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Abstract 

The influence of different configurations of silicones having 
50% methyl and 50% phenyl substitution on chromatographic 
properties, such as polarity and thermal stability, has been 
systematically investigated. Polysiloxanes composed of 
dimethyl and diphenyl units show very low levels of column 
bleed at temperatures up to 370 C, while polymers having 
methyl-phenyl substitution show severe bleeding at this 
temperature. The polarity of the latter polymers, as reflected by 
Kováts indices, is higher than for the polymers composed by 
dimethyl-diphenyl units. 

Introduction 

Phenyl-substituted polysiloxanes. Phenyl-substituted silicones 
have been used extensively as stationary phases for gas chro
m a t o g r a p h y ever s ince the p ioneer ing w o r k of James and 
Martin (1). Several oils of this type have been used for packed-
column GC (2), the most well known being OV-17, produced by 
Ohio Valley Specialty Chemicals. The composition of this phase 
has been reported to be inconsistent. OV-17 is supposed to have 
50% phenyl and 50% methyl substitution in the elementary unit 
(3), but phenyl contents of 41 (4), 35 (5), and 4 2 % (6) have been 
reported. OV-17 has a low molecular weight: an average of 2300 
was found for one batch (7). Trimethylsilyl terminated polymers 
having such a low molecular weight will have a content of polar 
substituents that is significantly lower than the elementary unit 
composition, the reason for this being the diluting effect of the 
terminal methyl groups. Further, OV-17 is composed by a mixture 
of cyclic and linear chains (7,8). A similar composition was re
ported for DC-710 (9). Differences in the proportions of cyclics 
and linears from batch to batch may thus account for the variation 
between batches. It should be noted that for high molecular 
weight stationary phases, the polar group content virtually coin
cides with their actual composition. 

The first generation of phases was found to be unsuitable for 
application in open-tubular columns. For the formation of stable 
films of stationary phase in such columns, the use of silicone 
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gums rather than silicone oils was desirable. A gum of OV-17-
type is now commercially available (Supelco). A further stabi
lization of the stationary phase film is achieved by immobiliza
tion. Here, two different approaches can be distinguished; thermal 
immobilization of silanol-terminated silicones (10-13) and rad
ical initiated immobilization of end-capped silicones (14-17) . 
The former approach is considered to result in the highest thermal 
stability (18). 

A silanol-terminated methyl-phenyl silicone, OV-17-OH, is 
commercially available from the Ohio Valley Company (3). This 
polymer has, however, a low viscosity. Its viscosity can be in
creased simply by heating in an aluminum pan (13). The repro
ducibility of such a procedure may, however, be questioned. 
Thermal immobilization of the viscous OV-17-OH was attempted 
by Blum (13). An upper temperature limit of 330°C for columns 
prepared in this way was indicated. Verzele et al. (12) immobi
lized a silanol-terminated methyl-phenyl silicone by in situ heat 
curing. Thermogravimetr ic analysis of this phase, RSL-300, 
showed weight loss at temperatures above 370°C (19). 

A vinylated methyl-phenyl silicone oil, OV-17-Vi, has also 
been introduced. The polymer OV-1701 was introduced as a sub
stitute for OV-17. In this silicone, 14% of the silicon atoms have 
cyanopropyl-phenyl substitution and 86% have dimethyl substi
tution. As may have been expected, the selectivity of this phase 
is significantly different from that of OV-17 (20). 

The phenyl groups in methyl-phenyl silicones may occur as 
diphenyl or methyl-phenyl. In their studies of phenyl-containing 
silylating reagents, Rijks et al. (21,22) noted that phenyl groups 
started to be cleaved off at 250°C when occurring as me thy l -
pheny l subs t i tuents , bu t only at 350°C w h e n occur r ing as 
diphenyl units. Obviously, such a difference should also be pre
sent between differently substituted methyl-phenyl stationary 
phases. Further, it has been speculated that methyl-phenyl and 
diphenyl-substituted silicones may result in different retention 
volumes (23). Accumulation of bulky phenyl groups on the same 
silicon atom would thus hamper interaction with the solutes (7). 

Reproducibility of Kováts index. It is well known that the re
producibility of the retention properties of polar-polarizable sta
tionary phases between batches is lower than for nonpolar phases. 
Typically, variations in Kováts indices between laboratories are 
within one index unit when nonpolar phases are being used, 
while variations in the range of ± 20 units are sometimes ob
served for polar-polar izable phases (24). Knowledge of the 
grounds for this difference is a premise for improvements. Two 
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factors affecting the precision in the Kováts index will be dis
cussed. 

The first factor involves the surface adsorption of n-alkanes on 
polar-polarizable phases. This type of adsorption normally has 
only a small influence on the retention, but its relative importance 
increases as film thickness decreases. The magnitude of such an 
adsorption is proportional to the stationary phase surface area, 
and this area is largely maintained as constant when film thick
ness is being decreased; the relative contribution of surface ad
sorption to the retention is thus increased (25-27). Kováts indices 
on polar-polarizable phases will thus decrease with decreasing 
film thicknesses. The effect might be appreciable when thin 
films are being applied. It is sometimes considered that a constant 
polarity can be maintained even on bleeding columns, provided 
the s i l i cone s ta t ionary p h a s e is c o m p o s e d by one s ing le 
monomer, e.g., methyl-phenyl units. The bleeding should, in 
such a case, have a more or less constant composition, and thus 
not affect polarity according to Kováts. Taking surface adsorp
tion of n-alkanes into consideration, such a reasoning cannot be 
correct for thin films of stationary phase. In order to preserve 
Kováts indices on this type of column, conditions have to be se
lected so that only slight column bleeding may occur. 

The second factor involves the synthesis of the stationary 
phase. The retention in gas chromatography is highly depen
dent on stationary phase properties. Even small irregularities in 
a silicone stationary phase can be detected. With nonpolar sili
cones, retention is basically dependent on dispersion forces, and 
then polymer configuration is of minor importance. When se
lectively acting forces are operating, however, polymer config
uration and composition becomes of highest importance for the 
retention. 

For a given polymer gross composition, the retention proper
ties vary with the manner by which the substituents are attached, 
e.g., a polymer having biscyanopropyl-substitution gives dif
ferent retention than when the cyano-groups occur as cyano-
propyl(methyl)-substituents (28). In this paper, the difference 
in retent ion be tween polymers composed by diphenyl and 
methyl-phenyl units will be demonstrated. 

Polysiloxanes are oftentimes prepared by copolymerization of 
different cyclics. A random distribution of different siloxane 
units can be achieved by equilibration. Such a process may, 
however, lead to decreased molecular weights (29). The molec
ular weight can be increased by addit ion of a cross- l inker 
(14,30,31). Moreover, molecular weight could be controlled by 
the addition of an end-blocker to the reaction mix. This is, how
ever, not possible when the synthesis concerns silanol-termi-
nated silicones. 

In practice, copolymerization of different cyclics is also ap
plied when one single monomer, e.g., methyl-phenylsilane, is 
being used for the synthesis. Hydrolysis of dichloromethylph-
enylsilane thus leads to the formation of two streoisomeric 
trimers (29). Such cyclics have quite different reactivities. Fur
ther, there is a possibility that the configuration of the cyclics 
may be retained when being converted to long chain polymers, 
which may thus incorporate a certain degree of stereoregularity. 
Andrianov (32,33) presented evidence that such stereoregularity 
can be achieved. It may be speculated that such a stereoregularity 
can affect retention behavior in GC. Polymerization may also 
proceed via so called mixed cyclics. That is, cyclics in which dif
ferently substituted silicon moieties have been incorporated, 
e.g., dimethyl and diphenyl. Such cyclics may occur in several 
different stereoisomeric forms having widely differing reactivi
ties (34). It is, however, considered that long equilibration times 

will lead to a randomization of phenyl-and methyl-containing 
moieties along the chain (35). 

Other factors of importance for a high degree of batch-to-
batch reproducibility involve the use of pure and defined starting 
products for the synthesis. Further, compounds that may be 
harmful to substituent groups should not be liberated during the 
synthesis. 

Although methyl-phenyl silicones have been extensively used 
as stationary phases in GC, the properties that are of funda
mental importance for high performance in GC are still not 
known. This concerns chromatographic properties, such as po
larity and thermal stability, of different polymer configurations. 
These issues are addressed in this work. 

Experimental 

A series of silanol-terminated silicones having 5 0 % methyl 
and 50% phenyl substitution have been evaluated for use as sta
tionary phases. Two of these were composed of dimethyl and 
diphenyl units. Diphenyl 1, the repetitive unit, consists in prin
ciple of two consecutive diphenyl units followed by two con
secutive dimethyl units. Diphenyl 2, the diphenyl units were 
spaced by a dimethyl unit. These polymers have been prepared 
according to Grassie et al. (34,36). A well stirred mixture of 
water (50 mL) and diethylether (75 mL) was added to a mixture 
of dichlorodimethylsi lane (65 g) and dichlorodiphenylsi lane 
(62.5 g). The ether was evaporated after washing to neutrality. 
Several fractions were obtained by distillation, and these were 
characterized by nuclear magnetic resonance (NMR). The frac
tion containing D 2 D 2

" was mixed with light petroleum ether 
and stored at - 3 0 ° C ; 1 ,3 -D 2 D 2 " and 1 ,2 -D 2 D 2 " could be ob
tained by successive precipitation. Polymerization of each cyclic 
was done by adding 0 . 1 % w/w tetramethylammonium hydroxide 
(TMAH) and heating at 100°C for 2 h. Finally, the polymers 
were purified by precipitation with a mixture of dichloromethane 
and methanol. 

The polymer Methyl -phenyl 1 was composed of m e t h y l -
phenyl units. The methods presented by Grassie and coworkers 
(37) were, with some modifications, applied for the synthesis of 
this polymer. Methylphenyldichlorosilane was thus hydrolyzed 
and the resulting mixture was distilled. The fraction obtained at 
160-190°C/0 .5 m m Hg was collected and character ized by 
NMR. Polymerization of the collected fraction was attempted 
with T M A H as above. 

Two commercially available polymers, OV-17 (Alltech) and 
OV-17-OH (Ohio Valley Specialty Chemicals), have been tested. 
Fused-silica capillary tubing, i.d. 0.25 m m (Chrompack) was 
used as column material in lengths of 10 m. Before coating, the 
capillaries were flushed with hydrogen for 2 h at 250°C. Further, 
a batch of fused-silica capillary tubing having low silanol con
tent, < 5 ppm, (Chrompack) has been used. Some capillaries, in
tended for coating with an OV-17 type of stationary phase, were 
pretreated with OV-17-OH (Ohio Valley Chemicals) for 2 h at 
370°C in an inert atmosphere (38). Some capillaries were acid 
treated (39). Coating and column evaluation were executed as de
scribed earlier (39,40). Prior to making a preliminary test, the 
columns were conditioned at 200°C for 20 min, programming 
rate 57min . Heat curing was performed under a slow flow of hy
drogen at 370°C for 10 h, heating rate 5°/min. A slower tem
perature programming rate, 0 .17min, has also been evaluated. 
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around 200,000 were found. A low glass-transition temperature, 
T g , indicates that the polymer will also show good chromato
graphic performance also at moderate temperatures. The T g of 
Diphenyl 1 was - 40°C. 

Polarity and immobilization. Kováts indices for 2-methyl-
naphthalene and biphenyl have been measured in order to ob
serve small differences in chromatographic properties. This con
cerns possible differences between different types of me thy l -
phenyl-substituted silicones, as well as changes that might have 
been introduced during the different steps of the column manu
facturing. The test substances chosen here are quite sensitive to
wards small shifts in column properties. As a consequence of the 
high sensitivity, testing must be executed with great care. For 2-
methylnaphthalene, an increase in temperature from 90 to 100°C 

Table I. Column Properties 

Colu 
no. 

mn Stationary 
phase 

Thermal 
treatment 

and 
extraction df(μm) 

k' (90°C) 
2-Methyl-

naphthalene 

HETP (90°C) 
2-Methyl-

naphthalene 

Tailing 
factor 

C 1 5 90°C 

Kováts retention indices 
2-Methyl- 2-Methy I-

naphthalene naphthalene Biphenyl 
90°C 100°C 125°C % immo 

1. Diphenyl 1 A* 0.15 12.50 0.27 0.92 1481.4 1492.0 1614.6 
Diphenyl 1 B† 0.15 11.60 0.34 1.12 1479.1 1488.4 1612.9 
Diphenyl 1 C‡ 0.094 7.85 0.35 1.27 1478.4 1488.3 1612.1 62.8 

2. Diphenyl 2 A 0.15 14.13 0.27 1.07 1478.1 1487.0 1611.7 
Diphenyl 2 Β 0.13 12.48 0.29 1.21 1476.0 1485.4 1609.9 
Diphenyl 2 C 0.091 8.56 0.30 1.24 1473.9 1483.5 1607.6 60.6 

CO
 Methyl-Phenyl 1 A 0.15 15.52 0.25 0.96 1484.7 1494.0 1620.1 

Methyl-Phenyl 1 Β 0.060 6.62 0.32 1.48 1478.4 1488.9 1613.5 
Methyl-Phenyl 1 C 0.033 3.37 0.57 1.92 1470.4 1480.6 1604.9 21.7 

4. Diphenyl 1 A 0.08 5.10 0.36 1.06 1476.2 1486.0 1609.4 
Diphenyl 1 Β 0.068 4.33 0.58 2.24 1469.4 1479.9 1602.9 
Diphenyl 1 C 0.043 2.71 0.96 3.28 1462.0 1473.1 1599.7 53.1 

5. Diphenyl 1 A 0.04 3.43 0.34 1.11 1474.8 1484.7 1607.4 
Diphenyl 1 Β 0.037 3.18 1.03 4.76 1461.5 1473.0 1599.8 
Diphenyl 1 C 0.030 2.58 1.11 4.64 1455.5 1466.3 1591.6 75.0 

6. Methyl-Phenyl 1 A 0.30 30.04 0.22 0.89 1486.8 1496.2 1621.9 

7. Methyl-Phenyl 1 A 0.08 7.62 0.21 0.82 1482.8 1493.1 1617.5 

8 Methyl-Phenyl 1 A 0.05 5.09 0.23 0.99 1477.7 1487.8 1612.5 

9. Methyl-Phenyl 1 A 0.033 3.42 0.91 1.10 1473.8 1483.7 1606.8 

10. Diphenyl 1 D§ 0.15 12.80 0.28 0.98 1481.0 1490.5 1615.0 
Diphenyl 1 0.14 11.62 0.32 1.13 1479.3 1489.8 1613.2 
Diphenyl 1 C 0.094 8.01 0.38 1.38 1477.7 1488.5 1611.1 62.6 

11. Diphenyl 1, batch 2 A 0.15 12.11 0.31 1.03 1481.2 1490.7 1614.5 
Diphenyl 1, batch 2 Β 0.14 11.69 0.34 1.31 1477.8 1487.3 1611.9 
Diphenyl 1, batch 2 C 0.076 6.13 0.52 1.85 1476.2 1484.3 1608.5 50.7 

12. 0V-17-0H A 0.15 17.7 3.9 0.93 1481.6 1488.2 1608.7 
Β 0.06 7.13 4.1 1.51 1468.3 1475.6 1599.7 
C 0.03 3.05 5.6 1.92 1459.9 1470.5 1598.6 17 

* A = conditioning at 200°C for 20 min, programming rate, 5°/min. 
†B = conditioning at 370°C for 10 h, programming rate, 5°/min. 
‡C = after thermal treatment B, and extraction with 5 mL dichloromethane. 

§ D = conditioning at 130°C for 20 min, programming rate, 5°/min. 
** Ε = conditioning at 370°C for 10 h programming rate, 0.1°/min, and constant temperature for 6 h at 200° and 300°C. 

The coating solution for some columns contained OV-17-OH at 
1% (w/w) of the stationary phase amount. Tailing factors were 
calculated according to McNair (41). The degree of immobi
lization was calculated from the capacity factor of 2-methyl-
naphthalene. The capacity factor was measured after the first 
conditioning and after rinsing with solvent. The % decrease in 
film thickness was calculated from these data. 

Results and Discussion 
The molecular weights of the newly synthesized polymers 

were measured by means of GPC. Average molecular weights 
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results in an increase in Kováts index of approximately 10 units. 
In order to cope with this temperature dependence, all columns 
are tested in the same instrument, a Carlo Erba Mega GC, and 
temperature equilibration is carried out for a relatively long pe
riod of time before testing. For the columns described in this 
paper, a testing precision of ± 0.5 units is readily obtained. 

The next aspect to evaluate is the column-to-column repro
ducibility. The precision observed here was ± 1.5 index units. 
Five columns were involved in this evaluation. 

Thermal immobilization of phenyl-containing silicones may 
lead to shifts in retention index. First, heat treatment of such sil
icones in an inert atmosphere results in scission of a fraction of 
the phenyl groups. Benzene and branched structures are thereby 
formed (37,36,34), and a small decrease in the Kováts index 
and capacity factors can be observed. The formation of benzene 
on thermal treatment of columns coated with silanol-terminated 
methyl-phenyl silicones has been reported by Welsch et al. (42). 
Second, film thickness has an influence on the Kováts index on 

Figure 1. Gas chromatogram (FID) of a test mixture on a fused-silica open-
tubular column, 10 m × 0.25-mm i.d. coated with Diphenyl 1. A = after 
conditioning at 200°C for 20 min and Β = after conditioning 10 h at 
370°C. Conditions: split injection, isothermal at 100°C; mobile phase, 
hydrogen at a rate of 50 cm/s. Peaks: (1) n-undecane; (2) phenol; (3) n-
dodecane; (4) aniline; (5) 2,6-dimethylphenol; (6) n-ridecane; (7) decy-
lamine; (8) decanol; (9) 2,6-dimethylaniline; (10) n-tetradecane; (11) 2-
methylnaphthalene; (12) n-pentadecane; and (13) nicotine. Sample 
amount: ca 1 ng of each substance. 

this type of column. The film thickness will decrease drastically 
if the column is bleeding at the temperatures necessary for the 
immobilization. Further, if the degree of immobilization is low, 
polarity will be decreased after rinsing with solvent. 

Diphenyl-substituted silicones. Thermal treatment resulted in 
a small decrease in retention index of biphenyl and 2-methyl 
naphthalene, which may be interpreted as a consequence of de
creased phenyl content, column 1, Table I. The degree of im
mobilization for columns having a film thickness of 0.15 μm was 
ca. 60%. The rinsing of such columns resulted in a small de
crease in the index, cf. column 1, Table I. Thinner films, d f = 0.04 

μm, could be immobilized to 7 5 % , column 5, Table I. 
Column 11 was coated with a second batch of the polymer 

Diphenyl 1. A good agreement of the polarities was observed, 
and the index for biphenyl was thus 1614.6 on batch one and 
1614.5 on batch two (Table I). Batch two gave a somewhat 
lower degree of immobilization and therefore had a slightly 
lower polarity after rinsing. 

Immobilization was also attempted using a slow temperature 
programming rate (column 10, Table I). The immobilization 
however, was not improved by the application of such a proce
dure. 

Thermal immobilization was not possible when the phases 
had been coated on deactivated fused silica. The importance of 
condensation between terminal -OH groups on the stationary 
phase and surface silanols for the immobilization has been em
phasized by Blum and coworkers (43,44). Another mechanism 
for immobilization involves acid catalyzed scission of substituent 
groups and the subsequent formation of branched structures. It 
seems that both methods fail when deactivated fused silica is 
being used as a support. On the other hand, the use of fused-silica 
tubing that had been acid treated with HC1 before coating gave 
a higher degree of immobilization. However, this was achieved 
at the expense of column adsorptive activity. 

Coating on the untreated fused silica resulted in adsorptive 
activity (Figure 1A). This was greatly reduced after thermal 
treatment (Figure 1B). Elution of basic compounds was im
proved after the heating step, but some tailing of the peaks 
was still experienced. 

Two configurat ions of d ipheny l -d ime thy l si l icones have 
been compared. The polymer having a dimethyl unit between 
two diphenyl units, Diphenyl 2, showed a slightly lower po
larity than the polymer where the diphenyl units were adjacent 
(columns 1 and 2, Table I). It seems that the interaction is 
more sterically hindered in Diphenyl 2 than in Diphenyl 1. 

Figure 2. Dependence of the retention index for biphenyl on 1/df on 
columns coated with polymer Methyl-phenyl 1, conditioned at 200°C 
for 20 min. Conditions: split injection, isothermal at 125°C. 
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Figure 3. TG traces for polysiloxanes containing 50% methyl and 50% 
phenyl substitution. Heating rate 10°C/min under dynamic nitrogen. 
Curves: (1) 0V-17-0H; (2) Diphenyl 1; (3) OV-17; and (4) Diphenyl 2. Start 
temp. (°C): (1) 175; (2) 383; (3) 260; and (4) 382. Peak temp. (°C): (1) 
421 and 489; (2) 529; (3) 537; and (4) 539. Residue: (1)5% (2) 26% (3) 
39%; (4) 42%. 

Figure 4. Relative column bleeding rates obtained with columns coated 
with different stationary phases. (1) Methyl-phenyl 1; (2) 0V-17-0H; (3) 
Diphenyl 2; and (4) Diphenyl 1. Stationary phase film thicknesses: (1) 0.07 
μm; (2) 0.06 μm; (3) 0.13 μm; and (4) 0.15 μm. 

Excessive cross-link density in polar-polar izable stationary 
phases may result in increased adsorption of n-alkanes at the 
gas- l iquid interface. Depending on solute concentration, such 
an adsorption may lead to tailing peaks (45). In the range of so
lute concentra t ions normally used in open-tubular G C , ad
sorption of nonpolar solutes on polar stationary phases gener
al ly leads to symmet r i ca l peaks (45) ; the n -a lkane peaks 
obtained here were relatively symmetrical , as expressed by 
their tailing factors (Table I). Tailing of n-alkane peaks, how
ever, was observed after thermal treatment of columns coated 
with thin films of stationary phase (columns 4 and 5, Table I). 
This effect can be attr ibuted to adsorpt ion at the gas - l iqu id 
interface. 

Methyl-phenyl-substituted silicones. These polymers show a 
higher index for biphenyl, 1620.1, than the polymers where 

Figure 5. Gas chromatograms (FID) of vegetable oils on a 10-m × 0.25-
mm fused-silica open-tubular column coated with Diphenyl 1; film thick
ness 0.04 μm. Conditions: on-column injection at 60°C, after 1 min bal
listic heating to 330°C, then temperature programmed at 27min to 370°C; 
detector attenuation 23. (A) raw soya oil and (B) palm oil. Triacylglycerol 
composition: (P) Palmitinic acid; (L) Linoleic acid; and (Ln) Linolenic 
acid. 

phenyl occurs as diphenyl units, 1614.6 (columns 1 and 3, 
Table I). Earlier hypotheses concerning the polarity of phenyl 
silicones are thus confirmed (23,7). 

Lee and coworkers (17) reported an index value of 1619.9 for 
biphenyl at 125°C on vinylated OV-17. The commercial OV-
17-OH evaluated in this work gave a relatively low index 
value, 1609 (column 12, Table I). Examination by N M R indi
cated that this stationary phase consisted of a mixture of cyclics 
and linear chains. 

The commercial OV-17-OH was immobilized to 17% and the 
newly synthesized methyl-phenyl siloxane was immobilized to 
2 2 % (columns 12 and 3, Table I). A significant decrease in ca
pacity factors resulted from the high column bleeding that took 
place during the heat treatment step. The influence of film 
thickness on the Kováts index is demonstrated by the indices of 
biphenyl on columns 3 and 6 -9 of Table I and in Figure 2. 

Thermal stability. The thermal stability of the polymers, as 
experienced in thermogravimetric analysis (TG), is compared 
in Figure 3. Diphenyl 2 showed the highest stability. 

Relative column bleeding rates are shown in Figure 4. Poly
mers Diphenyl 1 and 2 showed moderate bleeding up 370°C 
(Figure 4). Methyl-phenyl-containing polymers demonstrated 
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Figure 6. Gas chromatogram (FID) of a test mixture containing poly-
cyclic aromatic hydrocarbons on a 10-m × 0.25-mm fused-silica open-
tubular column coated with immobilized Diphenyl 1; film thickness 0.04 
μm. Conditions: splitless injection at 68°C, after 1 min temperature pro

grammed at 20°/min to 100°C, then 57min to 305°C; attenuation 23. 
Peaks: (1) 2-methylfluorene; (2) dibenzothiophene; (3) phenanthrene; (4) 
anthracene; (5) 4-me-dibenzothiophene; (6) 3-me-ndibenzothiophene; 
(7) 3-methylphenanthrene; (8) 2-methylanthracene; (9) 1-methylphenan-
threne; (10) fluoranthene; (11) pyrene; (12) benz(a)fluorene; (13) 1-
methyl-7-isopropylphenanthrene; (14) 2-methylpyrene; (15) 1-
methylpyrene; (16) benzo(ghi/)fluoranthene; (17) cyclopenta(cd)pyrene; 
(18) benz(a)an thracene; (19) chrysene; (20) 2,2-binaphthyl; (21) 
benzo(k)fluoranthene; (22) benzo(e)pyrene; (23) benzo(a)pyrene; (24) 
perylene; (25) indenofluoranthene; (26) indeno(cd)pyrene; (27) picene; 
(28) benzo(ghi)perylene; and (29) coronene. 

high bleeding. The stabilizing effect of diphenyl substitution is 
thus shown. 

Applications. Silicones having 5 0 % phenyl substitution may 
be quite useful for the separation of triacylglycerols (46,19,47). 
The utility of columns coated with Diphenyl 1 for the separa
tion of triacylglycerols from soya oil and palm oil is demon
strated in Figures 5 A and B. High temperature GC has been re
ported to result in relatively low recoveries of triacylglycerols 
containing trilinolenin (48). The linolenin containing triacyl
glycerols PLLn and LLLn were eluted as broad peaks (Figure 
5A) which may indicate artifact formation. The separation of a 
standard solution of polycyclic aromatic hydrocarbons is shown 
in Figure 6. 

Conclusions 
The chromatographic properties of methyl-phenyl-subst i -

tuted silicones are influenced by the polymer composi t ion. 
Thermal stability is thus greatly improved by the presence of 
diphenyl-containing moieties. Kováts index of biphenyl is ca. 
6 units higher on methyl-phenyl-subst i tuted silicones than on 
polymers having d imethyl and diphenyl subst i tuents . Poor 
thermal stability was obtained with the commercially avail
able OV-17-OH. 
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