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Abstract. We construct a rrspace that is not hereditarily compact, although each of
its open sets is the intersection of two compact open sets. The search for such a space was
motivated by a problem in the theory of quasi-proximities.

1. Introduction. Answering a question of [3] the first author showed in [4] that a
topological space X admits a unique quasi-proximity if and only if its topology is the
unique base that is closed under finite unions and finite intersections. (Here we assume
that D0 = X.) Such spaces are studied under the name upq spaces in [7, 8] and in [3] it is
observed that each uqp Hausdorff space is finite (compare also [1, Proposition 4]). Two
simple countable examples of first-countable uqp 70-spaces that are not hereditarily
compact (see for example [9]) are provided in [4]. In [5] it is observed that each uqp
7]-space in which each point is a G«-set is hereditarily compact. Similarly, locally
hereditarily Lindelof uqp 7,-spaces are shown to be hereditarily compact in [2]. These
results have led to the question whether each uqp 7,-space is hereditarily compact [2, 6].
This simply stated problem has turned out to be very intractable. It is the aim of the
present note to show that indeed a uqp 7i-space need not be hereditarily compact. Our
example is scattered (i.e. each nonempty subspace contains an isolated point) and has the
property that each of its open sets is the intersection of two compact open sets. The
construction is carried out in ZFC, but the cardinality of the obtained space is very large.
Curiously, it may be the largest space so far constructed in topology, without the use of
additional set-theoretic axioms, to answer a specific question. The problem remains open
whether each uqp 7J -space of small cardinality, say 2", may be hereditarily compact.

2. The example. We begin with a technical result that can be used to derive many
known facts about uqp spaces. It will motivate the subsequent construction of the
counterexample by showing how close uqp spaces come to being hereditarily compact.
Recall that a subset G of a topological space X is called bounded in a subset Y of X
provided that each open collection in X that covers Y has a finite subcollection covering
G.

PROPOSITION 1. Let X be a uqp space that is not hereditarily compact and let Y be a
maximal element among the noncompact open subspaces of X. Then for any open subspace
GofYwe have that either Y\G is compact or G is bounded in Y.

Proof. Let °U be an open cover of Y without a finite subcollection covering G. Then
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208 HANS-PETER A. KUNZI AND STEPHEN WATSON

by [4, Proposition] for an arbitrary ultrafilter $ on X containing {G\U: U s °U}, there
exists a finite (possibly empty) collection M of open sets in X such that f l i c G and each
member M E M contains a cluster point of (S. Thus for any M E M, we have M\Y ¥> 0,
and consequently YUM and Y\M are compact. We conclude that Y\D M and thus also
Y\G are compact.

We next define a transfinite sequence of cardinals by using essentially the well-known
beth function. Set Ao = 1 and A! = w. Furthermore for any ordinal B 5^0 set Ap+i = 2Afl.
Finally, set A«= 2 A^ for any limit ordinal B.

t3<0

LEMMA 1. There is an ordinal a with uncountable cofinality such that a = 2 (Ap)1".
/3<a

Proof. Define a class function f :On^>On on the class On of ordinals by setting
f(y) — 2 (Afl)" for each ordinal y. Clearly / (y) > y for any ordinal y and / is

continuous; i.e. for every limit y, f(y) = lim/(8). Define now a transfinite sequence

{a6: 8 :£ o>i} of ordinals as follows. Set a0 = co and a6+1 = / (a s ) for any ordinal S < W].
Furthermore let as = supaT for any limit ordinal 5<wj . Since / is continuous, we see

r<«
that/(£!!„,,) = a,,,,. Because of the continuity o f / i t is also readily checked that aW] has
uncountable cofinality.

As usual, for any set A, we let [A]" = {B ^A : \B\ = w}. Here |B| denotes the
cardinality of B.

We are now going to construct the space described in the introduction.

EXAMPLE 1. Let a be the ordinal aWl defined in the proof of Lemma 1. We shall
construct inductively a scattered space X of height a +1. For any ordinal )3^a , X$

denotes the set of the isolated points of X\ U Xy. For any point x <=X, its level l{x) is
y<fj

the unique ordinal y such that A: E Xy. The height of a subset /I of A' is the ordinal
sup{/(x) + 1: x E A).

Let XQ be a countably infinite discrete space. Consider B ¥= 0, /3 < a and suppose that
the space U Xy has been defined inductively such that the following conditions are

satisfied.
When having created a level set Xy we list [Xy]

w by indexing it by an initial segment
of {eeOn : 0< e < (Ar+1)

a>}. Furthermore for any B* e (A>+1)
w we define two sets

flp(y + l,/3*) and /?«(-y +1./3*) as follows. Assume that /?(y +1,/3*) is the j8*th
countably infinite subset of Xy. We write R(y + 1, /?*) as the disjoint union of two infinite
sets Rp(y + l,B*) and i?9(y +1,/3*). In the case that B* is not used for listing, we set
these two latter sets equal to the empty set.

Moreover for any limit ordinal y we list U Xy by an initial segment of

{e E On : 0< e < (A^y}. Furthermore for any B* E (A.,,)"1 we define two sets R"(y,B*)
and Rq(y,B*) as follows. Suppose that R(y,B*) is the j3*th countably infinite subset of
U Xy in that list and R(y,B*) has the property that {/(r) :r e R(y, B*)}/y. (This

notation means that every neighborhood of y with respect to the order topology on a
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A NONTRIVIAL 7^-SPACE 209

contains /(r) except for finitely many r.) Then we represent R(y, /3*) as the disjoint union
of two sets Rp(y, /3*) and Rq(y, /3*) having the latter property. If /3* does not belong to
the index set of the list or if {/(r): r e R(y, &*)}/y is not satisfied, we set Rp(y, /3*) =
R"(y,l3*) = 0.

We are now ready to describe the points of the level set Xp(p ¥> 0, )3 < a) and their
basic neighborhoods in (J Xy.

First determine 8 < a such that 0 = 2 (Ar)
a> + )3* with /3* e (Ag)".

Note that j 3 > S > l . y<fi

Case 1. Suppose that 8 is a successor ordinal.
By the induction hypothesis we can suppose that we have prepared a well-ordered list

of [A'g-i]™, where we have used an initial segment of {e e On : 0 < e < {\ST} as index set
of this list.

Consider any open set Urn {J X^ such that U\F is of height )3 for any finite set F.
M</3

For any such open set U, we put two points pv and qv into the level set Xp. The basic
neighborhoods of pu are [{p^U U I) R^S, p*)]\F, where F is a finite set. Similarly, the
basic neighborhoods for qv are [{qy} U U U Rl(8, /3*)]\f, where F is a finite set. Here for
/ e{p,q}, R'+(8,P*) is an open neighborhood of /?'(fi,/3*) in U A',,. If it is possible,

r<«
choose this open neighborhood such that [/?'*(S,/3*)\/?'(S,/3*)] g i/. (In fact, we shall
show in Lemma 8 below that such a choice is always possible. Note that our notation does
not indicate that these neighborhoods depend on U.)

Case 2. Suppose that 8 is a limit ordinal.
Since j8 s 6, we can assume that we have prepared a well-ordered list of U Xy\ as

described above. ly<s J

Consider any open set U in U X such that U\F is of height /3 whenever F is a finite

set. For any such U put two points pv and qv into Xp. The basic neighborhoods are
[{Pu}U U UR^iS, P*)]\F for />„, and [{<?<y}U UU R%(8, )3*)]VF for ^ respectively. In
either case F denotes a finite set. Furthermore for ie.{p,q), R'^S,^*) is an open
neighborhood of /?'(5,/3*) in U Xy. If it is possible, we choose this neighborhood in a

way that [R'*(8, /3*)\/?'(S, j3*)]c U. (It will follow from Lemma 8 below that such a
neighborhood can always be found. Again our notation does not indicate that the chosen
neighborhood depends on U.)

This concludes the construction of the space U Xy.

During the induction we create new well-ordered lists etc. in the way described above
whenever the sets are available to do so.

Finally, let Xa consist of two additional points » and - » . A neighborhood of such a
point * is a cofinite subset of X = U Xy containing x.

Note that for any p-^a,X« really consists of the isolated points of X\ U Xy.
y</3

We next verify that the example is well defined; i.e. the indexing of the lists is
possible.

LEMMA 2. The induction was indexed correctly.

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0017089500031451
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 19:30:46, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0017089500031451
https:/www.cambridge.org/core


210 HANS-PETER A. KUNZI AND STEPHEN WATSON

Proof. The construction above works under the assumption that |Ar
r|^Ar+1 for any

ordinal y<a, and that ^ \y for any limit ordinal y < a. Thus it is clearly

sufficient to show that \Xp\<\f3+l for any ordinal /3 < a.
This holds for /3 = 0. Suppose that /3 < a, /? ¥> 0 and that the inequality \Xp-\ < A^+1

holds for all j3'</3. Assume that /3 is a limit ordinal. By the inductive assumption,
U XR' has cardinality at most £ As-+1. Therefore, by the construction of the space, we

conclude that \X^\ < 2^^^' £ \0+v

If j8 is a successor ordinal, an analogous argument shows that \XP\ ̂  \p+\, too.
We shall now prove several lemmas in order to verify the assertion on neighborhoods

made during the construction of the space.

LEMMA 3. Let U be an open subset of X of height greater than /3 and
P = 2 (A,,)1" + )3*, where /3* e (\s)

a> and 8<a. Then U contains an infinite subset of

R(8,p*) provided that the set Rp(8, /?*) ¥• 0.

Proof. The set U contains a point of the level set X0. By the construction of the basic
neighborhoods of this point, an infinite subset of R(8,fi*) must be contained in U
provided that the set Rp(8,fi*) is nonempty.

LEMMA 4. Let U be an open subset of X of height greater than £, £ = £ (Ay)'" and
y<8<a. Then U contains a cofinite subset of XK, for any K < y. y <s

Proof. Apply Lemma 3 to each 0 = 2 (Ay)" + /?*, where /3* e (AK+1)
W. Since U

y'<x + l
has height greater than /3, U contains an infinite subset of R(K + 1, /3*) for all such /3* for
which the set RP(K + 1, /3*) is nonempty. Therefore [/ contains an infinite subset of every
countably infinite subset of XK. We conclude that U contains a cofinite subset of XK.

LEMMA 5. Let U be an open subset of X of height greater than £, £ = £ (Ay)'" and y
•y'<6

is a limit ordinal with y<8<a. Then U contains all but a finite set of each countably
infinite set R^. (J Xy such that {/(r): r e R]/y.

Proof. We can apply Lemma 3 to each /3 = 2 (Ay)"+ /3*, where /3* e (A.,,)",

because £/ has height greater than /3. Then U contains an infinite set of R(y,fi*) for all
/3* such that Rp(y,p*) is nonempty. Consequently U contains an infinite subset of each
countably infinite subset R c [J XY having the property that {/(r): r E R}/y. We

•y'<y

conclude that £/ contains a cofinite subset of each such fl.

LEMMA 6. Let U be an open subset of X having height greater than £, £ = 2 (Ar)
w

-y < S < a. 7/ie« £/ contains a cofinite subset of U XY. y <s
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A NONTRIVIAL 7,-SPACE 211

Proof. If U misses a countably infinite subset S of U Xy, then there exists y' < y
y'<y

such that |S D Xy\ = co, or there exist y' < y and a countably infinite set /? £ 5 n IJ XK

having the property that {/(r): r e ^ j / ' y ' . K<y

In the first case, we obtain a contradiction, because, by Lemma 4, (7 contains a
cofinite subset of A"y.. In the second case, we see that, by Lemma 5, U contains a cofinite
subset of R. Again we have reached a contradiction.

LEMMA 7. Let U be an open subset of X having height a. Then U is a cofinite subset
ofX.

Proof. If U misses a countably infinite subset A of A"\{-<*, °c}, then since cf(a) > w,
there exists y < a such that A c (J A^.. We apply now Lemma 6 to 5 = y + 1. Since

>'<T

£:= 2 (Ay)"< 2 (Ay.)
u = a, the set 1/ has height greater than £ Therefore U

y'<8 y'<a

contains a cofinite subset of U Xy—a contradiction.
y'<y

LEMMA 8. Let U be an open subset of X such that for any finite set F, U\F is of height
0 < a, where 0 ^ 0 , 0 = 2 (Ay.)" + )3*, j3* e (A«)" and 8 < a.

y'<8

W/ien constructing the space X we can always find for i e {p,q} an open neighborhood
R'*(8, )3*) ofR'(S, p*) in \J Xy such that [R'^S, p*)\R'(8, p*)] £ U.

y<8

Proof The statement is nontrivial only for those R'(8, fi*)¥:0 for which 8 # 1, since
otherwise R'(8,p*) is open. Hence we consider this situation. (Note that then in
particular 0*5*0.)

Case 1. Suppose first that 8 ^ 1 is a successor ordinal. Applying Lemma 6 for
y = 8 - 1, we see that the set U contains all but a finite subset E of U Xy; because U

/<?

has height 0 = 2 (Ay.)
cu + 0 * > 2 (Ay)" By definition, R'(8,p*)^Xy. Since A" is

•/<6 y'<S

scattered, by using the 7^-property we can clearly find an open neighborhood R'^,(8, /3*) of
7?'(S, 0*) in U Xy. such that i?;(8, p*)\R'(S, 0*) is contained in £/, because E is finite.

y'Sy

Case 2. Suppose now that 8 is a limit ordinal. Set E:= I (J A1,,. ) \ (7. By Lemma 6

there cannot exist y < 8 such that E C\ (J A"y is infinite, since the set U has height
y'<r

0 = 2 (Ay)<u + 0*> 2 (Ay)". Hence E must be equal to a countably infinite set fl
y<6 y<«

such that {l(r): r E R}/8 or E must be finite. In either case by the 7i-property and
scatteredness of X we can then clearly find an open neighborhood R'^(8,p*) of
R'(8,P*)S8 in U Xy- such that [R^(8,p*)\R'(8,p*)] is a subset of U.

y'<«

PROPOSITION 2. T/ie space X constructed above is a Trspace in which each open set is
the intersection of two compact open sets. {Hence by the criterion cited in the introduction it
admits a unique quasi-proximity.) Nevertheless X is not hereditarily compact.

Proof. As we have already observed, X is clearly a rrspace by construction. Since it
has infinitely many isolated points, it is not hereditarily compact. By Lemma 7 each open
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212 HANS-PETER A. KUNZI AND STEPHEN WATSON

set U of height a is cofinite in X. Thus U = {U U {»}) n (U U {-<*}), where the two latter
sets are compact and open. If U is an open set of X of height a + 1, then <* or -oc belong
to £/. Thus clearly (/ is cofinite and compact.

Let U be an open subset of X of height /3 < a, j3 7* 0 and 0 = 2 (A,,.)" + /3*, where

/3* e (A5)
w and 8 < a. If iAFhas height 0 whenever F is a finite set, then, by Lemma 8, U

can be written as [{pu}U U U R"*(8, &*)] D [{<Zi/}U U U R%(8,/3*)], where p,, and g^
belong to Xp and either of the unions on the right hand side is compact and open.

On the other hand, if there is a finite set F such that the height of U\F is strictly
smaller than U, then there exists a finite subset E of U such that the height of U\E is
equal to the height of (U\E)\F whenever F is a finite set. Choose for each e e E an open
neighborhood U(e) such that U(e) £ U. In the light of the preceding subcase it is clear
that the open set U\E can be written as the intersection of two compact open sets, say d

and G2. Then U = (\J U(e)UGi)n([J U(e)l)G2) and we conclude that U is the
\esE I \eeE I

intersection of two compact open sets.
We finally remark that X is sober, since each scattered space is sober. (A topological

space is called sober provided that each closed irreducible subspace is the closure of a
unique point, where a nonempty topological space is said to be irreducible provided that
any pair of nonempty open sets intersects.) Note also that X is locally compact; i.e. each
point has a base consisting of compact neighborhoods. In fact, by construction X has a
base that consists of compact open sets.

Let us mention that our work on the question dealt with above can be considered a
possible starting point of general investigations on the problem of how a topology is
obtained from its bases. Suppose that we are given a (possibly finite) sequence 5 = (sa)o<p

of cardinals larger than 2. Assume furthermore that all odd entries of this sequence are at
most o). Let us denote by s-space any topological space X which has the property that for
each base S3 of X, U 53a is the topology of X, where S8_i = 53 and for any ordinal y

such that y</3, the collection S8y is obtained from [J 53Q by taking unions (resp.

intersections) of fewer than sy elements in LJ S8Q provided that y is even (resp. odd).
a<y

Note that using this terminology each hereditarily compact space is an (w)-space, the
space constructed above is an («, 3)-space and uqp-spaces can be re-defined as
(a), &))-spaces. De Morgan's laws show that distinct sequences 5 can yield the same class of
spaces; e.g. uqp spaces can also be defined as io-spaces, where s0 denotes the co-sequence
all entries of which are o>.

The example given above suggests the conjecture that whenever two sequences s and
t yield distinct classes of spaces, then the intersections of these two classes with the class
of T] -spaces will differ, too.
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