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Detection of Capsular Polysaccharide in Serum for the Diagnosis of
Pneumococcal Pneumonia: Clinical and Experimental Evaluation

Andreas Schaffner, Claudia Michel-Harder,
and Sibel Yeginsoy

Department of Medicine, University of Zurich Medical School,
Switzerland

Toimprovediagnostic options for pneumococcal pneumonia, an ELISAsystemwas developed
that can detect ~6 ng/mI capsular polysaccharide in serum. The test was limited to 39 serotypes
causing >95% of pneumococcal infections. In clinical evaluation the test identified 14of 15cases
(missing one serotype not included). No false-positivereaction occurred. However, the duration
and level of antigenemia were variable (~500-2.5 ng/mI) and seemed not to depend solely on
the severityof infection. Therefore, the question of whether the extent of antigenemia was deter
mined by a serotype-dependent variation in the elimination rates of polysaccharides was inves
tigated. Clearance rates for 12 serotypes varied in rabbits and rats by a factor of >250. This
remarkable variability appeared to affect the extent of clinical antigenemia. Thus, only very sen
sitive systemscan detect circulating antigen from rapidly cleared polysaccharide serotypes. Fur
thermore, the question arises whether slowpolysaccharide clearance contributes to the virulence
of some pneumococcal serotypes.

Streptococcus pneumoniae still is one of the most impor
tant respiratory pathogens. Despite extensive research [1-8],
diagnosis of nonbacteremic pneumococcal pneumonia remains
an enigma [9, 10]. It is estimated that nonbacteremic cases
account for 70%-80% ofpneumonias caused by S. pneumo
niae. Results of sputum cultures or of sputum inoculation into
mice are hampered mainly by a lack of specificity [2, 9-11],
particularly in populations with a high incidence of chronic
obstructive lung disease in which bronchial colonization with
S. pneumoniae is common [12]. Furthermore, an appreciable
number of patients with pneumonia do not produce sputum
at the time they need antibiotic therapy [7, 9]. Percutaneous
lung aspiration has an impressive diagnostic yield with an ac
ceptable complication rate when done by an experienced prac
titioner but has not gained wide popularity for fear of serious
complications [3, 10, 13].

Detection of pneumococcal antigens in body fluids for the
diagnosis ofpneumococcal pneumonia has a tradition of>70
years [14]. The method for detection of specific capsular poly
saccharide (SCP) in blood and urine by counterimmunoe1ec
trophoresis has been well characterized [1, 4] and is used in
many centers despite its limited and serotype-dependent sen
sitivity [1,7, 9]. The more convenient agglutination tests have
provided a somewhat higher sensitivity in serum but not urine
[5, 7, 8]. By using ELISA techniques and commercial sera,
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the test sensitivity can be significantly improved for many but
not all important SCP types [7, 15, 16]. In a small study, 12
of 17 cases ofbacteremic pneumococcal pneumonia were de
tected by an ELISA technique based on IgG prepared from
serum containing antibodies to all 84 known capsular poly
saccharide types (Omniserum; Statens Serum Institute, Co
penhagen), but for some SCP types this test system was
relatively blind [7, 16].

Commercial sera are not specifically raised to react uni
formly in ELISA systems but to produce uniform quellung
reactions [17]. Avidity of an antibody is essential in ELISA
systems [18] but might not be particularly important in the
quellung reaction. Therefore, it seems possible that IgG raised
specifically for use in an ELISA would make detection
thresholds for different SCP types more similar. A test sys
tem reacting uniformly with all included SCP types would
also permit estimation of blood levels of SCPs and provide
insight into clearance rates of SCP types from blood, which
might differ among the 84 pneumococcal serotypes.

Here we report an ELISA system developed with polyclonal
rabbit IgG raised in our laboratory to ELISA specifications.
The characterization and clinical evaluation of this ELISA sys
tem confirmed that by this tactic, uniformly low detection
thresholds can be obtained for all included SCP types. For
practical reasons we limited our test system to 39 serotypes
that are responsible for >95 % of invasive pneumococcal in
fections [17, 19]. We were, however, intrigued that serum levels
of SCPs varied by a factor of >150 and that serum levels did
not reflect the severity of pneumococcal infection. Thus, we
systematically studied elimination of 12 different SCP types
from blood in rats and rabbits.

Methods

Animals. Male New Zealand white rabbits (1.5-2.2 kg; (Mador
ing, Fullingsdorf, Switzerland) were kept singly under standard con-
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ditions. Female outbred, specific pathogen-free Wistar rats (Institute
for Laboratory Animal Breeding, University of Zurich) were housed
in groups of two to three and offered pelleted food and acidified wa
ter ad libitum.

Rabbitantibody. Rabbit antibody was raised in five pools, tak
ing advantage of known cross-reactivities among SCP types [17],
against the following pneumococcal strains (Danish nomenclature;
Statens Serum Institute): pool A: 1, 2, 4, 5, 18F, 18A, 18B, 18C;
pool B: 3, 6A, 6B, 8, 19A, 19F, 22F, 31; pool C: 7F, 7C, 13, 20,
24, 34, 35B; pool D: 9N, 9V, lOF, lOA, llA, I1B, 17F, 23F; and
pool E: 12F, 12A, 15A, 15B, 14, 16,21, 33F. S. pneumoniae grown
in serum-free Todd-Hewittbroth (BBL Microbiology Systems, Cock
eysville, MD) to late-log phase was formol-fixed, washed, and stored
as described by Lund and Henrichsen [17]. Male New Zealand white
rabbits (1.5-2 kg) were immunized intravenously by three weekly
injections of 1 ml of the appropriate pool of formol-fixed bacteria
adjusted to a density equivalent to 75%light transmission at 600 nm.

Initially the bacterial pools were made byadding the same amount
of each serotype (light transmission) to vaccines. Four weeks into
immunization the pools were empirically adjusted for each rabbit
by adjusting the proportion of a given serotype according to the an
tibody activity determined by ELISA every 2-3 weeks. Immuniza
tion was continued over 4-6 months before exsanguination. Antisera
to single serotypes and serogroups, Omniserum, and anti-pool A
serum for comparison with our sera were purchased from Statens
Serum Institute. IgG was prepared by two consecutive NazS04
precipitations, followed by elution of IgG from a DEAE-Sephacel
column [20]. IgG was coupled to horseradish peroxidase (RZ 3.6;
Sigma, S1. Louis) according to the periodate method of Wilson and
Nakane [21].

Polysaccharide antigen was either obtained as mixture of23 poly
saccharides (Pneumovax-23; gift of Merck Sharp & Dohme, West
Point, PA) or as individual purified polysaccharides (ATCC, Rock
ville, MD) or prepared by threefold cold ethanol precipitation from
deoxycholate-lysed pneumococci as described [17].

EliSA systems. Antibody titers in rabbits were measured in a
whole-cell sandwich ELISA with washed, formol-fixed suspensions
of pneumococci in V-bottomed micro titer plates. For the washing
steps, plates with pneumococci were centrifuged at 1500 g, and the
supernatant was aspirated through a 21-gauge needle. Rabbit IgG
was detected with a commercial anti-rabbit IgG-peroxidase conjugate
(DAKO, Glostrup, Denmark). After production of the first anti-SCP
IgG-peroxidase conjugates, titers were also followed by measuring
SCP binding of serially diluted sera bound to microtiter plates. An
tigen was detected and quantified by an antigen capture ELISA in
which the solid phase was formed by ELISA microtiter plates (Im
munlon type I; Dynatech, Alexandria, VA)coated overnight at 4°C
with serotype- or serogroup-specific IgG in 0.05 M NazC03, pH 9.5.
For capture of antigen, specimens were serially diluted in PBS and
incubated at room temperature for 90 min, followed by three washes
and addition of the appropriate peroxidase-anti-pool antibody con
jugate for 90 min more. Peroxidase was quantified by measuring
peroxydation of o-phenylenediamine dihydrochloride (Sigma) in the
presence of HzOz by measuring the absorbance at 492 nm in an au
tomated ELISA reader (Dynatech) after addition of HzS04 to stop
the reaction. Antibody dilutions for coating microtiter plates and
of peroxidase conjugates were optimized by checkerboard titration.
Antigen concentrations were computed from linear regression curves
obtained from serial dilutions of pure antigen in the appropriate
diluent.

Studypopulation. The ward teams of our medical department,
a tertiary referral center, were invited during a 12-month period to
submit blood, urine, sputum, and cerebrospinal and pleural fluid
from patients in whom pneumococcal infection was considered at
admission. Only patients from whom a blood specimen was submit
ted within 36 h of admission were evaluated. A total of 144 epi
sodes was studied in 143 patients. In 98 episodes, pneumococcal
infection was considered possible by the ward teams; those later ex
cluded on clinical grounds served as controls. Blood samples from
46 additional patients hospitalized for elective cardiovascular sur
gery without signs of infection or chronic bronchitis were included
as additional controls. Pneumonia was defined as a disease present
ing with an unequivocal radiologic lung infiltrate and systemic signs
of inflammation without evidence for an alternate diagnosis (e.g. ,
pulmonary infarction).

Preparation ofclinicalspecimens for antigendetection. Serum
or plasma was diluted 1:5 and 1:10 with PBS before heating for 10
min in boiling water to denature proteins and centrifugation at 3000
g for 10 min. Cerebrospinal and pleural fluid was equally heated.
Urine was concentrated 20-fold by cold ethanol precipitation and
resuspension of the precipitate in PBS [17].

Kineticstudies in animals. For kinetic studies in rabbits, poly
saccharide in a dose of 250 or 500 f1.g suspended in 5 or 10 ml of
isotonic saline was injected into an ear vein, after bleeding to deter
mine background activity. At indicated times, 5 ml of blood was
obtained from the ear arteries. In rats, blood antigen levels were
studied after intraperitoneal injection of antigen or log-phase pneu
mococcal cultures resuspended in PBS to a light transmission of 75%
(600 nm). Colony-forming units of the challenge dose were enumer
ated after culture of serial dilutions on blood agar plates in candle
jars. Blood from rats was obtained from the retroorbital venous plexus
of anesthetized animals. Within 20 min after challenge with live bac
teria, rats were administered 106 units of procaine penicillin in
tramuscularly to halt infection.

Statistical analysis. Simple linear regression curves were con
structed by using the Inplot Graphpad program (Graphpad, San
Diego) on an mM AT computer. Mean values were compared by
unpaired t test. For intertest comparison of absorbance readings,
ELISA readings were adjusted for each microtiter plate by subtract
ing the mean background and multiplying the readings from sam
ples with a factor derived from interior positive standards included
in all microtiter plates (corrected optical density [OD]). The for
mula was (Ol) of the test sample - Ol) of the test background) .
[(mean Ol) of all standards - mean Ol) of the background)/(OD
of the test standard - OD of the test background)]. In kinetic studies,
serum half-lives of antigens were computed from linear regression
curves (Graphpad). Volumes of distribution were computed by divid
ing the injected dose of polysaccharide by the serum concentration
at the time of injection computed from the elimination curve. Clear
ance rates were computed by the formula: clearance = (0.7 . vol
ume of distribution)/T'h.

Results

Production ofantisera and characterization ofEUSA. By
strictly adhering to the procedures outlined by Lund and Hen
richsen [17]for the production of vaccines and immunization
of rabbits, anti-SCP pool antisera were obtained without
difficulty. Starting 4 weeks after the beginning of immuniza-
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Table 2. Detection threshold of ELISA for specificcapsular poly
saccharides in normal human serum.

NOTE. Normal human serum was spiked with 100 ng/ml of individual purified
polysaccharides (ATCC) and serially diluted 1:2 with normal human serum. Thresh
old concentration is original polysaccharide concentration before 1:5 dilution and heat
inactivation detectable in spiked normal human serum. Cutoff was mean of all nega
tive samples + 2 SD.

* Pneumonia, 8; meningitis, 4; bacteremia without definite pulmonary infiltrates,
3; required isolation of Streptococcus pneumoniae from blood.

t Fourteen noninfectious conditions (malignancies, pulmonary infarction, cardiac
failure, chronic obstructive lung disease), 14 pneumonias caused by alternate patho
gens diagnosed by culture or serology (Q fever, legionellosis, subphrenic empyema
with pleural effusion, tuberculosis [2], Streptococcus pyogenespneumonia [2], Staph
ylococcusaureus pneumonia [2], chronic obstructive lung disease with viral infection
[5]).

t Pulmonary infiltrate on chest radiograph, fever, laboratory findings of inflamma
tion but no etiologic diagnosis (three sets of blood cultures, negative serologic workup).

ture-proven pneumococcal infection. One blood isolate, which
reacted with Omniserum but with none of our pool sera or
the full set of 39 commercial anti-serotype or -serogroup sera,
was not included in our fiveseropools, explaining the one nega
tive test. This episode of pneumococcal bacteremia occurred
in an individual who had been vaccinated several months pre
viously with the 23-valent pneumococcal vaccine after post
traumatic splenectomy, a setting possibly favoring infection
with a less common serotype. No serum was positive in the
28 control patients in which pneumococcal infection was con
sidered possible at entry but excluded on clinical grounds.
False-positive results also were not a problem in 46 control
patients with cardiovascular disease without signs of infec
tion or inflammation (table 3).

The ELISA also was evaluated in other body fluids submit-

Table 1. Antibody titer of a commercial anti-pool A serum raised
to give uniform quellung reactionsand an anti-poolA serum raised to
give uniform ELISA titers: relation of antibody titer by ELISA
to the sensitivity of the antigen-detection ELISA.

Commercial serum Elisa serum

Detection Detection
Antibody threshold Antibody threshold

Serotype titer (ng/ml) titer (ng/ml)

1 I :64,000 0.63 1:256,000 0.16
2 1:32,000 1.33 1:256,000 0.16
4 1:32,000 2.5 1:256,000 0.63
5 1:32,000 0.63 I :64,000 0.63

18C 1:8000 2.5 I: 128,000 0.63

NOTE. Commercial anti-pool A rabbit serum was compared with a serum spe
cifically raised to obtain uniformly high titers by whole-cell ELISA. The detection
threshold for purified commercial antigen (ATCC) was measured in buffer by capture
sandwich ELISA optimized for each antigen by checkerboard titration.

tion, the composition of the seven or eight serotypes making
up a pool vaccine was adjusted individually for each rabbit
by augmenting the fraction of formol-fixed bacteria from the
serotype to which the antibody response was inferior com
pared with the average for the other serotypes in the same
pool or reducing the fraction of a serotype if antibody to one
serotype prevailed in the pool. Immunotolerance was never
a problem after increasing the vaccine dose. After 4-6 months
of continuous immunization, sera deemed adequate were ob
tained for all five antigen pools.

Antibody titers and detection threshold for five purified an
tigens are shown for anti-pool A serum in table 1. So that
we could compare our sera raised to ELISA specification with
a commercial serum raised to produce a uniform quellung
reaction (Statens Serum Institute), we included the same num
ber and types of pneumococci in our anti-pool A serum as
in theirs. While both sera showed comparable variability in
reactivity with individual serotypes, the serum raised to
ELISA specification had a >5 times higher mean antibody
titer by ELISA and detected on average a 3.4 times lower an
tigen concentration, regardless of concentrations of capture
antibodies and conjugates established for each individual an
tigen, serum, and conjugate. These observations indicated that
it was advantageous to follow the antibody response during
serum production by ELISA, which in contrast to the quel
lung reaction also permitted an objective quantitation of an

tibody.
When we tested the quality of our ELISA system with a

representative panel of the most commonly isolated pneumo
coccal serotypes, the ELISA detected relatively uniformly low
concentrations of polysaccharides in human serum (mean ±
SD, 2.3 ± 1.24 ng/ml; table 2), even though the samples were
diluted 1:5 in PBS for heat inactivation of nonspecific reac
tions between rabbit serum and clinical specimens.

Clinical evaluation. Sera from 143 patients (144 episodes)
obtained within 36 h of admission were studied. Antigen was
detected in sera from 14 of 15 patients with blood cul-

Serotype

I

2
3
4

5
6A
7F
8N
9N

lOA
12F
14
15B
18C
19F
22F
23F

Table 3. Study population.

Group

I, definite* pneumococcal infection
II, pneumococcal disease excluded'[

III, cardiovascular control group
IV, pneumonia of unknown cause+

Threshold (ng/ml)

1.56
1.56
1.56
3.12
3.12
1.56
1.56
0.78
1.56
6.25
3.12
1.56
3.12
3.12
1.56
1.56
3.12

No. positive
No. patients by ELISA

15 14
28 0
46 0
55 11
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Table 5. Serotyping of antigen in body fluids by ELISA.

Table 4. Detection of polysaccharide in body fluids other than
serum.

NOTE. A set of anti-serotype or -serogroup sera corresponding to the reactive
pool was used as capture antibody to bind type- or group-specific antigen followed
by the detection step with anti-pool conjugate. S, serum; PLF, pleural fluid; D,
20-times-concentrated urine; CSF, cerebrospinal fluid.
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fection was excluded. Furthermore, antigen did not cross-react
with complementary pools in positive sera (figure 1). How
ever, when we looked at the nonbacteremic individuals with
pneumococcal pneumonia, diagnosed on the basis of a posi
tive ELISA test, we observed a discrete distribution of ELISA
readings, ranging from clear-cut positive values to readings
barely above the cutoff point, fixed 2 SD above the mean value
of the negative readings from bacteremic patients (complemen
tary pools) and those in which pneumococcal infection was
excluded (figures 1 and 2). Because our ELISA system reacted
uniformly with all included antigens, this observation indi
cated that the level of antigenemia was disturbingly inconsis
tent. This was confirmed by computing the antigen level from
linear regression curves plotted for each seropool. This anal
ysis showed, not unexpectedly, that bacteremic pneumococ
cal infections were usually associated with higher levels of

Figure 1. ELISA readings from 14 patients with blood culture
positive pneumococcal infection (positive pool and complementary
negative pools). There was no cross-reaction between positive
seropool and four complementary pools. A cutoff 2 SD above mean
value of negative controls, in whom pneumococcal infection was ex
cluded (table 3, group II), and negative complementary pools of
proven cases frankly discriminates positive and negative test results.
Optical density (OD) read at 492 nm was corrected for intertest vari
ations by internal standards OD.

7/7
0/9

NA
0/2

4/5
8/16

5/5
5/8

5/8
6/31

Cerebrospinal
or pleural

Urine Sputum fluid

10/10
1/13

ted together with the sera (table 4). These studies confirmed
[11, 12] that the airways in patients with chronic obstructive
lung disease are frequently colonized by one or multiple pneu
mococcal serotypes, so that little gain can be expected from
an increase in sensitivity of a pneumococcal detection system.
Furthermore, in some patients with mucopurulent chronic
bronchitis, antigen of the same pool type as in sputum was
detected in 20-fold-concentrated urine, indicating that by
lowering the detection threshold for antigen in urine, anti
genuria associated with bronchial colonization could produce
false-positive results.

By using commercial serotype- and serogroup-specific an
tisera as capture antibody, antigen could be typed correctly
in body fluids by ELISA from the seven patients from whom
an isolate was available for typing by the quellung reaction
(table 5).

Extentofantigenemia. The specifications required for a
test system to be adequately sensitive to diagnose pneumo
coccal infection by detecting SCP in serum is governed by
the levelof clinical antigenemia. When we looked at the ELISA
readings from 14 positive serum samples from bacteremic
patients, it was not a problem to discriminate their positive
readings from that of 28 patients in which pneumococcal in-

Group

I, definite pneumococcal infection
II, pneumococcal disease excluded

IV, pneumonia of unknown cause
A: positive serum ELISA
B: negative serum ELISA

Reactive Reactive Serotype or
pool type or Source serogroup of
(ELISA) group (body fluid) isolate

A 2 S, U 2
A 4 S, PLF, U 4
C 7 S, PLF 7
C 35 S, CSF 35
D 9 S, CSF 9
D 9 S, U 9
D 23 S 23

NOTE. Data are number positive/number tested. Positive urine and cerebrospi
nal and pleural fluid samples always reacted in the same seropool as the serum sam
ple. In contrast, sputum samples reacted frequently in additional seropools in groups
I and IVA. All group II and most group IVB patients with positive sputum reactions
and all patients with positive urine reactions had a history of chronic productive bron
chitis. The urine reaction was always concordant with one of the frequently multiple
reactions of the five seropools with sputum. NA: no specimen available.
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1.1 ,...----------------, Table 6. Antigen concentrations detected in serum by ELISA.

Group I:
Bacteremic pneumococcal

pneumonia

Group IVA:
Nonbacteremic

pneumococcal pneumonia*
0.9
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4 10.0 B

22t 500.0 B
81.0 C
6.0 C
4.5 C
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96.3 ± 156*
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Figure 2. ELISA readings from 55 patients with blood culture
and serologically negative pneumonia, 11 with antigen detected in
serum by ELISA (• ) and 44 with no antigen detected (.). Note that
these ELISA readings, in contrast to those from bacteremic pneu
mococcal infections (Ll), show discrete distribution without clear
cut bimodal distribution of positivesand negatives. Dashed horizontal
line corresponds to highest cutoff for negative readings, which was
for pool A (see figure 1).

antigenemia than were nonbacteremic cases (table 6). But the
variability of antigen levels by a factor of >150 at the time
of bacteremia was unexpected. Furthermore, in many patients
antigen levels (table 6) were below the detection threshold
reported for antigen detection systems based on commercial
sera [5, 7, 8, 15, 16].

These observations on the variability of antigenemia pointed
to unknown factors that affected the level of antigenemia.
Further insight was gained into such possible factors by com
paring the evolution of antigenemia in two patients with bac
teremic pneumococcal pneumonia, both adequately treated
with penicillin G, to which the isolates were highly sensitive.
One patient with pneumonia and sepsis caused by S. pneu
moniae serotype 7F was initially in septic shock but cleared
antigenemia within the first 3 days. The second patient with
comparable pulmonary infiltrates caused by S. pneumoniae
serotype 2 was unable to clear antigenemia over the full length
of his hospital stay (figure 3). These observations indicated
that the elimination rate of SCP could differ dramatically and

* Diagnosis dependent on antigen detection by ELISA.
t Serotyped by ELISA only.
:I: p < .04.
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Figure 3. Course of antigenemia in a patient with serotype 2 and
a patient with serotype 7F pneumonia of similar severity.

presumably affected blood antigen levels. We therefore turned
to experimental studies on the variability of SCP clearance
from blood.

Kineticstudiesofantigenemia in animals. In accordance
with our clinical observations, rats rapidly eliminated im
munoreactive SCP from serotype 7F but not from serotype
2 from their blood (figure 4).

Next we compared systematically the elimination rates of
12 SCP types in rabbits. These studies showed that the serum
half-life of immunologically detected SCPs could vary by a
factor of >70, ranging for the 12 examined serotypes from
24 min to >29 h (figure 5). In addition to serum half-life of
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4
SCPs, their volume of distributionand therefore their clear
ance varied appreciably (table 7). The mechanisms behind
the variability in SCP serum half-lives and their distribution
volumes appeared not to be uniformly the same because no
correlationwasseenbetweenthe twokineticparameters(ta
ble7). According to thevariations in serumhalf-life, theperiod
during which antigencould be detectedin serum varied sig
nificantly (table 7) and correlated well with the serum half
life but not with the volume of distribution.

Nextweexplored thepossibility thatpolysaccharides would
preferentially associate withformed bloodelements. Wecom
pared the antigen concentrationmeasured in blood plasma
with that of sedimented blood cells for 11 of the 12 selected
serotypes(all but lOA). The ratio of the polysaccharide con
centration in the plasma to that in the cell sedimentwas >1
for all antigens testedexcept for lIA and20,whichwerepref
erentiallyassociated with formed blood elements. When we
attempted to correlatethe volume ofdistribution or theelimi
nationrate frombloodto the relativedistributionofpolysac
charide betweenplasma and the formed blood elementswe
found no significant correlation between theseparameters (not
shown). Nevertheless, this study indicated that for a few
selected serotypes sedimented bloodcellswerea moreprom
ising source for diagnostic antigen detection than serum or
plasma.

241812
HOURS

7F

6a

3

1

Figure 4. Elimination of specific capsular polysaccharides 2 and
7F from blood. Groups of five rats were injected with 1 mg (sero
type 2) or 2 mg (serotype 7F) of a crude preparation of capsular
polysaccharide into the peritoneal cavity, and antigen levels were
followed by ELISA for 24 h. Data are mean ± SD. LN = loge.
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Figure 5. Kinetic of the disappearance of pneumococcal polysaccharides from serum of a rabbit injected intravenously with 500 J.Lg (cir
cles) or 250 J.Lg (diamonds) of polysaccharide. In some instances the phase of initial distribution was not completed 15 min after injection
of the antigens (open symbols). Linear regression was computed from antigen levels after completion of initial distribution (solid symbols).
Type lOA did not fit a model of a first-order elimination kinetic but showed two distinct phases, with a first half-time of 2.7 h followed
by a slower terminal phase with a half-time of 39 h. LN = loge.
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Discussion

type 2 and 7F did not result from an artifact stemmingfrom
in vitro antigen preparation because the difference between
the twoeliminationrates wascomparablein the experiments
with purified antigen and live bacteria (Figures 4 and 6).

Figure 6. Kinetics ofantigenemia ofratschallenged withlivepneu
mococciserotypes 2 and7F into theperitonealcavity20 minbefore
administration of 106 units of procainepenicillinintramuscularly.
Data are mean ± SD from four or five rats per time point. Chal
lenge dose was 4.8 x 108 cfu. LN = loge.
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These studiesshowthat by raising antisera to pneumococ
cal polysaccharides specifically for use in ELISA, it is possi
ble to obtain a clinically useful and highly and uniformly
sensitivetool for the diagnosisof invasive pneumococcal in
fection. Our ELISAtest correctly identifiedat admissionall
14bacteremiccases causedby serotypesincludedin the test.
Theonlyinfection missed wascausedbya pneumococcal sero
type not containedin our pools of 39 serotypes.The test also
detected antigenemia in 11 of 55 patients with blood cul
ture-negative pneumoniathat remainedwithoutetiologicdi
agnosis after a complete workup, increasing the number of
diagnosed pneumococcal pneumonias from 8 to 19 among
63 prospectively studied pneumonia patients (table 3).

The diagnostic yieldofour ELISA comparesfavorably with
previousstudiesevaluating the increasedsensitivity ofELISA
over that of counterimmunoelectrophoresis or agglutination
techniques for diagnosing pneumococcal pneumonia [6-9, 15,
16]. In the best-documented study [7], in which an ELISA
basedon Omniserumwasevaluated, 9 of 17bacteremicpneu
mococcalinfections werediagnosedon the initial sampleand
12of 17withsubsequent bloodsamples. In viewof thelimited
sensitivity of this Omniserum-based ELISA, which ranged
from 200 to 3000 ng/ml of serum for single SCP types, it
is not surprisingthat thisELISAmissedfive bacteremiccases
and was not useful for the diagnosisof nonbacteremic pneu-

Duration of
Volume of Serum anti-
distribution half-life Clearance genemia

Serotype (ml/kg) (h) (ml/min/kg) (h)

2 47.3 ± 8 20.0 ± 8.0 1.6 83
3 88.8 ± 14 27.5 ± 10.0 2.3 144
7F 90.3 ± 14 3.1 ± 1.0 20.4 13
9N&V 245.2 ± 15 24.0 ± 9.0 7.2 83

lOA 1026.0 ± 103 19.3 ± 1.0 37.2 40
11A. 1231.0 ± 38 7.1 ±5.0 123.1 8
14 214.5 ± 22 0.4 ± 0.1 375.4 2
15B 62.4 ± 15 2.6 ± 1.0 16.8 9
17F 129.5 ± 30 23.7 ± 12.0 3.8 75
18C 479.0 ± 82 29.1 ± 8.0 11.5 99
20 192.0 ± 3 13.7 ± 1.0 9.8 67
22F 265.9 ± 54 26.1 ± 8.0 7.1 83

We next ascertained that the examined antigens were sta
ble in heparinized rabbit blood and serum by demonstrating
that the concentration of all 12 antigens was not altered by
incubation in blood or serum over 48 h at 37°C.

Becauseantibodyto SCP mightaffectits eliminationfrom
the blood, we studied whether antibody was responsible for
the observed variations between serumhalf-lives ofSCPs.We
examinedwhether natural antibody was responsible for the
disparities, because adaptivehumoral immunity developing
in response to injected SCP could not be of importance in
viewofthe stableelimination ratesattainedwithina few hours
after challengewith antigen. When we looked at the poten
tial of serum from rats or rabbits obtained before challenge
to capturepolysaccharide in our sandwichELISA system, we
could not detectanySCP bindingto the solidphasemediated
by the sera. Similarly, formol-fixed pneumococci did notbind
detectable amounts of rabbit or rat serum immunoglobulin
from the animals under study.

We anticipatedthat SCP types with a short serum half-life
would not easily build up high blood SCP levels during the
courseofan infection. Toconfirmthisweturnedagainto rats;
we used a model of infection with our initially studied pair
of SCP-types with variable elimination rates to study the ki
neticsof antigenemiaafter infectionwith livebacteria (figure
6). Thesestudiesconfirmedthat the rapidlyclearedSCPtype
7F does not build up high antigen levels in the course of in
fection, whileinfection withS.pneumoniae serotype2 results
in consistentlyhighSCP levels,whichevenincreaseafter the
beginning of penicillin treatment. This experiment also
confirmed that thediscrepantelimination ratesofSCPofsero-

NOTE. Serum half-life was computed from linear regression after completion of
the initial distribution of injected antigen. Clearance was computed from the apparent
volume of distribution of the injected antigen and the serum half-life. Data are mean
or mean ± SO from three animals. Antigen (Pneumovax-23) was injected intrave
nously in a dose of 250 ug in two animals and 500 ug in one animal for 7 days for
each serotype. Data were pooled because elimination rates appeared not to depend
on antigen load at these doses.
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monias, in which we found antigen levels 10-100 times be
low the detection limit of the Omniserum-based test (table
6). ELISAsystems developed withcommercial anti-poolsera
have been found to be more sensitive than Omniserum sys
tems [16], but evensuchan ELISA system wasrelatively blind
for certain common serotypes, resulting in false-negative re
sults even in culturally positive cerebrospinal fluid samples [16].

In any event, these studies indicate that detection of SCP
in blood by an ELISA able reliably to detect antigen levels
as low as 1-6 ng/ml of serum can significantly contribute to
the diagnosis ofpneumococcal infection, evenin settings such
as nonbacteremic pneumococcal pneumonia. Furthermore,
the ability to serotype antigen in clinical specimens would
allowfurther insightinto the epidemiology of nonbacteremic
pneumococcal pneumoniaor evenrapidpredictionof the risk
for penicillin resistance that is associated with certain sero
types[22].In contrastto detection bybloodtests, theincreased
sensitivityfor detection of SCP in concentratedurine speci
mens or sputum was offsetby the manypositivereactions in
sputum and urine of patients with chronic obstructive lung
disease accompaniedby chronic bronchitisand pneumococ
cal colonization (table 4).

Our studydocuments an impressivevariability in the blood
levels of SCP antigen, by a factor of >150; this variability
couldnotbe relatedto the severity of the infection alone.Bac
teremic patients had higher antigen levels, as shown previ
ouslybyothers[23],but evenduringbacteremia the variability
remained impressive(table 6). On one hand the inconsistent
antigen levels, with concentrations as low as 3-10 ng/ml in
bacteremiccases and levelsat the detectionlimitof our assay
in nonbacteremic cases, documentedthat to be clinically re
liable, a test for detection of antigenemiamust havea detec
tion threshold of as little as 1-2 ng/ml or even less. On the
other hand, the variability of antigenemia indicatedthat apart
from the severity of infectionand the presenceof bacteremia,
additional, hitherto-unknown factorsdeterminethe extentof
antigenemia. Because we observed an impressivedifference
in the elimination rate of SCP in two patientswith compara
bly severeinfections caused by disparate SCP serotypes, the
questionoccurred whether the eliminationof SCP wassero
type dependent.

Animalstudiesofexperimentalantigenemia confirmedthat
disposalof immunoreactivecapsularpneumococcal polysac
charides varies significantly among different serotypes. Se
rum half-life, the volume of distribution, and the clearance
rates of the 12 examined SCP types differed by a factor of
>70, 25, and 250, respectively, explaining why some SCP
types were detectable for >7 days in experimental antigene
mia while others were eliminated from blood within hours
(table 7).

The observation that the elimination of SCP types 2 and
7F from the bloodof rabbits and rats wascomparablein both
speciesand, aboveall, corresponded to the clinicalobserva
tions with these twoSCP types thatoriginallypromptedthese

studies(figures 3-6) indicates thatthevariability ofSCPclear
anceratesis, at leastin principle, notspecies dependent. These
findings haveobviousimplications for the clinicaluse of SCP
detectioninbody fluids for diagnosisof pneumococcal infec
tion. It is conceivable that SCP typesrapidlyeliminated from
blood are more difficult to detect in circulation, buildingup
lowerserum levelsthat last for shorter timeperiods. Accord
ingly, the experimental observations are in agreement with
our clinical findings that the extent of antigenemia did not
correlate with the severity of pneumococcal infections and
that the antigenblood levelsmeasured in a populationof pa
tientswith seriouspneumococcal infectionshowed a disturb
ing variability, with values from as high as several hundred
ng/ml to barely measurable levelsno longer clearly distinct
fromantigen-free samples in a sensitive ELISA system (figure
2). Furthermore, the significantvariations in the clearance
of polysaccharide from blood and the important differences
between the volumeof distribution for the studied polysac
charides makeitplausible thatexcretion ofantigen in theurine,
another body fluid used for antigen detection [7, 24], must
also be quite variable.

Our observations also raisethe questionwhetherprolonged
persistenceof someSCP typescontributesto virulence. The
injectionof homologous pneumococcal capsularpolysaccha
ridesimpressively enhances thesusceptibility ofmiceto pneu
mococci [25, 26]. Circulating polysaccharide antagonizes
homologous humoral anti-pneumococcal defenses by neu
tralizing antibody [25-28], and it appears logical that SCP
types reaching higher levels and circulating for longer time
periods havemore impact on humoral defenses by neutraliz
ing antibodythan do polysaccharides that fail to circulate for
extendedperiods. In this context, it is interestingthat Coon
rod and Drennan [23] noted that pneumococci with low
serotypenumbers, which might be more virulent than high
numbered serotypes, cause higher SCP blood levelsthan do
high-numbered serotypesand that high levels of antigenemia
are associated with delayed appearance of measurable anti
body. Finally, failure to eliminate polysaccharide from cir
culationmightcontributeto thephenomenon of immunologic
paralysis [29, 30], reported clinically withpolysaccharide 18C
[31], which had the longest circulation time among the 12
SCP types studies in our experiments.
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