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Abstract.—Tens of thousands of phylogenetic trees, describing the evolutionary relationships between hundreds of thousands
of taxa, are readily obtainable from various databases. From such trees, inferences can be made about the underlying
macroevolutionary processes, yet remarkably these processes are still poorly understood. Simple and widely used
evolutionary null models are problematic: Empirical trees show very different imbalance between the sizes of the daughter
clades of ancestral taxa compared to what models predict. Obtaining a simple evolutionary model that is both biologically
plausible and produces the imbalance seen in empirical trees is a challenging problem, to which none of the existing models
provide a satisfying answer. Here we propose a simple, biologically plausible macroevolutionary model in which the rate of
speciation decreases with species age, whereas extinction rates can vary quite generally. We show that this model provides
a remarkable fit to the thousands of trees stored in the online database TreeBase. The biological motivation for the identified
age-dependent speciation process may be that recently evolved taxa often colonize new regions or niches and may initially
experience little competition. These new taxa are thus more likely to give rise to further new taxa than a taxon that has
remained largely unchanged and is, therefore, well adapted to its niche. We show that age-dependent speciation may also
be the result of different within-species populations following the same laws of lineage splitting to produce new species.
As the fit of our model to the tree database shows, this simple biological motivation provides an explanation for a long
standing problem in macroevolution. [Birth–death process; diversification; macroevolution; Stochastic models.]

Macroevolutionary models generate phylogenetic
trees representing processes by which an ancestor
species evolves a diversity of species through speciation
and extinction. Exploring the behavior of such
models contributes toward explaining how present
biodiversity evolved (Mooers and Heard 1997). Every
model is a simplification of a complex system, but
such abstractions may help identify patterns and
raise new hypotheses. Comparing these models with
empirical data enables us to test such hypotheses,
and thus helps to understand evolutionary processes
and identify particular deterministic forces (Hey 1992).
The macroevolutionary models range from simple to
complex, and even from the behavior and properties of
the simplest ones much can be understood and learned
(Hartmann et al. 2010; Stadler 2013).

The most basic macroevolutionary null model is
the Yule model (Yule 1924), under which all extant
species at a particular point in time are equally likely
to undergo a speciation event. The Yule model is
appealing for its simplicity but fails to reproduce
empirical data, as empirical phylogenies of extant species
are generally far less balanced (meaning that sister
clades are of very different sizes) (Yule 1924; Losos
and Adler 1995; Aldous 1996, 2001; Heard 1996; Mooers
and Heard 1997; Steel and McKenzie 2001; Pinelis 2003;
Blum and François 2006). Likewise, all species-speciation-
exchangeable models (Stadler 2013), which include,
in particular, environmental-dependent or diversity-
dependent diversification models, produce the same
distribution of tree shapes (i.e., a phylogeny ignoring
branch lengths) as the Yule model (Stadler 2013).
Therefore, these models are clearly missing important

macroevolutionary features. Identifying more general
macroevolutionary models that give rise to empirical
tree balance will indicate which macroevolutionary
dynamics may play major roles in shaping biodiversity.

Under the Yule model, each “ranked” labeled tree
shape (i.e., a tree shape with an ordering of internal
vertices and unique leaf labels) is equally likely (Aldous
2001), and this leads to highly balanced trees. By contrast,
the Proportional to Distinguishable Arrangements model
(PDA) (Aldous 1996, 2001; Semple and Steel 2003)
assumes that each labeled tree shape (disregarding
the order of speciation events) is equally likely. The
PDA model produces trees that are highly unbalanced
and has been biologically motivated by explosive
radiation events and the colonization of new niches
(Steel and McKenzie 2001). For an example of a perfectly
balanced and unbalanced tree see Supplementary
Material for Figures 1a and b available on Dryad at
http://dx.doi.org/10.5061/dryad.31227, respectively.

The Yule and PDA models lie at opposite ends of
the tree balance spectrum with empirical trees generally
somewhere in between. Aldous (2001) introduced
�-splitting models which span and extend the range of
tree balance. In these models, the tree balance can be
selected by altering a single parameter, �. Aldous (1996)
found evidence that empirical trees support a value of
�≈−1, however, no biological explanation supports this
value.

Mechanistic models that vary speciation rates across
species have been suggested before, however, most of
them rely on problematic assumptions. Trait-dependent
speciation models can match empirical trees, but no
obvious trait has been linked to tree shape. Models that

432

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/85217517?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.5061/dryad.31227


2015 HAGEN ET AL.—AGE-DEPENDENT SPECIATION 433

a) b)

FIGURE 1. Speciation modes. a) The symmetric speciation mode captures the notion of allopatric speciation. All daughter lineages descending
from a speciation event start with age 0. b) The asymmetric speciation mode is inspired by peripatric speciation and the two daughter lineages
are not treated equally. On every split, one descendant has its age set to 0whereas the other keeps the ancestral “mother” age.

randomly “evolve” speciation rates along lineages may
produce imbalances resembling those seen in empirical
trees, (Heard 1996; Heard and Mooers 2002; Blum
and François 2006) however, it is not clear how to
interpret the “evolution” of speciation rates biologically:
At each speciation event, the daughter lineages inherit
the fraction f and (1−f ) of the mother speciation rate
(Blum and François 2006).

In our study, we find both analytically and in
simulations that trees matching empirical data can be
produced across wide parameter ranges by allowing
speciation rates to vary across species. We propose an
evolutionary model that is both biologically plausible
and provides a good match to empirical tree shapes.
Under this model, a species is assumed to have
a speciation rate that depends on the age of the
species and these age-dependent rates are the same
across all the species. Age dependence may thus link
macroevolutionary processes to ecological dynamics of
a species: The species populations changing through
time due to ecological pressures (such as predators or
pathogens) may give rise to varying macroevolutionary
dynamics.

When considering age-dependent speciation (or
extinction), we need to define when a species is new,
that is, when to reset an age to 0. Two ways to do so are
to either set both species descending from a speciation
event to age 0 (symmetric speciation mode) or to set
one species descending from a speciation event to age
0, whereas the second species inherits the age of the
ancestor (asymmetric speciation mode, see Fig. 1 and
Methods section).

We analyzed our age-dependent models both
mathematically and through simulations before
comparing the model tree shape distribution to
empirical tree shapes.

METHODS

Age-Dependent Speciation–Extinction Model and Analytic
Considerations

Under an age-dependent model, the rate of speciation
or extinction of a lineage depends on its age.
Mathematically, this can be formulated by assigning

a probability density gs(t) to the time for which a
newly formed lineage persists until its next speciation
event, after which it is replaced by two lineages (one or
both of which will constitute “new” lineages depending
on the speciation mode). The extinction process is
dictated by another probability density ge(t). The
constant rate birth–death (crBD) model is a special case
with exponentially distributed waiting times, meaning
rates are age independent. Few phylogenetic studies
(e.g., Jones 2011) have relaxed the age-independence
assumptions.

Lifetime distributions, which are often used to model
the time to failure of machinery (or death of organisms),
are of particular interest to us, as they are derived
from principles that may also apply to a speciation and
extinction process. In this article, we focus on the Weibull
distribution. The Weibull distribution is often used in
reliability theory (e.g., in engineering applications) and
is suitable for modeling situations where there are many
parts with the same failure distribution and the time to
the first failure is the end of a lifetime. This is a “chain
model” in the sense that the strength of the chain is
determined by the strength of the weakest link.

The Weibull distribution can be justified as a
distribution for the time to speciation as follows. If
we view a species as a collection of populations, and
a speciation event to occur at the first time that one
of these populations founds a new lineage, then if we
regard these populations as behaving independently
and identically with respect to this process, the time T
to a speciation event is the minimum of independent
and identically distributed (i.i.d.) random variables
(one for each population). If the rate at which a
population gives rise to a new lineage is constant,
then the times to speciation in each population will
be exponential distributed, and hence, so too will
their minimum T. More generally, regardless of the
distribution of the population-specific process, if the
number of populations is large, extreme value theory
(Fisher and Tippett 1928; McFadden 1978) shows that the
distribution of T is of a specific family that generalizes
the exponential. For a large range of distributions of the
i.i.d. random variables one obtains the two-parameter
Weibull distribution. Notice that the Weibull distribution
includes as a special case (when the shape parameter
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�=1) the 1D Exponential distribution (induced e.g.,
through the minimum of i.i.d. exponentially distributed
random variables), which corresponds to a constant
speciation rate that is independent of species age.

Assuming a Weibull-distributed time until species
extinction can also be justified as follows. Consider
a simple model in which extinction of a species
occurs when a first “catastrophic” event occurs. Assume
further that a large number of possible processes could
cause such an event, and the times until each such
event occurs are i.i.d. random variables. Then extreme
value theory tells us that, under some fairly general
conditions, the time until species extinction will follow
a Weibull distribution. Note, however, that if we model
extinction to occur once the last population of a species
dies, and if we regard these populations as behaving
independently and identically with respect to this death
process, extinction is the maximum of i.i.d. random
variables (one for each population). The maximum
of i.i.d. random variables with distributions such as
Exponential, Normal, Gamma, Lognormal, or Weibull,
is the Gumbel distribution.

The two-parameter Weibull distribution probability
density is g(t)= (�/�)(t/�)�−1e−(t/�)� , where � is the
so-called shape parameter and � the scale parameter.
The mean time until an event is �=��(1+ 1

� ), with �
being the gamma function. An important characteristic
of the Weibull distribution is the rate at which events
occur; in our application this is the rate at which
a taxon undergoes speciation or extinction, and an
�<1 corresponds to a speciation rate that declines
with species age. Mathematically, it is given by �(t)=
g(t)/

∫ ∞
t g(t)dt= �

� ( t
� )�−1. In the following, we will use

the parameters � and � (rather than the common
parameters � and � =�/�(1+ 1

� )) to define the Weibull
distribution.

An age-dependent model that assumes a Weibull-
distributed speciation process but no extinction
induces the Yule and the PDA model at �s =1 and
�s =0, respectively (see Supplementary Material
for a mathematical proof available on Dryad at
http://dx.doi.org/10.5061/dryad.31227). By focusing
on the range 0<�s ≤1, we investigate models inducing
intermediate balanced trees that are similar to empirical
trees.

Under the age-dependent model, one needs to
distinguish if, upon speciation, both descending species
are “daughter” species with age 0 (symmetric speciation
mode, Fig. 1a) or one of them remains as the “mother”
species, inheriting the age (asymmetric speciation mode,
Fig. 1b). The symmetric speciation mode may be
inspired by allopatric speciation, where the divided
subpopulations are exposed to comparable evolutionary
forces. The asymmetric model may relate to peripatric
speciation. It can be interpreted as an isolation of a small
part of the population that suffers stronger speciation
forces than the remaining part.

In both of the above-mentioned scenarios, the
“new” species of age 0 has a significantly different

population size than the mother species, and thus
macroevolutionary dynamics may be very different (e.g.,
increased extinction risk due to small population size).
We emphasize that both modes could be related to any
speciation mechanism (even parapatric and sympatric
speciation), depending on how much the two originated
species differ from the “mother” species. Furthermore,
the species age is only set to 0 at the time of a branching
event (i.e., at cladogenesis), thus, a new species evolving
via anagenesis is assumed to inherit the age of the mother
species.

Comparing Tree Distributions
Tree shape analysis gives an indication of the

difference of the daughter clade sizes of ancestral taxa
throughout the tree and provides a simple method by
which complex phylogenetic trees can be compared.
Broadly used statistics for summarizing tree shape
are: Colless (Colless 1982), Sackin (Sackin 1972; Shao
and Sokal 1990), and � (Aldous 2001) (the value
that maximizes the likelihood in the �-splitting model
(Aldous 2001)). In this study, all three statistics were
used, with a focus on the results for �, noting that Colless
and Sackin outcomes were qualitatively equivalent to �.
For the Yule model, the expected mean � is 0 whereas less
balanced trees have �<0; in particular, the PDA model
has �=−1.5.

Branch length analyses tell us about the relative timing
of speciation events in a phylogenetic tree, and are,
therefore, important for measuring the speciation and
extinction rates and overall tree age. A popular statistic
summarizing branch lengths is the � statistic (Pybus
and Harvey 2000). A value of �=0 indicates that the
underlying model is consistent with a Yule model,
whereas �<0 reflects that branching events are closer
to the root than under the Yule model, e.g., caused by a
decreasing speciation rate through time. A value of �>0
reflects that branching events are generally closer to the
tips than under the Yule model. A �>0 may be caused
by a speciation rate which has increased over time or
reflect the contribution of extinction, since a crBD model
(with positive extinction rate) induces �>0 due to the
so-called “pull-of-the-present effect”(Nee et al. 1994).

Simulations
To investigate which parameters of our age-dependent

model control tree shape and branch lengths, we
simulated phylogenetic trees under different parameter
combinations. To illustrate the importance of speciation
mode and to test our implementation, the waiting
time until speciation and extinction was fixed (meaning
a Dirac delta distribution was used, which is a
Weibull distribution with shape �→∞). The main
simulation study exploring the effect of age-dependent
speciation and extinction rates on the tree distribution
assumes Weibull-distributed times until speciation and
extinction. The Weibull distribution was parameterized

http://dx.doi.org/10.5061/dryad.31227
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through its mean � and shape � (rather than scale
� and shape �). The speciation mean was set to 1
(�s =1), meaning we defined one time unit as the
mean time to speciation. Changing the mean time to
speciation to a value different from 1 would scale
branches in the simulated trees, however, as we only
look at tree shape distribution (via Colless, Sackin, and
� statistic) and relative branch lengths (via � statistic),
our results are invariant toward the setting of �s. We
then explored the influence of the remaining three
parameters on the induced trees: Speciation shape �s,
inverse extinction mean 1/�e (referred to as turnover,
being here the mean time to speciation divided by
mean time to extinction), and extinction shape �e.
In addition, two modes of speciation, symmetric and
asymmetric, were considered. We simulated trees with
a fixed number of extant species (typically 100) and then
pruned all extinct tips to obtain simulated phylogenies
(comparable to empirical phylogenies). All simulations
with nonzero extinction rate used the general sampling
approach (Hartmann et al. 2010). In short, the general
sampling approach simulates trees with a fixed number
of tips, and, compared with standard approaches, does
not stop once the number of tips is reached but also
considers trees which grow bigger and then shrink due
to extinctions to the desired size.

To run the simulations, the central high-performance
computer cluster of ETH Zurich (Brutus) was used.
To summarize tree shape and branch lengths, we
employed widely used summary statistics on simulated
and empirical trees (see section “Comparing tree
distributions”).

Trees for different parameter settings were simulated.
First, we assumed a constant rate of speciation
(Weibull shape �s =1) and age-dependent extinction for
turnover 0.5 and 0.9. Then, we simulated age-dependent
speciation for different �s, without extinction, a constant
extinction rate and a Weibull-distributed time until
extinction for turnover 0.5 and 0.9.

For the particular case of small tree sizes without
extinction, it is possible to characterize the tree shape
distribution analytically. This is outlined in detail
in the Supplementary Material available on Dryad
at http://dx.doi.org/10.5061/dryad, “Calculating tree
shape probabilities under the symmetric age-dependent
model without extinction.” However, the probability of
particular tree shapes involves nested integrals which
appear to possess no explicit analytical solution, and is
impractical for large trees.

Data Set
A total of 9243 empirical trees were cached from the

TreeBase (Sanderson et al. 1994) repository (accessed 16
September 2012) using the R package treebase (Boettiger
and Temple Lang 2012). From these, only ultrametric
binary trees containing branch length information
were used for branch length analysis. For tree shape
analysis, only fully binary rooted trees with or without

branch lengths were selected. Within these, only trees
of the kind “species trees” were used. Protein and
gene trees were ignored to achieve a straightforward
interpretation. Data available from Dryad Digital
Repository: http://dx.doi.org/10.5061/dryad.31227.

Macroevolutionary Parameter Estimation Based on
Empirical Trees

To find the �s best explaining empirical tree
imbalance, a large simulation study was performed (R
scripts available fromDryad Digital Repository: http://
dx.doi.org/10.5061/dryad.31227). We determined the �s
which gave rise to simulated trees most similar to our
empirical trees. In detail, 100 trees were simulated each
for symmetric and asymmetric speciation modes and
number of tips 5, 10, 20, 50, 100, 200, 500, 100, 2000, and
�s 0.1, 0.2…0.9, 1. In total 18,000 trees where simulated.
No extinction was assumed, since we observed in the
simulations above that extinction does not change tree
shape much. For each simulated and empirical tree, all
three shape statistics (Sackin, Colless, �) were calculated.
For the simulated trees, the values of the shape statistics
where summarized by the median over the 100 trees
with the same speciation mode, same �s, and same
number of tips. To have a proxy for the median tree
shape statistics of tree sizes which were not simulated, a
linear interpolation between the simulated median tree
shape statistics for each speciation mode and �s was
performed.

Thereafter, for every single empirical tree (i) and for all
trees (ii) the best �s was selected. As we did not know
if the empirical trees are better modeled by symmetric
or asymmetric speciation mode, the selection of the
best �s for both modes was performed. In case (i), the
respective shape statistic for each tree was compared
with the median tree shape statistic of the simulated
trees (or the interpolation) for the same number of tips.
The �s with the lowest difference between the statistic
of the empirical tree and the (interpolated) median was
chosen for every single tree. In case (ii), we assumed
each empirical tree is described by the same �s. For
each �s, we calculated the sum of squared difference of
each empirical tree shape statistic and the corresponding
(interpolated) median tree shape statistic with shape �s.
Since the Colless and Sackin statistics are not normalized
with respect to the number of tips (and thus big trees
have much bigger summary statistics), we normalized
the squared difference by the square of the (interpolated)
median tree shape statistic. As � is already normalized,
the normalization was not conducted for that statistic.
The best �s was finally determined by minimizing this
sum of squares.

Empirical trees on TreeBase might still include an out-
group. We thus deleted from each TreeBase tree the
smaller clade descending the root, as this smaller sister
clade may have been an out-group. We analyzed these
out-group-corrected trees with the same procedure as
the complete trees.

http://dx.doi.org/10.5061/dryad.31227
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Macroevolutionary Parameter Estimation Based on
Simulated Trees

To check whether our procedure yields reliable
estimates of �s, we tested it on simulated phylogenies
(R scripts available fromDryad Digital Repository:
http://dx.doi.org/10.5061/dryad.31227). We simulated
the same number of trees with the same number of tips
as in the empirical set. A Weibull-distributed speciation
process with �s =0.5 and a constant extinction rate with
a turnover of 0.5 was assumed. We simulated under both
speciation modes. Additionally, a crBD process with
turnover 0.5 was simulated. Thus, we obtained three
sets of simulated trees. The best speciation shape was
inferred using exactly the same methodology as for the
empirical trees (in fact the same simulated trees were
used for parameter inference based on the empirical data
set and the three simulated data sets).

RESULTS

Analytic Results
We considered age-dependent speciation models

without extinction, assuming Weibull-distributed times
until speciation, and a symmetric speciation mode
(see Supplementary Material available on Dryad at
http://dx.doi.org/10.5061/dryad.31227). We show that
this model can produce trees ranging in balance from
Yule trees to PDA trees depending on a single parameter:
The Weibull shape parameter. Consequently, our simple
age-dependent speciation model interpolates between
and extends Yule and PDA trees. We did not find an
analytic way to explore the consequences of extinction
and speciation mode on the tree shape distribution.
The next section investigates the consequences via
simulations.

Simulation
The model implementation is available as an

open source R package TreeSimGM on CRAN. In
the simulation study, we investigated the effect of
extinction and speciation processes on the resulting tree
distribution (measured via Sackin, Colless, � statistics,
and the � statistic).

Simulating trees under a delta function.—First, to
validate the methods and illustrate the effect of
the speciation modes, simulations were based on
purely deterministic (“Dirac delta distributed”) times
until speciation/extinction (see Supplementary Materal
for Fig. 1 available on Dryad at http://dx.doi.
org/10.5061/dryad.31227). The Dirac delta distribution
is the limit of a Weibull distribution for shape
�→∞. The analysis reveals that symmetric and
asymmetric speciation modes can produce very different
tree shapes. Note, however, that under such a
distribution the model is completely deterministic and
all resulting trees are the same, thus the biological

relevance is limited. For illustrative purpose, we set a
waiting time until speciation that is always 2 million
years and a waiting time until extinction that is
always 2.5 million years. The simulations for both
speciation modes were stopped after time 10, see
Supplementary Material for Figure 1 available on
Dryad at http://dx.doi.org/10.5061/dryad.31227 for the
resulting symmetric and asymmetric mode tree.

Simulating trees under the crBD model.—Second, we
assumed age-independent speciation and extinction
rates, that is, a crBD process, to confirm analytic
predictions. We confirmed that the crBD model induces a
uniform distribution on ranked tree shapes (with a fixed
number of extant tips) (Edwards 1970). However, higher
� values were obtained for increased turnover (extinction
rate divided by speciation rate), as expected under
the pull-of-the-present effect (Nee et al. 1994). Under
a crBD model, symmetric and asymmetric models are
equivalent as the age of the lineages does not influence
the speciation or extinction probability.

Simulating trees under the age-dependent model.—Most
importantly, we investigated the impact of age-
dependent rates, assuming a Weibull distribution for
the time until speciation and extinction. Our simulation
results are shown in Figure 2 and Supplementary
Material Figures 2 and 3 (available on Dryad at
http://dx.doi.org/10.5061/dryad.31227), revealing that
tree shape summarized by� is mainly controlled through
�s (i.e., the speciation shape parameter), meaning that
�e (i.e., the extinction shape parameter) and turnover
do not alter �, Sackin, or Colless. In fact, Lambert (2010)
showed analytically that an asymmetric speciation mode
and constant speciation rate gives rise to the same tree
topology distribution and thus � for arbitrary lifetime
distributions.

However, the mean � is, to a large extent, controlled by
�e and turnover. Varying �s does not change the mean
� much, though its variance increased for smaller �s.
Speciation mode (i.e., symmetric and asymmetric) has
little influence on both tree shape or branch lengths.

Figure 2 displays these findings for constant rate
speciation and age-dependent extinction (Fig. 2a,b)
as well as age-dependent speciation and constant
extinction (Fig. 2c,d), with turnover 0.5. Fixing
speciation shape to a value different from 1 (here
�s =0.5) to account for age-dependent speciation led
to the same qualitative behavior as �s =1: Tree shape
was again not affected by varying the extinction shape
(see Supplementary Material for Fig. 2b available on
Dryad at http://dx.doi.org/10.5061/dryad.31227),
whereas � changed similarly for both speciation modes
(see Supplementary Material for Fig. 2a available on
Dryad at http://dx.doi.org/10.5061/dryad.31227).
Finally, changing the turnover from 0.5 to 0.9 again led
to the same qualitative result (see Supplementary
Material for Fig. 2c,d available on Dryad at
http://dx.doi.org/10.5061/dryad.31227).

http://dx.doi.org/10.5061/dryad.31227
http://dx.doi.org/10.5061/dryad.31227
http://dx.doi.org/10.5061/dryad.31227
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FIGURE 2. � and � statistics for symmetric (green) and asymmetric (yellow) speciation modes under different age-dependent speciation and
extinction models. a,b) Simulation results under a constant speciation rate (i.e., �s =1) and varying age-dependent extinction rate (i.e., varying
�e): � (a) and � (b) statistic. c,d) Simulation results for varying age-dependent speciation rate (i.e., varying �s) and constant extinction rate
(i.e., �e =1): � (c) and � (d) statistic. Turnover was fixed to 0.5. Three hundred trees with 100 extant species were simulated for each parameter
combination. Boxes enclose 50% and lines 95% of the results and the median is indicated by the horizontal bar for each model.

Fit to Empirical Data

Within the initial 9243 empirical trees downloaded
from TreeBase, 2759 tree shapes were fully resolved
rooted species trees. From the simulations, it was
observed that tree shape summarized by � is mainly
influenced by �s (Fig. 2, and see Supplementary
Material for Figs. 2 and 3 available on Dryad at
http://dx.doi.org/10.5061/dryad.31227), and extinction
is not changing the tree shape much. Thus, the best
�s was determined in a simulation study, assuming
no extinction. Note that mean speciation time �s only
changes the time scale and thus absolute branch lengths
but not the tree shape. Thus, the particular setting of
�s does not change the inference results, and �s cannot
be estimated based on the tree shape statistic. We used
�s =1 as above.

Figure 3 left displays the summary statistics for each
tree colored according to the �s best explaining that tree.
On the right, we show the histogram with the frequency
of trees supported by each speciation shape ranging
from �s =0.1, 0.2…1. The histograms all have a peak
at intermediate speciation shapes, with the bars for the
extremes, �s =0.1 and �s =0.9 being high as well, due
to all trees which are more extreme being summarized
by our most extreme values. The x corresponds to the
median �s. It was estimated to be 0.3 based on the
Colless and Sackin statistic and 0.7 based on the �
statistic, for both speciation modes. As a comparison
we also calculated the best �s for all trees sharing
the same speciation shape, indicated by *. For Colless,
we estimated 0.4 and for Sackin and � we estimated
0.5, for both speciation modes. Thus, these analyses

robustly infer a speciation shape between the two classic
models, the crBD model and the PDA model. The
results are robust toward removing the smaller sister
clade at the root, that corrects for the original tree
potentially containing a monophyletic out-group (see
Supplementary Material for Figs. 6 and 7 available on
Dryad at http://dx.doi.org/10.5061/dryad.31227).

In summary, we obtained a strong signal for 0<�s <1.
This implies that young species have a higher chance of
speciating than old species.

Among the downloaded species trees, 1710 trees
contained branch length information. Of these, only 156
were ultrametric and could be used for calculating �. Due
to the small number of empirical trees suitable for the �
statistics and because the � statistic is very sensitive to
incomplete sampling, a general extinction process was
not inferred.

Testing our procedure for parameter estimation
over the three sets of simulated phylogenies (see
Supplementary Material for Figs. 8, 9, and 10 available
on Dryad at http://dx.doi.org/10.5061/dryad.31227)
validated our implementation (and consequently our
findings), and further elucidated some properties of the
phylogenies resulting from age-dependent processes
(here Weibull-distributed waiting times). First, we
observed again that the extinction process and the
speciation mode do not influence tree shape statistics
much for the parameters considered. Indeed, the
three simulated tree data sets were obtained using a
turnover of 0.5, whereas the trees used for inference
had no extinction: Nevertheless we obtain reliable
estimates of �s. Furthermore, using either speciation
mode in the inference results in the same reliable

http://dx.doi.org/10.5061/dryad.31227
http://dx.doi.org/10.5061/dryad.31227
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FIGURE 3. Empirical tree shape statistics and best �s based on three different tree balance statistics and an asymmetric speciation mode
(symmetric mode yields almost the same results, see Supplementary Data for Fig. 4 available on Dryad at http://dx.doi.org/10.5061/dryad).
The empirical tree summary statistics (left) are coloured by their corresponding best �s fit, with (a) Sackin, (b) Colless, and (c) � statistics. A
histogram displaying the number of trees for each �s ranging from 0.1 (the approximated-PDA model, blue) to �s =1 (Yule model, red) is shown
on the right. The x in the histogram denotes the median �s and the * denotes the best �s when assuming all trees share the same shape parameter.

estimates of �s. Second, the median of the inferred
�s over all trees (indicated by x) was always lower
than the inferred �s assuming the same speciation
shape for all trees (indicated by *) for Sackin and
Colless. The opposite holds for the � statistic (see
Supplementary Material for Figs. 8, 9, and 10 available
on Dryad at http://dx.doi.org/10.5061/dryad.31227).
The same pattern was also observed in the inferred
�s based on empirical data (Fig. 3 and see
Supplementary Data for Fig. 4 available on Dryad
at http://dx.doi.org/10.5061/dryad.31227).

DISCUSSION & CONCLUSIONS

Mechanistic models previously proposed in the
literature give rise to phylogenies which are very
different from empirical trees, for example, the Yule
model (Blum and François 2006). Yule trees, for example,
give rise to a tree shape distribution with a � statistic of
around 0, whereas our empirical data analysis suggests a

� statistic around −1 (Fig. 3). This empirical observation
was stated by David Aldous already in 1996 along with
his comment “I do not know a natural candidate for such
a process” (Aldous 1996, p. 12). We now provide a simple
biologically plausible model, namely an age-dependent
speciation model, that produces trees with �≈−1. Our
model contains the well-known PDA and Yule model as
special cases. The �-splitting models (or the more general
Markov splitting model (Aldous 1996)) also contain
the PDA and Yule models, however, these models are
different from the age-dependent speciation model and
do not have an obvious biological interpretation.

It was previously shown that species-speciation-
exchangeable models (i.e., age-independent speciation
models such as time-dependent or diversity-dependent
speciation and extinction models) all produce the
same tree shape distribution (uniform on ranked trees)
(Stadler 2013). Our simulations extend this observation,
revealing that tree shape in general is influenced
mainly by the speciation process and is largely
invariant to the extinction process. However, branching

http://dx.doi.org/10.5061/dryad.31227
http://dx.doi.org/10.5061/dryad.31227
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times are influenced to a large extent by extinction.
Speciation mode (symmetric or asymmetric) has almost
no influence on tree shape or branching times for
the parameter ranges investigated (though extreme
scenarios of age dependence such as the Dirac delta
lifetime distribution can lead to very different trees, see
Supplementary Material for Fig. 1 available on Dryad at
http://dx.doi.org/10.5061/dryad.31227).

In contrast to our study, Venditti et al. (2010) found
support for a Yule model instead of an age-dependent
model for speciation. However, the former study only
considered branch length distributions and ignored tree
shapes. Our simulations show that speciation mainly
influences tree shape whereas extinction influences
branch lengths. As branch lengths are not changed
much when using the two-parameter age-dependent
speciation model compared with the one-parameter
Yule model, the simpler Yule model is expected to be
preferred when ignoring tree shape, reconciling the
findings of our study and Venditti et al. (2010).

The classic macroevolutionary models (such as the
Yule model, species-speciation-exchangeable models,
and the age-dependent model) assume that speciation
is instantaneous. Relaxing this assumption by assuming
a fixed time until speciation is completed predicts even
more balanced trees (Losos and Adler 1995). However,
assuming a constant rate until speciation completion
may produce trees with the induced � distribution
having a peak at −1 (Fig. S6-1 in Etienne and Rosindell
2012). However, the distribution obtained from this
protracted speciation model is very wide, and the
median � value is larger than −1. In contrast, our model,
assuming a speciation rate decreasing with species
age, gives rise to trees with an induced � distribution
having most values at �≈−1 (Fig. 2d). Note though
that the � statistic rather than the �statistic was the
main focus of the Etienne and Rosindell (2012) study,
and future work should further investigate how well
the protracted speciation model can produce realistic �
values.

There may be several possible mechanisms for a
decreasing speciation rate supported by the empirical
data. Here is a particularly simple one. Suppose
the time to speciation is the time until the first
population within a species founds a new lineage,
and the times to lineage foundation in the populations
are i.i.d. random variables. Then under fairly general
conditions, extreme value theory shows that the time
until speciation is described by a Weibull distribution
asymptotically (i.e., as the number of populations
grows). Other mechanisms are also conceivable for age-
dependent speciation. A newly evolved species having
a novel trait opening up a new niche space may
be exposed to more possible niches (e.g., resources),
thus future new species would have more possible
niches to occupy and establish themselves, and so on.
Alternatively, a new species may have fewer competitors
or predators, and only once the species is established
the competitors and predators become coadapted.
However, these mechanisms cannot be determined

through phylogenetic analysis (as the different mecha-
nisms being modeled via age-dependent speciation give
rise to the same phylogenies). Our methods cannot test
different mechanisms for age dependence, however, our
results indicate that future empirical studies should
investigate possible causes of decreasing speciation rate
with species age.

While we looked at all empirical trees simultaneously,
a future avenue may be to look within clades and
determine clade-specific age-dependent processes,
highlighting differences of macroevolutionary processes
across the tree of life. Moreover, although we have
concentrated on the Weibull distribution here, other
distributions may also be of interest. Furthermore,
we simulated species trees assuming all species of a
clade are sampled. A future topic to explore will be
the effect of incomplete species sampling. We note
that our results are robust toward possible out-group
removal in empirical trees. With our implementation
being available within the R package TreeSimGM
on CRAN, and further scripts on how the package
was used in this study being available on Dryad,
http://dx.doi.org/10.5061/dryad.31227, simulations
under any distributions with subsequent species
sampling is straightforward to do. Thus, for future
studies, our implementation may be a powerful tool to
obtain a more complete picture of macroevolutionary
processes.

In summary, we have presented a biologically
plausible mechanistic model that is capable of
adequately describing empirical tree shape distribution.
By employing age-dependent decreasing speciation
rates, our model provides a robust fit to empirical
data. This mechanistic model has a simple biological
interpretation— the probability of a speciation event
occurring on a lineage decreases as the time since the
last speciation event increases. Based on empirical
tree topologies, we identified and quantified age-
dependent speciation. The reconstruction of large-dated
phylogenetic trees will soon allow us to compare the
model presented here with empirical branch lengths,
shedding light on extinction processes. However, it is
important to stress that it seems impossible to determine
a predominant speciation mode from a phylogenetic
tree: For the parameter range best explaining the
empirical phylogenies, the symmetric and asymmetric
mode produces very similar trees in silico.
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