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Abstract

We consider self-similar iterated function systems in the sub-Riemannian setting of
Carnot groups. We estimate the Hausdorff dimension of the exceptional set of translation
parameters for which the Hausdorff dimension in terms of the Carnot–Carathéodory metric
is strictly less than the similarity dimension. This extends a recent result of Falconer and
Miao from Euclidean space to Carnot groups.

1. Introduction

1·1. Preliminaries

One of the most common ways to construct and describe fractal sets (cf. [11, 17]) is by
the action of a system of contractions—known as an iterated function system (IFS)—on
a metric space. Let (X, d) be a complete metric space and f = { f1, . . . , fM} be a finite
set of contraction mappings on X . That is, for each j = 1, . . . , M , the map f j : X → X
satisfies

d( f j (x), f j (y)) � r j d(x, y) (1·1)
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148 ZOLTÁN M. BALOGH AND OTHERS

for all x, y ∈ X and some r j < 1. Then the (unique) nonempty, compact set K = Kf ⊂ X
which satisfies

M⋃
j=1

f j (K ) = K

is called the invariant set of f; in most cases it is a fractal.
When equality holds in (1·1) for all x, y ∈ X , the mapping f j is called a similarity

transformation of X with similarity ratio r j . In this case the underlying invariant set is self-
similar. The Hausdorff dimensions of self-similar invariant sets can be calculated using the
celebrated Moran–Hutchinson theorem [11, 15]. According to this theorem, if f satisfies the
open set condition, i.e., there exists a nonempty open set U ⊂ X with the property that
f1(U ), . . . , fM(U ) are disjoint subsets of U , then the Hausdorff dimension of K is equal to
the similarity dimension of f:

dim K = df.

Here the similarity dimension df is defined as the (unique) positive number satisfying

M∑
j=1

rdf
j = 1. (1·2)

In its original formulation [15] this theorem was set in the Euclidean space X = RN . It
continues to hold in metric spaces satisfying a doubling condition, see [2].

In the Euclidean case, similarities are precisely described by the formula

f (x) = Ax + a, (1·3)

where A is a linear map in the conformal group R+ · O(N ) and a ∈ RN is a translation
vector. By results of Falconer [10], [12] and Solomyak [22], the equality of Hausdorff and
similarity dimensions persists almost surely for generic IFS. More precisely, let f be a self-
similar IFS with maps f j (x) = A j x + a j as in (1·3) and let a := (a1, . . . , aM) ∈ RN M .
Denote the invariant set for f by Ka. According to [10] and [22], if r j = ||A j || < 1/2 for
j = 1, . . . , M , then the equality dim Ka = df holds for LN M a.e. a ∈ RN M .

In a recent paper [8], Falconer and Miao estimated the size of the exceptional set of
parameters a ∈ RN M for which the equality dim Ka = df fails. To recall their result, let us
denote by

E(s) = {a ∈ RN M : dim Ka < s}
the exceptional set of parameters associated to a value s � df. Then, according to the main
result of [8], the estimate

dim E(s) � N M − (N − s) (1·4)

holds for 0 < s � df � N . We emphasize that the setting of [8, 10, 12 and 22] is significantly
more general, encompassing arbitrary self-affine fractals: we have merely stated the special
case of their results covering the self-similar situation.

The purpose of the present paper is to generalize (1·4) to the sub-Riemannian metric set-
ting of Carnot groups. Our main theorem is Theorem 1·1. Recent years have seen a rapid
development of geometric measure theory in the setting of Carnot–Carathéodory spaces,
where Carnot groups play a major role. Carnot–Carathéodory spaces themselves have a
fractal nature as their Hausdorff dimension is typically strictly greater than the topological
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Exceptional sets for self-similar fractals in Carnot groups 149

dimension [14]. The metric in these spaces is defined by vector fields satisfying the
Hörmander condition and is useful for describing various nonlinear phenomena as seen
e.g. in [20]. The literature on geometric measure theory in Carnot groups and Carnot–
Carathéodory spaces is by now too extensive to recall in detail. We note in particular re-
cent work of Mattila and coauthors, [18, 19], on tangent measures and rectifiability in the
Heisenberg group. Following work of Strichartz [23], Balogh, Höfer–Isenegger, and Tyson
[1, 3], studied fractal geometry in the Heisenberg group. Recently Balogh, Tyson and War-
hurst [4, 5] extended the results of Falconer and Solomyak to the setting of Carnot groups.
In order to state our main theorem precisely, we shall next recall the primary results from
[5] and fix notation to be used throughout the paper.

1·2. Statement of the main result

As references for the following basic material on stratified Lie algebras and Carnot
groups, we recommend Corwin–Greenleaf [7] and Folland–Stein [13]. Let g be a finite di-
mensional, stratified, nilpotent Lie algebra of step S � 2 and dimension N . We denote by
[·, ·] the commutator in g. Then there are vector spaces g1, . . . , gS ⊂ g such that

g = g1 ⊕ · · · ⊕ gS, (1·5)

and for all i = 1, . . . , S we have

[g1, gi ] =
{
gi+1, if i = 1, . . . , S − 1,

{0} if i = S.
(1·6)

The first layer g1, which generates the full Lie algebra g, is called the horizontal layer. We
denote by mi � 1 the dimension of gi , i = 1, . . . , S, and we let N = m1 + · · · + mS .
According to (1·5), any element x ∈ g has the unique decomposition

x = x (1) + · · · + x (S), (1·7)

with x (i) ∈ gi , i = 1, . . . , S. For any r > 0, the linear mapping δr : g → g

δr (x) = r x (1) + · · · + r Sx (S) (1·8)

is a Lie algebra automorphism, which is called dilation by r > 0.
The Baker–Campbell–Hausdorff formula provides a group operation ∗: g×g → g which

makes G = (g, ∗) a nilpotent and stratified Lie group of step S. Such groups are called Carnot
groups. More details can be found in Section 3.

We fix on G a distance function d with the following properties:

(i) d(z ∗ x, z ∗ y) = d(x, y) for all x, y, z ∈ G (i.e. d is left invariant);
(ii) d(δr (x), δr (y)) = rd(x, y) for all x, y ∈ G and r > 0 (i.e. d is 1-homogeneous with

respect to the dilations δr ).

Any such metric we will call a Carnot–Carathéodory or sub-Riemannian metric on G. The
existence of such metrics is well known. For instance, one may use the metric constructed by
taking the infimum of lengths of horizontal curves, see [14] or [6]. (Recall that a piecewise
C1 curve taking values in G is called horizontal if its tangent vectors lie in the subbundle
HG of T G spanned by the horizontal layer g1, viewed as a space of left invariant vector
fields. Length of such a curve is computed with respect to a fixed smoothly varying family of
inner products defined on the subbundle HG.) Other more explicit sub-Riemannian metrics
can be constructed directly, such as the Korányi metric on the Heisenberg group H1 (see
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150 ZOLTÁN M. BALOGH AND OTHERS

Example 6·1). For our purposes the precise choice of metric is not important since all sub-
Riemannian metrics on a given Carnot group are bi-Lipschitz equivalent and the results of
this paper are bi-Lipschitz invariant. Any sub-Riemannian metric d on G is complete.

The topological dimension of (G, d) is equal to N (the dimension of the underlying Lie
algebra). On the other hand, the Hausdorff dimension of (G, d) is equal to

Q = m1 + 2m2 + · · · + SmS, (1·9)

the homogeneous dimension of G. We observe a discrepancy between these two dimen-
sions: Q > N . This discrepancy persists for arbitrary subsets A ⊂ G. A quantitative de-
scription of this dimension discrepancy was presented in [5] in terms of certain piecewise
linear dimension comparison functions β±: [0, N ] → [0, Q]. More precisely, it was shown
[5, theorem 2·4] that

β−(dimE A) � dimcc A � β+(dimE A) (1·10)

for every A ⊂ G. Here we denote by dimcc the Hausdorff dimension in the metric space
(G, d), i.e. with respect to the Carnot–Carathéodory metric, and by dimE the Hausdorff
dimension in the usual Euclidean metric on the underlying space RN .

Furthermore [5, theorem 2·6], the estimates in (1·10) are sharp as shown by explicit ex-
amples constructed using IFS on G. This observation is closely related with dimension for-
mulae for generic IFS generalizing the above Falconer–Solomyak theorem. The existence
of a self-similar dilation structure (δr )r > 0 on Carnot groups which interacts well with the
group law � and the left invariant metric d makes such spaces natural settings in which to
study self-similar iterated function systems.

To be more precise, consider a system of similarities f = { f1, . . . , fM} in G of the form

f j (x) = a j ∗ δr j (x), (1·11)

j = 1, . . . , M , where a = (a1, . . . , aM) ∈ GM is an M-tuple of translation vectors and r =
(r1, . . . , rM) ∈ (0, 1)M is an M-tuple of contraction ratios. The invariant set Kf depends on
a and r. Fixing the contraction ratios, we denote this self-similar set by Ka with no reference
to r. We associate to Ka the Carnot–Carathéodory similarity dimension dr satisfying (1·2).
Then (see [5, theorem 2·8]) the following dimension formulas are valid for almost every
a ∈ GM : if dr � Q and r j < 1/2 for all j = 1, . . . , M, then:

(a) dimcc Ka � dr for all a ∈ GM;
(b) dimE Ka � β−1

− (dr) for all a ∈ GM;
(c) dimcc Ka = dr for a.e. a ∈ GM;
(d) dimE Ka = β−1

− (dr) for a.e. a ∈ GM .

The measure on GM in question is the M-fold product Haar measure, which is equivalent
with either the Lebesgue measure LN M on GM = RN M or to the Hausdorff measure HQM in
the product Carnot–Carathéodory metric.

The most interesting statements above are (c) and (d) which give almost sure dimension
formulas in terms of the Carnot–Carathéodory and also in terms of the Euclidean metric. In
particular, Ka is almost surely a horizontal set (in the terminology introduced in [5]), i.e.,
dimcc Ka = β−(dimE Ka).

We are interested in quantifying the previous statement by measuring precisely (in terms
of Hausdorff measures on the parameter space) the set of values a for which Ka fails to be
horizontal. See Problem 6·2. In this paper, we take a first step in this direction by proving
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Exceptional sets for self-similar fractals in Carnot groups 151

a result analogous to the Falconer–Miao estimate (1·4) on the size of the exceptional set of
parameters a ∈ GM for which estimate (c) above fails. To do so, we introduce for s � dr �
Q the exceptional set

E(s) = {a ∈ GM : dimcc Ka < s}.
According to the preceding discussion, the (QM)-dimensional Carnot–Carathéodory
Hausdorff measure (equivalently, the (N M)-dimensional Euclidean Hausdorff measure) of
E(s) vanishes for all s � dr. The primary result of this paper is the following theorem.

THEOREM 1·1. Let G be a Carnot group of topological dimension N and homogeneous
dimension Q. Fix M positive real numbers 0 < r j < 1/2, j = 1, . . . , M, and let dr be the
corresponding similarity dimension. Then

dimcc E(s) � QM − (N − β−1
− (s)) = QM − β−1

+ (Q − s) (1·12)

for s < dr � Q.

COROLLARY 1·1. We have dimcc E(dr) � QM − β−1
+ (Q − dr).

Since in the Euclidean case Q = N and β− = β+ = id |[0,N ], (1·12) extends the Falconer–
Miao estimate (1·4). For the second equality in (1·12) we observe the identity

Q − β+(α) = β−(N − α), 0 � α � N ,

which follows from the definitions of β± (see (5·1) and (5·3)). Note that β− : [0, N ] →
[0, Q] is an increasing homeomorphism, thus β−1

− (s) < N whenever s < Q. Corollary 1·1
improves on the result from [5] by showing that the dimension of the exceptional set E(dr)

is bounded away from QM whenever dr < Q. Theorem 1·1 may be useful in solving the
more difficult Problem 6·2 on exceptional sets; see the discussion following the statement of
that problem for more information. In Example 6·1 we illustrate our theorem by indicating
the precise exceptional sets for the almost sure dimension results (b) and (d) above, in the
case of two-element IFS’s on the first Heisenberg group H1.

As additional motivation for the study of the exceptional sets problem in this nonlinear
environment, we observe that self-similar IFS in Carnot groups of high step are comprised
of nonlinear, nonconformal maps of the underlying Euclidean space RN . Indeed, the ap-
pearance of the group operation in (1·11) means that the constituent maps fi of the IFS f,
when viewed as maps of RN , are polynomial maps of degree at most (and typically equal
to) S − 1. Our results from [5] and in the present paper thus provide almost sure statements
and estimates on exceptional sets for parameterized families of nonlinear, nonconformal IFS
in Euclidean space. We point out that other approaches to the exceptional sets problem ex-
ist in the literature which apply in nonlinear settings; see for example [21] for the use of
transversality in this context.

To conclude this introduction we briefly explain the idea of the proof of Theorem 1·1. We
note first that the points in Ka can be parameterized by words as follows. Denote by W∞,M

the set of all words ω = ω1ω2ω3 · · · with countably many letters ωn , each selected from the
alphabet {1, . . . , M}, and define the projection map πa from W∞,M to Ka by

πa(ω) = lim
�→∞

fω1 ◦ · · · ◦ fω�
(x0), (1·13)

where x0 is any point in G. The mapping πa does not depend on x0. Our approach follows
the one of Falconer and Miao [8] and goes back to the idea of Falconer [10]. The main
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152 ZOLTÁN M. BALOGH AND OTHERS

point is to realize a transition from the parameter space onto the dynamical space. More
precisely, for any pair of words ω, υ ∈ W∞,M such that ω1 = 1 the transition map Tω,υ =
(T 1

ω,υ, . . . , T M
ω,υ) : GM → GM is defined by

T j
ω,υ(a) =

{
πa(ω)−1 ∗ πa(υ) for j = 1,

a j for j � 1,
(1·14)

for all j = 1, . . . , M .
In the Euclidean case [8], the transition map is an invertible linear map with norm bounded

from below by a positive constant independent of the words ω and υ, as soon as ω1 � υ1.
In our case the transition map is nonlinear and is not bi-Lipschitz continuous with respect
to the product metric on GM that is generated by the Carnot–Carathéodory metric of G. The
main technical difficulty of our work is to deal with the complex nonlinearity of the map-
ping. The solution of the problem is that we will show that Tω,υ is bi-Lipschitz continuous on
GM with respect to the Euclidean metric. Passing from the Euclidean metric to the Carnot–
Carathéodory metric is done by a covering argument akin to the technique used in [5]. The
discrepancy between the two metrics resurfaces in the appearance of the dimension compar-
ison functions β± in the statement of Theorem 1·1.

The paper is organized as follows. In the second section we present results on symbolic
dynamics and of potential theoretic nature which will be used in the proof. In section three
we develop an iterated version of the Baker–Campbell–Hausdorff formula in order to deal
with the infinite products appearing in the formula for the transition map as seen in (1·13)
and (1·14). The results obtained in this section may be of independent interest in the theory
of Carnot groups. In the fourth section we prove the main properties of the transition map
culminating in its Euclidean bi-Lipschitz continuity. In section five we prove Theorem 1·1.
The last section is for comments and open questions.

2. Symbolic dynamics, energy and Hausdorff dimension

2·1. Symbolic dynamics

We review the language and notation of symbolic dynamics for iterated function systems.
The material in this section is mostly standard. A useful reference is Kigami [16].

We may parameterize the points of the invariant set of an iterated function system in a
natural fashion by taking into account its dynamical construction. To this end we define
abstract word spaces. For �, n ∈ N, we define the following three sets:

W�,n = {
u | u : {1, 2, . . . , �} → {1, 2, . . . , n}},

W�,n = ⋃
�∈N

W�,n �
{
e : � → {1, 2, . . . , n}}

and

W∞,n = {
w | w : N → {1, 2, . . . , n}}.

The notation has a natural generalization to the case n = ∞.
An element u ∈ W�,n is called a finite word of length �(u) = �, where e is the so called

empty word of length zero. Elements of W∞,n are called infinite words. The set W�,n is the
collection of all finite words. The kth letter wk of a word w is simply the value w(k). We
will write

u = u1u2 · · · u�
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for u ∈ W�,n and

w = w1w2w3 · · ·
for w ∈ W∞,n . Concatenation of a finite word with a finite or infinite word is defined in the
obvious way: if u = u1u2 · · · u� ∈ W�,n and w = w1w2 · · · ∈ W�,n � W∞,n , then

uw = u1u2 · · · u�w1w2w3 · · · .

The longest common prefix v ∧ w of two words v, w ∈ W�,n � W∞,n is defined by

v ∧ w =

⎧⎪⎨⎪⎩
e if v1 �w1

u if v = uv′ and w = uw′ and v′
1 �w′

1

v if v = w.

The shift operator σ : W∞,n → W∞,n and its n right inverses σ j : W∞,n → W∞,n , are
given by the formulas σ(w1w2w3 · · · ) = w2w3w4 · · · and σ j (w1w2w3 · · · ) = jw1w2 · · · .
For u = u1 · · · u� ∈ W�,n we set σu := σu1 ◦ · · · ◦ σu�

.
The space W∞,n of infinite words is naturally topologized with the product topology com-

ing from the discrete topology on {1, 2, . . . , n}. This topology is metrizable, an explicit
generating metric being

d∞(v, w) :=
{

2−�(v∧w) if v �w,

0 if v = w.

By the Tychonoff Product Theorem, (W∞,n, d∞) is compact.
To each word u ∈ W�,n we associate the cylinder set


u := {
uw ∈ W∞,n | w ∈ W∞,n

}
.

We observe that every open ball in (W∞,n, d∞) coincides with a cylinder set 
u for some
u ∈ W�,n .

Let α : W�,n → [0, +∞) satisfy the consistency relation

α(u) =
n∑

j=1

α(u j) (2·1)

for all u ∈ W�,n . Then there exists a unique Borel measure λ : P(W∞,n) → [0, +∞] whose
value on cylinder sets is given by λ(
u) = α(u) for all u ∈ W�,n . In particular,

λ(W∞,n) = α(e). (2·2)

Let f = { f1, . . . , fM} be an iterated function system defined on a complete metric space
(X, d). For each j , 1 � j � M , let r j be the contraction ratio associated to f j . For u =
u1u2 · · · u� ∈ W�,M we define a map fu : X → X and a real number ru by

fu = fu1 ◦ fu2 ◦ · · · ◦ fu�
and ru = ru1ru2 · · · ru�

.

We denote the invariant set for f by Kf. We equip W∞,M with the product topology as de-
scribed in the previous section.

The map πf : W∞,M → Kf given by

πf(w) := lim
�→∞

fw1w2···w�
(x0), (2·3)
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154 ZOLTÁN M. BALOGH AND OTHERS

where x0 is an arbitrary point in X , is continuous and surjective. It is easy to check that πf is
independent of x0. We observe the key relation

πf ◦ σu = fu ◦ πf, u ∈ W�,n. (2·4)

The similarity dimension for the iterated function system f is the unique nonnegative real
number df for which

M∑
j=1

rdf
j = 1.

As this value depends only on the vector r = (r1, . . . , rM) of contraction ratios associated
to f, we will write dr for the similarity dimension of f. Define α : W�,M → [0, +∞) by the
formula α(u) := rdr

u . This function satisfies (2·1) since

M∑
j=1

α(u j) =
M∑

j=1

rdr
u j = rdr

u

M∑
j=1

rdr
j = rdr

u = α(u).

Hence there exists a Borel measure λr on W∞,M with

λr(
u) = rdr
u (2·5)

for all u ∈ W�,M . By (2·2), λr is a probability measure.

2·2. Energy and dimension

Let (X, d) be a complete metric space and s a positive real number. The s-energy of a
mass distribution ν supported on a compact set K ⊂ X is defined to be

Es(K , ν) :=
∫

K

∫
K

d(x, y)−s dν(x) dν(y).

The following theorem relates energy to Hausdorff dimension. For a proof, see [9].

PROPOSITION 2·1 (s-energy versus Hausdorff dimension). Let K ⊂ X be a Borel set
and let s be a positive real number. Then the following holds:

(a) if the s-energy Es(K , ν) is finite for some mass distribution ν supported on K , then
dimcc K � s;

(b) if Hs(K ) > 0, then for each t, 0 < t < s, there exists a mass distribution ν supported
on K whose t-energy Et(K , ν) is finite.

Let G be a Carnot group. Denote by τa: G → G the operation of left translation by
a ∈ G, i.e., τa(p) = a � p. Fix positive real numbers r j < 1, j = 1, . . . , M , and let rmax < 1
denote the largest of these values. We denote by dr the similarity dimension for the M-
tuple r = (r1, . . . , rM). We will always assume that M � 2 which implies that dr > 0. For
a = (a1, . . . , aM) ∈ GM we denote the self-similar set for the iterated function system
{τa1 ◦ δr1, . . . , τaM ◦ δrM } by Ka. Let πa be the symbolic representation map from W∞,M to
Ka as in (2·3).

PROPOSITION 2·2 (Finiteness of the s-energy). Let s < dr be a positive real number. If
there exists a measure μ on GM such that the inequality∫

B M
R

d(πa(v), πa(w))−s dμ(a) � Lr−s
v∧w (2·6)
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Exceptional sets for self-similar fractals in Carnot groups 155

holds for all R > 0 and all distinct words v, w ∈ W∞,M with constant L = L(G, R) inde-
pendent of v and w, then dimcc Ka � s for μ-almost every a ∈ GM .

Proof. Since dr is positive,
∑M

j=1 r 2dr
j < 1. We consider the Borel measure λr on W∞,M

described in subsection 2·1. The product measure λr ⊗λr on the diagonal � := {(v, w) ∈
W 2

∞,M | v = w} vanishes, because � ⊂ ⋃
u∈W�,M


u × 
u for each � and therefore

(λr⊗λr)(�) �
∑

u∈W�,M

λr(
u)
2 =

∑
u∈W�,M

r 2dr
u =

⎛⎝ M∑
j=1

r 2dr
j

⎞⎠�

�→∞−→ 0. (2·7)

Using this fact and (2·6) we get∫
W 2

∞,M

∫
B M

R

d
(
πa(v), πa(w)

)−s
dμ(a) d(λr ⊗ λr)(v, w)

� L(G, R)

∫
W 2

∞,M \�
r−s
v∧w d(λr ⊗ λr)(v, w).

The integrand ϕ(v, w) = r−s
v∧w in the latter integral has the property that

ϕ
(
W 2

∞,M \ �
) = {

r−s
u | u ∈ W�,M

}
is a countable subset of R, since W�,M is countable. Thus∫

W 2∞,M \�
r−s
v∧w d(λr ⊗ λr)(v, w) =

∑
u∈W�,M

r−s
u (λr ⊗ λr)

({
(v, w) ∈ W 2

∞,M \ � | v ∧ w = u
})

�
∑

u∈W�,M

r−s
u (λr ⊗ λr)(


2
u) =

∑
�∈N

∑
u∈W�,M

rdr−s
u λr(
u)

�
∑
�∈N

rmax
(dr−s)�

∑
u∈W�,M

λr(
u)︸ ︷︷ ︸
=λr(W∞,M )=1

=
∑
�∈N

rmax
(dr−s)�

which is finite since s < dr and rmax < 1. Applying Fubini’s theorem, we see that∫
B M

R

∫
W∞,M

∫
W∞,M

d (πa(v), πa(w))−s dλr(v) dλr(w) dμ(a) (2·8)

is finite. The image measure νa = (πa)#(λr) is a mass distribution supported on Ka, since
0 < λr(W∞,M) = 1 < + ∞. From (2·8) it follows that the s-energy∫

Ka

∫
Ka

d(x, y)−s dνa(x) dνa(y) =
∫

W∞,M

∫
W∞,M

d(πa(v), πa(w))−s dλr(v) dλr(w)

is finite for μ-almost every a ∈ B M
R . The result now follows from Proposition 2·1, after

passing to the limit as R → ∞.

3. Iterated Baker–Campbell–Hausdorff formula

Let g be a finite dimensional, stratified, nilpotent Lie algebra of step S � 2. For any word
w ∈ Ws,n , s, n ∈ N, we define the nested commutator or nested bracket of s elements chosen
from x1, . . . , xn ∈ g and specified by w in the following way

(x1, . . . , xn)w = [xw1, [. . . [xws−1, xws ] . . .]]. (3·1)

The number s ∈ N is the length of the commutator.
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156 ZOLTÁN M. BALOGH AND OTHERS

LEMMA 3·1. Any bracket of s elements chosen from x1, . . . , xn ∈ g is a linear combina-
tion with coefficients ±1 of nested commutators of the form (x1, . . . , xn)w with w ∈ Ws,n.

Proof. The easy proof of this lemma relies upon the Jacobi identity (see e.g. [6, p. 12]).
The proof is by induction on the length of the commutator and the induction basis is the
identity [[x1, x2], [x3, x4]] = [x4, [x3, [x1, x2]]] − [x3, [x2, [x1, x2]]].

The Baker–Campbell–Hausdorff formula provides a Lie group structure on the Lie al-
gebra g. From now on, the number S � 2 is fixed and we let

Vn = W1,n � · · · � WS,n, n ∈ N,

and

V� =
⋃
n∈N

Vn.

THEOREM 3·2 (Baker–Campbell–Hausdorff formula). There exist constants cw ∈ Q,
w ∈ V2, making the operation ∗ : g × g → g given by

x1 ∗ x2 =
∑
w∈V2

cw(x1, x2)w (3·2)

into an associative group law on g.

For a proof of this theorem, see e.g. [7, theorem 1·2·1].

Example 3·1. When the step S is equal to 2, formula (3·2) reads

x1 ∗ x2 = x1 + x2 + 1

2
[x1, x2]. (3·3)

When the step S is equal to 3, the formula reads

x1 ∗ x2 = x1 + x2 + 1

2
[x1, x2] + 1

12
[x1, [x1, x2]] − 1

12
[x2, [x1, x2]], (3·4)

i.e. c1 = c2 = 1, c12 = 1/2, c21 = 0, c112 = 1/12, c212 = −1/12, whereas all other constants
vanish.

From now on, the constants cw for w ∈ V2 are given by Theorem 3·2. We are not interested
in their precise value. We are rather interested in the following iteration of the formula.

THEOREM 3·2 (Iterated Baker–Campbell–Hausdorff formula). For any S � 2 there exist
a finite set A ⊂ Q and constants cw ∈ A, w ∈ V�, such that for any stratified nilpotent Lie
algebra g of step S we have

(· · · ((x1 ∗ x2) ∗ x3) · · · ) ∗ xn =
∑
w∈Vn

cw(x1, . . . , xn)w (3·5)

for all x1, . . . , xn ∈ g, n � 2.

The parentheses on the left-hand side of (3·5) can be dropped since ∗ is an associative

operation. We shall denote the iterated product on the left hand side by
n∗

k=1
xk = x1 ∗· · ·∗xn .

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004110000083
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 19:46:36, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004110000083
https:/www.cambridge.org/core


Exceptional sets for self-similar fractals in Carnot groups 157

Example 3·2. When S = 2, formula (3·5) reads

x1 ∗ · · · ∗ xn =
n∑

i=1

xi + 1

2

∑
1�i< j�n

[xi , x j ].

When S = 3, the formula reads

x1 ∗ · · · ∗ xn = ∑n
i=1 xi +1

2

∑
1�i< j�n

[xi , x j ] + 1

4

∑
1�i< j<k�n

[xi , [x j , xk]]

+ 1

12

n−1∑
i=1

∑
i< j�n

[xi , [xi , x j ]] − 1

12

n∑
j=1

∑
i,k> j

[xi , [x j , xk]].
(3·6)

This formula can be proved by induction on n � 2 starting from (3·4).

Proof of Theorem 3·2. We define recursively subsets An ⊂ Q, n ∈ N, in the following
way. Let A1 = {0, 1}, fix the constants cw, w ∈ V2, as in Theorem 3·2, and let

A2 = {
cw ∈ Q : w ∈ V2

}
. (3·7)

Now assume that A1 ⊂ A2 ⊂ · · · ⊂ An are already defined. Let �n+1 = (nS)S and define

An+1 =
{ �n+1∑

h=1

dhd0,hd1,h · · · di,h | dh ∈ {±1}, d0,h ∈ A2, d1,h, . . . , di,h ∈ An, i � S − 1

}
.

(3·8)

For any n ∈ N and m = 1, . . . , n, we denote by V m
n the set of all words w ∈ Vn , with

w = w1 · · ·wi for some i = 1, . . . , S, such that the set

{w1, . . . , wi } ⊂ {1, . . . , n}
contains exactly m distinct elements.

We claim there is a choice of constants cw ∈ Q for all w ∈ V� such that (3·5) holds for
any x1, . . . , xn ∈ g and moreover that

cw ∈ Am for all w ∈ V m
n , 2 � m � min{n, S}. (3·9)

The claim implies Theorem 3·2. Indeed, suppose that the claim holds. Then the set A = AS

is finite and by (3·9) the formula (3·5) holds with constants cw ∈ A. In fact, commutators
of more than S elements vanish by (1·6), and thus the sum in (3·5) ranges only over those
w ∈ W m

n with m � S.
The proof of the claim is by induction on n. The induction basis is n = 2. In this case,

(3·5) reduces to (3·2). Now assume that (3·5) holds for n, i.e. there are constants cw ∈ An

such that the formula holds for any n elements x1, . . . , xn ∈ g. Moreover, assume that (3·9)
holds. Let x1, . . . , xn+1 ∈ g and set x = x1 ∗ · · · ∗ xn . Here and in the sequel, we use the
notation xw = (x1, . . . , xn)w. By the inductive hypothesis,

x =
∑
w∈Vn

cwxw (3·10)

with cw ∈ An . By (3·2) and by the associativity of the operation ∗, we obtain

n+1∗
k=1

xk = x ∗ xn+1 =
∑
v∈V2

cv(x, xn+1)v. (3·11)
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158 ZOLTÁN M. BALOGH AND OTHERS

For any word v ∈ V2, with v = v1 · · · vi for some i = 1, . . . , S, we let

|v|1 = card
{
h ∈ {1, . . . , i} | vh = 1

}
.

Then we define the word v̂ ∈ V|v|1+1 in the following way:

(i) the |v|1 indexes 1 in v are progressively relabeled to 1, . . . , |v|1;
(ii) the i − |v|1 indexes 2 in v are relabeled to |v|1 + 1.

We denote the resulting word by v̂. For example, if v = 11221211 then v̂ = 12663645. Using
this notation, we have

(x, xn+1)v = (x, . . . , x︸ ︷︷ ︸
|v|1

, xn+1)v̂ =
∑

w1,...,w|v|1 ∈Vn

cw1 · · · cw|v|1 (xw1, . . . , xw|v|1 , xn+1)v̂.

By Lemma 3·1, there exist constants du
v,w1,...,w|v|1

∈ {0, ±1}, u ∈ Vn+1, such that(
xw1, . . . , xw|v|1 , xn+1

)
v̂

=
∑

u∈Vn+1

du
v,w1,...,w|v|1

(x1, . . . , xn+1)u. (3·12)

From (3·11) and (3·12), we finally obtain

n+1∗
k=1

xk =
∑

u∈Vn+1

cu(x1, . . . , xn+1)u, (3·13)

where

cu =
∑
v∈V2

∑
w1,...,w|v|1 ∈Vn

cvcw1 · · · cw|v|1 du
v,w1,...,w|v|1

∈ An+1.

In the sum, there are at most �n+1 = (nS)S summands.
Now we show that cu ∈ Am for all u ∈ V m

n+1 with 2 � m � min{n + 1, S}. Assume that in
(x1, . . . , xn+1)u there appear at most m � S distinct elements chosen from x1, . . . , xn+1 (if
m > S then (x1, . . . , xn+1)u = 0 by (1·6)). From (3·12), we deduce that in the commutator(
xw1, . . . , xw|v|1 , xn+1

)
v̂

there appear at most m distinct elements chosen from x1, . . . , xn+1.
On the other hand, xn+1 must appear at least once. If this is not the case, then we have either
(x, xn+1)v = 0 or v ∈ W1,2 and there would be nothing to prove. It follows that in each
commutator xw1, . . . , xw|v|1 there can appear at most m − 1 distinct elements chosen from
x1, . . . , xn . Then, by induction we have cw1, . . . , cw|v|1 ∈ Am−1. This shows that cu ∈ Am .

For i = 1, . . . , S, let us introduce the ordered pairs of words

Gi,n = Wi,n × Wi,S and Gn = G1,n � · · · � GS,n. (3·14)

For any pair (w, k) ∈ Gn , define

(x1, . . . , xn)w,k = [
x (k1)

w1
,
[
. . .
[
x (ki−1)

wi−1
, x (ki )

wi

]
. . .
]]; (3·15)

see (1·7) for the notation used here. The first word w = w1 · · ·wi of the pair (w, k) in Gi,n

selects i elements out of n elements x1, . . . , xn ∈ g. The second word k = k1 · · · ki selects
corresponding strata in the Lie algebra decomposition (1·5). We also define the weight of a
word k ∈ Wi,S to be

|k| = k1 + · · · + k j .
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COROLLARY 3·1. Let x = x1 ∗ · · · ∗ xn with x1, . . . , xn ∈ g, and x = x (1) + · · · + x (S)

with x (i) ∈ gi . Then, for any i = 1, . . . , S we have

x (i) =
∑

(w,k)∈Gn|k|=i

cw(x1, . . . , xn)w,k . (3·16)

Proof. First notice that if w ∈ Wi,n , i = 1, . . . , S, then

(x1, . . . , xn)w =
∑

k∈Wi,S

(x1, . . . , xn)w,k .

Then by Theorem 3·2 we obtain

x =
∑
w∈Vn

cw(x1, . . . , xn)w =
∑

(w,k)∈Gn

cw(x1, . . . , xn)w,k .

On the other hand, from (1·6) it follows that for all i, j � 1

[gi , g j ] ⊂ gi+ j ,

and thus (x1, . . . , xn)w,k ∈ gi if |k| = i . Formula (3·16) follows.

4. Transition map

Let us recall that we have identified the group G and its Lie algebra g via the Baker–
Campbell–Hausdorff formula. Throughout this section, we write g in place of G to conform
with the notation of the previous section.

Let a1, . . . , aM ∈ g and r1, . . . , rM > 0. Throughout this section, we assume that

rmax = max{r1, . . . , rM} <
1

2
. (4·1)

Let f j : g → g denote the contraction f j (x) = a j ∗ δr j (x), j = 1, . . . , M . Denote by
Ka the invariant set of f = { f1, . . . , fM}, where a = (a1, . . . , aM) ∈ gM is the M-tuple of
translation vectors. The projection πa : W∞,M → Ka is

πa(ω) = lim
�→∞

fω1 ◦ · · · ◦ fω�
(0).

For ω, υ ∈ W∞,M , define the transition map Tω,υ = (T 1
ω,υ, . . . , T M

ω,υ) : gM → gM

T j
ω,υ(a) =

{
πa(ω)−1 ∗ πa(υ) for j = 1

ai for j = 2, . . . , M.
(4·2)

In what follows, we make use of words in W∞,M indexed by words chosen from another
symbol set Wi,∞. For this reason, in the rest of this section we denote elements of W∞,M by
Greek letters.

The aim of this section is to prove the following theorem.

THEOREM 4·1 (Euclidean bi-Lipschitz continuity of the transition map). Let ω, υ be
elements of W∞,M satisfying 1 = ω1 � υ1. For any compact set K ⊂ gM there exists
a constant C = C(K ) � 1 independent of ω and υ such that Tω,υ |K is C-bi-Lipschitz
continuous on K with respect to the standard metric.
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By standard metric, we mean any metric on the vector space gM which is induced by a
norm, e.g., the Euclidean metric. Under the aforementioned identification of g and G, this
corresponds to the Euclidean metric on GM .

4·1. Projection map

Our first task is to compute an explicit formula for the mapping πa. Recall that, according
to (3·14), we have

G M =
S⋃

i=1

Wi,M × Wi,S.

We use the following notation. For (g, k) ∈ Wi,M × Wi,S we let

ag,k = [
a(k1)

g1
,
[
. . . ,

[
a(ki−1)

gi−1
, a(ki )

gi

]
. . .
]]

. (4·3)

This is consistent with (3·15). Moreover, for ω ∈ W∞,M , v ∈ Wi,∞ and k ∈ Wi,S we let

av,k(ω) = [
a(k1)

ωv1
,
[
. . . ,

[
a(ki−1)

ωvi−1
, a(ki )

ωvi

]
. . .
]]

. (4·4)

For any g ∈ Wi,M and ω ∈ W∞,M , let Wg(ω) ⊂ Wi,∞ denote the set of all v ∈ Wi,∞ such
that

(aωv1
, . . . , aωvi

) = (ag1, . . . , agi ). (4·5)

Finally, let rω1···ωn = rω1 · · · rωn , where we stipulate that the empty product is equal to one.
For ω ∈ W∞,M , v ∈ Wi,∞ and k ∈ Wi,S let

rv,k(ω) :=
i∏

h=1

rkh
ω1...ωvh −1

. (4·6)

LEMMA 4·1 (Representation Formula for πa). For any ω ∈ W∞,M we have

πa(ω) =
∑

(g,k)∈G M

γg,k(ω)ag,k, (4·7)

where the coefficients γg,k(ω) ∈ R are given by

γg,k(ω) =
∑

v∈Wg(ω)

cvrv,k(ω). (4·8)

Here, the constants cv ∈ R are given by Theorem 3·2.

Proof. We prove by induction on n ∈ N that for any ω ∈ W∞,M and x ∈ g we have

fω1 ◦ · · · ◦ fωn (x) = n∗
k=1

δrω1 ···ωk−1
(aωk ) ∗ δrω1 ...ωn

(x). (4·9)

For n = 1 this is the definition of fω1 . Using the properties δ�(δσ (a)) = δ�σ (a) and δ�(a) ∗
δ�(b) = δ�(a ∗ b), we get

fω1 ◦ · · · ◦ fωn+1(x) = fω1 ◦ · · · ◦ fωn

(
fωn+1(x)

)
= n∗

k=1
δrω1 ···ωk−1

(aωk ) ∗ δrω1 ···ωn

(
aωn+1 ∗ δrωn+1

(x)
)

= n+1∗
k=1

δrω1 ···ωk−1
(aωk ) ∗ δrω1 ···ωn+1

(x).
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This is (4·9) for n + 1. Choosing x = 0 in (4·9), we obtain

xn := fω1 ◦ . . . ◦ fωn (0) = n∗
k=1

δrω1 ···ωk−1
(aωk ).

Using the notation (4·6) and (4·4) and beginning from (3·16), we obtain

xn =
∑

(v,k)∈Gn

cvrv,k(ω)av,k(ω), (4·10)

where we also used the property δrω1 ···ωk−1
(aωk )

(i) = r i
ω1···ωk−1

a(i)
ωk

, i = 1, . . . , S. Formula (4·10)
can be rearranged in the following way

xn =
∑

(g,k)∈G M

γ n
g,k(ω)ag,k,

where the coefficients γ n
g,k(ω) ∈ R are given by

γ n
g,k(ω) =

∑
v∈W n

g (ω)

cvrv,k(ω).

Here W n
g (ω) is the set of v ∈ Wi,n for which (4·5) holds. Letting n → ∞ yields (4·7).

LEMMA 4·2. There exists a constant C1 <∞ such that

|γg,k(ω)| � C1 (4·11)

for all (g, k) ∈ G M and ω ∈ W∞,M .

Proof. For n ∈ N and (g, k) ∈ G M we have

∣∣γ n
g,k(ω)

∣∣ =
∣∣∣∣∣∣
∑

v∈W n
g (ω)

cvrv,k(ω)

∣∣∣∣∣∣ � max
cw∈A

|cw|
∑

v∈W n
g (ω)

rv,k(ω), (4·12)

where A ⊂ Q is the finite set given by Theorem 3·2. For (v, k) ∈ Gi,n , i = 1, . . . , S, using
the formula (4·6) we have

rv,k(ω) =
i∏

h=1

rkh
ω1···ωvh −1

�
i∏

h=1

(
1

2

)vh−1

,

since r1, . . . , rM < 1/2 and k1, . . . , ki � 1. Replacing the sum over v ∈ W n
g (ω) with the sum

over all v ∈ Wi,n , for the appropriate choice of i ∈ {1, . . . , S}, we obtain

∑
v∈W n

g (ω)

rv,k(ω) �
n∑

v1,...,vi =1

i∏
h=1

(
1

2

)vh−1

=
(

n∑
v=1

21−v

)i

� 2i � 2S.

Then (4·11) holds with C = 2S maxcw∈A |cw|.
4·2. Formula for the transition map

Next, we provide an explicit formula for the transition map Tω,υ . Let i ∈ {1, . . . , S}. For
pairs (g1, k1), . . . , (gi , ki) in G M , let

ag1,k1,...,gi ,ki = [ag1,k1, [. . . [agi−1,ki−1, agi ,ki ] . . .]].
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LEMMA 4·3 (Representation Formula for the transition map). For ω, υ ∈ W∞,M we have

T 1
ω,υ(a) =

S∑
i=1

∑
(g1,k1),...,(gi ,ki )∈G M

�g1,k1,...,gi ,ki (ω, υ)ag1,k1,...,gi ,ki , (4·13)

where the coefficients �g1,k1,...,gi ,ki (ω, υ) ∈ R are given by

�g1,k1,...,gi ,ki (ω, υ) =
∑

u∈Wi,2

cu

i∏
h=1

(−1)uh γgh ,kh (ω
uh ), ωuh =

{
ω, uh = 1,

υ, uh = 2.
(4·14)

Proof. Let x1 = πa(ω)−1 = −πa(ω) and x2 = πa(υ). From (3·2) we get

T 1
ω,υ(a) =

S∑
i=1

∑
u∈Wi,2

cu(x1, x2)u

and, using (4·7), we find

(x1, x2)u = [xu1, [. . . , [xui−1, xui ] . . .]]

=
∑

(g1,k1),...,(gi ,ki )∈G M

i∏
h=1

(−1)uh γgh ,kh (ω
uh )ag1,k1,...,gi ,ki .

The formulas (4·13) and (4·14) follow.

LEMMA 4·4. There exists a constant C2 <∞ such that

|�g1,k1,...,gi ,ki (ω, υ)| � C2 (4·15)

for all (g1, k1), . . . , (gi , ki) ∈ G M , i = 1, . . . , S, and all ω, υ ∈ W∞,M .

Proof. By (4·14), we have

|�g1,k1,...,gi ,ki (ω, υ)| �
∑

u∈Wi,2

|cu|
i∏

h=1

|γgh ,kh (ω
uh )|.

Now (4·15) follows from (4·11) with C2 = 2SC S
1 maxcu∈A |cu|.

LEMMA 4·5. Let ω, υ ∈ W∞,M with ω1 �υ1. Then

|�g,s(ω, υ)| � 1 − 2r i
max

1 − r i
max

(4·16)

for all g ∈ {ω1, υ1} and i = 1, . . . , S.

Proof. By (4·14), (4·8), (4·6) and the triangle inequality, we obtain

|�g,i (ω, υ)| = |γg,i (υ) − γg,i(ω)|

=
∣∣∣∣∣∣
∑

u∈Wg(υ)

curu,i(υ) −
∑

u∈Wg(ω)

curu,i(ω)

∣∣∣∣∣∣
=
∣∣∣∣∣

∞∑
u=1

r i
υ1···υu−1

δυu g −
∞∑

u=1

r i
ω1···ωu−1

δωu g

∣∣∣∣∣
� 1 −

∣∣∣∣∣
∞∑

u=2

r i
υ1···υu−1

δυu g −
∞∑

u=2

r i
ω1···ωu−1

δωu g

∣∣∣∣∣ .
(4·17)
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Here we wrote δvw for the Kronecker delta function. We estimate∣∣∣∣∣
∞∑

u=2

r i
υ1···υu−1

δυu g −
∞∑

u=2

r i
ω1···ωu−1

δωu g

∣∣∣∣∣ �
∞∑

u=1

max
{
r i
υ1...υu

, r i
ω1...ωu

}
�

∞∑
u=1

r iu
max = r i

max

1 − r i
max

(4·18)

which is strictly less than one since i � 1 and rmax < 1/2. Estimate (4·16) follows.

Remark 4·1. The careful reader will note that, in contrast with the results of [22] and
[8], the proof of (4·16) does not require Solomyak’s trick [22] to obtain the desired esimate
under the assumption rmax < 1/2. The reason is that we work throughout this paper only with
homotheties f : G → G, f = τa ◦ δr , a ∈ G, r > 0, i.e., we do not allow any rotations in
the defining mappings. This simplifies the work involved in obtaining the estimate in (4·18),
since the two terms on the left hand side cannot contribute simultaneously with the same
sign.

Let us split the mapping T 1
ω,υ into its linear and nonlinear parts. The linear part can be

determined by setting i = 1 in (4·13) and choosing g ∈ W1,M , k ∈ W1,S in (4·3). Namely,
the linear part is

T
1
ω,υ(a) =

∑
(g,k)∈W1,M ×W1,S

�g,k(ω, υ)ag,k =
M∑

g=1

S∑
k=1

�g,k(ω, υ)a(k)
g , (4·19)

where

�g,k(ω, υ) =
∑

u∈W1,2

cu(−1)uγg,k(ω
u) = γg,k(υ) − γg,k(ω).

The nonlinear part is T̂ 1
ω,υ = T 1

ω,υ − T
1
ω,υ . We have the decomposition

T 1
ω,υ = T

1
ω,υ + T̂ 1

ω,υ. (4·20)

The elements a = (a1, . . . , aM) ∈ gM and T 1
ω,υ(a) ∈ g decompose as

a = a(1) + · · · + a(S), a(i) = (
a(i)

1 , . . . , a(i)
M

)
,

and

T 1
ω,υ(a) = T 1

ω,υ(a)(1) + · · · + T 1
ω,υ(a)(S).

We have the relation

T 1
ω,υ(a)(1) = T

1
ω,υ(a

(1)). (4·21)

By (1·6), the variables a(h) = (a(h)

1 , . . . , a(h)

M ) with h � i do not occur in T̂ 1
ω,υ(a)(i). Hence

we also have the relation

T 1
ω,υ(a)(i) = T

1
ω,υ(a

(i)) + T̂ 1
ω,υ(a

(1) + · · · + a(i−1))(i) (4·22)

for i = 2, . . . , S.

LEMMA 4·6. Let ω, υ ∈ W∞,M satisfy 1 = ω1 � υ1. Then the map Tω,υ : gM → gM is
surjective.
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Proof. For b = (b1, . . . , bM) ∈ gM , we look for a = (a1, . . . , aM) ∈ gM such that
Tω,υ(a) = b, i.e.

T 1
ω,υ(a1, . . . , aM) = b1

a2 = b2
...

aM = bM ,

or, in fact,

T 1
ω,υ(a1, b2, . . . , bM) = b1. (4·23)

We solve the equation (4·23) layer by layer. In the first layer, we have

T
1
ω,υ(a

(1)

1 , b(1)

2 , . . . , b(1)

M ) = T 1
ω,υ(a1, b2, . . . , bM)(1) = b(1)

1 ,

by (4·21). By formula (4·19), thanks to the lower bound (4·16), we get

a(1)

1 = 1

�1,1(υ, ω)
b(1)

1 −
M∑

g=2

�g,1(υ, ω)

�1,1(υ, ω)
b(1)

g := �1
ω,υ(b)(1).

Next, we solve equation (4·23) in the second layer. By (4·22) we have

T 1
ω,υ(a1, b2, . . . , bM)(2) = T

1
ω,υ

(
a(2)

1 , b(2)

2 , . . . , b(2)

M

)+ T̂ 1
ω,υ

(
�1

ω,υ(b)(1), b(1)

2 , . . . , b(1)

M

)(2)

= b(2)

1 .

Using again (4·19) and the lower bound (4·16), we get

a(2)

1 = 1

�1,2(υ, ω)

{
b(2)

1 −
M∑

g=2

�g,2(υ, ω)b(2)
g − T̂ 1

ω,υ

(
�1

ω,υ(b)(1), b(1)

2 , . . . , b(1)

M

)(2)
}

: = �1
ω,υ(b)(2).

Now a(i)
1 = �1

ω,υ(b)(i) can be determined recursively for each i = 1, . . . , S. In fact,

a(i)
1 = 1

�1,i (υ, ω)

{
b(i)

1 −
M∑

g=2

�g,2(υ, ω)b(i)
g − �(i)

ω,υ(b)

}
:= �1

ω,υ(b)(i), (4·24)

where

�(i)
ω,υ(b) = T̂ 1

ω,υ

(
�1

ω,υ(b)(1)+· · ·+�1
ω,υ(b)(i−1), b(1)

2 + · · · + b(i−1)

2 , . . . , b(1)

M + · · · + b(i−1)

M

)(i)
.

This completes the proof.

The proof of Lemma 4·6 provides a formula for the inverse �ω,υ : gM → gM of the
mapping Tω,υ . In fact, the i th component of �ω,υ is

� j
ω,υ(b) =

{
�1

ω,υ(b)(1) + · · · + �1
ω,υ(b)(S) for j = 1,

bi for j = 2, . . . , M,

where �1
ω,υ(b)(i) is given by (4·24).

Proof of Theorem 4·1. For any (g1, k1), . . . , (gi , ki) ∈ G M , the map a 
→ ag1,k1,...,gi ,ki

is locally Lipschitz continuous from gM to g. According to Proposition 4·3, the map
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T 1
ω,υ : gM → g is thus a linear combination of locally Lipschitz continuous mappings.

By Lemma 4·4, the coefficients in this linear combination are bounded by a constant which
is independent of the words ω and υ. The map Tω,υ is then Lipschitz continuous on compact
sets, with a Lipschitz constant independent of the words.

An inspection of (4·24) and the bounds given by Lemmas 4·4 and 4·5 show that the inverse
map �ω,υ is also locally Lipschitz continuous with Lipschitz constant which is independent
of the words ω and υ. This claim can be formally proved by induction on i = 1, . . . , S.

5. Proof of the main theorem

5·1. Dimension comparison in Carnot groups

Let G denote a Carnot group equipped with a sub-Riemannian metric d. As mentioned in
the introduction, the metric structure of (G, d) differs substantially from the metric structure
of the underlying Euclidean space RN . A precise description of the discrepancy between the
Hausdorff dimensions of subsets of G measured with respect to sub-Riemannian and Euc-
lidean metrics was given in [5]. This discrepancy is quantified by the dimension comparison
functions β± : [0, N ] → [0, Q] associated to the group G.

Recall that we have denoted by mi the dimension of the i th layer gi of the Lie algebra g
of G. The lower dimension comparison function for G is the function β− = βG

− : [0, N ] →
[0, Q] defined by

β−(α) =
�−∑

i=1

imi + (1 + �−)

(
α −

�−∑
i=1

mi

)
, (5·1)

where �− = �−(α) ∈ {0, . . . , S − 1} is the unique integer satisfying

�−∑
i=1

mi < α �
1+�−∑
i=1

mi . (5·2)

Similarly, the upper dimension comparison function for G is the function β+ = βG

+ :
[0, N ] → [0, Q] defined by

β+(α) =
S∑

i=�+

imi + (−1 + �+)

⎛⎝α −
S∑

i=�+

mi

⎞⎠ , (5·3)

where �+ = �+(α) ∈ {2, . . . , S + 1} is the unique integer satisfying

S∑
i=�+

mi < α �
S∑

i=−1+�+

mi . (5·4)

Here we stipulate that the empty sum is equal to zero.
Intuitively, β−(α) is a weighted sum of dimensions of layers of g, starting from the lowest

layer g1 and increasing up to the layer g�−(α), together with a portion of the layer g1+�−(α),
while β+(α) is a weighted sum of dimensions of layers of g, starting from the highest layer
gS and decreasing down to the layer g�+(α), together with a portion of the layer g−1+�+(α).

The relevance of these dimension comparison functions is evident in [5, theorems 2·4 and
2·6]: For any set A ⊂ G, β−(dimE A) � dimcc A � β+(dimE A) and every pair (α, β) with
β−(α) � β � β+(α) coincides with (dimE A, dimcc A) for some A ⊂ G.
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For later purposes we provide an explicit formula for the lower dimension comparison
function. For s ∈ [0, Q] we have

β−1
− (s) = mini=1,...,S

(∑i
h=1(i − h)mh + s

i

)
= min

{
s,

m1 + s

2
,

2m1 + m2 + s

3
, . . . ,

SN − Q + s

S

}
.

(5·5)

5·2. A covering lemma

Let Tω,υ : GM → GM be the mapping introduced in (4·2). By Theorem 4·1, Tω,υ is
bi-Lipschitz continuous on compact sets in the Euclidean metric, with a Lipschitz constant
independent of the words ω and υ.

We fix a parameter R � 1. For � � 1 we introduce the set


ω,υ(�) = (
T −1

ω,υ

)(
B� × B M−1

R

)
.

LEMMA 5·1. Let (G, d) be a Carnot group of step S equipped with a sub-Riemannian
metric. Consider the product Carnot group GM = (G, d)M . For each i = 1, . . . , S, the set

ω,υ(�) ⊂ GM can be covered by at most

C�−i(QM−N )−∑i
h=1(i−h)mh

balls of radius �i , where C = C(G, R).

In the proof of Lemma 5·1, we make use of the following auxiliary covering lemma.

LEMMA 5·2 (Balogh–Tyson–Warhurst). Let K ⊂ G be a bounded set.
(a) For each h = 1, . . . , S, each Euclidean ball of radius r with center in K can be

covered by O(r−λ+(h+1)) balls of radius r 1/h, where

λ+(h + 1) =
S∑

i=h

(
i

h
− 1

)
mi .

(b) For each h = 1, . . . , S, each ball of radius r with center in K can be covered by
O(r−λ−(h−1)) Euclidean balls of radius rh, where

λ−(h − 1) =
h∑

i=1

(h − i)mi .

The implicit constants depend on G and K , but are independent of r .

See [5, lemma 3·2].
The idea of the proof of Lemma 5·1 is quite simple. We will produce the desired covering

in a sequence of steps. First, we cover each of the balls B� and BR with families of balls
of smaller radii �i/k and �i/� respectively. Here k ∈ {1, . . . , i} and � ∈ {1, . . . , S} are
free parameters which will be chosen later in order to minimize the total cardinality of the
covering. We then apply Lemma 5·2 to cover each of these balls with Euclidean balls of
radii �i . By this scheme we produce a covering of B� × B M−1

R by Euclidean balls of radius
�i . Since the map T −1

ω,υ is Euclidean bi-Lipschitz, we obtain a covering of 
ω,υ(�) by such
Euclidean balls as well. Finally, we use Lemma 5·2 again to convert this Euclidean covering
into a covering by sub-Riemannian balls of radius �i . We must keep track of the increase
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in the cardinality of the covering at each stage, and eventually minimize over k and �. This
yields the desired estimate.

Proof of Lemma 5·1. For fixed κ � 0, we write O(�κ) to denote any quantity which is
bounded above by C�κ for some constant C which depends only on the group G and the
radius R.

(i) By a simple volume estimate, we may cover B� with

O

((
�

�i/k

)Q)
= O(�Q(1−i/k))

balls of radius �i/k , for any fixed k ∈ {1, . . . , i}. Applying Lemma 5·2(b) with h = k
yields a covering of B� by

O(�Q(1−i/k)−(i/k)λ−(k−1))

Euclidean balls of radius �i .
(ii) Similarly, we may cover BR with O(�−Qi/�) balls of radius �i/�, for any fixed � ∈

{1, . . . , S}. Another application of Lemma 5·2(b), this time with h = �, yields a cover-
ing of BR by

O(�−Qi/�−(i/�)λ−(�−1))

Euclidean balls of radius �i .
(iii) Combining (i) and (ii), we find that B� × B M−1

R can be covered by

O
(
�Q(1−i/k)−(i/k)λ−(k−1)−(M−1)Qi/�−(M−1)(i/�)λ−(�−1)

)
Euclidean balls of radius �i . (Here we are in the space GM .)

(iv) We are now in a position to use the fact that Tω,υ is Euclidean bi-Lipschitz. We conclude
that 
ω,υ(�) = T −1

ω,υ(B� × B M−1
R ) can be covered by

O(�Q(1−i/k)−(i/k)λ−(k−1)−(M−1)Qi/�−(M−1)(i/�)λ−(�−1))

Euclidean balls of radius �i .
(v) To conclude the proof we return to the sub-Riemannian metric d. By a final application

of Lemma 5·2(a) with h = 1, we cover 
ω,υ(�) by

O(�Q(1−i/k)−(i/k)λ−(k−1)−(M−1)Qi/�−(M−1)(i/�)λ−(�−1)−Miλ+(2))

Carnot–Carathéodory balls of radius �i .

To complete the proof we must evaluate the exponent

Q

(
1 − i

k

)
− i

k
λ−(k − 1) − (M − 1)Q

i

�
− (M − 1)

i

�
λ−(� − 1) − Miλ+(2). (5·6)

To this end, we observe that λ+(2) = Q − N . We may rewrite (5·6) as

−i M(Q − N ) + Q − i

(
Q + λ−(k − 1)

k
+ (M − 1)

Q + λ−(� − 1)

�

)
. (5·7)

We minimize over k ∈ {1, . . . , i} and � ∈ {1, . . . , S}. A simple computation shows that the
function k 
→ (Q + λ−(k − 1))/k is decreasing. Thus the minimum occurs for k = i and
� = S. Since λ−(S − 1) = SN − Q, (5·7) reduces to

−i M(Q − N ) − λ−(i − 1) − i(M − 1)N = −i(M Q − N ) − λ−(i − 1),

which gives the desired result.
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168 ZOLTÁN M. BALOGH AND OTHERS

5·3. Proof of Theorem 1·1.

Assume that
dimcc E(s) > QM − (N − β−1

− (s)).

Choose q satisfying
QM − (N − β−1

− (s)) < q < dimcc E(s); (5·8)

then Hq
cc(E(s)) = ∞, hence Hq

cc(E(s) � B M
R ) > 0 for some R > 0. By Frostman’s theorem,

there exists a nontrivial Borel measure μ, supported on E(s) � B M
R so that

μ(B�(x)) � �q (5·9)

for all x ∈ GM and all � > 0. Thus

dimcc(Ka) < s (5·10)

for μ-a.e. a ∈ B M
R . We shall verify (2·6) for this measure μ; by Proposition 2·2 this inequality

implies that
dimcc(Ka) � s

for μ-a.e. a ∈ B M
R which contradicts (5·10).

The desired estimate ∫
B M

R

d(πa(υ), πa(ω))−s dμ(a) � C(G, R)

r s
ω∧υ

(5·11)

for all ω, υ ∈ W∞,M is equivalent to the estimate∫
B M

R

d(πa(υ), πa(ω))−s dμ(a) � C(G, R) (5·12)

for all ω, υ ∈ W∞,M such that υ1 � ω1. Here we used the relation (2·4) together with the
effect of similarity mappings on the sub-Riemannian metric d.

Let us therefore fix two words ω, υ ∈ W∞,M such that ω1 �υ1. Without loss of generality,
we can assume that ω1 = 1. By the left invariance of the sub-Riemannian metric d, the
integrand in (5·12) is equal to

d(πa(υ), πa(ω))−s = d
(
T 1

ω,υ(a), 0
)−s

where Tω,υ : GM → GM is defined as in (4·2). Implementing the change of variables given
by Tω,υ , we estimate∫

B M
R

d(πa(υ), πa(ω))−s dμ(a) �
∫

B M
C R

d(a1, 0)−s d((Tω,υ)#μ)(a)

=
∫ ∞

0
(Tω,υ)#μ

({
a ∈ B M

C R : d(a1, 0)−s > t
})

dt

=
∫ ∞

0
(Tω,υ)#μ

({
a ∈ B M

C R : d(a1, 0) < t−1/s
})

dt

=
∫ ∞

0
μ
(
T −1

ω,υ

(
Bt−1/s∧C R × B M−1

C R

))
dt

� C(R) +
∫ ∞

�−1(C R)

μ(
ω,υ(�(t))) dt,

where �(t) = t−1/s .
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For each i = 1, . . . , S we apply Lemma 5·1 to bound the integrand μ(
ω,υ(�(t))). An
application of (5·9) yields that

∫∞
�−1(C R)

μ(
ω,υ(�(t))) dt is bounded above by∫ ∞

t0

�(t)−i(QM−N )−∑i
h=1(i−h)mh+iq dt =

∫ ∞

t0

t− 1
s (iq−i(QM−N )−∑i

h=1(i−h)mh) dt, (5·13)

where t0 := �−1(C R). This integral converges precisely when

−1

s

(
iq − i(QM − N ) −

i∑
h=1

(i − h)mh

)
< −1

or

q > QM − N + 1

i

(
s +

i∑
h=1

(i − h)mh

)
. (5·14)

We may choose i so that the right-hand side of this inequality is equal to

QM − (N − β−1
− (s)).

See (5·5). The choice of q in (5·8) guarantees that (5·14) holds for this value of i . Then the
integral in (5·13) is finite. This completes the proof of Theorem 1·1.

Remark 5·1. Corollary 1·1 follows from Theorem 1·1 by expressing E(dr) as a countable
union of sets E(s), s < dr, and using the countable stability of the Hausdorff dimension.

6. Final comments and questions

In this final section, we collect several comments and remarks concerning Theorem 1·1
and its proof, and indicate some directions for future research.

Remark 6·1. Can the estimate in Theorem 1·1 be improved? The appearance of the di-
mension comparison functions β± in (1·12) stems from our method of proof, which uses
the Euclidean bi-Lipschitz property of the transition map Tω,υ . The transition map cannot be
expected to be bi-Lipschitz continuous for the Carnot–Carathéodory metric. In fact, the map-
ping G × G → G, (a, b) 
→ a ∗ b is not Lipschitz continuous for the Carnot–Carathéodory
metric, which is left but in general not right invariant. We do not know whether the use
of dimension comparison theorems and the concomitant appearance of the functions β± in
Theorem 1·1 is necessary.

Remark 6·2. Theorem 1·1 provides a quantitative estimate on the size of the exceptional
set E(s) associated with the almost sure identity

dimcc Ka = dr for a.e. a ∈ GM . (6·1)

Following the discussion in the introduction we pose two additional problems of similar
type. Recall that

dimE Ka = β−1
− (dr) for a.e. a ∈ GM . (6·2)

We are led to pose

Problem 6·1. For s < dr, estimate the dimension of the exceptional set

E ′(s) = {a ∈ GM : dimE Ka < β−1
− (s)}.
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In fact, we may look for estimates of either the sub-Riemannian Hausdorff dimension
or the Euclidean Hausdorff dimension of E ′(s). Any results which we obtain for either of
these problems will necessarily be related to each other through the dimension comparison
theorem of [5] applied on the product Carnot group GM . We seek estimates of the form
dimcc E ′(s) � QM − ϕ(s) or dimE E ′(s) � N M − ψ(s). An easy computation shows that

βG
M

± (α) = MβG

± (α/M)

for 0 < α < N M . It follows that

dimcc E ′(s) � QM − ϕ(s) ⇒ dimE E ′(s) � N M − (βG
M

+ )−1(ϕ(s))

and

dimE E ′(s) � N M − ψ(s) ⇒ dimcc E ′(s) � QM − (βG
M

− )(ψ(s)).

Combining (6·1) and (6·2) yields

dimcc Ka = β−(dimE Ka) for a.e. a ∈ GM ;

i.e., almost every Ka is a horizontal set (in the terminology introduced in [5]). We would
like to understand more precisely the prevalence of horizontal sets among sub-Riemannian
self-similar fractals. We pose

Problem 6·2. For δ > 0 estimate the (sub-Riemannian or Euclidean) Hausdorff dimension
of the exceptional set

E ′′(δ) = {a ∈ GM : dimcc(Ka) > β−(dimE Ka) + δ}.

Problems 6·1 and 6·2 are more difficult to tackle than Theorem 1·1. The reason is that
these problems ask for dimension estimates in the Euclidean metric on G, where Ka is the
invariant set for a highly nonlinear IFS comprised of polynomial mappings of large degree.
Clearly, any progress on either of these problems yields conclusions for the other problem,
in view of Theorem 1·1.

Example 6·1. We conclude with an example. The setting is the simplest nonabelian
Carnot group, the first Heisenberg group H1. Recall that H1 is the unique step two Carnot
group of dimension three. Explicitly, H1 = R3 with Lie algebra h1 = span{X, Y, T }, where
[X, Y ] = T . We denote by ∗ the group law in H1. Elements of H1 will be written in coordin-
ates as (x, y, t) corresponding to the basis elements in h1. For the sub-Riemannian metric
on H1 we use the Korányi metric d(p, q) = |p−1 ∗ q| where

|(x, y, t)| = (
(x2 + y2)2 + 16t2

)1/4
.

The dilations (δr )r > 0 act on H1 in the usual manner: δr (x, y, t) = (r x, ry, r 2t). Let π1 :
H1 → R2, π1(x, y, t) = (x, y) denote the projection to the first (horizontal) layer.

Let f = { f1, f2} be a two element IFS on H1 with contraction ratios r1, r2 < 1/2 and
translation parameters a1, a2 ∈ H1. The fixed point p j for f j satisfies p j = a j ∗ δr j (p j ).
The similarity dimension dr solves the equation rdr

1 + rdr
2 = 1. In H1 the lower dimension

comparison function is β−(α) = max{α, 2α − 2}; thus β−1
− (s) = s for s < 1. The estimate

coming from Theorem 1·1 is

dimcc E(s) � 2Q − N + s = 5 + s,
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where Q = 4 and N = 3 are the homogeneous and topological dimensions of H1, respect-
ively. In this example, the sub-Riemannian and Euclidean dimensions of the invariant set
can be evaluated exactly for every a:

(i) when p1 = p2 the invariant set is a point, hence has dimension zero;
(ii) when p1 and p2 are distinct points satisfying π1(p1) = π1(p2), the invariant set K

is a Cantor set contained in the vertical line π−1
1 (π1(p j )) in H1. Its sub-Riemannian

dimension, dimcc K , is the similarity dimension dr, while its Euclidean dimension,
dimE K , is dr/2. In fact, K is a Euclidean self-similar fractal generated by an IFS
with contraction ratios r 2

1 and r 2
2 ;

(iii) finally, when p1 and p2 are distinct points for which π1(p1) � π1(p2), the invariant
set K is a Cantor set satisfying dimcc K = dimE K = dr. Indeed, π1(K ) is a Cantor
set in R2 generated by an IFS with contraction ratios r1 and r2. This Euclidean IFS
satisfies the open set condition, hence dimE π1(K ) = dr. Since id : (H1, d) →
(R3, dE) is locally Lipschitz, we find

dr = dimE π1(K ) � dimE K � dimcc K � dr

and equality holds throughout. Note that π1(K ) is contained in a one-dimensional
affine subspace of R2, hence K is contained in a two-dimensional vertical affine
subspace of H1 = R3.

The exceptional sets are E(s) = {a = (a1, a2) ∈ H1 × H1 : a1 = a2},
E ′(s) = {a = (a1, a2) ∈ H1 × H1 : π1(a1) = π1(a2)}

and

E ′′(δ) = {a = (a1, a2) ∈ H1 × H1 : π1(a1) = π1(a2), a1 � a2}
for 0 < s < dr and δ > 0 sufficiently small. Then dimcc E(s) = 4 and

(dimE E ′(s), dimcc E ′(s)) = (dimE E ′′(δ), dimcc E ′′(δ)) = (4, 6).

Note that the actual value of dimcc E(s) is smaller than the prediction of Theorem 1·1 by
a definite amount, regardless of the value of s.

Remark 6·3. As indicated above, the invariant set for any two element IFS in H1 lies in
a vertical affine plane, i.e., a coset of a vertical two-dimensional homogeneous subgroup
P . By homogeneous we mean that P is closed under the action of the dilations (δr )r > 0.
Any such subgroup is spanned by a horizontal element V ∈ span{X, Y } together with the
nonhorizontal vector T . Observe that P can be identified with R2 via coordinates (v, t), and
that the restriction of the Korányi metric to P is bi-Lipschitz equivalent to the parabolic
(heat) metric dheat((v1, t2), (v2, t2)) = |v1 − v2| + √|t1 − t2| on R2. Any two such cosets are
equivalent via an isometry of H1. Finally, any two points in H1 are contained in such a coset.
In view of these remarks, we consider the results of [5] and this paper in the context of such
homogeneous subgroups, equipped with their natural dilation structures and left invariant
homogeneous metrics. Fix a particular subgroup P of this type, e.g., P = span{X, T }.
Observe that the relevant dimensions of P are N = 2 (topological dimension) and Q = 3
(homogeneous dimension). Then E(s) = {a ∈ P × P : a1 = a2} has dimcc E(s) = Q = 3,
while Theorem 1·1 predicts dimcc E(s) � 2Q − N + s = 4 + s. Again we observe the
discrepancy between the prediction and the exact value, which ultimately stems from the
method of proof via the Euclidean bi-Lipschitz property of the transition map and the use of
dimension comparison theorems.
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