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ABSTRACT

Motivation: Time-series measurements of metabolite concentration
have become increasingly more common, providing data for building
kinetic models of metabolic networks using ordinary differential
equations (ODEs). In practice, however, such time-course data
are usually incomplete and noisy, and the estimation of kinetic
parameters from these data is challenging. Practical limitations due
to data and computational aspects, such as solving stiff ODEs
and finding global optimal solution to the estimation problem,
give motivations to develop a new estimation procedure that can
circumvent some of these constraints.
Results: In this work, an incremental and iterative parameter
estimation method is proposed that combines and iterates between
two estimation phases. One phase involves a decoupling method,
in which a subset of model parameters that are associated with
measured metabolites, are estimated using the minimization of slope
errors. Another phase follows, in which the ODE model is solved one
equation at a time and the remaining model parameters are obtained
by minimizing concentration errors. The performance of this two-
phase method was tested on a generic branched metabolic pathway
and the glycolytic pathway of Lactococcus lactis. The results showed
that the method is efficient in getting accurate parameter estimates,
even when some information is missing.
Contact: rudi.gunawan@chem.ethz.ch
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Advancements in biological techniques have made time series
measurements of metabolite concentration more readily available,
providing data for the creation of kinetic metabolic network models
in the form of ordinary differential equations (ODEs). Time-course
data contain information about the structure and dynamics of the
metabolic pathways, but such information is implicit and must
be extracted using an inference method. This inverse modeling
task has motivated the creation of various methods for parameter
estimation and structure identification, as summarized in a recent
review (Chou and Voit, 2009). However, the inverse modeling of
biological systems is often complicated by the lack of complete data,
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poor data quality (noise) and the computational difficulty in solving
model equations and optimization problems. Existing techniques
often fail to yield accurate parameter estimates due to one or a
combination of these reasons.

Time-series datasets for metabolites are usually incomplete and
noisy due to two roadblocks: complexity and technology. The
high complexity of metabolic networks with a large number of
metabolites means that the complete measurement of all relevant
metabolites is not practically feasible. In addition, in order to
accurately capture the dynamic behaviors of metabolites, the time-
course data should be measured frequently enough, which often
challenges the limit of the available techniques. Furthermore, in
experiments, several time points of metabolites could be missing
because of various reasons (e.g. human error). While the issue of
missing time-points can be partly addressed by data interpolation,
the complete loss of data from metabolites poses a more challenging
problem in parameter estimation and is the focus of the present work.
In few instances, it may be possible to obtain missing metabolite
measurements by analyzing the convex basis of the left null space
of the stoichiometric matrix, which gives the sets of metabolites
whose total weighted concentration is time invariant (Famili and
Palsson, 2003).

Among canonical ODE models of metabolic networks, power-law
models within the Biochemical Systems Theory (BST) (Savageau,
1969a, b), such as S-system, have drawn much attention due to many
advantages (Chou and Voit, 2009; Voit, 2000). The generic form of
an S-system model is given by:

Ẋ = f (X,p)
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(1)

where X is an n-dimensional metabolite concentration vector and
the parameter vector p consists of the rate constants (αi, βi) and
kinetic orders (gij, hij). The sign of the kinetic orders indicates
the nature of the connectivity among metabolites, where a positive
value represents a substrate or activation and a negative number
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refers to an inhibition. That is, in S-system models, the parameter
values directly describe the connectivity of the metabolic pathway,
including stoichiometric and regulatory relationships. This one-
to-one relationship between parameters and structural features
facilitates parameter estimation and network structure identification
in a single step (Sorribas and Cascante, 1994).

One of the challenges when applying standard parameter
estimation methods (e.g. least square or maximum likelihood) to
S-system models is in the expensive numerical computation of
the model solution, where ODE simulations become practically
infeasible for some parameter combinations due to stiffness. In one
example, the time taken by the ODE integrations in estimating
parameters of an S-system model made up >95% of the total
computational time (Voit and Almeida, 2004). Another challenge is
the combinatorial increase in the number of parameters as a function
of the number of metabolites, leading to a large-scale optimization
problem. Even after more than 100 publications on this topic, the
parameter estimation remains the bottleneck in the application of
BST modeling for biochemical networks (Chou and Voit, 2009).

In this article, a new parameter estimation procedure is proposed
that combines two methods: the decoupling method (Voit and
Almeida, 2004) and the ODE decomposition method (Maki et al.,
2002). Provided that all metabolite measurements are available, the
decoupling method is a highly efficient estimation procedure that
avoids solving ODE integration altogether by fitting models to the
slope of time-series data. In the ODE decomposition method, the
model equation is solved one at a time, and likewise this method
decouples the parameter estimation problem. While each of these
methods has its own merits (see Section 2), the proposed iterative
estimation is created to keep the advantages and to lessen the
disadvantages of the original methods.

2 METHODS

2.1 Decoupling method
In order to circumvent expensive computational efforts in solving coupled
ODEs, a method was proposed previously by fitting the right hand side of
the ODE model in Equation (1) to the slope of concentration data directly,
thereby decoupling the ODEs (Savageau and Voit, 1982; Voit and Almeida,
2004; Voit and Savageau, 1982a, b):
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Thus, assuming that time-series concentration data of all metabolites Xi(tk)
are available, the slopes Si(tk) can be calculated and the estimation simplifies
to solving a set of n×N (nonlinear) algebraic equations, where N is the
number of time points. Note that since there is no integration of the ODEs, the
minimization of the difference between slopes and f (X,p) is computationally
efficient, even for a large number of parameters. However, one drawback of

this method is that the mole balance is only satisfied at discrete time points
tk and thus, the resulting parameter estimates often give concentration time
profiles that offset the data.

When data are noisy, slope estimates by finite differencing will have
spurious fluctuations as noise are amplified by such calculations. Thus, data
smoothing is a necessary step in this method, for example using polynomial
fitting, neural network (Voit and Almeida, 2004) or automated smoother
(Vilela et al., 2007). Regardless of the smoothing method, extra care has to
be taken to avoid data overfitting, and even with automated methods, user
judgment is still needed in this process.

2.2 ODE decomposition method
A different decoupling method has been proposed that involves solving each
of the ODE one-by-one, and parameter estimates are obtained by minimizing
the sum of squares of concentration difference between model simulations
and data (Kimura et al., 2005; Maki et al., 2002; Marino and Voit, 2006).
During the integration of one ODE, the other states (metabolites) are treated
as external inputs, whose values are interpolated from smoothen time-series
data. By solving and fitting one metabolite at a time, this method avoids
the integration of coupled ODEs and also reduces the parameter search
space. In contrast to the decoupling method above, the mole balance of
each metabolite is approximately satisfied over time, not just at discrete time
points. Furthermore, the method can still be applied in a situation where there
are missing metabolite concentrations. However, the ODE stiffness problem,
though lessened, is not completely eliminated.

2.3 Combined iterative estimation
The proposed parameter estimation in this work iterates between the two
methods above according to the flowchart shown in Figure 1. By doing so,
this method combines the computational efficiency of the decoupling method
and reduced search space of the ODE decomposition method, and is also able
to handle missing metabolite measurements.

In consideration of missing data of some metabolites, the ODE model is
rewritten as: {

Ẋm = fm
(
Xm,Xu;pm

)
Ẋu = fu

(
Xm,Xu;pm,pu

) (3)

where Xm and Xu denote the measured and unmeasured metabolites,
respectively, pm includes all parameters appearing in fm, and pu includes the
remaining parameters (specific to fu) and the initial concentrations for Xu.
Prior to the iteration, data smoothing was performed to reduce noise effects
and to obtain slope estimates. Using the smoothen data and initial guess of
the parameters pu and pm, a simulation of unmeasured metabolites is carried
out by solving the ODEs for Xu only, as done in the ODE decomposition
method.

The first iteration then begins with the decoupling method to obtain pm

by minimizing the following slope errors:
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where Sm(tk) is the slope of smoothen data for Xm at t = tk . Using the
estimates of pm, the values of pu are obtained in the next estimation phase
by minimizing the concentration errors:
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in which the ODEs are solved one at a time. In this case, the ODEs for Xu

are solved prior to Xm and the newly simulated Xu values are then used
in the next iteration. If there are more than one unmeasured metabolites,
the ODEs for Xu need to be solved simultaneously. The procedure iterates
between the two estimation phases until convergence. Here, the iterations
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Fig. 1. Flowchart of the parameter estimation process.

Fig. 2. A generic branched pathway (Voit and Almeida, 2004).

are stopped when parameter estimates between iterations differ by less than
a chosen convergence factor.

In this article, the optimization problems in the two phases are solved
using the SSm GO MATLAB toolbox (Scatter Search Method for Global
Optimization) (Egea et al., 2007; Rodriguez-Fernandez et al., 2006). SSm is
a population-based metaheuristic method designed to incorporate strategic
responses, both deterministic and probabilistic, and has recently been shown
to be effective in solving multi-minima optimization problems. In addition,
to alleviate the ODE stiffness problem, each ODE simulation is limited to a
given maximum time and those exceeding this upper bound are assigned a
large objective function value.

3 RESULTS
The performance of the proposed method is demonstrated in
applications to a generic branched pathway (Voit and Almeida,
2004) and the glycolytic pathway of Lactococcus lactis (Vilela et al.,
2009).

3.1 A generic branched pathway
The metabolic pathway in this example is given in Figure 2, which
describes the transformations among four metabolites (double-line
arrows) with both feedback activation and inhibition (dashed arrows
with plus and minus signs, respectively).

The pathway is modeled in the form of an S-system with 12 kinetic
parameters, as follows (Voit and Almeida, 2004):⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ1 =α1X0Xg13

3 −β1Xh11
1 ,

Ẋ2 =α2Xh11
1 −β2Xh22

2 ,

Ẋ3 =β2Xh22
2 −β3Xh33

3 Xh34
4 ,

Ẋ4 =(
β1 −α2

)
Xh11

1 −β4Xh44
4 ,

X0 =0.6,

⎡
⎢⎢⎢⎣

X1(t0)=1.4,

X2(t0)=2.7,

X3(t0)=1.2,

X4(t0)=0.4.

⎤
⎥⎥⎥⎦. (6)

This model was used to generate in silico noise-free and noisy
experimental data (10% additive noise, Gaussian, i.i.d.) using
the parameter values reported in the original publication (see
Supplementary Table S1) and with the assumption that only X1,
X2 and X4 were measured. A 6th order polynomial, for which the
adjusted R2 reached a maximum, was chosen for data smoothing
and to calculate the slope data. Adjusted R2 was used here to avoid
data overfitting (Montgomery and Runger, 2007). In the parameter
estimation, the search space was limited to αi, βi ∈[0,25.0], gij,hij ∈
[−2.0,2.0], and X3(t0)∈[0,5.0]. The numerical integrations were
performed in MATLAB using ode15s.

One practical issue affecting the parameter estimation in this
example and a majority of biological system modeling is the lack of
complete parameter identifiability (Srinath and Gunawan, 2010). In
other words, not all parameters can be uniquely identified and only a
subset can be determined from data. Here, the proposed method will
first be evaluated under the ideal scenario, in which the estimation
is done only for the subset of a priori identifiable parameters (AIPs)
(Yao et al., 2003) (the other parameters were set to the original
values) and using noise-free data. Application of standard least
square estimation using fully coupled ODEs encountered numerical
stiffness problem and failed to converge, and the decoupling method
cannot be applied for estimation involving missing measurements.
Thus, in this example, the ODE decomposition estimation was used
for comparison.

Table 1 summarizes the estimation results under the ideal scenario
described above. In this case, the performance of the proposed
method using 0.01% convergence criterion is comparable to the
ODE decomposition. The larger parameter deviations in the two-
phase estimation is caused by the polynomial smoothing to obtain the
time slope data, without which the performance of the two estimation
methods are virtually identical. In addition, by increasing the
convergence factor, the proposed method can reduce computational
time, but at the cost of increased errors in the parameter estimates.

The results of estimating the full parameter set are given in
Table 2, Figure 3A–B and Supplementary Table S1. Even when
data are noise-free, the relative errors of the parameter estimates
can reach higher than 300% using the ODE decomposition method.
While parameter identifiability issue certainly contributes to these
errors, the ODE decomposition in this case failed to extract the
maximum information available in the data, in comparison to the
proposed method. Here, the application of the proposed iterative
method using noise-free data and 1% convergence criterion gave
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Table 1. Estimation of AIPs in branched pathway model

ODE Decomposition Two-phase estimation

0.01%a 0.1%a 1%a

Computational time (s)b 3968.33 3741.86
(3823.77)c

2042.40 810.37

Number of stiff simulations 203 0 0 0
Average parameter error (%) 0.24 1.37

(0.20)c
2.26 8.11

Slope errord 2.6435 2.4374
(0.0087)c

2.6052 6.6401

Concentration errore 0.0047 0.0187
(0.0049)c

0.0198 0.0805

aConvergence criterion between two estimation phases.
bComputational times were based on Dual Processors Intel Quad-Core 2.83 GHz.
cEvaluated using actual slope values from the ODEs.
dSlope error is calculated using Equation (4), in which Xu , Xm are simulated using
coupled ODEs.
eConcentration error is calculated using Equation (5), in which Xm are simulated using
coupled ODEs.

Table 2. Parameter estimation of the branched pathway model

ODE decomposition Two-phase estimation

w/o noise w/ noise w/o noise w/ noise

Computational time (s) 4493.2 10910.3 1062.1 2807.4
Number of stiff ODE

simulations
1247 2012 359 823

Average parameter error (%) 92.18 90.97 36.59 47.27
Slope error 2.5962 9.4303 0.8620 8.5909
Concentration error 0.5137 5.8207 0.1526 3.6021

improved parameter estimates and importantly, in much shorter time
than the ODE decomposition (see Figure 4A–B and Table 2). The
maximum relative error dropped to 150% and fewer parameters
had errors above 50%. In addition, the predicted concentration
and slope profiles were relatively better than those from the ODE
decomposition alone. While the lack of fit to the missing X3 data in
both methods was expected, parameter estimates from both methods
were able to capture the trend.

The proposed iterative method again gave comparatively more
accurate parameter estimates and finished in much shorter time than
the ODE decomposition when using noisy data. The results from the
two estimation methods are shown in Figures 3C–D and 4C–D and
in Table 2. As expected, these parameter estimates were on average
less accurate than those obtained from noise-free data. However,
the estimation in this case took two to three times longer than those
using noise-free data.

3.2 The glycolytic pathway in L.lactis
The second case study was taken from the modeling of the
glycolytic pathway of L.lactis using S-system (Vilela et al., 2009)
(Supplementary Figure S2). Experimental time-course data of the
metabolites were previously obtained using in vivo NMR (Neves

A B

C D

Fig. 3. ODE decomposition estimation in the branched pathway model:
parameter errors (A, C) and concentration simulations (B, D) using noise-free
(A, B) and noisy data (C, D); (solid line) simulation profile, (open circles)
in silico data.

A B

C D

Fig. 4. Two-phase iterative estimation in the branched pathway model:
parameter errors (A, C) and concentration simulations (B, D) using noise-free
(A, B) and noisy data (C, D); (solid line) simulation profile, (open circles)
in silico data.

et al., 2005; Ramos et al., 2002). Here, the concentration variables
denote the following metabolites: glucose (Glu)—X1; glucose
6-phosphate (G6P)—X2; fructose 1, 6-biphosphate (FBP)—X3,
phosphoenolpyruvate (PEP)—X4; lactate (Lac)—X5; and acetate
(Ace)—X6. Assuming that the network connectivity is known, the
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Table 3. Parameter estimation of the L.lactis metabolic model

ODE decomposition Two-phase estimation

w/o noise Filtered data w/o noise Filtered data

Computational
time (s)

79772.3 81858.8 24838.9 27325.2

Number of stiff
ODE
simulations

875 1023 316 368

Average
parameter
error (%)

243.90 – 97.29 –

Slope error
(1/Na)

77.350 27090.2 2.3240 1.4910

Concentration
error (1/Na)

24.777 288.71 24.784 24.573

aN is the number of time points in each metabolic profile.

model equations and initial conditions are given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ1 =α1-β1Xh11
1 X−h14

4 ,

Ẋ2 =α2Xg21

1 Xg24

4 -β2Xh22
2 ,

Ẋ3 =α3Xg32

2 -β3Xh33
3 ,

Ẋ4 =α4Xg43

3 -β4Xh42
2 Xh44

4 ,

Ẋ5 =α5X−g54

4 −β5,

Ẋ6 =α6X−g64

4 .

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1(t0)=20,

X2(t0)=0.4,

X3(t0)=0.4,

X4(t0)=8.5,

X5(t0)=0.05,

X6(t0)=0.3.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

First, using the parameters reported in the original publication
(Vilela et al., 2009) (Supplementary Table S3), in silico noise-free
data were produced for all metabolites, except X3. In this case,
we have used a piecewise polynomial fitting, since the data before
t =9.4 min had markedly different dynamics. Specifically, eighth-
order and second-order polynomials were used in the fitting before
and after this time, respectively, again based on maximizing the
adjusted R2. The parameter search space was limited such that αi,
βi ∈[0,20.0], gij , hij ∈[0,5.0] and X3(t)∈[0,20.0].

Table 3 reports the parameter estimation results using the ODE
decomposition and the two-phase iterative method. Compared with
the results from the ODE decomposition (Figure 5 and Table 3),
the proposed method gave better concentration and slope fitting
at roughly three times lower computational cost. In addition, the
parameter errors from the two-phase method, though large, were
comparably lower. Even with the full measurements, parameter
identifiability issue has been shown to exist in this system (Srinath
and Gunawan, 2010).

Finally, the two-phase iterative estimation and the ODE
decomposition were applied to published smoothen NMR data using
automated smoother (Vilela et al., 2007), again without X3 The
estimation results are also summarized in Table 3 and illustrated in
Figure 6. As before, the proposed method gave markedly improved
concentration and slope data fitting in shorter amount of time than
the ODE decomposition method.

Fig. 5. Metabolic profiles in the L.lactis glycolytic pathway: in silico data
(open circles), ODE decomposition (dashed line), and two-phase iterative
estimation (solid line).

Fig. 6. Metabolic profiles in the L.lactis glycolytic pathway: smoothen data
(open circles), ODE decomposition (dashed line), and two-phase iterative
estimation (solid line).

4 DISCUSSION
The proposed iterative parameter estimation method builds on the
strengths of the decoupling method and the ODE decomposition
method. By decoupling the ODEs, this method is significantly
faster than other methods that require integrating complete coupled
ODEs at each objective function evaluation, while still giving
good fit to measured concentration data. In addition, like the ODE
decomposition method, the combined approach does not require
complete measurements of all metabolites and has much reduced
parameter search space. As shown in the applications to the two
cases, the proposed method was superior to the two methods from
which it was developed. When metabolite measurements were
incompletely available, the decoupling method could not be applied.
Compared with the ODE decomposition method, the proposed
method gave more accurate parameter estimates and better data
fit (slope and concentration) at a much lower computational cost.
While the fit to missing concentration measurement had an offset, it
is noteworthy that the dynamic trend can be captured.

The combination of slope and concentration fitting had also
been used in several existing parameter estimation methods. For
example, Wang and Liu had developed a method where kinetic
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parameters were estimated simultaneously by minimizing both
slope and concentration errors using a multiobjective optimization
framework (Wang and Liu, 2008). Similar to the two-phase
method here, Gennemark and Wedelin had proposed a multi-step
method, where a derivative method was used to obtain an initial,
rough guess of model parameters, for subsequent minimization of
concentration error (Gennemark and Wedelin, 2007). These two
methods however assumed that all metabolite measurements are
available. Notably, in the latter, the ODEs were also solved one at a
time using single or multiple shooting methods, thereby decoupling
the parameter estimation problem as in the ODE decomposition.
The shooting method can in fact be used to substitute the role of
ODE decomposition in the two-phase iterative estimation, giving
an alternative method.

Another method extended a class of ODE solvers, called
orthogonal collocation method, for estimating model parameters
(Ramsay et al., 2007). In this case, the concentrations were
approximated as a linear combination of basis functions, where
the coefficients were treated as nuisance parameters. Model
parameters were then simultaneously estimated by minimizing the
approximation errors between the simulated concentration and the
data, and between the time-derivative of concentration prediction
and the right hand side of Equation (1). Despite the similarities,
the proposed method differs from this and the above methods in
the grouping parameters into two, those that are associated with
measured variables and those with unmeasured concentrations. By
doing so, the parameter estimation can be solved more efficiently
(solving a few small parameter estimation problems is easier than
solving the combined, simultaneous estimation). Also, in this case,
when more metabolites are measured, the estimation naturally
becomes faster, since more parameters will be estimated in the first,
computationally efficient phase.

Although the proposed method performed better than the ODE
decomposition in terms of data fitting (i.e. lower slope and
concentration errors), many of the parameter estimates were far
from the true values (see Supplementary Tables S1 and S3). This
may not be surprising as that the estimation problems had assumed
missing data for one metabolite. Nevertheless, even with complete
data, parameter identifiability has been shown to be lacking in
the estimation of kinetic parameters from time-series data and the
severity of this problem can be assessed quantitatively (Raue et al.,
2009; Srinath and Gunawan, 2010).

Related to the identifiability issue, the kinetic information
contained in different metabolites are not equal. The expected
degradation in the accuracy of the parameter estimates from missing
data depends on the degree of connectivity of the missing metabolite
in two ways. The kinetic information (i.e. rate of change) of a
metabolite is partially contained in the downstream and upstream
metabolites in the metabolic network. The higher the degree of
connectivity, by stoichiometry, of a missing metabolite, the more can
the missing flux information be extracted from the available data.
While this missing flux can be determined, the (initial) concentration
of the unmeasured metabolite however is still lost. Thus, it is
possible to capture the trend of the missing profiles, but not the
concentration values, giving an offset between the simulated and
true concentrations, as seen in the first and to some degree in the
second example above.

However, when considering regulatory connectivity, the
concentration of metabolite(s) is important. Here, the loss of

concentration data of an important, highly connected regulatory
metabolite will lead to a significant loss of information that cannot
be easily recovered. In the first example, the loss of metabolite X3
data represented the worst-case scenario, as this metabolite has a
high regulatory connectivity and missing downstream metabolite
data. On the other hand, if X2 was not measured, the parameters can
still be identified from other metabolites, since the set of pu is null,
i.e. the estimation can be done using only the decoupling method.
Finally, an increase in the number of unmeasured metabolites will,
in general, lead to lower overall kinetic information and poorer
parameter estimates. In the first example, missing both X2 and X3
indeed gave less accurate parameter estimates, but the two-phase
method still outperformed the ODE decomposition (Supplementary
Tables S1, S2 and Figure S1).

For a given system, the computational requirement of the
proposed method depends on several aspects, such as the
number of measured and unmeasured metabolites, the number of
parameters associated with measured and unmeasured metabolites,
the convergence speed of the iterations, and as seen in the example,
the noise in the data. In general, the higher the number of parameters
involved in the first phase, the faster will the estimation finish.
Unfortunately, the scalability of the method to larger systems is
difficult to be determined as all of the factors mentioned above will
interact. For example, the scaling will depend on the distribution
of the additional parameters between the two phases as well as on
the dynamics of the system (e.g. related to stiffness of the ODEs).
In addition, the convergence will also play an important factor, but
unfortunately, this is difficult to consider as the two phases have
different objective functions.

Finally, while the applications considered in this article were
taken from S-system models, the proposed iterative estimation is not
limited to only BST models. The reason to consider these examples
was that these models represent some of the most difficult parameter
estimation problems due to the large number of parameters, stiff
ODEs, and high degree of nonlinearity. The proposed method can
also be applied to problems in which complete time-series data
are available. In such a case, the parameters can be divided into
two groups based on the level of difficulty in estimating them
in each estimation phase. For example, for S-system models, the
kinetic orders can be grouped together in the first phase (decoupling
method), while the rate constants can be estimated in the second
phase (ODE decomposition).
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