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Abstract. It is well known that a generic polynomial foliation of C2 is minimal and ergodic.
In this paper we prove an analogous result for analytic foliations.

1. Introduction
This article is devoted to the study of analytic foliations of C2. Recall that (by the Oka–
Cartan theory) any analytic foliation of C2 is a foliation by (complex-time) trajectories of
some analytic vector field {

ẋ = f (x, y)

ẏ = g(x, y),
(1)

where f, g ∈O(C2), and the functions f and g have no common factor (so that the
singularities are isolated).

Our main result is the following theorem, which ensures that the behavior of leaves
of a generic analytic foliation is in some sense ‘chaotic’. Its statement naturally extends
the statements of analogous results that are already known for polynomial foliations of C2

and CP2; we will give a brief review of these results in §1.1.

THEOREM. (Main result) A generic analytic foliation of C2 is minimal and ergodic.

We shall recall the definitions of minimality and ergodicity in §2. The genericity here
is understood as follows. The space of analytic foliations of C2 can be equipped with a
natural (Baire) topology ‘of uniform convergence on non-singular compacts’; that is, two
foliations are said to be close if their tangent direction fields are uniformly close in a ball of
large radius except for small neighborhoods of singular points (the precise definition will
be given in §2). Now, in our result, we interpret the genericity in a topological way: the
set of foliations that we construct is a residual one (i.e. a countable intersection of open
dense sets).
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1534 T. Golenishcheva-Kutuzova and V. Kleptsyn

One can also work directly with vector fields instead of foliations. Indeed, an analytic
vector field is given by a pair of functions that are holomorphic in C2. Their space is
therefore naturally equipped with the topology of uniform convergence on compacts, and
we can then use the topological interpretation of genericity (residual set) for vector fields.
In fact, the arguments used in the proof of the main result also lead to the following.

THEOREM. The foliation, corresponding to a generic analytic vector field in C2, is
minimal and ergodic.

We do not show the proof for this case, as it is identical to that of the previous (main)
theorem.

Note that one cannot replace ‘residual’ by ‘open dense’ in these theorems, owing to the
following example communicated to us by D. Novikov.

Example 1. (D. Novikov) There exists a dense set of analytic foliations of the complex
plane C2, with each of these foliations possessing a non-dense leaf.

We present Novikov’s construction in §7.

1.1. Background. Polynomial foliations of C2 (that is, foliations by complex-time
trajectories of a polynomial vector field) have been intensively studied since the times
of Poincaré. Among other reasons, the interest of mathematicians in this topic has been
motivated by its close relation to Hilbert’s 16th problem. While we cannot present here all
the known results on the topic, we will recall a few of them that are most relevant to the
subject of this paper.

The following result, describing the ‘chaotic’ behavior of a typical polynomial foliation,
is due to Khudai-Verenov [11], Ilyashenko [8, 9], Shcherbakov [15] and Nakai [13].

THEOREM. (Khudai-Verenov, Ilyashenko, Shcherbakov, Nakai) For any given degree
d ≥ 2, a typical polynomial foliation of C2 of this degree is minimal and ergodic, as well
as topologically rigid.

The genericity here (in the strongest version of this theorem, which is due to
Shcherbakov) is understood in an algebraic sense. Specifically, the statement holds for
foliations belonging to an intersection of a complement of a nowhere-dense real-analytic
subset of codimension no less than two and of a complement of a real algebraic subset
of codimension no less than one in the space of degree d foliations. (Formally speaking,
in the paper [15] ergodicity is not mentioned; however, it can be obtained by the same
arguments as those used by Ilyashenko in [8, 9] or by Loray and Rebelo in [12].)

A natural related topic is the study of polynomial foliations of CPn . However, the
notion of degree is slightly different in this case: a foliation of CPn has the geometric (or
projective) degree d if, in any affine chart, it is given by a vector field of degree no more
than d . For this definition, a generic polynomial vector field of degree d in Cn generates
a degree d + 1 foliation of CPn . Such foliations are untypical among all degree d + 1
foliations: they are specified by the fact that the infinite hyperplane is invariant. Thus, the
issues of studying given degree polynomial vector fields in Cn and given projective degree
polynomial foliations of CPn are different.
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Minimality and ergodicity of a generic analytic foliation of C2 1535

Concerning the latter problem, Loray and Rebelo [12] have recently obtained local
genericity of these properties for polynomial foliations on CPn of a given projective
degree. They consider the space of (complex one-dimensional) foliations of CPn of a
given projective degree, and construct in this space a (‘small’) open set, each foliation from
which is minimal and ergodic (as well as topologically rigid). At the moment, the question
of global genericity of minimality, ergodicity and topological rigidity among projective
foliations (that is, if such foliations form, for instance, a dense set) remains open.

The results stated above (for both polynomial and projective foliations) are based on
study of the monodromy group at infinity. After projectivizing a typical polynomial
foliation, one sees that the infinite line is tangent to the foliation, except for some number of
singularities. So, because of these singularities, this line becomes a non-simply connected
leaf with a rich fundamental group; thus one can hope that the corresponding monodromy
group is also rich. Studying the properties of this group is the key idea in the results
of Khudai-Verenov, Ilyashenko, Shcherbakov, and Nakai mentioned above. The result of
Loray and Rebelo also contains the idea of a series of perturbations of foliations having an
‘integrable flag’ of invariant ‘infinite’ planes.

This article, as it was already said, is devoted to the study of analytic foliations of C2;
investigation of their topological properties has begun only recently [1, 3, 4]. One of the
difficulties is that the infinity-line approach (standard in the study of the polynomial case)
cannot be applied directly: generic holomorphic functions have essential singularities all
along the infinite line.

Our main result can be considered as an analogue, for the analytic foliations case, of the
aforementioned theorems of Khudai-Verenov, Ilyashenko, Shcherbakov, Nakai, and Loray
and Rebelo.

1.2. Plan of the proof: idea of the construction. In order to obtain the desired result,
we prove that for any compact set K ⊂ C2, there exists an open and dense set U(K ) of
foliations, such that each foliation from U(K ) is minimal and ergodic on K (see precise
definitions below). The theorem will then follow from a countable exhaustion of the plane
C2 by compact sets: the intersection of the constructed open dense sets gives us the desired
residual set.

The construction of these sets is split into a few steps (up to some technical details such
as handling the singularities), and the general plan of the proof goes as follows.

• Black box. Construct a ‘black box’, a ‘mechanism’ providing minimality and
ergodicity on a small cross-section, in a way that is stable under small perturbations.
We refer to this mechanism as a ‘black box’ by analogy with physics: once it is
constructed, we are no longer interested in how it works.

• Plug in. Show that if every leaf from some compact set intersects a ‘black box’
cross-section, then the dynamics on this compact set is stably minimal and ergodic
(see definitions below).

• Open dense set. Given a foliation and a compact set K ⊂ C2, construct a foliation,
arbitrarily close to the initial one, which possesses a ‘black box’ cross-section and is
minimal on all of C2. By virtue of the previous step, this implies that for any compact
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1536 T. Golenishcheva-Kutuzova and V. Kleptsyn

set K there is an open and dense set U(K ) of foliations, minimal and ergodic on this
compact set.

• Intersection. By taking the intersection of the open dense sets corresponding to a
countable family of compact sets, exhausting C2, we conclude the proof.

2. Notation and definitions
An analytic foliation of C2 is a foliation by complex-time trajectories of some analytic
vector field {

ẋ = f (x, y)

ẏ = g(x, y),
(2)

where the functions f (x, y), g(x, y) are analytic on C2 and have isolated common zeros.
More precisely (see [7]), an analytic foliation on a complex manifold is locally given by
a vector field of the form (2). The fields we use in different neighborhoods then differ (on
the intersection of their domains) by multiplication by a non-zero holomorphic function.
Therefore, we have a multiplicative cocycle. But, owing to the Oka–Cartan theory, as C2

has no corresponding homologies, any foliation of C2 is in fact given by a global vector
field (and thus defined up to multiplication by a non-zero holomorphic in C2 function).

To describe a foliation one does not need the couple ( f, g), but only the direction [ f : g]

of the tangent (complex) directions to the leaves. So, a natural and standard way to define
a topology on the space of foliations is the following one. A basis of neighborhoods of a
foliation F is formed by

UR,ε,δ =
{
G | G is non-singular in Kε,R := BR(0, 0) \ Uε(Sing(F))

and the tangent direction fields of F and G are δ-close on Kε,R
}
,

where ε, δ > 0, 0 < R < ∞, and BR(0, 0) and Sing(F) stand, respectively, for the ball of
radius R centered at the origin and for the set of singular points of F .

We call a property typical for analytic foliations if it holds on a residual set in this space.
As mentioned already in the introduction, one can also work directly with vector fields

generating foliations. An analytic vector field is given by a pair of functions holomorphic
in C2 (that we suppose not to have a common factor for the singularities to be isolated),
and the space of such pairs is naturally equipped with the (metrizable) topology of uniform
convergence on compacts. It is easy to check that the map associating a foliation to a
vector field is continuous in the sense of these topologies. In other words, close vector
fields generate close foliations.

Let us recall the definitions of minimality and ergodicity of a foliation.

Definition 1. A (singular) foliation is called minimal if all its leaves are dense. A foliation
is called ergodic if any measurable saturated set (i.e. one consisting only of entire leaves)
has either zero or full Lebesgue measure.

A standard way to study a foliation is to consider its holonomy maps. We now recall
how these maps are defined.

Definition 2. Let F be a foliation of C2, and let γ : [0, s] → C2 be a path staying in
the same leaf of F . Let discs T0 and T1 be cross-sections to F , passing through γ (0)
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Minimality and ergodicity of a generic analytic foliation of C2 1537

and γ (s), respectively. Then, for an initial point x in T0 sufficiently close to γ (0), leafwise
curves starting at x , staying close to γ and coming to T1, arrive at a well-defined point
of T1—which is called the image of x under the holonomy along γ . This defines the
holonomy map 1γ along γ , acting from a neighborhood of γ (0) in T0 to a neighborhood
of γ (s) in T1.

Using the holonomy maps, we will reduce the study of a foliation to the study of a
system of maps. We will therefore need the definitions of minimality and ergodicity for
multiple-map dynamical systems. The following definitions (applicable to a non-invariant
subset) are slight modifications of the standard ones.

Definition 3. Let g1, . . . , gs : D → D be mappings of a compact set D to itself, and
let K ⊂ D be a compact set. A dynamical system (D; g1, . . . , gs) is called minimal
on K if for any x ∈ K , the closure of its ‘forward’ orbit G+(x) contains K . Here
G+(x) := {(g j1 ◦ g j2 ◦ · · · ◦ g jn )(x) | n ∈ N, j1, . . . , jn ∈ {1, . . . , s}}.

In order to give the definition of ergodicity, we need the following notion (which
translates the notion of saturation for a set in a foliated space to the language of its
transversal section).

Definition 4. A set A ⊂ D is saturated for a system (D; g1, . . . , gs) if for any two points
x, y ∈ D such that y = g j (x) for some j , the point x belongs to A if and only if the point
y does.

Now, the definitions of ergodicity and stable ergodicity are given in the same way.

Definition 5. Dynamical system (D; g1, . . . , gs) is called ergodic on K ⊂ D if for any
saturated subset A ⊂ D, its intersection with K is of either zero or full (in K ) Lebesgue
measure.

Definition 6. The system (D; g1, . . . , gs) is called stably minimal (respectively stably
ergodic) on K if the system (D; g̃1, . . . , g̃s) is minimal (respectively ergodic) on K for
any maps g̃1, . . . , g̃s : D → D sufficiently close to the corresponding maps g j .

3. Auxiliary (‘black box’) construction
In this section we recall two lemmas that give sufficient conditions for stable minimality
and stable ergodicity of a multiple-map dynamical system. Once stated, they give us a tool
to prove stable minimality and stable ergodicity on a subset for a foliation. The only thing
we have to do is pass from the study of foliations to the study of holonomy maps on a
cross-section (see Lemma 3). Both of these lemmas are common knowledge; however, as
they are stated slightly differently from the way they appear in the papers cited, we provide
their proofs in §8 (‘Technical proofs’) for completeness.

A small technical remark we would like to make is that, in these lemmas, multiple-map
dynamical systems are considered; so in order to apply the lemmas, we have to use cross-
sections and holonomy maps in such a way that all the considered holonomy maps are
defined on the entire chosen cross-section and map it into itself.
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The first lemma provides a sufficient condition for minimality in the context of multiple-
map dynamical systems. To the best of our knowledge, it goes back to the work of
Hutchinson [5].

LEMMA 1. Suppose the maps g1, . . . , gs : D → D, which are diffeomorphisms on their
images, are contracting on D and the images of interior points of some compact set K b D

under these maps cover K : ∪g j (
◦

K ) ⊃ K . Then the system (D; g1, . . . , gs) is stably
minimal on K .

Its proof, as well as the proof of the next lemma, is postponed to §8.

Definition 7. If, for compact sets D ⊃ K and maps g j , the assumptions of Lemma 1 hold,
we say that the system (D; g1, . . . , gs) possesses the property of controlled contraction
on K .

The second (and also standard) lemma that we will need is one which helps to establish
local ergodicity for multiple-map dynamical systems. The ideas it is based on go back
to [16, 17]; in the case of group actions on the circle it can be found in [14, Proposition 4.3,
Remark 4.6].

LEMMA 2. Suppose that a system (D, {gi }
s
i=1) of conformal maps {gi }

s
i=1 on a compact

set D ⊂ C possesses on a subset K b D the property of controlled contraction. Then this
system is stably ergodic on K .

4. Stable minimality in a compact domain under the ‘black box’ condition
This section applies the preceding two lemmas to the case of foliations. Suppose that we
are given an analytic foliation F0 and a compact subset X (of positive Lebesgue measure)
which does not contain the singularities of F0. Consider a cross-section D to F0, and

let K b D be a compact subset. Denote the interior of K by
◦

K . Then the following
lemma holds.

LEMMA 3. Suppose that there exist holonomy maps g1, . . . , gs : D → D such that the
system (D; g1, . . . , gs) possesses the controlled contraction property on K , and that any

leaf passing through a point of X intersects
◦

K . Then all the foliations sufficiently close to
F0 are minimal and ergodic on X.

Proof. Note that for foliations sufficiently close to F0, the set D is still a cross-section.
Let us prove that any leaf passing through a point of X will still intersect K . Indeed, for

a F0-leafwise path from some point x to
◦

K , its small deformations provide F0-leafwise

paths to
◦

K from all points sufficiently close to x .

Thus, as K is a compact set, every point x ∈ X hits the interior
◦

K along a path in F0

of bounded length, which stays at a bounded-from-below distance from the singularities
of F0. Hence, the same holds for sufficiently small perturbations of F0. Finally, small
perturbations preserve the non-singularity of X . Therefore, the property that X is a non-

singular compact set, every point of which is connected to some point of
◦

K by a leafwise
path (of bounded length), survives under small perturbations.
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The maps g j are holonomy maps along paths of bounded length, hence they depend
continuously on a foliation, and thus the minimality on K is preserved by small
perturbations by virtue of Lemma 1.

Any point x ∈ X is connected by a leafwise path to a point of K . The dynamics on K
is minimal, thus K is contained in the closure of the leaf Lx passing through the point x ;
so any leaf that intersects K is contained in L̄x . In particular, any point y ∈ X belongs to
L̄x (because L y intersects K ). In other words, L̄x ⊃ X. As x ∈ X is arbitrary, the foliation
is minimal on X .

Ergodicity on X is automatically implied by Lemma 2. Let A be any saturated subset
of C2 that intersects X in a set of positive (two-dimensional) Lebesgue measure. Then
A intersects the cross-section K in a set AK of positive Lebesgue measure on this cross-
section. The dynamics on K is ergodic, so AK is of full Lebesgue measure on the cross-
section. Then K \ AK has zero Lebesgue measure on the cross-section and thus X \ A has
zero Lebesgue measure in C2. 2

Remark 1. The ‘intersection’ condition of Lemma 1 automatically holds if the foliationF0

is minimal.

5. Open dense set of foliations with a ‘black box’ cross-section
In this part we will construct an open dense set of foliations with a ‘black box’ cross-
section (a cross-section with controlled contraction). To do that, we construct one foliation
with such a cross-section and then apply Viro gluing to obtain an open dense set.

LEMMA 4. There exists a polynomial foliation F0 given by a vector field v0,{
ẋ = f0(x, y)

ẏ = g0(x, y),

with a cross-section D, subset K b D and holonomy maps gi : D → D that possess the
property of controlled contraction on K .

Proof. Consider the vector field of the form{
ẋ = P(x)

ẏ = εy + Q(x),

where P, Q are polynomials and P has only prime roots:

P(x) = (x − a1) . . . (x − an), a j 6= ak .

If P(c) 6= 0, then the unit disc Dc = {c} × {y : |y| ≤ 1} is transversal to this foliation.
The holonomy maps from the vertical plane Pc = {c} × C onto itself by any path
γ ⊂ C \ {a1, . . . , an} are affine:

gγ,ε(y) = Aγ,ε y + Bγ,ε.

A direct computation provides the coefficient Aγ,ε:

Aγ,ε = exp
{
ε

∫
γ

1
P(z)

dz

}
.
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1540 T. Golenishcheva-Kutuzova and V. Kleptsyn

On the other hand, it is clear that Bγ,ε −−→
ε→0

Bγ,0. From the differential equation{
ẋ = P(x)

ẏ = Q(x),

one can easily see that Bγ,0 is given by

Bγ,0 =

∫
γ

Q(z)

P(z)
dz.

Let us find the polynomial P such that the residues of 1/P in three of its roots
(x = 0, ±1) are equal to i :

P(x) = i · x(x − 1) (x + 1) ( 3
2 x2

− 1).

Now find a polynomial Q such that the residues of Q/P in these three roots are
δ, e2π i/3δ and e4π i/3δ, where δ is sufficiently small. For ε = 0, the images of the interior
of the unit disc K = Dc under the holonomy maps cover this disc. Hence this property
holds also for sufficiently small ε.

Furthermore, for small real ε the corresponding coefficients are exponents of negative
numbers (namely, of 2π i · iε = −2πε) and thus are less then one. Hence, there exists
a sufficiently large transversal disc D = DR = {(c, y) : |y| ≤ R} such that the holonomy
maps g j are contracting maps of D into itself, i.e. g j (D) ⊂ D. 2

LEMMA 5. The set of foliations for which there exist a cross-section D, subset K b D
and holonomy maps {g j } satisfying the controlled contraction property is open and dense
in the space of analytic foliations of C2.

Proof. This set is clearly open, so we need to check that it is dense. For any given foliation
F , we will construct a foliation G close to F and having the desired property.

Let the foliation F be given by an analytic vector field w. First, let us approximate F
by a polynomial foliation G0 by truncating the Taylor series of w.

In order to construct a foliation that is close to G0 and at the same time inherits some
properties of the foliation F0 constructed in Lemma 4, we will apply Viro’s gluing. This
procedure, first invented by Viro [18] for construction of algebraic curves simultaneously
similar to different ones, was then generalized by Itenberg and Shustin [10] to the vector
fields case (one can also find an interesting application of this method in [2]). For
completeness, here we repeat the arguments explicitly.

Recall that the foliation F0 is given by a polynomial vector field v0. Consider a
compact set X0 without singular points of v0, containing a transversal disc K = Dc and the
trajectories traced by this disc under the holonomy transformations along paths γ j . Then
for any vector field sufficiently close to v0 on X0, the corresponding foliation possesses the
property of controlled contraction.

By shifting the origin, we may suppose that the projection of X0 on the x-axis does not
contain 0. Let

v0(x, y) = P0(x, y)
∂

∂x
+ Q0(x, y)

∂

∂y
.
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Minimality and ergodicity of a generic analytic foliation of C2 1541

Also, denote the vector field corresponding to G0 by

u(x, y) = P1(x, y)
∂

∂x
+ Q1(x, y)

∂

∂y
,

and let N := deg G0 = max(deg P1, deg Q1).
Now, consider the family of vector fields

uε(x, y) = εx N+3
(

P0(εx, εy)
∂

∂x
+ Q0(εx, εy)

∂

∂y

)
+

(
P1(x, y)

∂

∂x
+ Q1(x, y)

∂

∂y

)
︸ ︷︷ ︸

u(x,y)

.

On one hand, as ε → 0, this field tends to u. On the other hand, after a change of
variables x̃ = εx, ỹ = εy, this family becomes

ũε(x̃, ỹ) = ε

(
x̃

ε

)N+3[
P0(x̃, ỹ)ε

∂

∂ x̃
+ Q0(x̃, ỹ)ε

∂

∂ ỹ

]
+

[
P1

(
x̃

ε
,

ỹ

ε

)
ε

∂

∂ x̃
+ Q1

(
x̃

ε
,

ỹ

ε

)
ε

∂

∂ ỹ

]
=

1

εN+1

[
x̃ N+3

(
P0(x̃, ỹ)

∂

∂ x̃
+ Q0(x̃, ỹ)

∂

∂ ỹ

)
︸ ︷︷ ︸

v0(x̃,ỹ)

+

(
εN+2 P1

(
x̃

ε
,

ỹ

ε

)
∂

∂ x̃
+ εN+2 Q1

(
x̃

ε
,

ỹ

ε

)
∂

∂ x̃

) ]
.

As deg P1, deg Q1 ≤ N , we have

εN+2 P1

(
x̃

ε
,

ỹ

ε

)
→ 0, εN+2 Q1

(
x̃

ε
,

ỹ

ε

)
→ 0,

and hence the vector field εN+1ũε tends to v1(x̃, ỹ) := x̃ N+3v0(x̃, ỹ).
On the compact set X0, vector fields v0 and v1 are proportional with a non-zero

coefficient (the projection of X0 on the x-axis does not intersect zero). Thus, for
sufficiently small ε, the foliation given by uε in the coordinates (x̃, ỹ) is sufficiently close
on X0 to the foliation given by the vector field v0. Hence, for any sufficiently small ε,
the foliation uε possesses a triple (D, K , gi ) with the controlled contraction property.
We have therefore constructed a foliation, possessing the controlled contraction property,
which is arbitrarily close to the foliation G0 and thus arbitrarily close to the foliation F . 2

6. Construction of the desired residual set
To complete the proof of the main result, it suffices to launch an exhaustion procedure.
Some technical precautions are required, however, because in previous steps we have
worked with non-singular compact sets, and the placement of singularities depends on
the foliation; so we need the following definition.
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Definition 8. A foliation F is called ε-good if it is minimal and ergodic on the compact set
Xε, defined as the ball of radius 1/ε centered at the origin, from which ε-neighborhoods
of the singular points of F have been removed.

LEMMA 6. The set of ε-good foliations contains an open dense set.

Proof. By Lemma 5, for any foliation F there exists a close polynomial foliation G1

which has a cross-section with controlled contraction. By the theorem of Khudai-
Verenov, Ilyashenko, Shcherbakov and Nakai stated in the introduction, there is a small
perturbation G2 of the foliation G1 in the space of polynomial foliations of a fixed degree
that is minimal in the whole of C2. In particular, it will be minimal on Xε/2. By Lemma 3,
any foliation G′ sufficiently close to G2 (including G2 itself) is minimal and ergodic on
Xε/2(G2) ⊃ Xε(G′)—hence all the sufficiently close foliations are ε-good. 2

We are now ready to conclude the proof of our theorem.

Proof of the main result. Note that a foliation of C2 is minimal and ergodic if and only if it
is ε-good for any ε > 0. By Lemma 6, for all ε > 0 the set of ε-good analytic foliations is
open and dense. So, taking the sequence εn = 1/n → 0 and intersecting the corresponding
open and dense sets, we obtain the desired residual set. 2

7. D. Novikov’s example
In this section we describe a construction of a dense set of foliations that are not minimal.
Moreover, these foliations have an invariant complex line. This example is due to
D. Novikov (private communication).

Consider a foliation F and let it be given by a vector field{
ẋ = P(x, y)

ẏ = Q(x, y).

Let us choose a sufficiently large a ∈ R and let f (x, y) = P(x, y)/(x − a). Then the
function f is analytic in the bidisc of radius a/2 centered at the origin; thus the function
f can be approximated in this bidisc by a polynomial. Denote the ε-approximating
polynomial by Rε(x, y); then (x − a) · Rε(x, y) approximates P(x, y) on the same bidisc.
By choosing first a sufficiently large and then ε sufficiently small, we obtain a vector field
((x − a) · Rε, Q) arbitrarily close to the initial field (P, Q). The corresponding foliations
are therefore also arbitrarily close. On the other hand, the line x = a is invariant for the
new vector field ((x − a) · Rε, Q), and thus the corresponding foliation is not minimal.

8. Technical proofs

Proof of Lemma 1. Note that the conditions in this lemma are stable under small
perturbations. The property of the g j being contractions is clearly stable. The images

g j (
◦

K ) form an open cover of a compact set K and hence the same holds for sufficiently
close g̃ j . Thus it suffices to prove the minimality of the initial system (K ; g1, . . . , gs).
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Let us first introduce some notation: for a word ω = (ω1 . . . ωn), ω1, . . . , ωn ∈

{1, . . . , s}, denote by gω the composition

gω = gω1 ◦ · · · ◦ gωn .

As
⋃

g j (
◦

K ) ⊃ K , we have, in particular, that

s⋃
j=1

g j (K ) ⊃ K .

After iterations we obtain that for any n ∈ N,⋃
ω1,...,ωn∈{1,...,s}

gω1,...,ωn (K ) ⊃ K ,

i.e. all the possible images of K under n iterations cover K . On the other hand, the maps g j

are contracting, so the diameters of these images tend to zero as n tends to infinity. Hence,
for sufficiently large n, the compact set K is covered by sets of small diameter.

We now prove that the orbit of any point x ∈ K is dense. For given b ∈ K and ε > 0,
let us find ω = ω1, . . . , ωn such that ρ(gω(x), b) < ε. Indeed, for sufficiently large n all
the images gω1...ωn (K ) under the length-n words are of diameter less then ε (owing to
the fact that g j are contractions). For any such n, there exists a word ω = ω1, . . . , ωn

such that gω(K ) 3 b. So then gω(K ) 3 b, gω(K ) 3 gω(x) and diam(gω(K )) < ε, and thus
ρ(gω(x), b) < ε. 2

Proof of Lemma 2. Assume the contrary. Let the set A be a measurable saturated set

with positive measure of intersection µL(A ∩
◦

K ) > 0; then the set A ∩
◦

K has a density
(Lebesgue) point x0.

Note that as the compact set K is covered by the open images g j (
◦

K ), there exists
ε0 > 0 such that for any point x ∈ K , for some j the map g−1

j is defined in the
neighborhood Uε0(x). (In particular, Uε0(x) ⊂ D.)

We will construct ωn ∈ {1, . . . , s} and xn ∈ K step by step: for any n ∈ N we choose
ωn in such a way that the map g−1

ωn
is defined in Uε0(xn), and let xn+1 = g−1

ωn
(xn). Note

that for all n we have gω1...ωn (Uε0(xn)) ⊂ D, because all the maps g j are contracting.
Consider the compositions g−1

ωn
◦ · · · ◦ g−1

ω1
. As the derivatives of such compositions

in the point x0 grow exponentially, by the Distortion Lemma (see, for example, [17]) the
quotient of derivatives of direct maps gω1 ◦ · · · ◦ gωn on the corresponding balls Uε0(xn)

is bounded uniformly in n. Hence, the quotient of maximal and minimal distances from x0

to the boundary of the image Bn := gω1 ◦ · · · ◦ gωn (Uε0(xn)) is uniformly bounded. These
distances tend to 0, hence the proportion of points of A in Bn tends to 1 (for x is a density
point of A). Owing to the invariance of A and (again) to the boundedness of the derivatives
quotient, the proportion of points of A in Uε0(xn) also tends to 1. By choosing a convergent
subsequence of points xnk → y, we find a ball Uε0(y) in which the proportion of points of
A is equal to 1—that is, Lebesgue-almost every point of the ball belongs to A. Now the

minimality (Lemma 1) implies that the set A has full measure in
◦

K . 2
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