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Abstract

Almost one mountain trekker or climber out of two develops several symptoms of high altitude illness after a rapid ascent (N300 m/day)
to an altitude above 4000 m. Individual susceptibility is the most important determinant for the occurrence of high altitude pulmonary
oedema (HAPE). Symptoms associated with HAPE are incapacitating fatigue, chest tightness, dyspnoea at the slightest effort, orthopnoea,
and cough with due to haemoptysis in an advanced stage of the disease pink frothy sputum. The hallmark of HAPE is an excessively elevated
pulmonary artery pressure (mean pressures of 35 and 55 mm Hg), which precedes the development of pulmonary oedema. Elevated
pulmonary capillary pressure and protein- as well as red blood cell-rich oedema fluid without signs of inflammation in its early stage are
characteristic findings. Furthermore, decreased fluid clearance from the alveoli may contribute to this non-cardiogenic pulmonary oedema.
Immediate descent or supplemental oxygen and nifedipine are recommended until descent is possible. Susceptible individuals can prevent
HAPE by slow ascent: an average gain of altitude not exceeding 400 m/day above an altitude of 2500 m. If progressive high altitude
acclimatization is not possible, a prophylaxis with nifedipine should be recommended.
© 2006 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Two forms of high altitude illness can be distinguished: a
cerebral form called acute mountain sickness (AMS) and a
pulmonary form called high altitude pulmonary oedema
(HAPE). Altitude, the rate of ascent, and individual suscep-
tibility in particular are the major determinants of AMS and
HAPE inmountaineers and trekkers.At an intermediate altitude
such as in Colorado, the prevalence of AMS among visitors is
estimated at 25% [1]. Among trekkers in the Himalayas and
mountaineers in the Alps ascending at a rate of N600m/day, the
prevalence of AMS at altitudes between 4000 m and 5600 m is
30–60% [2–8]. In contrast toAMS,HAPE is less frequent. The
estimated incidence of HAPE in visitors to ski resorts in the
Rocky Mountains of Colorado is 0.01–0.1% [9]. In a general
alpine mountaineering population, the prevalence of HAPE is
b0.2% [10]. The HAPE incidence among trekkers in the
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Himalayas and climbers in the Alps ascending at a rate of
N600m/day is around 4% [3,11]. In the alpine setting, when an
altitude of 4559 m was reached within 22 h, the incidence
increased to 7% in mountaineers without a history of radio-
graphically documented HAPE and to 62% in mountaineers
with such a history [12]. In an unselected population of Indian
soldiers, airlift to an altitude of 5500 m was associated with a
HAPE incidence of up to 15% [13].

2. Clinical presentation

2.1. Clinical examination

HAPEpresents within 2–5 days after arrival at high altitude
[13–15]. It is rarely observed below altitudes of 2500–3000m
and after 1 week of acclimatization at a particular altitude.
Early symptoms ofHAPE include exertional dyspnoea, cough,
and suddenly reduced exercise performance. As pulmonary
oedema progresses, orthopnoea, breathlessness at rest, and
gurgling in the chest develop, cough worsens, and pink frothy
d by Elsevier B.V. All rights reserved.
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Table 1
Clinical and radiographic findings in adults without and with HAPE

HAPE− (n=120) HAPE+ (n=30)

AMS− (n=87) AMS+ (n=33) AMS− (n=9) AMS+ (n=21)

Rales+/++ (%) 7 (8) 5 (15) 3 (33) 8 (38)
Body temperature (°C) 36.8 (36.6–36.9) 37.2 (37.0–37.4)a 37.1 (36.9–37.4)b 37.7 (37.5–37.9)a, c

Clin. AMS score 1.9 (1.6–2.3) 4.9 (4.4–5.5)a 2.7 (1.3–4.0) 7.3 (6.4–8.3)a, c

Rad. score 0.3 (0.2–0.5) 0.3 (0.1–0.6) 6.7 (3.5–9.9)b 7.1 (5.3–8.8)c

PaO2 45 (43–46) 40 (38–42)a 37 (32–42)b 33 (30–35)c

PaCO2 26 (25–27) 28 (27–29) 27 (25–29) 27 (25–28)
AaDO2 5.2 (3.9–6.4) 7.1 (5.1–7.1) 12.1 (7.3–16.9)b 15.6 (12.4–18.4)c

Mean (95% confidence intervals) of clinical (clin.) and radiographic (rad.) scores, arterial (a) PO2, PCO2, and the alveolar–arterial difference for oxygen
(AaDO2) in 60 adults examined after ascent to 4559 m and a stay for 3 consecutive days. A total of 150 examinations were performed, and in 30 of them chest
radiography was compatible with the diagnosis of HAPE.
These results were obtained in collaboration with P. Bärtsch and O. Oelz.
a pb0.01 vs. AMS− in the HAPE−/+ groups.
b pb0.01 vs. AMS− in the HAPE− group.
c pb0.01 vs. AMS+ in the HAPE− group.
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sputum reveals overt pulmonary oedema [13–15]. The clinical
examination shows cyanosis, tachypnoea, tachycardia, and
frequently body temperature N37.5 °C [16]. Râles are discrete
at the beginning, typically located over the middle lung fields
[13–15]. Often, there is a discrepancy between the minor
findings at auscultation compared with the widespread disease
on the chest radiograph [17] (Table 1). In advanced cases, signs
of concomitant severe AMS with ataxia and decreased levels
of consciousness – signs of high altitude cerebral oedema –
may develop [18,19] (Table 1).

2.2. Chest radiography and laboratory analyses

Chest radiographs and CT-scans of early HAPE show a
patchy, peripheral distribution of oedema as shown in Fig. 1.
The radiographic appearance of HAPE is more homoge-
neous and diffuses in advanced cases and during recovery
[20]. The results of arterial blood gas, radiographic score,
Fig. 1. Chest radiograph and CT-scan in a mountaineer with HAPE. Radiograph o
whole lung (A). The CT-thorax of the same patient shows a patchy distribution of oe
were kindly provided by Dr. H. Fischer, Regional Hospital Visp, Switzerland.)
and AMS score obtained in 19 adults with HAPE at 4559 m
(Table 1) demonstrate that HAPE may develop with nearly
no symptoms of AMS (6/19) and that the extension of
pulmonary infiltrates does correlate with the impairment of
gas exchange. In advanced cases of HAPE observed at an
altitude of 4559 m, arterial PO2 likely drops below the
35 mm Hg mark.

There are no characteristic findings in common laboratory
examinations with the exception of moderately elevated C-
reactive protein (b100 mg/l) [13,15,21]. In the early stage of
HAPE broncho-alveolar lavage (BAL) reveals a protein- and
red blood cell-rich oedema fluid without signs of inflamma-
tion [22], whereas in a more advanced stage pro-inflamma-
tory mediators and granulocytes add to the initial changes
[15,23]. Autopsies showed diffuse pulmonary oedema with
bloody foamy fluid present in the airways and signs of
inflammation involving the alveoli and the capillaries
[24,25].
f a male patient with HAPE showing patchy distributed infiltrates over the
dema, localized predominately around the right hilus (B). (These illustrations
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2.3. Right heart catheter studies

Since the first hemodynamic measurements performed in
patientswithHAPE admitted to hospital we know thatHAPE is
associatedwith elevated pulmonary artery pressure [14,26–29].
In a prospective hemodynamic evaluation ofHAPE-susceptible
adults performed after rapid ascent to 4559mwithin 24 h,mean
pulmonary artery pressure increased to 38 mm Hg (range 28–
42 mm Hg) [30] (Fig. 2). In those who developed pulmonary
oedema during that occasion, mean pulmonary artery pressure
was 42 mm Hg (range 36–51 mm Hg). Moreover, all these
studies consistently show that in HAPE, left ventricular filling
pressures, as assessed by the measurement of pulmonary oc-
cluded pressure (wedge pressure), right atrial pressure, and
cardiac output are normal [28–30]. Thus, hemodynamic eval-
uations in HAPE clearly indicate that the development of
pulmonary hypertension within hours after rapid exposure to
high altitude is a hallmark of this disease. This is further
supported by those studies indicating that HAPE is prevented or
treated by the use of pulmonary vasodilators [31–33].

3. Pathophysiology

3.1. Exaggerated hypoxic pulmonary vasoconstriction

Oxygen sensors located in the pulmonary vasculature detect
the drop of alveolar oxygen tension and lead to vasoconstriction
of small pulmonary arteries [34,35] and pulmonary veins [36].
The response of smooth-muscle cells in the pulmonary vas-
culature to acute hypoxia begins within seconds and involves
inhibition of voltage-dependent potassiumchannels, membrane
depolarization, and calcium entry through L-type calcium chan-
nels [35,37]. Moreover, hypoxia up-regulates transient receptor
potential channels, leading to additional calcium entry through
receptor and store-operated calcium-channels [35]. Whether a
Fig. 2. Changes in mean pulmonary artery pressure from low to high altitude.
Individual mean pulmonary artery pressures (Ppa) measured at 4559 m in
HAPE-resistant (control) and HAPE-prone (susceptible) adults [30]. The
closed dots indicate mean Ppa in individuals without radiographic evidence of
HAPE. The open dots indicate those individual subjects who developed HAPE
during the 2 days' stay at 4559. The horizontal bars (—) indicate median Ppa
value for each group of subjects. ⁎pb0.01 vs. 490 m, †pb0.01 vs. control,
§pb0.01 vs. HAPE-susceptible adults without HAPE.
constitutively decreased mRNA expression of voltage-depen-
dent potassium channels or an acquired transcriptional defect of
the voltage-dependent potassium channels protein expression is
at the origin of HAPE susceptibility remains to be determined.

Exaggerated hypoxic pulmonary vasoconstriction has been
attributed to an increased susceptibility of the pulmonary
circulation – sustained elevation of cytoplasmic calcium con-
centration – to sympathetic activity and/or high levels of en-
dothelin-1. Increased sympathetic activity and elevated
norepinephrine plasma levels have been found in individuals
with AMS and HAPE [19,38–40]. Rapid exposure to 4559 m
almost doubles plasma endothelin-1 levels [41], the highest
values being measured in individuals with HAPE [42]. Both
intensity of sympathetic activity [40] and plasma endothelin-1
levels are positively correlated with systolic pulmonary artery
pressure [41,42].

Endothelium-mediated vasodilatation is crucial for the con-
trol of pulmonary vasoconstriction. Hypoxia-induced endo-
thelial dysfunction resulting in an impaired endothelium-
dependent vasodilatation in the systemic circulation [43] and
an impaired nitric oxide production in the lung [22,44,45]
could be another mechanism leading to elevated pulmonary
artery pressure in HAPE-susceptible individuals. In fact, upon
acute exposure to hypoxia, exhaled nitric oxide concentrations
[44,45] and nitrite/nitrate concentrations in the BAL fluid [22]
tend to decrease in individuals prone to HAPE, whereas they
increase in those resistant to the condition. Moreover, in sus-
ceptible individuals the prophylactic intake of tadalafil, a
phosphodiesterase-5 inhibitor, prevents high altitude pulmo-
nary hypertension and HAPE [33].

Taken together, the results of all these studies indicate that
an imbalance between hypoxia-mediated vasoconstriction and
impaired nitric oxide bioavailability is the provable mecha-
nism behind the elevated pulmonary artery pressure in HAPE-
susceptible individuals. Whether ethnic differences between
Caucasians [46] and Japanese [47] for endothelial nitric oxide
polymorphism may also contribute to HAPE susceptibility
remains to be established.

3.2. Elevated pulmonary capillary pressure

During hemodynamic measurements performed in HAPE-
susceptible and non-susceptible adults at 4559 m, we
estimated the pulmonary capillary pressure using the arterial
occlusion method [30], which most likely measures pressures
in vessels close to 100 μm in diameter [48] and demonstrated
that the pulmonary capillary pressure is elevated in HAPE.
Pulmonary capillary pressure was on average 16 mm Hg
(range 14–18 mm Hg) in HAPE-susceptible subjects without
pulmonary oedema and 22 mm Hg (range 20–26 mm Hg) in
those who developed HAPE [30] (Fig. 3). This result suggests
that in adults, the pulmonary capillary pressure threshold value
for oedema formation is 20 mm Hg, which is in keeping with
previous experimental observations in dogs indicating a PO2-
independent critical capillary pressure of 17 to 24 mm Hg,
above which the lungs continuously gain weight [49,50].



Fig. 4. Relationship between systolic pulmonary artery pressure and BAL
red blood cell count and albumin concentration. Individual broncho-alveolar
lavage (BAL) red blood cell and albumin concentration plotted against
systolic pulmonary artery pressure (sPpa) at high altitude (4559 m). The
figure shows that the threshold sPpa for the appearance in the BAL fluid of
albumin was 35 mm Hg and that for red blood cells was 60 mm Hg [22].

Fig. 3. Changes in pulmonary capillary pressure and pulmonary artery occlusion pressure upon ascent to 4559 m. Individual pulmonary capillary pressure
(Pc) and pulmonary artery occluded pressure (Ppao=wedge pressure), assessed using the arterial occlusion technique, in controls, and HAPE-susceptible
subjects without and with pulmonary oedema [30]. The Pc is indicated by the filled dots and Ppao values by the open dots. The figure shows that in
subjects who develop HAPE, the Pc was higher than 19 mm Hg and that the increase in Ppao, although significant, is minimal. The horizontal bars
(—) indicate median Ppa value for each group of subjects. ⁎pb0.01 vs. 490 m, †pb0.01 vs. control, §pb0.01 vs. HAPE-susceptible adults without
HAPE.

44 M. Maggiorini / Cardiovascular Research 72 (2006) 41–50
There are two possible mechanisms leading to an elevated
pulmonary capillary pressure in subjects susceptible to
HAPE: a heterogeneous distribution of pulmonary blood
flow within the pulmonary vascular bed [51,52] or a hypoxic
constriction occurring at the level of the pulmonary veins
[36,53]. A heterogeneous distribution of blood flow within
the pulmonary circulation causing regional over-perfusion of
capillaries, i.e. in areas with the least arterial vasoconstriction
[51], is suggested by the results of a recent study obtained
using a functional magnetic resonance imaging technique
(arterial spin labelling) in a small number of volunteers
exposed to hypoxia, indicating an increased pulmonary
blood flow heterogeneity in HAPE-susceptible individuals
[52]. Non-uniformly distributed blood flow in hypoxia was
also found using the fluorescent microspheres technique in
pigs [54] and dogs [55]. Non-homogeneous distribution of
blood flow could be caused by uneven distribution of
alveolar ventilation, hence hypoxic vasoconstriction [56] or
heterogeneous oxygen sensing within smooth muscle cells of
the pulmonary vascular tree [57–59]. On the other hand there
is good evidence that pulmonary veins contract in response
to hypoxia [36,60,61], increasing the resistance downstream
of the region of fluid filtration [62], which suggests that
HAPE could develop even in the absence of a heterogeneous
distribution of pulmonary blood flow within the pulmonary
vascular bed. Moreover, markedly increased pulmonary
artery pressure in hypoxia may also cause transvascular
leakage of small arterioles [63]. However, the patchy
distribution of pulmonary infiltrates on chest radiographs
and CT scans of the lungs found in individuals with HAPE
(Fig. 1) strongly support the heterogeneous distribution of
elevated capillary pressures within the permeable region of
the pulmonary circulation, which in summary is likely to rely
on an unevenly distributed hypoxic vasoconstriction in either
pulmonary arteries or veins, or both.
3.3. High-permeability type of oedema

Broncho-alveolar lavage (BAL) performed in HAPE-
susceptible adults within a day after ascent to 4559 m revealed
elevated red blood cell counts and serum-derived protein
concentration in BAL fluid [22]. The number of red blood
cells/μl and the albumin concentration was higher in those
individuals with HAPE at the time of BAL than in those who
developed it within the next 24 h. The threshold for the
increase in albumin and red blood cells was at a systolic
pulmonary artery pressure of approximately 35 mm Hg and
60 mm Hg, respectively (Fig. 4). The number of alveolar
macrophages/μl and neutrophils/μl and the concentration of
the pro-inflammatory mediators interleukin-1 (IL-1), TNF-α,



Fig. 6. Alveolar epithelial cell fluid reabsorbing mechanism. Alveolar
epithelial apical and basolateral membrane ion channels and exchangers
involved in active transepithelial sodium and water absorption. There is an
active reabsorption of sodium; water and chloride follow passively. Acute
hypoxia reduces alveolar fluid clearance by inhibition of apical sodium entry
pathways and basolateral Na+/K+-ATPase activity.

Fig. 5. Mechanism of pulmonary capillary leak in HAPE. Elevated
pulmonary capillary pressure (Pc) cause progressive distension of the vessel
wall leading to opening of endothelial and epithelial gaps through which first
proteins and later red blood cells leak into the alveolar space.
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IL-8, thromboxane, prostaglandin E2, and leukotriene B4

(LTB4), was not increased. These results are in line with studies
showing that in rabbit lungs, elevated pulmonary vascular
pressure causes injury to both the alveolar epithelial and the
capillary endothelial cells, resulting in a protein- and red blood
cell-rich lung oedema fluid [64–66] (Fig. 5). Thus, HAPE in its
early stage is a high pressure-mediated permeability type of
pulmonary oedema.

BAL fluid examination in adults with advancedHAPE show
also elevated levels of pro-inflammatory cytokines and LTB4

[23,67], suggesting secondary inflammation to the high-pres-
sure injury to the blood–gas barrier and/or lung oedema for-
mation. Elevated concentrations of pro-inflammatory cytokines
found in patients with cardiogenic pulmonary oedema [68,69]
support this concept. A release of pro-inflammatory cytokines
[69] continuing for several days after normalization of the
pulmonary artery pressure may be the origin of a prolonged
respiratory failure described in some individuals [70].

3.4. Reduced fluid clearance from the alveolar space

Studies performed in cell cultures and rats exposed to
hypoxia indicate that hypoxia inhibits the activity and the
expression of alveolar epithelial cell sodium (Na+) transpor-
ters, particularly the apical membrane epithelial Na+ channel
(ENaC) and the basolateral membrane Na+/K+-ATPase, and
hence the Na+ transport and associated alveolar fluid clearance
across the alveolar epithelial membrane [71–74] (Fig. 6).
Since alveolar epithelium is not accessible in humans, nasal
epithelium, which has Na+ transporters that are similar to those
of the alveolar epithelium, is used to estimate alveolar epithe-
lium Na+ transport activity [75]. Accordingly, hypoxia was
found to inhibit nasal epithelial Na+ transport in both HAPE-
resistant and -susceptible mountaineers [76,77]. Moreover, at
low altitude, HAPE-susceptible adults present a lower activity
of the ENaC compared to HAPE-resistant individuals [76–
78], suggesting a possible contribution of ENaC to the patho-
physiology of HAPE.

β2-Receptor agonists have been shown to stimulate alveolar
epithelial Na+ and fluid transport in rats exposed to hypoxia [74]
and pulmonary oedema reabsorption in patients with acute
respiratory distress syndrome [79]. The prophylactic inhalation
of a high dose (2×125μg) of salmeterol decreased the incidence
of HAPE from 74% to 33% [78]. Thus, it is possible that a
decreased activity of Na+ transporters, particularly the ENaC,
across the alveolar epithelial membrane will be part of the
pathophysiologic mechanism of HAPE. On the other hand, one
cannot exclude that the effect of aerosolized salmeterol pro-
phylaxis may be attributed to other actions of the drug [80,81].
Treatment with a β2-agonist may cause vasodilatation by an
increase in nitric oxide production [82], inhibition of endothelial
cell contraction, and reduction in intercellular gaps [83–85].
Moreover, β2-agonists also have a clear anti-inflammatory ef-
fect by reducing neutrophil influx and degranulation and the
accumulation of TNF-α in the alveolar airspaces [86]. Thus, to
really test the role of Na+ transporters in HAPE, more specific
drugs are needed.

4. Factors contributing to lung oedema formation

4.1. AMS and hypoxemia

AMS is not a precondition for the development of HAPE.
This is suggested by epidemiological studies indicating a
7- to 8-fold higher incidence of AMS than HAPE [3,11]
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and by the observation that HAPE may develop even in the
absence of AMS [17] (Table 1). On the other hand, it is likely
that severe AMS may be a risk factor for HAPE. This is
suggested by studies indicating that individuals with severe
AMS have a low PaO2 (Table 1) [87,88] and/or a low hypoxic
ventilatory drive. A low hypoxic ventilatory drive is known to
possibly increase susceptibility to HAPE [89–91]; however,
the considerable overlap between HAPE-susceptible and
-resistant individuals suggests that it is at best permissive but
not compulsory regarding susceptibility to HAPE.

4.2. Airway infections

It is conceivable that any process enhancing the permeabil-
ity of the alveolar-capillary barrier decreases the pulmonary
capillary pressure threshold above which pulmonary oedema
develops. Increased lung fluid accumulation during hypoxic
exposure after priming rats with endotoxins or viruses [92] and
the reported association of preceding viral infections (predom-
inantly of the upper respiratory tract) and HAPE in children
visiting Colorado [93] support this concept. Thus, a variable
pulmonary capillary permeability between high altitude expo-
sures could tentatively explain why in HAPE-susceptible indi-
viduals the reoccurrence rate of pulmonary oedema after rapid
ascent to high altitude is not 100%.

4.3. Congenital anomalies

Restriction of the pulmonary vascular bed cross-sectional
area may also contribute to increase pulmonary artery pressure
upon exposure to high altitude. This theory is supported by
reports indicating that congenital anomalies of the large pul-
monary arteries [94,95] and pulmonary embolism [96,97] are
associated with an increased risk to develop HAPE even at
altitudes below 3000 m. Moreover, small lungs relative to
body size have also been retained as a possible risk factor for
HAPE [56,98].

At risk for HAPE at a moderate altitude are also patients
with congenital cardiac shunts [99] and/or pre-existing pulmo-
nary hypertension [100]. A right–left shunt across a patent
foramen ovale may exacerbate high altitude hypoxemia and
hence lead to HAPE [101]. Thus, in patients who have deve-
loped HAPE at altitudes below 3000 m, echocardiography is
recommended to exclude pulmonary hypertension and a con-
genital anomaly.

4.4. Exercise

Strenuous exercise may also contribute to increasing pul-
monary capillary pressure and hence the risk of HAPE. In fact,
there is evidence that strenuous exercise causes subclinical
permeability oedema with high red blood cells and protein
concentrations that may last for more than a day at high altitude
[102]. This may be caused by uneven distribution of blood
flow across the pulmonary vascular bed [56] and/or elevated
pulmonary vascular pressures [103,104]. In normoxia and
hypoxia, strenuous exercise causes pulmonary blood flow and
pulmonary vascular pressures to increase by a large extent, the
increase in vascular pressure being essentially related to the
upstream transmission of increased left atrial pressure, and the
increase in pulmonary vascular resistance being less important
[103,104]. In HAPE-susceptible adults, exercise increases pul-
monary artery pressure and pulmonary artery occluded pres-
sure (wedge pressure) more than in HAPE-resistant individuals
[105], which could be at least in part attributed to an impaired
left ventricular filling because of the dilation of the right
ventricle and bulging of the septum toward the left side [106].

5. Prevention

5.1. Slow ascent

Slow ascent is the major measure of prevention that is
effective even in susceptible individuals. In contrast to AMS,
there are no studies prospectively investigating the incidence of
HAPE according to the rate of ascent. Indirect evidence has
come from the observation that even subjects who developed
HAPE more than once upon rapid ascent in the Alps suc-
cessfully reached altitudes up to 7000 m when the average
daily ascent rate above 2000 m does not exceed 350–400 m/
day [107]. Climbers with any symptoms of AMS or beginning
HAPE should be advised not to ascend further and to avoid
vigorous exercise during the first days of exposure to altitudes
above 3000m, since exercisemay enhance or cause pulmonary
oedema [102,105]. Furthermore, susceptibility to HAPE may
be increased during and shortly after infection [93].

5.2. Drug prevention

Prevention of an excessive rise in pulmonary artery pres-
sure is the standard for the prevention of HAPE in individuals
with a positive history of HAPE when slow ascent is not
possible. The calcium channel blocker nifedipine acts as a
vasodilator on both the pulmonary and the systemic circu-
lation, although at high altitudewith sympathetic activation the
systemic vasodilatory effect is negligible. 20 mg nifedipine of
the slow-release formulation taken every 8 h starting 24 h
before ascent to 4559m and continued until descent decreased
the incidence of HAPE from 63% to 10%. Recently, these
results could be reproduced using 10 mg tadalafil bid, a
phosphodiesterase-5 inhibitor [33]. The incidence of HAPE
was 74% in the placebo and 10% in the tadalafil group.
However, it should be underlined that both nifedipine and
tadalafil are not effective in preventing AMS [33,91], and that
in some susceptible individuals phosphodiesterase-5 inhibitors
may possibly exacerbate AMS by unknownmechanism [108].
No other significant side effects were reported for either drug
[32,33]. Thus, a pulmonary vasodilator should be given for
HAPE prevention only, starting with the ascent and ending
when acclimatization is completed. If AMS is present despite
pulmonary vasodilator prophylaxis, additional acclimatization
or AMS prophylaxis with acetazolamide is recommended
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[109,110].Whether acetazolamide prophylaxis prevents HAPE
is yet unknown, but recent results suggest that this could be the
case. In fact, in animals exposed to acute hypoxia, acetazol-
amide inhibited hypoxic pulmonary vasoconstriction [111,112].

The use of the β2-agonist salmeterol has been suggested as
an alternative for the prophylaxis of HAPE in susceptible
adults. Salmeterol inhaled at the high dose of 125 μg bid
during rapid ascent to 4559 m followed by a two-night stay
decreased the incidence of HAPE from 74% to 33% [78], thus
slightly less than a pulmonary vasodilator, suggesting that
preventing an excessive increase in pulmonary artery pressure
is possibly more effective. Therefore, the routine use of sal-
meterol for HAPE prophylaxis cannot be recommended until a
clinical trial proves equivalence between salmeterol and a
pulmonary vasodilator.

Interestingly, recent preliminary data indicate that prophy-
laxis with dexamethasone, which has been proven effective in
the prevention and treatment of AMS [113,114], prevents
HAPE in susceptible adults when taken 1 day prior to ascent
and continued during ascent and stay at 4559 m [33]. Sur-
prisingly, in this study we found that dexamethasone sig-
nificantly attenuated the increase in pulmonary artery pressure
at high altitude, its effect being comparable to that observed in
a second group of HAPE-susceptible participants receiving
tadalafil. This effect can tentatively be explained by a dexa-
methasone-mediated stimulation of cGMP production in
hypoxia [115], an increase in the activity of nitric oxide
synthase [116], and a favourable modulation of the increased
sympathetic activity in these individuals [38,40,117]. How-
ever, other mechanisms may also account for the effect of
dexamethasone such as an improvement of the alveolar trans-
epithelial Na+ and water transport [118], tightening of the
pulmonary capillary endothelium [119] possibly by inhibition
of hypoxia-induced inflammation [120], and improvement of
surfactant production [121,122]. Although prophylaxis with
dexamethasone for individuals susceptible to HAPE and AMS
appears attractive, before general recommendation can be
given further studies are needed to determine the minimal
effective dose, its best route of administration (topical vs.
systemic) and its safety profile in the setting ofmountaineering.

6. Treatment

Immediate improvement of oxygenation either by supple-
mental oxygen, hyperbaric treatment [123,124], or by rapid
descent is the treatment of choice for HAPE. For the moun-
taineer in a remote area without medical care, descent has first
priority, while the tourist with HAPE visiting a high altitude
plateau in the Andes, Himalayas, or Rocky Mountains may
stay at altitude if medical facilities are available. If it takes a
few days in a remote area to reach lower altitude, treatment
with nifedipine is strongly recommended. In mountaineers
with HAPE at 4559 m, treatment with 20 mg slow-release
nifedipine taken every 6 h led to a persistent relief of symp-
toms, improvement of gas exchange, and radiographic
clearance over an observational period of 34 h [31]. In this
study, nifedipine therapy was not associated with hypotension.
To date, there are no clinical trials on the use of more selective
pulmonary vasodilators such as sildenafil or other phospho-
diesterase-5 inhibitors in this setting. In an area where medical
infrastructure and assistance are available, vasodilatory treat-
ment is not strictly necessary because with bed-rest and sup-
plemental oxygen for 24 to 48 h, relief of symptoms is
achieved within hours and complete clinical recovery within
several days while staying at the same altitude [125]. Whether
the combined treatment of bed-rest, supplemental oxygen, and
nifedipine or other vasodilator is superior to bed-rest and
oxygen alone has not yet been investigated. In adults with
advanced HAPE, intermittent, continuous, positive end-ex-
piratory airway pressure has been shown to improve SaO2 by
10–20% [126,127]; however, one should be aware that it
might cause high altitude cerebral oedema by increasing cen-
tral venous pressure [128].

7. Summary

HAPE develops in non-acclimatized mountaineers after
rapid ascent to altitudes above 2500 m. Besides rapid ascent,
individual susceptibility is the major risk factor, with the
occurrence in individuals with a previous HAPE episode
being 60–70% after ascent to 4559 m within 24 h. HAPE
usually develops within the first 4–5 days at altitude and
presents with cough, dyspnoea, and tachycardia, and in its
advanced stage with orthopnoea and pink sputum. Chest
radiography reveals patchy distributed pulmonary infiltrates.
Laboratory exams show severe hypoxemia and, in its late
stage, a slightly elevated c–reactive protein plasma level.

HAPE is a non-cardiogenic type of pulmonary oedema
most probably caused by excessively elevated pulmonary
artery pressure and pulmonary capillary pressure that lead to a
permeability type of pulmonary oedema. In its early stage
pulmonary oedema fluid is rich in red blood cells, and the
albumin concentration is elevated. Pro-inflammatory media-
tors are found only in an advanced stage, suggesting secondary
inflammation. Impaired alveolar epithelial Na+ transport, and
hence alveolar fluid clearance, may add to the accumulation of
oedema in the alveoli. A heterogeneous distribution of hypoxic
pulmonary vasoconstriction with consequent over-perfusion
of unprotected pulmonary capillaries and/or a hypoxic con-
striction of pulmonary veins are the possible mechanisms
leading to elevated pulmonary capillary pressure. Congenital
anomalies of the pulmonary circulation, restriction of the pul-
monary vascular bed, and strenuous exercise may further add
to increased pulmonary capillary pressure. Preceding or con-
comitant infectionmay favour HAPE development, increasing
pulmonary capillary permeability.

For the prevention of HAPE, slow ascent (b400 m/day) is
strongly recommended. If this is not possible, prophylaxis with
vasodilators such as nifedipine or tadalafil has been shown to be
effective. Recently, in a small randomised, placebo-controlled
trial, dexamethasone taken 24 h before ascent prevented
excessive elevation of pulmonary artery pressure andHAPE. In
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easily accessible areas, HAPE has been successfully treated
with supplemental oxygen and bed-rest, followed by a descent
to lower altitude. In more remote areas, the use of nifedipine
and oxygen are strongly recommended.
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