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ABSTRACT

Motivation: Current methods for the prediction of biodegradation
products and pathways of organic environmental pollutants either
do not take into account domain knowledge or do not provide
probability estimates. In this article, we propose a hybrid
knowledge- and machine learning-based approach to overcome
these limitations in the context of the University of Minnesota
Pathway Prediction System (UM-PPS). The proposed solution
performs relative reasoning in a machine learning framework, and
obtains one probability estimate for each biotransformation rule of
the system. As the application of a rule then depends on a threshold
for the probability estimate, the trade-off between recall (sensitivity)
and precision (selectivity) can be addressed and leveraged in
practice.
Results: Results from leave-one-out cross-validation show that a
recall and precision of ∼0.8 can be achieved for a subset of 13
transformation rules. Therefore, it is possible to optimize precision
without compromising recall. We are currently integrating the results
into an experimental version of the UM-PPS server.
Availability: The program is freely available on the web at
http://wwwkramer.in.tum.de/research/applications/
biodegradation/data.
Contact: kramer@in.tum.de
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1 INTRODUCTION
In silico methods to predict products and pathways of microbial
biotransformations of chemical substances are increasingly sought
due to rapidly growing data requirements for regulatory chemical
risk assessment at the European (cf. REACH) and global level.
Existing methods for the prediction of biotransformation products
and pathways can be categorized as either knowledge- or machine
learning-based approaches. Each of the two approaches has its
strengths and weaknesses. Knowledge-based approaches, such as
METEOR for the prediction of mammalian metabolism (Greene
et al., 1999) or the University of Minnesota Pathway Prediction
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System (UM-PPS) for microbial biodegradation (Hou et al., 2004)
take into account expert knowledge on the basis of sets of
transformation rules. However, they run the risk of including
potentially overly general, incomplete or inconsistent rules. In
contrast, machine learning approaches produce accurate probability
estimates on the basis of empirical data, but often lack the ability to
incorporate prior domain knowledge. Also, recent machine learning
approaches for biotransformation prediction only predict quite
general classes [e.g. whether a compound plays a role in central
metabolism (Gomez et al., 2007) or whether it is the substrate of
some broad reaction class, e.g. oxidoreductase-catalyzed reactions
(Mu et al., 2006)].

The goal of this article is to combine the two approaches:
we assume a given set of biotransformation rules and learn the
probability of transformation products proposed by the rules from
known, experimentally elucidated biodegradation pathways. Only
two comparable systems exist so far: META (Klopman et al., 1997)
that is similar in spirit, but uses a less-advanced problem formulation
and machine learning approach than the one presented here, and
CATABOL (Dimitrov et al., 2007), the only rule-based method
explicitly aiming for probability estimates. However, the CATABOL
system works with a fixed pathway structure for training, which is
different from the approach presented here working on the basis of
individual rules (for a detailed discussion, see Section 6).

Rule-based systems, such as UM-PPS, work on the basis of rules
that are generalizations and abstractions of known reactions, in
the case of UM-PPS, its underlying Biocatalysis/Biodegradation
Database (UM-BBD; Ellis et al., 2006). UM-BBD is a manually
curated compilation of over 200, experimentally elucidated
microbial biotransformation pathways, encompassing enzymatic
reactions for roughly 1000 parent compounds and intermediates.
If certain functional groups of a query substrate match with any
of the biotransformation rules in UM-PPS, then its structure is
transformed into one or several products according to the rule(s).
These rules are typically fairly general, either to cover all known
reactions, or because there is not enough information known to
restrict them. As a consequence, UM-PPS produces a large number
of possible reaction products, especially when used to predict
several subsequent generations of transformation products. This
combinatorial explosion is a phenomenon also known from other
rule-based systems and approaches. It is particularly aggravated
for the structurally more complex contaminants of current concern,
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e.g. pesticides, biocides or pharmaceuticals. Potential users of such
a system such as environmental microbiologists, risk assessors
and analytical chemists are overwhelmed by the number of
possible products, and find it hard to identify the most plausible
products.

In an effort to restrict combinatorial explosion, some of the
knowledge-based approaches to metabolic prediction employ what
is called relative reasoning (Button et al., 2003). In relative
reasoning, the possibility to apply a rule depends on the presence
of other applicable rules. Practically, this requires additional rules
for the prioritization of rules and the resolution of conflicts. These
meta-rules, or relative reasoning rules, express that some reactions
take priority over others, and vice versa, and that some reactions
only occur if others are not possible. Relative reasoning rules
have recently been derived automatically for the set of UM-PPS
biotransformation rules and have been successfully implemented
into the working UM-PPS (Fenner et al., 2008). However, although
reductions in the number of predicted products in one prediction
step of ∼20% were achieved, the selectivity (precision) of UM-PPS
still remained rather low, at ∼16–18%. Thus, the question remains
how, when a set of rules applied to the structure of a given substrate,
we can further refine the process of selecting and accepting those
rules that most likely lead to observed products.

In this article, we propose a solution that transfers the idea of
relative reasoning to a machine learning setting, to further improve
the system’s selectivity (precision). Rule probabilities are to be
estimated such that they depend not only on all other rules that
are applicable, but also on the structure of the substrate. The
priorities are learned statistically from data on known biodegradation
pathways. In our solution, one classifier is learned for each rule,
generalizing over the molecular substructures of the substrate and
the ‘activation patterns’ of the rules as given by the set of all other
rules that are triggered by the same substrate.

Given the availability of such probabilistic classifiers, the decision
to accept a product or not can be made dependent on a probability
threshold: the application of individual rules can be tuned such that
only transformations with a probability above a certain threshold
are accepted. In this way, one can also control the generality of
whole rule sets and the overall number of products. Thus, it is
easy to address the fundamental trade-off between the completeness
and the accuracy of predictions. In technical terms, we can analyze
the performance of both individual rules and the whole system in
recall–precision space, and visualize their performance in 2D plots.
Moreover, it is possible to explicitly choose a suitable point in recall–
precision space by setting the probability threshold for accepting a
rule to a certain level.

This article is organized as follows: In Section 2, we explain the
method for learning classifiers to restrict the scope of transformation
rules. Section 3 presents the data that were used as the basis
of our study and some implementation details. In Section 4,
the performance measures used to evaluate the results of our
experiments are presented and finally, in Section 5, the results
themselves are discussed.

2 METHOD
To illustrate the problem and the proposed solution, we start with an example
shown in Figure 1a: given a new compound cnew, several rules of the
UM-PPS are applicable and suggest possible transformation products. In

the example, a subset of rules r1,r2,r5, etc., triggers for the given input
structure. In the illustration, triggering rules are indicated by solid arrows,
rules not triggering by dashed arrows. As mentioned above, the problem is
that the rules of the system are overly general, i.e. they suggest a wide range
of possible products, many of them false positives. To restrict the number of
possible products, it would be desirable to score the proposed transformations
by estimated probabilities. In this way, it would also be possible to tune the
number of products depending on a user-defined threshold: If the estimated
probability of a transformation exceeds a threshold, it is accepted, otherwise it
is discarded. The probability for each rule ri is estimated by a corresponding
function fi. Function fi tells us how likely a transformation suggested by
rule ri is, depending on the structure of the input compound and all other
triggering rules. This is illustrated in Figure 1b: function f1 estimates that
the probability of obtaining a correct product from applying r1 to substrate
cnew is 0.6, given the molecular structure of cnew and the other rules
applicable (r2,r5, ...,r179). The dependency of the decision on all other
transformation options reflects the fact that, under certain conditions, one
reaction should be given priority over another. If the cut-off was set to 0.5
in the example, we would only accept the transformations proposed by r1

and r5.
The problem is of course to derive suitable probability scores. In this

article, the solution is based on a training set of examples and machine
learning. In Figure 1c, a sample of three compounds from a hypothetical
training database is shown. For the three training compounds, we assume that
we not only know which rules are applicable, but also which rule applications
lead to observed products. In the figure, the observed transformation products
are indicated by a check mark, whereas the spurious products are indicated
by a cross. Given this information, it is possible to learn under which
conditions the suggested product of a transformation rule can actually be
observed. As a classifier is only needed when a rule triggers, the training set
for a rule also includes only those compounds for which the rule suggests
a product. Figure 1d shows two training sets constructed from the three
training compounds c1–c3, one for rule r1 (upper table) and one for rule r2

(lower table). The first group of features (s1,...,sm) is a fingerprint-based
representation of the structure of the input compound. The second group
of features (all r1,...,r179 except the rule for which the classifier is built)
indicates which other rules are applicable to the compound: a feature is set
to +1, if the corresponding rule fires, and 0, otherwise. As explained above,
the training set for f1 does not contain an entry for c2, because rule r1 is not
applicable to that compound. Similarly, c1 is not listed in the training set for
f2, because rule r2 cannot be applied. Also note that c3 is a positive example
for f1, whereas it is a negative example for f2. Given such training sets,
any machine learning algorithm for classification can be applied to induce a
mapping from the structural and rule descriptors to the target variable, i.e.
whether a rule generates an observed product.

To be more precise (amongst others, to enable reproducibility), we have to
introduce some notation: in the following, C denotes the set of compounds
ci, and R the set of rules rj . Then triggers(rj,ci) is a predicate indicating
whether rj triggers on compound ci. Moreover, observed(rj,ci) is a predicate
indicating that rule rj fires and provides an observed degradation product.
For instance, we have the following list of facts for c1 and c2, and r1 to r3

from Figure 1c:

triggers(r1,c1).

triggers(r3,c1). observed(r3,c1).

triggers(r5,c1). observed(r5,c1).

triggers(r2,c2). observed(r2,c2).

triggers(r4,c2).

Finally, S denotes the set of molecular substructures sl , and predicate
occurs(sl,ci) checks the occurrence of a substructure sl in a compound ci.

To prepare for training, we need two transformation operators, one for the
construction of individual examples, and one for the construction of whole
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(a)

(b)

(c)

(d)

Fig. 1. (a) Indication of the rules applicable to an input compound cnew by solid arrows. (b) Illustration of the use of one classifier for each rule to determine
the probability of obtaining a proper product, depending on the structure and other applicable rules. (c and d) Examples for the construction of two training
sets, one for f1 (upper table) and other for f2 (lower table).

training sets. The first one, τinstance, is defined as follows:

τinstance(ci,k)= xi suchthat

xi,j = occurs(sj,ci) for

1 ≤ j ≤ |S|∧
xi,j = triggers(rj −|S|,ci) for

|S|< j≤|S|+k−1∧
xi,j = triggers(rj −|S|+1,ci) for

|S|+k−1< j≤|R|+|S|−1

This means that operator τinstance(ci,k) constructs the description of an
individual example without its class information. It takes a compound ci

and constructs a feature vector (see the example above), taking into account
substructures and applicable rules. Parameter k is used to exclude the
information for the k-th rule, which is convenient for our purposes, because it
constitutes the target for training. Making use of τinstance(ci,k), we are ready
to define a transformation operator generating a training or test set for rule
k from a given set of compounds C: τset takes a compound ci from C and
checks whether rule k triggers. Only if this is the case, a training example
(xi,yi) is constructed:

τset(C,k)={(xi,yi)|ci ∈C∧
triggers(rk,ci)∧
xi =τinstance(ci,k)∧
yi =1if observed(rk,ci),

yi =0 otherwise}
In the above example, τset({c1,c2,c3,...,c718},1) gives us the training set for
classifier f1 shown in the upper table of Figure 1d, τset({c1,c2,c3,...,c718},2)
gives us the training set for f2 in the lower table. A training procedure

Algorithm 1 Pseudocode for training and testing classifiers for
biotransformation rules

% training one classifier per rule
for all rule rk do

Dk
Trg :=τset(CTrg,k)

fk := train(Dk
Trg)

end for
% testing for a new test compound cnew

% the cut-off for acceptance is given by parameter θ

for all rule rk do
if triggers(rk,cnew) then

if fk(τinstance(cnew,k))>θ then
classify as “product of k”

else
classify as “no product of k”

end if
end if

end for

train returns the classifiers needed for the restriction of the rules based on
such training sets. As already indicated above, classifiers are represented as
functions fj returning class probability estimates for given examples.

Given those preliminaries, we can explain how training and testing is
performed and how it is embedded into the working system (see Algorithm 1
for the pseudocode). In the training phase, a classifier is trained for each rule
in turn. In the testing phase, we first obtain a list of rules applicable to each
test compound using the UM-PPS. If a rule triggers, we apply the rule’s
classifier to the instance, where information from the molecular structure
and all competing rules is taken into account to obtain a probability estimate.
If this estimate exceeds a threshold θ, the product suggested by rule rk is
accepted, otherwise, the proposed transformation is rejected.
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3 DATA AND IMPLEMENTATION
It is possible to validate the above procedure by running a cross-
validation over the compounds of the UM-BBD database. This can
be optimized considerably, if the predicates triggered, observed and
occurs are precomputed once for all compounds and stored for
later use. In our implementation, we precomputed a |C|×|R| table
indicating the rules’behavior on the UM-BBD compounds: the value
+1 of an entry encodes that a rule is triggered and produces an
observed product, 0 encodes that a rule is triggered but the product
is not observed, and −1 encodes that the rule is not triggered for
a given compound. Simple database and arithmetic operations can
then be applied to extract training and test sets, e.g. for (leave-one-
out) cross-validation. Additionally, we learned the classifiers on the
complete dataset and tested our approach on an external validation
set of 25 xenobiotics (pesticides), which was also used in previous
work (Fenner et al., 2008).1 Pesticide biodegradation data is the
largest cohesive dataset available, because these compounds are
made to be put into the environment and are among the most heavily
regulated class of chemicals.

The matrix encoding described above was applied to the UM-
BBD/UM-PPS from July 24, 2007, containing 1084 compounds
and 204 biotransformation rules (btrules). Of these, 366 compounds
not triggered by any rule (terminal compounds of reported
pathways, compounds containing metals or other compounds whose
biodegradation should not be predicted) were removed. Likewise,
25 strictly anaerobic (unlikely or very unlikely) btrules and btrules
not triggered by any compounds in the UM-BBD were removed.
Finally, 48 transformation rules triggered by only one structure were
removed from the set. The remaining 718 UM-BBD compounds
were submitted to 131 UM-PPS btrules. The predicate triggered
was then defined to be true if a rule applied to a compound, and
observed was defined to be true if the product could be found in the
database.

The class distribution in the dataset is very diverse (Fig. 2).
There are only few transformation rules with both a balanced
class distribution and a sufficient number of structures triggering
them. Thus, we decided to implement classifiers for a subset of
the transformation rules. We chose rules that provide at least a
certain amount of information for the construction of the classifiers.
The transformation rules are needed to be triggered by at least 35
structures. On the other hand, for the ratio of ‘correct triggers’, we
set a minimum of at least 0.15. These parameters seem sufficient to
cover a sufficient number of cases and exclude overly skewed class
distributions. Varying the parameters in further experiments did not
lead to an improvement of the results.

Of the 131 transformation rules in the training set, this leaves
13 rules for the validation process (Table 1). Considering the class
distribution and number of examples of the remaining rules, it is
not reasonable to learn classifiers for these transformation rules.
To compare the results with previous work and to evaluate all
transformation rules, we generated a default classifier (DC) for these
rules which predicts the ratio of positive examples as the probability
to produce a correct product. Thus, if the chosen threshold is below

1Those 25 pesticides were also tested in our previous experiments
investigating the sensitivity and selectivity of the method [see Table 6 in
(Fenner et al., 2008)]. Twenty-two other xenobiotics (pharmaceuticals) were
only used for determining the reduction of predictions [see Table 4 in (Fenner
et al., 2008)] because their degradation products are not known.
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Fig. 2. Characteristics of datasets for rules: size (number of triggered
compounds) and class distribution (fraction of correctly triggered
compounds). The 13 transformation rules used in the subset are marked.
The dotted lines are the cutoffs (number = 35, fraction = 0.15) used to select
the subset (see text).

Table 1. List of the 13 transformation rules in the subset used for prediction

Rule Description

bt0001 Primary Alcohol → Aldehyde
bt0002 Secondary Alcohol → Ketone

Secondary Alcohol → Ester
bt0003 Aldehyde → Carboxylate
bt0008 vic-Dihydroxybenzenoid → extradiol ring cleavage
bt0029 organoHalide → RH
bt0036 Aromatic Methyl → primary Alcohol
bt0040 1-Aldo/keto-2,4-diene-5-ol → Carboxylate + 1-ene-4-one
bt0055 1-carboxy-2-unsubstituted Aromatic → Catechol derivative
bt0060 vic-Hydroxycarboxyaromatic → Catechol derivative

vic-Aminocarboxyaromatic → Catechol derivative
bt0063 Primary Amine → Aldehyde or Ketone

Secondary Amine → Amine + Aldehyde or Ketone
Tertiary Amine → secondary Amine + Aldehyde or Ketone
Methylammonium derivative → Trimethylamine + Aldehyde or
Ketone

bt0065 1-Amino-2-unsubstituted aromatic → vic-Dihydroxyaromatic +
Amine

bt0254 vic-Dihydroxyaromatic → intradiol ring cleavage
vic-Dihydroxypyridine → intradiol ring cleavage

bt0255 vic-Dihydrodihydroxyaromatic → vic-Dihydroxyaromatic

the ratio of positive examples, all structures are predicted as positive,
i.e. they are predicted to trigger this transformation rule correctly.

For the computation of frequently occurring molecular fragments,
we applied the FreeTreeMiner system (Rückert and Kramer, 2004),
as it builds on a computer chemistry library to handle structures and
substructures conveniently.

4 PERFORMANCE MEASURES
Clearly, we are facing a fundamental trade-off also found in many
other applications of machine learning and classification: if the
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rules are too general, we will not miss many positive examples,
but we might also include too many false positives. Vice versa, if
the rules are too specific, we probably have few false positives,
but we will potentially miss too many positives. It is convenient to
think of this trade-off in terms of recall (sensitivity) and precision
(selectivity). If the overall system predicts an observed product for
a given substrate, we can count this as a true positive. If the system
predicts a product that is not observed, we have a false positive.
If a product is missing for a substrate, we have a false negative.2

The number of true positives is denoted by TP, the number of false
positives by FP and the number of false negatives by FN. Then the
standard definitions of recall (sensitivity) and precision (selectivity)
can be applied:

R=Sensitivity= TP

TP+FN

P=Selectivity= TP

TP+FP

The overall number of products predicted by the system critically
depends on the cut-off parameter θ. To evaluate the performance
of the system, this parameter does not need to be fixed in advance.
Instead, the parameter can be varied over the whole range from
0 to 1, and the resulting values for R and P can be plotted in two
dimensions: recall is plotted on the x-axis and precision on the y-axis.
Recall–precision plots offer an easy and intuitive visualization of the
trade-offs involved in choosing a certain value of θ. Also the results
of approaches without cut-off parameters (e.g. relative reasoning
as discussed above) appear as single data points in recall–precision
space.

Recall–precision analysis can be performed on the system level
as well as on the level of individual rules. In principle, one could
set the threshold individually for each rule, but this would introduce
a large number of parameters. For simplicity, we chose to visualize
the system’s performance below by applying the same threshold for
all rules. Also, as individual classifier schemes should be sensitive
and adaptive to different class distributions, one parameter for all
should work reasonably well in the first approximation.

In addition to recall–precision analysis, we measure the area under
the receiver operating characteristic (ROC) curve, which indicates
the capability of a classifier to rank the examples correctly (Cortes
and Mohri, 2004).

5 EXPERIMENTAL RESULTS
In the following, we present the experimental results obtained
with our approach. After introducing various learning schemes and
settings, we present the results on the xenobiotics test set and, more
importantly, our main results from a leave-one-out cross-validation
over the UM-BBD structures.

For the 13 transformation rules in the subset, we applied the
Random Forest algorithm (Breiman, 2001) in the implementation

2We count the false negatives in a slightly different way than in a previous
paper (Fenner et al., 2008), as we only consider products that are suggested
by any of the biotransformation rules. In other words, we do not take into
account products of reactions that are not subsumed by any of the rules. This
is done because only for the products suggested by the UM-PPS, the method
proposed here becomes effective—the classifiers can only restrict the rules,
not extend them.

of the Weka workbench (Witten and Frank, 1999), because it
gave good probability estimates in preliminary experiments. As
a second classifier, we used Support Vector Machines (SVMs)
trained using sequential minimal optimization (Platt, 1999a) in the
implementation of the Weka workbench. We automatically adjusted
the complexity constant of the support vector machine for each
transformation rule separately. We used a 10-fold cross-validation to
generate the data for the logistic models (Platt, 1999b) to obtain well-
calibrated class probability estimates.3 For the DC on the remaining
118 transformation rules, we used the ZeroR algorithm of the Weka
workbench.

In total, we evaluated three variants:

(a) 13 learned classifiers (LC) (i.e. Random Forests or SVMs)
only,

(b) 13 LCs and 118 DC and

(c) 131 LCs (without DCs).

The idea of (a) is to evaluate the performance of the machine learning
component of the system only. In (b), the overall performance of the
system is evaluated, where 13 classifiers are complemented by 118
DCs. The purpose of (c) is to show whether the DCs are really
sufficient, or whether LCs should be used even when samples are
very small and classes are unequally distributed. All the results are
shown in terms of manually chosen points in recall–precision space
(e.g. before inflection points) as well as the area under the ROC
curve (AUC). The possibility to choose thresholds manually is one
of the advantages of working in recall–precision and ROC space:
instead of fixing the precise thresholds in advance, it is possible to
inspect the behavior over a whole range of cost settings, and set
the threshold accordingly. Finally, we compare the results to the
performance of relative reasoning.4

For compatibility with a previous paper (Fenner et al., 2008), we
start with the results of training on all UM-BBD compounds and
testing on the set of 25 xenobiotics. The results are given in the
upper part of Table 2. It should be noted that in this case the DCs
were ‘trained’ on the class distributions of the UM-BBD training
data, and subsequently applied to the external xenobiotics test set.

First, we observe that ROC scores are on a fairly good level. The
results in recall–precision space indicate that variant (b) is as good
as variant (c). However, with an AUC of ∼0.5, having 13 LCs only
[variant (a)], performs on the level of random guessing. An indepth
comparison of the two sets of structures (UM-BBD and xenobiotics)
shows that this can be attributed to (i) the low structural similarity
between the two sets, and (ii) the fact that a very limited set of
rules trigger at all for the xenobiotics [a consequence of (i)]. The
average number of free tree substructures per compound is 48.76 in
the xenobiotics dataset, whereas it is 65.24 in the UM-BBD dataset.
Due to this structural dissimilarity, the transfer from one dataset to
the other is a hard task. Therefore, we decided to perform a leave-
one-out cross-validation over all UM-BBD compounds, where the

3It should be noted that any other machine learning algorithm for
classification and, similarly, any other method for the computation of
substructural or other molecular descriptors could be applied to the problem.
4We cannot compare our results with those of CATABOL, because the system
is proprietary and cannot be trained to predict the probability of individual
rules—the pathway structure has to be fixed for training (for details we refer
to Section 6). This means that CATABOL addresses a different problem than
the approach presented here.
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Table 2. Recall and precision for one threshold (on the predicted probability
of being in the positive class) of the machine learning approach and for
relative reasoning

Method Variant LC DC θ Recall Precision AUC

Xeno- RF (a) 13 0 0.417 0.400 0.333 0.505
biotics RF (b) 13 118 0.296 0.525 0.447 0.676

RF (c) 131 0 0.35 0.475 0.404 0.664
SVM (a) 13 0 0.023 0.800 0.235 0.389
SVM (b) 13 118 0.296 0.475 0.463 0.674
SVM (c) 131 0 0.157 0.410 0.390 0.599
RR – – – – 0.950 0.242 –

UM- RF (a) 13 0 0.600 0.777 0.788 0.902
BBD RF (b) 13 118 0.308 0.595 0.594 0.842

RF (c) 131 0 0.485 0.653 0.632 0.857
SVM (a) 13 0 0.329 0.813 0.771 0.903
SVM (b) 13 118 0.294 0.582 0.588 0.841
SVM (c) 131 0 0.250 0.632 0.623 0.833
RR – – – – 0.942 0.267 –

The columns LC and DC indicate the number of transformation rules used for the LC,
SVMs or Random Forests, and the DC, ZeroR. The value of θ is determined manually
considering the trade-off between recall and precision. We chose the threshold manually
at an approximate optimum for recall and precision to provide a comparison to previous
work (Fenner et al., 2008). AUC is threshold independent and only given for the new
approach. The column with the variant refers to the assignment of rules to the different
classifiers and is explained in the text.

structural similarity between test and training structures is higher
than in the validation with the 25 xenobiotics as test structures.

Our main results from leave-one-out over the UM-BBD
compounds are visualized in the recall–precision plots of Figure 3
and shown quantitatively in Table 2. Figure 3a and b shows the
plots of the Random Forest classifiers and Figure 3c and d displays
the results of the SVMs. Figure 3a and c shows the results of the
classifiers on the 13 transformation rules in the subset and Figure 3b
and d uses the DC for the remaining rules. The plots tend to flatten
while including predictions of the DC. The overall performance
does not differ too much between Random Forest and SVMs. Using
both classification methods, we can achieve recall and precision of
slightly less than 0.8 (see Fig. 3a and c and also the values for 13+0
in the lower part of Table 2) for the LC only in a leave-one-out
cross-validation. The quantitative results in Table 2 also show that
the performance of Random Forests and SVMs are on a similar
level. Also in this case, the performance of LCs complemented
by DCs is nearly as good as the performance of the LCs for all
rules, supporting the idea of having such a mixed (LC and DC)
approach.5 However, in this case, the machine learning component
consisting of 13 LCs only, as expected, performs better on average
than the overall system with 118 DCs added. In summary, the AUC
scores are satisfactory, and the recall–precision scores of ∼0.8 of the
machine learning component show that improvements in precision
are possible without compromising recall too much. Therefore, the
machine learning approach provides some added value compared
with the relative reasoning approach developed previously (Fenner
et al., 2008).

5In other words, it shows that informed classifiers do not pay off for the rest
of the rules.
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Fig. 3. Recall–precision plots from a leave-one-out cross-validation using
the Random Forest classifier (a and b) and SVMs (c and d). On the left-
hand side (a and c), only the results of classifiers on a subset of the rules
is shown. On the right-hand side (b and d), classifiers were generated for
the same subset and a DC is used for the remaining rules. The subset was
chosen by using transformation rules with at least 35 triggered examples
and a minimum ratio of known products of 0.15. Using these parameters, 13
transformation rules were selected. The threshold θ is given in 10 steps per
plot. Note that the points in recall–precision space are connected by lines
just to highlight their position: in contrast to ROC space, it is not possible to
interpolate linearly.

To evaluate the enhancement of using both the structural
information and the expert knowledge in the transformation rules,
we applied the new method individually to the dataset leaving out
the structure and, in a second run, the transformation rules. As it
tends to give smoother probability estimates, we focus on Random
Forest classifiers here and in the remainder of the section. Using
only the structural information gives an AUC of 0.895, whereas the
transformation rules only give an AUC of 0.885. Taken together,
we can observe an AUC of 0.902, which, despite the apparent
redundancy for the given dataset, marks an improvement over the
results of the individual feature sets.

An example prediction of the biotransformation of a structure
is given in Figure 4. We applied our approach to amitraz, a
pesticide from the xenobiotics dataset. The incorrectly triggered
transformation rules all get a rather low probability, while bt0063,
a correctly triggered rule, is the only transformation rule being
predicted with a probability higher than 0.53. As the xenobiotics
dataset is very small, we generated Random Forest classifiers for
every transformation rule triggered by this structure for the purpose
of the example.

6 DISCUSSION AND CONCLUSION
We presented a combined knowledge- and machine learning-based
approach to the prediction of biodegradation products and pathways.
The proposed solution performs relative reasoning in a machine
learning framework. One of the advantages of the approach is that
probability estimates are obtained for each biotransformation rule.
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Fig. 4. Application of the new method to amitraz, a compound from the
xenobiotics dataset. For each transformation rule triggered by this structure,
an example product is given. Some of the transformation rules can produce
more than one product from this structure. We applied Random Forest
classifiers to the structure. The numbers indicate the predicted probability
that the corresponding transformation rule produces a known product. From
the transformations predicted by the UM-PPS, only bt0063 produces a known
product. As shown in the figure, this is the only transformation rule with a
relatively high predicted probability.

Thus, the results are tunable and can be analyzed in recall–
precision space. Making the trade-off between recall (sensitivity)
and precision (selectivity) explicit, one can choose whether one or
the other is more important.

In contrast to CATABOL, the approach works on the level
of rules and not on the level of pathways. In CATABOL, the
structure of pathways has to be laid out in advance in order
to solve the equations based on the training data. To make the
computations more stable, reactions have to be grouped using
expert knowledge. In contrast, we apply the rules to the training
structures to extract a matrix, which is the basis for the creation of
the training sets for each rule. CATABOL learns parameters for a
fixed pathway structure, whereas the approach proposed here learns
classifiers for (individual) transformation rules. During testing, only
the pathways laid out for training can be used for making predictions
in CATABOL. In contrast, the approach presented here predicts one
transformation after the other according to the rules’ applicability
and priority determined by the classifiers. Overall, the training of
CATABOL requires more human intervention than our approach,
e.g. for grouping and defining hierarchies of rules (Dimitrov et al.,
2004).

One might speculate (i) which other methods could be used to
address this problem, and (ii) where the proposed solution could
be applied elsewhere. Regarding (i), it appears unlikely that human
domain experts would be able and willing to write complex relative
reasoning rules as the ones derived in this work. Alternatively, other
machine learning schemes could be used to solve the problem, for
instance, methods for the prediction of structured output (Joachims
et al., 2009) or multi-label classification (Tsoumakas et al., 2009).
Methods for the prediction of structured output should be expected

to require a large number of observations to make meaningful
predictions. Also, with the availability of transformation rules,
the output space is already structured and apparently much easier
to handle than the typically much less-constrained problem of
structured output. Since multi-label classification seems particularly
promising to address the problem described here, we are planning to
investigate its use in future work. Regarding (ii), the approach could
be used wherever expert-provided over-general transformation rules
need to be restricted and knowledge about transformation products
is available. It would be tempting to use the same kind of approach
for other pathway databases like KEGG, if they were extended
toward pathway prediction systems such as the UM-BBD. Our
extended pathway prediction system could also be used as a
tool in combination with toxicity prediction, as the toxicity of
transformation products often exceeds the toxicity of their parent
compounds (Sinclair and Boxall, 2003). The procedure would be
first to predict the degradation products and then use some (Q)SAR
model to predict their toxicity.

Currently, we are integrating the resulting approach into an
experimental version of the UM-PPS server. In the future, it may
become necessary to adapt the method to more complex rule sets,
e.g. (super-)rules composed of other (sub-)rules. Such complex
rule sets should be useful for the representation of cascades of
reactions.
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