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GL(n, 0s(K)) AND SL{n,Os{K))
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§1. Introduction. 1.1. In this paper we investigate the p-periodicity of the
S-arithmetic groups G = GL(n, 0s(K)) and Gx = SL(«, 0s(K)) where 0s(K) is the
ring of S-integers of a number field K (cf. [12, 13]; S is a finite set of places in K
including the infinite places). These groups are known to be virtually of finite
(cohomological) dimension, and thus the concept of p-periodicity is defined; it refers
to a rational prime p and to the p-primary component Hl(G, A, p) of the Farrell-
Tate cohomology H'{G, A) with respect to an arbitrary G-module A. We recall that
H' coincides with the usual cohomology Hl for all i above the virtual dimension of G,
and that in the case of a finite group (i.e., a group of virtual dimension zero) the H\
ieZ, are the usual Tate cohomology groups. The group G is called p-periodic if
H'(G, A, p) is periodic in i, for all A, and the smallest corresponding period is then
simply called the p-period of G. If G has no p-torsion, the p-primary component of all
its H' is 0, and thus G is trivially p-periodic.

We shall determine the rational primes p for which the above S-arithmetic groups
are p-periodic, and compute the value of the p-period.

Partial results in that direction have been obtained earlier [3]. The present
procedure is simpler and yields complete answers.

1.2. Our method is based on the following fact. Let G be any group of virtually
finite dimension, and N a torsion-free normal subgroup of finite index in G. If G/N is
p-periodic with p-period mp, then G itself is p-periodic with p-period dividing mp (see
Section 5). In the case of the S-arithmetic groups G and Gj above we take for N or
Nl 5 respectively, the principal congruence subgroup of G or G1, with respect to a
certain prime ideal P of OS(K). This prime ideal can be chosen in such a way that N
and JV, are torsion-free and that the absolute norm yi{P) = \OS{K)/P\ = q is a
rational prime suitable for our purpose. Then

GJN1 =* SL (n, F,) c G/N c GL (n, ¥q).

Thus the task is reduced essentially to investigating the p-periodicity of the finite
groups GL(«, Fg) and SL(n, ¥q). It turns out (Section 4) that both these groups are
p-periodic if \n < hp(q) < n, where hp(q) is the order of the residue class of q in
(Z/pZ)*; and that then the p-period is 2hp(q).

The "suitable choice" of P is such that, in addition to rendering N and Nl

torsion-free, its norm 'il(P) = q fulfills hq(p) = <pK{p), the degree over K of the p-th
cyclotomic extension K(£p) of K. It then follows that G and G1 are p-periodic for
\n < 4>K(P) ^ n w ' th p-period dividing 2<f>K(p).

1.3. The existence of such a prime ideal is guaranteed by a number-theoretic
lemma which we formulate and prove in Section 2, in a slightly more general version
than actually needed (Lemma 2.2).
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90 B. BURGISSER AND B. ECKMANN

Let p be an odd rational prime, and r a positive integer. There exist infinitely many
prime ideals P in OS(K) such that 9l(P) is a rational prime q whose residue class has
order (pK(pr) in (Z/prZ)*.

This lemma is useful also for other applications, in particular, in computations
concerning the projective class group of certain arithmetic groups (see [7|), and in
connection with topological problems as mentioned in [4].

1.4. In order to obtain, for the appropriate rational primes p, the precise value
of the p-period of the groups G and G1 we exhibit certain finite subgroups; they are
obtained as semi-direct products of the group of p-th roots of unity with the Galois
group of K(Cp) over K. Since quite generally any subgroup of a p-periodic group is
also p-periodic, with p-period dividing that of the group, we thus get lower bounds
for the p-periods of G and Gt. It turns out that they agree with the upper bounds
2</>K(p) except for the special case SL(0K(p), Os{K)). The final results (Theorems 5.2
and 5.4 with Remarks) are as follows.

The groups GL(n, OS(K)), n > 0, and SL(«, OS(K)), n > 2, are p-periodic for
all rational primes p with \n < <f>K(p) < n; the p-period is 2<pK(p) except for
SL((pK(p), OS(K)) where it is either 4>K(p) or 2<j)K(p) depending on the number field
K. For 4>K(p) < \n they are not p-periodic, and for <ftK(p) > n they have no
p-torsion. The group SL(2, OS(K)) is periodic (i.e., p-periodic for all p) with period 2
or 4.

§2. The number-theoretic lemma. 2.1. We consider an algebraic number field
K and its ring of integers O(K). Let 91{I) denote the absolute norm \O(K)/I\ of the
ideal / in 0{K).

LEMMA 2.1. Let p be an odd prime number and r a positive integer. There exist
infinitely many prime ideals P of O(K) such that 9i(P) = q is a prime number whose
residue class has order (j>K(pr) in (Z/prZ)*.

Proof. The Galois group Gal (K(L,P,)/K) is cyclic of order <pK(pr); let a be a
generator, i.e. a(^pr) = C", where the order of the residue class of s in (Z/prZ)* is

We shall use results and notations of [11], Chapters IV and V. We consider the
following "modulus" m. Let mx be the product of all real places of K, and
m0 = pr0{K), and m = m0mrxi. Let Km X be defined by

Km.i = {x/y ;x,ye O(K) with xO(K) and yO(K)

relatively prime to m0 and x/y = 1 modm};

and /£ the subgroup of the ideal group of K generated by all prime ideals not
dividing m0. The Artin map

</>:/£-+Gal (K(CP,)/K)

is surjective, and its kernel contains the image i(KmA) of the embedding of Km_, in
the ideal group by the reciprocity law for (K(C^), K, m). Take Je/™ such that
4>(J) = a. Then (j>~l(a) = J ker <j> => Ji(KmA). By the generalized Dirichlet theorem
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THE p-PERIODICITY OF THE GROUPS GL(«, 0s(K)) AND SL(n, 0s(K)) 91

there are in <f>~l(a) infinitely many prime ideals, even if we require them to be of
relative degree 1 (over T).

Let P be such a prime ideal of 0(K). The Frobenius automorphism

is equal to a e Gal(K(£p,)/K). Since the relative degree of P is 1, we have
O(K)/P s Z/qZ where q is the rational prime over which P lies ( P n Z = qZ). The
Frobenius automorphism

i

is the restriction of <T to Q{£p,); i.e.,

whence q = .s mod//. Thus q has order 4>K{pr) in (Z/prZ)*.

2.2. We now consider the ring of S-integers OS(K) in K. Let £ be the set of all
places of K and S a subset of £ containing Z00, the set of infinite places. Then

QeZ- S

where 0t, is the valuation ring of Q. Hence OS(K) is a Dedekind ring with quotient
field K.

If S above is a finite set then (cf. [12] or [13]) GL(«, OS(K)) is virtually of finite
dimension.

LEMMA 2.2. Let S be a finite set of places including £lX>. Then the assertion of
Lemma 2.1 also holds for 0s(K).

Indeed, all the prime ideals P occurring in Lemma 2.1, except for finitely
many of them, generate prime ideals P' = POS(K) of OS(K), and

') = \OS(K)/P'\ = \O(K)/P\ = m(P).

§3. Finite subgroups. 3.1. Notation. R is an integrally closed domain of
characteristic zero, K its field of quotients, £m a primitive m-th root of unity in an
algebraic closure of K, <j)K(m) = [K(£m):fC], Zm = <Cm> the group of all m-th
roots of unity, Ck = <f> any multiplicative cyclic group of order k with generator f
(m, k are arbitrary natural numbers).

Let p be a rational prime, and let C^K(p) operate on Zp through the isomorphism
C^Kir) s G'd\(K(CP)/K) which maps t to a generator a of the Galois group.

PROPOSITION 3.1. The semi-direct product Z p x C^,K(P) is p-periodic with p-period

2<PK(P).
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92 B. BURGISSER AND B. ECKMANN

Proof. Obviously Zp is a p-Sylow subgroup of G = Zp x C^K{p). Since it is
cyclic, G is p-periodic (cf. [8, Chap. XII]). The p-period is given {cf. [14]) by
2\NG{Zp)/CG(Zp)\ where NG denotes the normalizer, CG the centralizer in G. Now
Nc(Zp) = G and CG(Zp) = Zp, and hence the p-period is 2<j)K(p).

3.2. The group in Proposition 3.1 can be embedded in GL(</>K(p), R), as
follows. Since the irreducible polynomial in K[x] of £p is of degree <fiK(p) and has
coefficients in R, the R-module R[CP] is free with basis 1, £p,..., £p

>K('1)~1. We can thus
identify GL(</>K(p), R) with the group of R-module automorphisms AutRR[Cp].
Multiplication n- with £p is an element of that group, and so is any element as of
Ga\(K(Cp)/K) if restricted to R[£p].

We consider the subgroup S = {//'-,, ffs; 0 ^ r < p, 0 < s < </>K(p)} of
AutRR[£p]. The map Zp x C^K(p) -» S given by £p i—> //-, t h-> <T is easily seen to be an
isomorphism. Thus Zp x C^K(p) is realized as a subgroup of GL((/>K(p), R), and
therefore also of GL(.n, R) for all n > <̂ >K(p).

THEOREM 3.2. For a rational prime p with 4>K(p) ^ n the group GL(n,R)
contains a finite subgroup which is p-periodic with p-period 2cj)K(p).

3.3. We now turn to the special linear groups over R. Since SL(n, R) contains
G L ( n - l , R ) as a subgroup (n > 1) there is, for all p with 4>K{p) < n, a finite
subgroup in S L ( M , R ) which is p-periodic with p-period 2<j>K(p). Some special
arguments are needed in the case where (pK(p) = n {> 1).

We can identify SL(0K(p), R) with the subgroup AutRR[£p]! of AutRR[£p]
consisting of all automorphisms with determinant 1. The determinant of j.iit is a p-th
root of 1 in K and hence = 1 since 4>K(p) > 1. As for the generator a of
Ga\(K(£p)/K), it has determinant (-1)*""1'-1, indeed a can be viewed as a cyclic
permutation of a suitable basis of K(Cp) over K. Thus for odd 4>K(p) > 1 the group S
above actually lies in AutRR[(p]!. If 4>K(p) is even, S{ = S n AutRR[(p]! has index 2
in S; this group S1 is p-periodic with p-period (j)K(p).

If 4>K(p) is even there are, however, also cases where one can have in AutRR[£p]i
a finite p-periodic subgroup S2 with p-period 2cj)K(p). This is so if there exists in R[Cp]
a unit w with relative norm 91 K{- )/K(u) = — 1. Indeed let again \iu be multiplication in
^[CP] by u. This automorphism has determinant — 1 ; thus nua has determinant 1
and generates in AutRR[Cp]i a cyclic subgroup of order 2<pK(p) (since
(jiuof^ = -identity). We put

S2 = {^u°)\ 0 < r < p, 0 < s < 2<t>K(p)} .

This subgroup of AutRR[Cp]i is isomorphic to Zp x C2^K(p) where the generator t of
C24,K{p) acts on Zp through t>-*o. The computation analogous to that in the proof of
Proposition 3.1 shows that S2 is p-periodic with p-period 2<pK(p).

In summary we have

THEOREM 3.3. (a) For all p with <j>K(p) < n, and for (pK(p) = n if 4>K(P) '-S'

> 1, the group SL(n, R) contains a finite subgroup which is p-periodic with p-period

2<PK(P)-

(b) / / 4>K(p) is even, then SL (<pK(p), R) contains a finite subgroup which is
p-periodic with p-period (f>K{p). If there is in R[CP] a unit u with sJtK(C )/K(u) = - 1, there
exists even a finite subgroup with p-period 2(pK(p).
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§4. Thep-periodicityofGL(n,¥q)andSL(n,¥q). 4.1. As usual F̂ ,, denotes the
field of q" elements; we recall that

|GL(n,F,)| = q"'"-'*-'2 f] (g'-l) = te-l)|SL(n,F,)|.
i= 1

Let p and q be different rational primes. We denote by hp(q) the order of the
residue class of q in (Z/pZ)*. If h = hp(q) then p divides qh— 1 but none of the other
factors in \GL(h, ¥q)\. Let p" be the highest power of p dividing qh— 1, i.e., dividing
|GL(/j, F,)|, and let Sp be a p-Sylow subgroup of GL{h, ¥q).

PROPOSITION 4.1. The group Sp is cyclic; the centralizer of Sp in GL(h, ¥q) has
index h in the normalizer.

Proof. We write G for GL(/i, ¥q) and identify G with the group of F^-vector
space automorphisms of fqh. For x e ¥*h let fix be multiplication with x in F^; it is an
element of G = Aut, (F,;)T). Let g be a generator of the cyclic group F** and
/ = qUl'' "•''". Then /<f 6 G is of order pa and generates a p-Sylow subgroup Sp of G.

To prove the second part we show that ATG(Sp)/CG(Sp) is isomorphic to
Gal (¥qhl¥q) and hence of order h. Indeed Gal (¥qi,/¥q) is contained in G and one easily
checks (c/: [6], Lemma 3.2 or [10], Chap. II, §7) that

No(Sp) = {/v/; x e F*,,, y e Gal (F,,,/FJ} ,
and

Q(Sp) = {A(x; xeF*,,}.

Thus C^Sp) is the kernel of the obvious map NG(Sp) -> Gal(¥qh/¥q) and the assertion
follows.

4.2. From Proposition 4.1 it follows that GL(h, ¥q), h = hp{q), is p-periodic
with p-period 2h. We shall show that the same holds for GL(«, F,) if \n < h < n.

Let B e GL(h, ¥q) be a matrix of order pa, generating Sp. Then

where £ is the (n — h) x (n — h) unit matrix, has order p" in GL (n, ¥q). The assumption
n < 2h guarantees that p" is the highest power of p dividing |GL(rc, F4)|. Thus B'
generates a cyclic p-Sylow subgroup S'p of GL(n, ¥q). The normalizer of S'p is given
by the matrices

° ) N N ^ S ) DeGL(n~h,¥q)

and similarly for the centralizer of S'p. It immediately follows that the index of the
centralizer of S'p in the normalizer is again h; thus the p-period of GL(n, ¥q) is 2h.

4.3. The remaining cases n < h and n ^ 2h are easy.
If n < h = hp(q) then p does not divide |GL(«, F,)|; i.e., GL(n, ¥q) has no

p-torsion.
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94 B. BURGISSER AND B. ECKMANN

If n ^ 2h we take an embedding

GL (h, F,) x GL (h, F,) c GL (2h, ¥q) c GL (n, ¥q).

Since p divides |GL(fc, F4)| there is a cyclic subgroup Cp in GL(li, ¥q). Thus
GL(n, ¥q) contains a subgroup Cp x Cp and can therefore not be p-periodic.

4.4. We now turn to the group SL(n, ¥q), first for n ^ 3, and show that all the
p-periodicity statements for GL(n, ¥q) above also hold for SL(n, F,), n ^ 3.

We may, of course, assume q odd. So SL(n, ¥q), being a subgroup of
G = GL(n, F4), is p-periodic for |n < /j ^ n, h = /ip(q), with p-period dividing 2h.
The crucial case is again S L ( / J , F,); by assumption h > \n > 1.

We write Gt for SL(/i, F,) and identify G1 with Aut, (F^Jj where the index 1
refers to determinant 1. With notations as in 4.1 the automorphism fif has
determinant 1 since p does not divide q—\ = |F*|. Thus the cyclic group Sp

generated by fif lies in G,. Its normalizer is Nc(Sp) n G, and its centralizer is
CJS^nG,.

For the generator g of F*ft the determinant det/ig is gUl'' "l)/(" " e F*; and for the
generator a e GalfF^/F^), detc = ( —I)*"1 e F* since a may be viewed as a cyclic
permutation of order h. Thus the elements fixy, xe F**, y e GalfF^/F,,), of NG(Sp)
have determinant 1 in the following cases.

If h is odd: x = griq~l), 0 < r < (q*- l ) / ( ^ - 1); 7 = <r\ 0 ^ s < l i .

If/; is even: x = <flq~l\ 0 ^ r < (qh - [)/{q - 1); y = (T2s, 0 sj s < \h ,

and x = ^( i -D + ite-n, 0 < r < (q*- l ) / (q(- l ) ; •/ = u 2 l + 1 , 0 < s < | f i .

The elements /ix, x e F*fc, of CG(Sp) have determinant 1, if, and only if,
x = gr

i'(«- x>, 0 ^ r < (qh-\)/{q-\). A simple count shows that the index of the
centralizer in the normalizer is h; hence the p-period of SL(«, ¥q), n ^ 3, is 2h.

4.5. We summarize as follows.

THEOREM 4.2. Let p and q be different prime numbers, and h = hp(q) the order of
q in (Z/pZ)*. / / \n < h ^ «, then the groups GL(n, FJ, n > 1, and SL(n, FJ,
« ^ 3, are p-periodic with p-period 2h.

Remark 4.3. (a) For \n ~^ h = hp(q) the groups in Theorem 4.2 are not
p-periodic.

(b) For n < h they have no p-torsion.

Indeed, (a) is proved in 4.3 for GL(n, fq). If h > 2 (n > 4), then p does not
divide q—\ = |F*|, and the subgroup Cp x Cp mentioned in 4.3 actually lies in
SL (n, F,). If /? = l a special argument is needed for SL (n, ¥q), n ^ 3. In that case p
divides q — 1; let x e F*_ j be of order p. The matrices
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with 0 ^ r, s < p constitute a subgroup of SL(3, F )̂ isomorphic to Cp x Cp. Thus
SL(>;, F,), n > 3, is not p-periodic in that case. The result (b) is proved in §4.3.

Remark 4.4. SL(2, F,) is well known to be p-periodic for all p. The (/-period is
q— 1 for odd q, and 2 for q = 2. For p dividing q2 — 1 the p-period is 4.

§5. Finite quotients. Main results. 5.1. We now turn to the groups
G = GL(n,Os(K)) and G{ = SL(«,OS(K)) described in Section 1. K is a number
field, S a finite set of places including the infinite places, OS(K) the ring of S-integers
of K.

We choose, by virtue of Lemma 2.2, a prime ideal P of OS(K) such that ''Jl(P) is a
prime number q > 2[K:y i , and that hp(q) = </>K(p); p is a given prime number and
hp{q) is the order of q in (Z/pZ)*. Then OS(K)/P s F,, and reducing all matrix
entries modulo P yields canonical maps \\i: G -> GL(n, F̂ ) and i//t : G, -» SL(n, F,).
Their kernels are the respective congruence subgroups modulo P . I V c G and
N, <= G,. Due to the choice of P they are torsion-free (cf. [2], for example). The map
i/>! is known to be surjective ([1], p. 267), i.e., we have

GJN ^ SL(n, F,) c l m i f c GL(« ,F , ) .

As shown in Section 4 both SL(«, ¥q) and GL(n, F?) are p-periodic with p-period
2hp(q) = 2(/>K(p) for all prime numbers p with M̂ < (puip) ^ "! t n u s the same holds
for G/N and G,/N,.

PROPOSITION 5.1. There exists a prime ideal P in OS(K) such that the congruence
subgroups modulo P, N a G and Nt c Gl, are torsion-free and such that the finite
quotients G/N and Gl/Nl are p-periodic with p-period 2</>K(p) for all p with
I" < < M P ) «S "•

5.2. We now invoke a general result concerning the Farrell Tate cohomology
of a group G of virtually finite dimension. Let N be a torsion-free normal subgroup
of finite index in G such that G/N is p-periodic with p-period mp; then G itself is
p-periodic with p-period dividing mp. In the case, where G admits a projective
resolution which is finitely generated in all dimensions, this result is proved in [2]
using the construction of a complete resolution for G from a complete resolution for
G/N, cf. [2] or [9]. Actually the result holds without any finiteness condition (see
[5]); in the present context this generality is not needed since the above finiteness
condition holds for GL(«, OS(KJ) and SL(n, OS{K)) according to Borel-Serre (see
[13], e.g.).

It thus follows that our groups G and G( are p-periodic for the appropriate prime
numbers p, and that the p-period divides 2cf>K{p).

5.3. To obtain the precise value of the p-period we use the finite subgroups
constructed in Section 3. By Theorems 3.2 and 3.3 the groups G = GL(n, OS(K)),
n ^ </)̂ (p), and Gl = SL(«, 0s(K)), n > (j>K(p) contain a finite subgroup which has
p-period 2(f>K(p). Thus, for \n < 4>K(P) ^ n ( o r < n respectively) the p-period of
GL(n,0.s.(K)) and SL(n,Os(K)) respectively is equal to 2(pK{p). The case
SL((j>K(p), OS(K)) is discussed in 5.4 below.
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96 B. BURGISSER AND B. ECKMANN

THEOREM 5.2. The groups GL(n, 0s(K)), \n < (pK(p) < n, and SL(n, OS(K)),
\n < 4>K(p) < n, are p-periodic with p-period 2(ftK(p).

Remark 5.3. The groups GL(n,Os{K)) and SL(n,Os(K)) have p-torsion, if,
and only if, 4>K(p) < n, see [3]. Using this fact one can, if n ^ 2<pK{p), easily find a
subgroup of these groups (for SL(«, 0s(K)) assuming n ^ 3) isomorphic to Cp x Cp.
Therefore they are not p-periodic if \n ^ <fi^{p).

5.4. In the special case SL(</>K(p), OS(K)) all the above arguments remain valid
except that Theorem 3.3 yields, in general, the two possibilities (j>K(p) or 2cf>K(p) for
the p-period. If (f)K(p) is odd and greater than one, the p-period is 2<j)K(p), by
Theorem 3.3(a). If 4>K(P) ' S even, the precise value depends on the norm map SJJK(:vK.
By Theorem 3.3(b) the period is again 2(/>K(p), if there exists in Os(K)[£p] a unit u
with «K(C(,,/K(u) = - 1 .

THEOREM 5.4. The group SL(</>K(p), OS(K)), </>K(p) > 1, is p-periodic with
p-period <fiK(p) or 2(f>K(p). If 4>K(P) ' S °dd or^ more generally, if there is in OS(K)[CP] a
unit with norm — 1 over /C, then the p-period is 2(j)K(p).

Remark 5.5. If there is no element in K(L,P) with norm - 1 over K, then the
p-period of SL((/>K(p), OS(K)) is 0K(p). This follows from the computations in [6],
Section 8. The condition is fulfilled, in particular, if K has an embedding in U. Thus
SL(p— 1, Z), for example, is p-periodic with p-period p— 1 (this case appears in [3]
and is obtained by an entirely different method).
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