonds with LGD/FV being exactly zero 

and one, respectively. The colored solid lines are non-parametrically i tted quantiles and the mean.
The dashed and dotted lines represent quantiles of the i tted normal Tobit model and the skew t Tobit 

model, respetively. Logarithmic and squared logarithmic face value are taken as covariates.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.2143/AST.41.2.2136992
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 14:39:04, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.2143/AST.41.2.2136992
https:/www.cambridge.org/core


 
C

E
N

S
O

R
E

D
 G

A
M

M
A

 R
E

G
R

E
S

S
IO

N
 M

O
D

E
L

S
 

7
0
9

TABLE 3

FITTED CENSORED, TWO-TIERED, AND ZERO-INFLATED NORMAL TOBIT MODELS INCLUDING ALL COVARIATES.
CODES FOR SIGNIFICANCE LEVELS: ‘***’: p  <  0.001, ‘**’: 0.001  #  p  <  0.01, ‘*’: 0.01 # p  <  0.05, ‘.’: 0.05 # p  <  0.1.

Model Censored Two-Tiered Zero-Inl ated

Covariate Coef Std. Err. Coef(b) Std. Err. Coef(g) Std. Err. Coef(b) Std. Err. Coef(g) Std. Err. 

Intercept 0.86 0.13*** 15. 0.030*** 15. 0.030*** 2.1 0.19*** 2.1 0.19*** 

RDT
Lin – 0.19 0.044*** 1.5 0.049*** 0.41 0.33 – 0.042 0.071 4.5 1.1*** 

Quad – 0.27 0.15  · 8.3 0.087*** – 0.70 0.11*** 0.33 0.24 0.59 0.20** 

Experience
Lin – 0.40 0.028*** – 2.0 0.0041*** – 1.6 0.38*** – 0.32 0.043*** 2.3 0.65*** 

Quad 0.036 0.020  · 0.29 0.0091*** – 0.87 0.073*** 0.013 0.027 0.36 0.17* 

Size
Lin 0.40 0.16* 2.8 0.051*** 0.036 0.053 0.23 0.21 – 0.094 0.092 

Quad 0.51 0.10*** 0.10 0.0098*** 0.91 0.40* 0.049 0.13 – 0.27 0.51 

Face Value
Lin – 0.22 0.026*** – 5.4 0.0017*** 1.4 0.25*** – 0.50 0.042*** – 1.5 0.31*** 

Quad 0.22 0.025*** 0.27 0.0021*** – 0.047 0.068 0.26 0.034*** – 1.5 0.31*** 

Type

Hybrid 1.4 0.47** 8.9 0.021*** 0.64 0.075*** 1.0 0.46* – 0.78 0.32* 

Performance – 0.036 0.052 0.96 1.7 3.3 1.5* 0.0095 0.061 – 3.5 2.7 

Other – 0.019 0.071 2.4 0.031*** – 0.16 0.14 0.035 0.10 0.19 0.31 

Ins. Frac. 0.29 0.19 8.7 0.99*** – 0.28 0.19 0.76 0.22*** 0.26 0.37 

Value Std. Err. Value Std. Err. Value Std. Err.

log(s) – 0.040 0.016 0.81 0.0014 – 0.15 0.022

Log-Likelihood – 8241.6 – 7864.4 – 8169

AIC 16511.2 15780.8 16390
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TABLE 4

FITTED CENSORED, TWO-TIERED, AND ZERO-INFLATED SKEW t (df = 1) TOBIT MODELS INCLUDING ALL COVARIATES.
CODES FOR SIGNIFICANCE LEVELS: ‘***’: p  <  0.001, ‘**’: 0.001  #  p  <  0.01, ‘*’: 0.01 # p  <  0.05, ‘.’: 0.05 # p  <  0.1.

Model Censored Two-Tiered Zero-Inl ated

Covariate Coef Std. Err. Coef(b) Std. Err. Coef(g) Std. Err. Coef(b) Std. Err. Coef(g) Std. Err. 

Intercept – 0.38 0.056 – 1.9 0.10 0.015 0.0090  · – 0.090 0.075 – 0.49 0.33 

RDT
Lin – 0.15 0.023*** – 0.15 0.037*** – 0.010 0.0025*** – 0.19 0.041*** – 0.17 0.16 

Quad – 0.38 0.073*** – 0.36 0.12** – 0.026 0.0080** – 0.39 0.14** 0.23 0.54 

Experience
Lin – 0.12 0.013*** 0.20 0.034*** – 0.016 0.0037*** 0.050 0.026  · 1.3 0.21*** 

Quad – 0.013 0.0094 – 0.060 0.022** 0.0020 0.0011  · – 0.0017 0.023 – 0.28 0.15  · 

Size
Lin 0.26 0.10** – 0.20 0.13 0.012 0.0060  · 0.42 0.15** 0.48 0.41 

Quad 0.33 0.069*** 0.0064 0.073 0.021 0.0048*** 0.33 0.10** – 0.11 0.30 

Face Value
Lin 0.038 0.010*** 0.40 0.019*** 0.0024 0.00079** 0.030 0.0074*** 0.040 0.066 

Quad 0.042 0.0064*** – 0.12 0.011*** 0.011 0.0028*** 0.0069 0.016 – 0.44 0.080*** 

Type

Hybrid 0.56 0.11*** – 2.1 0.48*** 0.066 0.033* 0.020 0.22 – 1.8 1.1  · 

Performance – 0.038 0.021  · – 0.0033 0.026 – 0.0038 0.0024 – 0.034 0.037 – 0.038 0.19 

Other – 0.12 0.0099*** – 0.050 0.031 – 0.0070 0.0033* – 0.00075 0.062 0.25 0.21 

Ins. Frac. – 0.13 0.085 – 1.1 0.64  · – 0.013 0.0098 0.50 0.084*** 1.1 0.34** 

Value Std. Err. Value Std. Err. Value Std. Err.

Skew t Par.

n 1 1 1

log(s) – 1.1 0.028 – 3.5 0.22 – 0.90 0.033

a 30. 23. – 1.0 0.31 38. 27.

Log-Likelihood – 8019 – 7692.4 – 7964.4

AIC 16067.9 15440.7 15984.8
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