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Introduction

Let ^"'BP denote the localization at vn of the Brown—Peterson spectrum
(associated to the prime p). There is a related ring spectrum E(n) with homotopy ring

(as a quotient ring of ^ (u^BP)) ; in fact the cohomology theory E(n)*( ) is
determined via a Conner—Floyd type isomorphism from v~xBP*( ) on finite
complexes, and moreover E(n) and v~1BP are in the same Bousfield class (see [2, 14]).
Although it is known (essentially from [17]) that w~1BP cannot be a product of
suspensions of E(n) in a multiplicative sense, D. Ravenel conjectured that such a
splitting might occur after suitable completion of these spectra (see the introduction
to [14]). This question was the original motivation of the present paper; however in
proving Ravenel's conjecture we were naturally led to the consideration of some
fundamental results in the theory of liftings of formal group laws and ' change of
ring' results for Ext groups occurring in connection with the work of [10, 11, 12].

In order to prove our topological results we first need to derive some algebraic
facts. In Section 1 we consider the problem of lifting p-typical formal group laws and
their strict isomorphisms from an Fp-algebra k to an Artinian local ring A with
residue field k = A/m. We construct an idempotent functor

on the groupoid of all such lifts having height n( > 0) which assigns to Fe Obj liftn(^4)
a new group law F' with ^-series of form

[p]F.X= S ' ' (atX^).

Then the image of e turns out to be equivalent to the quotient category of \iftn(A)
by *-isomorphisms (see [8]). Indeed we reprove Lubin and Tate's results on such
liftings in the precise form required for Morava's applications (see [10]). Our main
technical ingredient is an infinite-dimensional version of Hensel's Lemma, which
may be of independent interest. ^ . ^

In Section 2 we introduce the Artinian completions v^BP, E(n) of the ring spectra
i^'BP, E(n) of [14]. Using algebraic results from Section 1 we are then able to
construct an idempotent morphism of ring spectra
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512 A N D R E W B A K E R AND U R S W U R G L E R

factoring through the canonical morphism

and inducing a splitting (of E(n)-module spectra)

In Section 3 we apply results of Section 1 to give new and conceptual proofs of
some change of rings isomorphisms from [11].

Finally in Section 4 we place our work in the context of [2] and [3] by showing that
our Artinian completions t ^ B P , E(n) are K(n) local; indeed we show that the natural
map E(n)^-E(n) is a K(n) localization, thus generalizing a result of A. K. Bousfield
for the case n = 1. We make use of a construction similar to Sullivan's profinite
completion [16], and also require recent work of Hopkins, Devinatz and Smith [3]. .

1. Canonical lifting of Lubin—Tate laws

In this section we describe our algebraic results. Our viewpoint is essentially that
of Morava (see [13, 10]) and is related to [8]. However, as explained in the
Introduction, we give new proofs and accounts of much of this material.

Let p > 0 be a prime. There is a universal (graded) ring for ^-typical formal group
laws over graded Z(p)-algebras

where the vi denote the Araki generators defined by

[ ? W = 2'" («,*"') (M)
O5C4

and where Fv is the universal ^-typical group law over V. Let p-FGL(R) denote the
groupoid of strict isomorphisms of p-typical group laws over R. Let F* = V+[tt: i ^ 1]
(with t0 = 1). Then we have for any Z(p) algebra R the following result of [6]:

PROPOSITION 1-2. The groupoid valued functor p-FGL is (co)represented by (F+, F^);
i.e. there are natural isomorphisms

= Alg, (r,,R), Objy-FGL(R)«Alg, (V*,R). I
zJ

Here the groupoid structure on p-FGL turns (F+, F ,̂) into a Hopf algebroid with
structure maps ,L e

corresponding to the domain, codomain and identity functions. Thus for any strict

isomorphism </>:F1-yF2 we have

where <fi is classified by the homomorphism O: r+-+R extending the classifying map
of F1 by putting G^) = ct.

In fact the pair (V+, F J is equivalent to the pair (BP,,BP*(BP)) where BP is the
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Liftings of formal groups 513
Brown-Peterson spectrum for the prime p. This inherits a Hopf algebroid structure
from the two topologicalty induced units, agreeing with that of (V+, F,).

We will need to consider a number of related functors. First let us say that a formal
group law FeObjp-FGL(.ft) is of co-height n if its p-series has form

[p]FX= XF (CiXp')

with cneR a unit. We can then define the groupoid 7>-FGL(n>(R) of strict
isomorphisms of co-height n objects in p-FGL(/?). Let V(n)+ = v^V^ and let
E(n)+ = V(n)+/(vn+i:i ^ 1) with the natural map n: V(n)^^E(n)^. We can define a
Hopf algebroid (E(n)t, E(n)#) where

v. v.

We have, by an easy argument based on (1"2),

PROPOSITION 1-3. The groupoid valued functor ^-FGL<n) is (co)represented by
)#); i.e. there are natural isomorphisms

(ii) s Algz JX(n)t,R), Objp-FGL<»>(/2) s I

Now for any Fp-algebra R a height n Lvbin-Tate law over R is an F e Obj ^-
such that the classifying map V+^-R factors as

V „ R

\ /
Vplv^v-1] = v-1 VJ(v(:0 *i i ± ?i).

We will only concern ourselves with the case when n > 0. The full subcategory of
p-FGL(R) with these as objects will be denoted by L,-Tn(R). Notice that L-Tn(B)
is a subgroupoid of p-FGL{n){R). The following is easily verified and is essentially
proved in [13].

PROPOSITION 1-4. L-Tn(fl) s A l g ^ K , ^ 1 ] ^ ; > Y\I{1?-vi~\:i> l),R).
Moreover, there is a natural decomposition

L-Tn(R)^ U Aut(F). I
*'60

The point here is that

is a Hopf algebra over ^p[vn,v~^1'].
Now let Artp denote the category of Artinian local rings with residue field A/m of

characteristic p. Then for FeOb\'L-Tn(A/m) we say that /'"GObjp-FGL(^) is a lift
of F \{F' = F; similarly for morphisms. The category of all such lifts over such an A
will be denoted by liftn(^4) and this is again a groupoid valued functor of A. Although
liftn is not representable in Artp, it is pro-representable in the sense of the following
discussion.

Let R be any graded commutative unital ring, and let m be a graded maximal
ideal. Then we can define the m-Artinian topology on R to be the i?-linear topology

17 PSP KKI
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514 ANDREW BAKER AND URS WURGLER

for which the open neighbourhoods of 0 are the ideals J o R with J e m and R/J
Artinian (we call such J m-co-Artinian). Then the m-Artinian completion of R is
R\imR/J. Similarly for any .ft-module we define

j

M = lim (B/J®M) S \imM/JM.
T « T

In the case where M is finitely generated, M is always linearly compact as in [4].
Observe that the ring V{n)+ has / = (»<:i=j=M) as a graded maximal ideal. We will
write V(n)t for the /-Artinian completion of V(n)^ and define the Hopf algebroid
(V{n)*,r{n),) by setting

v. v.
with the linear topology whose basic open ideals are generated by

for Jx,J2eV(n)+ being co-Artinian in V(n)t. From its definition the Artinian
completion map V{n)+ -»• (̂w),,, may be characterized as follows. Let A e Artp and let

f:V(n)+-*-A be continuous. Then there exists a unique continuous / : F(n)#->A
making the diagram

A //
commute. We then have

THEOREM 1-5. There are natural isomorphisms for AeArtp

Uftn(A) s Homcont(f(^)+I^), Obj Wtn(A) *

We remark that V(n)* is an object of pro-Artp and that

Uomcont(V(n)t,A) s

however F(w)* is not in pro-Artp.
The pair (F(w) + , T(w)+) inherits the structure of a topological Hopf algebroid.
A similar result holds for lift<,n)(̂ l) = p-FGL(n)(^) 0 Mtn(A) with A e Art,,.

is the Artinian completion of E(n)t, then we can put

with the obvious linear topology. In fact E(n)+ is noetherian, and we have

& jrn, (1-6)

where In = (vt:0 ^i < n)~*3 E(n?u. Then the pair (jE/(7i)#,S(n)J)I) is a quotient
topological Hopf algebroid of (V(n)+, T(n)^) and we have

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004100068249
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 15:36:40, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004100068249
https:/www.cambridge.org/core


Liftings offormal groups 515
THEOREM 1*7. There are natural isomorphisms for AeAxtp

S Hom c o n t (%) , ,4 ) s

Let ^eliftn(^4) with AsArtp. Then we say that <j> is a *-isomorphism if

We denote by lift*(̂ 4) the quotient groupoid

liftn(^4)/(*-isomorphisms).

Our main result in this section is the following.

THEOREM l-8. There is a idempotent natural equivalence of groupoid valued functors
on Art

e:Wtn(A)-*Wtn(A)
with ime(A) = \ift^\A).

Our main technical tool is the following infinite-dimensional version of Hensel's
Lemma which may have other applications:

THEOREM 1-9. Let R be a local ring complete with respect to its maximal ideal m.
Let X = (Xt)t>l be an infinite sequence of indeterminates and f = (fi)i>1 be a sequence
of polynomials /^ei?[X] each of which only involves finitely many Xt. Suppose that
a = (ai)i^1 is a sequence in R for which

(a) f(a) = 0 (mod m);
(b) M = df(a) satisfies over the field k = R/m the condition
(*) for all n, the first n rows of M have k-rank n.

Then there is a sequence b = (bi)i>x in R such that

b = a (mod m) and f(b) = 0.

Proof. If M is a doubly infinite matrix over a field k, with each row finitely
supported and satisfying (*), then by induction on n we can row reduce the first n
rows into lower reduced echelon form with 1 as the last non-zero entry of each row
and no other non-zero term below each such 1. We can even assume that the
induction is so arranged that any particular row eventually becomes constant.

Now putting k = R/m we can perform such operations on df(a) = M over k. If we
realize all of the row operations involved over R, then we have replaced f by an
equivalent sequence of functions g with

dg(a) = E+N(a) =E(modm),

where E is a matrix with 0 everywhere except for a single 1 occurring in each row in
increasingly greater columns (we call such positions the pivots of dg(a)). Now if iV'(a)
is the result of removing from N(a.) each column with no pivot term, then

N'(a) = 0(modm).
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516 A N D R E W B A K E R AND U R S W U R G L E R

Now to solve for b we define a sequence (of sequences!) b(n) by

b(1» = a,

b\n) = ai if the ith column of E does not contain a pivot term,

and if b(n> satisfies g(b(n)) = 0(mn) then b(n+1) is the unique solution (modmn+1) of

dg(b(n)) + dg(b(n»)(b(n+1)-b(n)) = 0(modmn+1).

This solution is obtained on multiplying by

2 (-iV'(b(n)))r

and solving the resulting diagonal system for the remaining unknowns.
Clearly b(n) is a Cauchy sequence and its limit solves the system

f(X) = 0. I

We will also need

PROPOSITION 110. Let F^F^eOb] lift<,n)(-4) and with <j>:F1^Fie\iftn{A) a
-isomorphism. Then F1 = F2 and <f>(X) = X.*

Now we can proceed to prove Theorem 18. Let Jf^eObj liftn(.4), and A e Artp. We
will first construct a *-isomorphism e(-F)eliftn(^4) with dome(.F1)elift<n

n)(^4) and
codom e ^ ) = F. To do this it suffices to define a homomorphism

extending the classifying homomorphism a.V^-^-A of F and having @(nR(vn+i)) = 0
for i ̂  1.

Now let f(t\ — n(v ) p v r / - i > l l M-m

Then recall from [13] that

f lt\ = ii /P" 1|P*/ lmr\r\ <<i% • rt <" h ± -n^\ M-19\
Jj\l') — vnlj —t/n t^inOQ t̂/£ . U 5̂  A/ =t= 't-̂ > \L *-4)

As FeObj liftn(^4), we see that a.(vn) is a unit in A, and hence the polynomials
<x(fj{t))eA[ti:i ^ 1] satisfy the hypotheses of Theorem 1-9 with initial solution
(modm) being t = 0. We thus have a simultaneous solution for the tj and so can
define a homomorphism 6 as required.

Notice that by Proposition 1-10 there is only one such e(.F). In particular, if
Felift^lA) then e(F) = IdF. To define e on morphisms we proceed as follows. Let
<f> :F1 -+F2eUftn(A). Then we define e(0) by requiring commutativity of the diagram

dome(i?,) —> Fx

(1-13)

Clearly (110) also gives that e is idempotent on morphisms.
Finally note that naturality is also a consequence of (110).
This proves Theorem 1-8. I
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Liftings of formal groups 517
We now give the proof of Proposition 110. Let <j> be such a strict isomorphism

different from X. Then writing
i

we suppose that for a l i i > 0,

et = 0(mT),
and that for some d > 0, we have

Now we have
[p]FiX= S F ' K* p < ) , [p]FiX= S'«

0<i< OJiS

with ui = vi = d (m) if i < n and un, vn units. Now from formula (112) we can deduce
that

0 = -<c d (m-- + 1 )

(take j = d). Hence cd = 0(mr+1), contradicting our assumption. I

The idempotent e is actually induced by morphisms of representing objects. Since
we will need this for our applications and we are forced to work with pro-
representability, we will give details.

Now e is defined by assigning to each object F in liftn(^4) a morphism e(F). From
(1-5) we thus have a continuous ring homomorphism

classifying c(F). Moreover, precomposed with the left unit of r(w)# this agrees with
the homomorphism ^"

classifying F\ on the other hand, precomposing with the right unit gives

which defines dome(i^). Putting A = F(n)^«/J, an Artinian quotient of V(n)+, and F
to equal the canonical group law, we obtain continuous homomorphisms

e,:fS» -> V(n)JJ, (ej)0: VW* •* V(n)JJ.

By (1-9) we can lift these to unique continuous homomorphisms

inducing e. By use of (110) we also can see that e0 is idempotent. We have earlier
identified ime with lift<,n>(̂ 4) and this is represented by the Hopf algebroid
(E(n)0,%(n)+). Again resorting to Artinian quotients of V(n)^ we can construct a
factorization
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518 A N D R E W B A K E R AND U R S W U R G L E R

where n is the canonical projection and yv is the identity. Hence y is an embedding.
Now we can construct continuous morphisms of Hopf algebroids

7 ? :

which are the composites

77® 1®TT:

y ® 1 ® y:

(with all tensor products over F*).
We can now extract the following key algebraic result.

THEOREM 1-14. There is a unique *-isomorphism

e{Fv):eQit{Fv)->Fv

over V(n)* and the idempotent continuous ring homomorphism e0 factors as

with 77 the canonical projection and y injective. I

More generally we can lift morphisms in 'L-Tn(A/m).

THEOREM 1-15. Let <f>e~L-Tn(A/m). Then i /^eObj l i f t*?^) with F = dom^i then
there is a unique 0elift*jn)(^4) with

= F and <j> =

Proof. This uses (1-7) and (1-8). I

Finally we remark that we have also shown

THEOREM 1-16. There is a natural equivalence of groupoids natural with respect to
e Art,. .

liftS,10 M =* lift* (̂ 4). I

This is the precise form of the main result of [8] required in [10].

2. The Artinian completions of w^BP and E(n)
In this section we define the Artinian completions of certain spectra and explore

some topological consequences of the results of Section 1.
Let CW-' be the category of finite CW-spectra. Let h*( ) be a cohomology theory

on C W ' which is multiplicative with unit and commutative. Consider the functor on
C W /

h*() = lim(h*/J®h*( )),
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Liftings of formal groups 519
where J ranges over the Artinian open ideals of h* with respect to a given maximal
ideal. Now in general, this functor is not a cohomology theory, since the functor

M-+lim(R/J®M)
" R
J

on i?-modules is not always exact.
Recall that for a prime p, BP is a commutative ring spectrum; there are also

associated ring spectra i^BP, E(n) (see [14]). Let BP0 denote the category of finitely
generated BP*(BP)-comodules. Let Mod^ denote the category of finitely generated
modules over a graded ring R. Then there are functors

defined by a(M) = v^M £ u^BP,, <&M and fi(M) = E(n)*<g)M,

where the tensor products are over BP*. Now the Artinian completion functor of
Section 1 defines

(where lc denotes linearly compact). We have

THEOREM 2-1. The composite functors

BP0^Mod{-.BP/

fi A

are exact. Moreover there are natural isomorphisms (o/ i^BP*- and E(n) ̂ -modules)

<g)M = a.(M),

on the category BP0. In particular it follows that v~xBP*( ) and E(n)*( ) are cohomology
theories on CWA

Before proving this we will explore some consequences. We will rely heavily on the
following algebraic fact.

LEMMA 2-2. Let R be a unital ring. Let {Ma} be an inverse system of topological R-
modules which are linearly compact. Then

= 0 if n>0.

Proof See [4, 18]. I

We have the following results, all consequences of (22).

PROPOSITION 2-3. Suppose h*( ) is a cohomology theory on CW ; and that k*( ) is
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520 ANDREW BAKER AND URS WURGLER

another cohomology theory on C W . Let K and H be spectra representing these theories.
If<f):k*( )->h*( ) is a natural transformation, then there is a unique morphism of spectra
<$>:K^>-H inducing <fi.

In particular, if we take k*( ) = h*( ) then we see that H is unique up to
equivalence. Thus h*( ) admits a unique representable extension to the stable
homotopy category CW.

Proof. Let K = holim^ia with ifaeCW/. Then we have a spectral sequence of [1],

lim(8) h*-*(Ka) => h*(K) which by (2-1) gives
a.

h*(K) slimh*(Ka).

Yoneda's Lemma now completes the proof. I

PROPOSITION 2-4. H has a unique ring spectrum structure compatible with the
canonical natural transformation

being multiplicative.

Proof. Let H = holimXa, with XaeCWA Then there is a pairing

h*(Xa) (g) h*(Xfi) -> h*(Xa AXfi)

and hence as H A H sz holim Xa A Xp,

Adams' spectral sequence again gives (using (2-1))

h*{H AH)^ lim h*(Xa A Xp).

Once more Yoneda's Lemma shows that there is a unique map H A H^-H compatible
with the product on h*( ). Associativity and commutativity also follow in this
fashion. I

Proof of 21 . Let giev~1BP^l, with i > 1, be a sequence of elements of form

9i = vn+i-ft, •

where fieZ(p)[v1,... ,vn,v~1,vn+1,...,vn+t_1]ev~1'SP1ti. We can then define a sequence
of ideals Jt <a v'^P^ with i ^ 1 and

Ji= (9}-3>i)-

Now for each i, v~1BP<t/Jt satisfies the hypotheses of Landweber's exact functor

theorem [7] and so the functor

BP.

is exact on BP0. Notice that v^BP^/^ is Noetherian. There is a maximal ideal

i,l =t= n) c v^BV+J^
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Liftings of formal groups 521
and each quotient («~lBP#/t/<)/m(i)r is Artinian and local. Moreover, we have by
standard facts on completions (see [9]), that if M is finitely generated over u^BP^/Jj
then

[lim (v;lBP+/t/i)/m(i)r] ®M ^ UmM/m(i)rM,

and lim (^IBP#/Jj)/m(i)r is flat over v^BP^/J^ Because M/m(i)rM is Artinian, from
r

[4] we know that this inverse limit is linearly compact.
We thus see that for any finitely generated module M over i^BP*, the functor

lim lim [(«;1B
T V

is exact by (2-2).
Finally, observe that if J is a co-Artinian ideal of v^BP.,, with respect to the

standard maximal ideal m = (vt: 0 ^ i 4= n) then it must contain an ideal of form
Jt = (gj-j ^ i) for some sequence gi as above, since w~1BP+/J is also Noetherian
(see [9]). Hence we see that the ideals

m(i)r + Jt

are in fact cofinal in the Artinian open sets of w^BP^ with respect to the maximal
ideal m. This shows that the functor M^-v^M is exact on BP0. The argument in the
E(n) case is direct since E(ri)+ is Noetherian. Because BP+ is a coherent ring, M
admits a finite presentation 0->N-^F->M-»0 with F finitely generated and free over
BP+. Consider the induced commutative diagram with exact rows:

vfEP. ®N — v?B~P.®F

Now 6F is clearly an isomorphism and hence dM is surjective. Replacing M by N and
repeating this argument shows that dN is surjective. Finally a diagram chase shows
that 6M is also injective.

This discussion proves Theorem 2-1. I

We now derive our main results on splitting w^BP as an A'(?i)-module spectrum.
Let a;BPeBP2(C/JC0) be the canonical C-orientation of [1]. The canonical maps of

ring spectra -̂—-̂
BP^'BPCBP

induce C-orientations on v~xBP and E(n), and under the identifications

the orientations xv,xE have associated group laws FV,FE. We have shown in (114)
that there is a *-isomorphism
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522 A N D R E W B A K E R AND U R S W U R G L E R

and that this is induced by an idempotent continuous ring homomorphism

e0: i^BP,

THEOREM 2-5. There is a unique idempotent multiplicative natural transformation

such that on CP00 we have
En(x

v) = e(Fv)-*(zv

Moreover, we have a canonical natural isomorphism

Using our strong representability results for these functors, we deduce the
following conjecture of D. Ravenel [14].

THEOREM 2-6. There is a splitting of E(n)-module spectra

and the natural morphism of ring spectra !)^BP-*£(?i) splits as a morphism of E(n)-
module spectra.

Proof of (2-5). By the universal property of BP, we have a natural transformation
of multiplicative theories _ —

sending xBP to e*(Fy)-1(xy). Now for ZeCWf,

» ® BP*(Z)

by (21), and hence we can extend E'n to a natural transformation

on C W ; by applying e0 on the left-hand factor of the tensor product, which is of
course isomorphic to w^1BP*( ). But now by (2-3, 4) we have a unique multiplicative
natural transformation En induced by a unique morphism of ring spectra

On coefficient rings this agrees with e0. Notice that E\ = En since

EnE'n=E'n

by the fact that e is idempotent. By (23) we see that E\ = En. Finally, the theory
\mEn has a natural transformation
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and from (2-3) and Whitehead's Theorem we deduce that this is a natural
isomorphism. Hence we obtain a morphism of ring spectra

p:E(n)^v^BP

inducing this inclusion of theories. I

Of course, p makes ^ ' B P a module spectrum over E(n).

Proof of 2-6. We need only show that as E(n)+-module theories

Let ZeCWA Then we will construct a (natural in Z) continuous morphism o
m o d u l e s nw*+*<a)(Z)->i?BP*(Z)

a

for suitable indexing set {a}.
As an E(n) ̂ -module (via />„,) u~1BP1(1 is free topological on the set of monomials

w»+i •••wn*+*> with each rt ̂  0. Observe that almost all of these are in a given co-
Artinian ideal «/<i w^BP*, hence for any element {xv} eU.vE(n)*+M(Z) we find that in
v~1BV*(Z)/J the sum ^Lvvxv reduces to a finite sum. Here v ranges over the above
monomials. From these quotients we can obtain a lift to v^BP*(Z) which corresponds
to the above series. It is easy to verify this given an isomorphism of theories by
taking Z = S°. Then Whitehead's Theorem and (2-3) give the result. I

We remark that there are other situations in which our methods apply. Let P(m)
denote the spectrum of [14] withP(m) + = Fp[vm + j:i^0] and E(m,n) (for m ^ n) the
spectrum obtained by Baas-Sullivan theory with E(m, n) , = ¥p[vm, vm+1, ...,vn, v~x].
We can form Artinian completions of these and then we have a splitting of E(m, n)-
module spectra ~^TD7~"\ n w(v> CV ~~\

c vn
lP{m) 2i 11S <r E{m, n).

y

For m = n our methods agree with those of [17], which also contains a proof of the
necessity of some form of completion to obtain such module spectra splittings.

Notice also that the case n = 1 of (2-6) shows that the ̂ -complete version of
Adams' summand of KUip) completely determines u^BP, which is a sort of converse
to the classical Conner-Floyd Theorem.

3. Some change of ring isomorphisms

In this section we describe some homological consequences of our earlier work. In
particular, we reprove some 'change of ring' isomorphisms for certain Ext groups
which play a central part in computations of the Adams-Novikov .E^-term. We refer
the reader to [13], especially chapter 6, for basic definitions and results.

Let (^j.T,) and (A2, T2) be Hopf algebroids, and f,g: (Ax, rx)-s- (A2, T2) be two
morphisms. Then a ring homomorphism H: Fl^-A2 is a natural equivalence from/to

91 HVL = efVL-Ai^A2 a n d HvR

Given any left Fj-comodule N we can define a r2-comodule/*iV by
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with coproduct formed from the composition

There is then an induced homomorphism

/„,: Ext* (AltN)
A,

and we have (by a slight strengthening of [13]),

PROPOSITION 3-1. Iff,g: (Av Tl)-^(A2, Y2) are naturally equivalent then

f* = g*: E x t ^ . t f ) + Ext* (r2 ,A2 ® N).

Proof. A natural equivalence H induces a chain homotopy (in the cobar complex)
between the maps induced by / and g. I

If f:(A1,ri)-*(A2,ri) and h:(A2,r2)^(A1,ri) are morphisms such that hf is
naturally equivalent to the identity of (Alt r\) and/ft to that of (A2, F2), then we say
t h a t / and h are inverse equivalences of (Alt r\) and (A2, F2). Then we have

PROPOSITION 3-2. Letf, h be inverse equivalences of (At, I\) and (A2, V2). Then for any
Yx-comodule N there are natural isomorphisms

Ext* (AVN) s Ext* (A2,f*N)

and Ext*i(A1,N)^Ext$i(A1,h*f*N).

This result follows easily from (31). I

We can now apply these results to the Hopf algebroids of Section 1. Notice that
the morphisms of topological Hopf algebroids

if: (V&U, f&U) ^ (E(n~U, &

are inverse equivalences since fiy is the identity and yfi is naturally equivalent to the
identity using the homomorphism e:V(n)+^>- V(n)+. Hence we have

THEOREM 3-3. For any T(n)iti-comodule N, there is a natural isomorphism

(V(n)*N) ^Ext*~. (E(n)m,E[n)^ ® N). It ^ (

COROLLARY 3-4. Let Nbea BP+BT'-comodule in which every element is In-torsion and
vn acts bijectively. Then there is a natural isomorphism

Ext*P#BP(BP+1iv) a E x t * , , , , ^ ) * , ^ ) * (g) N).
BP.

Proof. Using the cobar complex, we can easily verify that

Ext*P<BP(BP+,iV) s Ext* nU (F(m)», V{n)t ®
BP.
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Exactly as in the proof of [11], theorem 310 we can reduce to the case in which

Ar= V{n)iflln. Hence we must consider the commutative diagram

U, V(n)JIn) -* .

ExtZ(nU(E(nU,K(nU) -^

where a, a', /?,/?' are the canonical maps. Using [11], proposition 1*3 we see that a! is
an isomorphism since its domain and codomain are isomorphic to

By our Theorem 33, /?' is an isomorphism, hence (3-4) follows if we can show that a.
is an isomorphism.

Let r(n)t = F(n)+ <8V(n>. V(n)* considered as a right r(w)#-comodule in the
obvious fashion. It is not hard to show that

rW* • r£>. Vfa)* = v(nU (3-5)

and r&Un^un^)Jln^V(n)JIn. (3-6)

To prove a is surjective we will interpret elements of Exts as long exact sequences.
Let [ ^ ] e E x t ^ (K(w)#, 7(n)#//n), where s > 0, be the class of the exact sequence

of r(n)#-comodules. Then the sequence

is a sequence of left F(?i)+-comodules. From Section 2 we know that V(ri)+ ®V(n), ' s

exact on finitely generated r(n),,,-comodules, and it is in fact faithfully flat on this
category (see [9]). Now

and by faithful flatness, F is also exact. Hence by (3-5, 6)

[f]eExt*r{n)t(V(nU,V(n)JIn)

and a([F]) = [E].

The case s = 0 is proved by noting that

and that vk
neExt°r{nU(V(n)m, V(n)JIn)

maps onto v^eK(n)^ - hence a is surjective for s ̂  0.
To prove injectivity, we consider for s ̂  2 an exact sequence of r(n)+-comodules
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and suppose ac([F]) = 0. Then there are s-fold extensions Et for 1 < i ̂  2k with

^ <- #2 -»-... <- E2lc = 0

where 0 is the trivial extension. Applying F(n)^ d f ^ j and using (3-5, 6) together
with faithful flatness of F(»)* gives [JP1] = 0. The case s = 0 is clear since the map
V(n)^./In-> V(n)+/In is monic. The case s = 1 follows by a modification of the
argument for s ̂  2. Hence we have shown that a is an isomorphism and so proved
(3-4). I

COROLLARY 3-7. The natural projection BP*->K(n)* induces an isomorphism

E x t g p . B p C B P ^ B P ^ / J ^ Ext*(nUK(n)(K(n)*,K(nU).

Proof. This follows immediately from (3-4) and [11], proposition 1-3 since

K(n)^E{n)JIn. I

Of course Corollaries 3-4 and 3-7 form the main results of [11].
We remark also that similar results are possible for topological comodules.

However, except for well behaved topologies, there are technical difficulties in
dealing with these, so we refrain from making such statements here.

4. K{n) localization and Artinian completion

In this section we consider our homotopy theoretic results in the light of Ravenel's
work [14] and recent results of Devinatz, Hopkins and Smith (see especially [3]). We
will prove

THEOREM 4-1. The natural map

E(n)->E\n)

is a K(ri) localization and u~1BP is K(n) local.

We begin by recalling some results of [3]. Let X be a finite CW-spectrum. Then
for a prime p and a > 0 w e say that X has class Cn (written XeCn) if X is ^-local
and is E(n— 1) acyclic. By [14] this last requirement is equivalent to X being

acyclic. If XeCn we say that a (graded) morphism of spectra 6:X^-X
is a vn-self map if d+:K(m)+(X)->K(m)+(X) is an isomorphism if m = n, and is
nilpotent if m 4= n. A major result of [3] is

THEOREM 4-2. (a) For XeCn there is a vn-self map

(6) For X,YsCn and a map f:X->Y there are positive integers r, s such that

ffx

X -** X

>\ ,r \<
commutes. I Y —^ Y
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Now let X be an arbitrary spectrum and Cn(X) the following category. The objects
are pairs (Y,f) where YeCn and/:X->-F is a morphism of spectra. The morphisms
<j>: (Y,f) -> (Z, g) are morphisms of spectra <f>: Y-> Z such that

X

commutes.
Observe that for <fi,iJr:(Y,f)-+(Z,g) there is an equalizer (Cone(<f> — tfr),hg) where

A:.Z->Cone(0 — ijr) is the canonical map. Also, if (Y,f), (Z,g) are objects, then there
exists an object (Yv Z, k) and there exist morphisms

(YvZ,k)

/ \
(Y,f) (Z,g).

This last fact shows that Cn(X) is filtered. We can thus define inverse limits indexed
on Cn(X), at least if we accept that Cn(X) is small. For X finite this is so, since there
is a cofinal small subcategory C'n(X) to be described in the following discussion. We
will set

lim = lim

if any problem arises here.
Now \eiX be a finite CW-spectrum. Then for an object (Y,f) in Cn(X) consider the

following inductive construction.
As Y is finite, for some r the self map jf on Y is trivial; hence we have a diagram

where 60 = pr on X is a K(0) equivalence and the row is a cofibre sequence.
Now suppose that for l ^ f c ^ w — l w e have constructed a diagram

x —>

with X/60...dk_x E(k—l) acyclic. Then by choosing (using (2-2a)) a i>fc-self map of
X/60... dk_x we obtain a diagram

Y o > y

in which X/60...6k is E(k) acyclic. Eventually we obtain a morphism (in Cn(X))
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Of course the objects (X/60... #„_!,/) form a set, cofinal in Cn(X). We define C'n(X)
to be the subcategory generated by these.

For X — 8°, the object (S°/60... 0n_x,f) must realize a quotient map

onto a cyclic torsion module (see [12]). Notice that as r increases the smallest power
of/„ annihilating this cyclic module increases at least as rapidly as r. If we now set

E(n)=holimE(n)AY

= holimE(n)AY

then E(n) is defined from a cofibre sequence

#M-> I! E(n)AY-+ n E(n)AY. (4-3)
C^S") C'n(S°)

But for each Y in C'n(S°)

is finitely generated over E(n)^, and so for s > 0,

lims E(n)*(Y) = 0

C'n(S°)

by (2-2). Thus, using the spectral sequence

Es
2" = lira8 E(n)*(Y) =>77»(

C'n(S°)

we see that
s \hnE(n)JFn = E(nU. (4-4)

r

Moreover the natural map E(n)^-E{n) AY induces a (not obviously unique)
morphism E{n)^-E(n). Itjs^easily checked that such a map induces the canonical
homomorphism E'(n)^.->E(n)^ on homotopy.

E(n)^>E(ri) is a K(n) equivalence. (4*5)

If W is K(n) acyclic, then WADY is E(n) acyclic since it is V0^^n/C(j) acyclic.
Hence as E(n) is E(n) local, we see that E(n) A Y is K(n) local. By [2], 1-8 we have that
E(n) is K(n) local and —-—

E(n) -> £(«) is a /C(n) localization. (4-6)
There is a natural map ^~~-

£(»)A7->£(n)Ay

and for yeC'n(<S0) we see that this is homotopy equivalence. So there is a compatible

morphism E(n)->E(n) (again not obviously unique). As this induces a K(n)
equivalence and is a weak equivalence we deduce that
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Liftings of formal groups 529
is an equivalence. Hence E(n)-±E(n) is a K(n) localization by (46). For w^BP the
result follows by [2], 18 and our (2-5).

In fact, the spectrum E(n) can be seen to represent the cohomologj' theory (on
CW-0 r=-zr-

' E{n)*( ) = lim (E(n) A Y)*( )

using the methods of Section 2. Moreover, by (2-3) we see that the morphisms

E(n)^E(n) and E(n)^E(n)

are unique.
We remark that LK(n)E(n) can also be considered as F(NnS°,E(n)) where NnS° is

the nth term in the Chromatic Tower for the sphere S° (see [15]). These results
generalize those of Bousfield for the case n = 1 (see [2]). A related discussion of K(n)
localization occurs in [5].

Unfortunately the natural map D ^ ' B P ^ ^ B P is not a K(n) equivalence, hence
is not a K(n) localization. However the following result was pointed out by
M. Hopkins:

THEOREM 4-7. Let v^BP = holimt^BP A Y. Then T T ^ I ^ B P ) S l\mv-lEPjrn and
Cn(S°) T

the natural map w^BP-^-u^BP is a K{n) localization. I

The proof involves a modification of techniques already used in thisjsection.
It seems plausible that v^BP splits as a product of suspensions of E(n), although

probably not multiplicatively. It would be interesting to characterize the Artinian
completion fl^BP in a way which is independent of the actual construction.

The first author would like to thank the SERC, Universitat Bern and IHES for
support whilst this work was in progress.
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