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Abstract

We use the indirect production function approach in the stochastic frontier frame-
work to estimate separately the output losses due to the presence of a budget
constraint and technical inefficiency. We develop a methodology for estimating
the severity and testing the significance of the expenditure constraint at individual
producer level. Our results, based on the farm data from three Russian regions
from 1999 to 2003, show that the majority of the farms studied were expendi-
ture-constrained during the study period. Expenditure constraints caused, on
average, a potential output loss of 20 per cent. Output loss due to technical inef-
ficiency, on average, is found to be around 13 per cent.

Keywords: indirect production function, expenditure constraint, stochastic frontier,
technical efficiency, Russian agriculture
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1. Introduction

Input use decisions and the productive efficiency of Russian farms have been
the subject of many investigations in the past decade (Sotnikov, 1998; Sedik
et al., 1999; Osborne and Trueblood, 2002; Arnade and Trueblood, 2002;
Bezlepkina et al., 2005). These studies primarily sought to evaluate the
effect of economic transition on the allocation of productive resources. In
the context of Russia’s centrally planned economy, farm production inputs
were delivered according to the government’s plans and thus were not necess-
arily under the control of farmers’ decision-making. Producers’ input allo-
cation decisions have become more important in the transition context,
primarily because of the need for increased efficiency in input use. At the
same time, low farm liquidity and limited access to external finance due to
financial market imperfections have seriously constrained producers’ input
decisions during transition. We hypothesise that limited budgets for the
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purchase of variable inputs may have induced sub-optimal usage of farm
inputs, resulting in losses in productivity and efficiency.

Lee and Chambers (1986) showed that if expenditure constraints are present
and binding, then profit-maximisation cannot be regarded as an adequate rep-
resentation of producers’ behaviour. In fact, a profit-maximising assumption
presupposes that farms face no constraints in their input allocation decisions.
On the other hand, in the cost-minimising formulation, farmers are assumed to
minimise the cost of a pre-determined level of output. Although this formu-
lation incorporates a constraint on producers’ behaviour, the exact nature of
the constraint seems to be mis-specified, since the constraint is expressed in
terms of output rather than cost outlay (Ferguson, 1969; Chambers, 1982).

Arnade and Gopinath (2000) analysed the effects of expenditure constraints
on Russian farmers’ output at the regional level. With the use of data envel-
opment analysis (DEA), they found expenditure constraints to be present in
54 of the 73 agricultural regions for the years 1994 and 1995. The study
also estimated profit loss due to financial constraints. Their estimate of finan-
cial efficiency, assessed as the ratio of constrained to unconstrained profit, is
unexpectedly high. This might be caused by the use of aggregate data, which
could have masked the severity of expenditure constraints operating at the
micro level.

Recently, Bezlepkina et al. (2005) studied the effect of additional finance in
the form of state subsidies and found that government subsidies had a positive
effect on dairy farm profits in the Moscow region during the period 1995 to
2001.1 This study employed an indirect (dual) technology representation
and regarded subsidies as an additional regressor in the profit function.
However, the analysis by Bezlepkina et al. (2005) did not consider the
effect of constraints on either farm profit or output. In addition, though this
analysis revealed that subsidies relieved credit constraints of dairy farms in
the Moscow region during the period 1996–2001, empirical evidence
suggests a significant reduction in the extent of government subsidies in
Russian agriculture. In fact, the share of subsidies in total agricultural pro-
duction value shrank from 15 per cent in 1992 to 3–5 per cent after 1998
(Table A1 in Appendix A).2 Moreover, in contrast to the earlier years of tran-
sition, Russian farms have not more recently been able to benefit from soft
budget constraints (SBCs). After 1998, the Russian government strengthened
financial discipline and forced farms to repay their debts to federal budgetary
and non-budgetary funds (Government of Russia, 2001).3 Finally, since 2001

1 These authors, however, provided empirical evidence of decreasing government support during

transition and particularly after the 1998 financial crisis. According to their assessments, the

share of subsidies in farm revenue was 2.4 per cent in 2000 (Bezlepkina et al., 2005). Considering

this low level of state support after 1998, government subsidies have hardly relieved Russian

farms’ budget constraints in recent years.

2 Taking into account high inflation rates during transition and the fact that subsidies are granted

to farms primarily a posteriori in Russia, the share of subsidies in real terms would have been

even lower.

3 Bezlepkina et al. (2005) estimated that for farms in the Moscow region, the share of subsidies in

farm revenue declined from 12.5 per cent in 1997–98 to 2.4 per cent in 2000. According to

344 S. C. Kumbhakar and R. Bokusheva



farm solvency has been an important condition for participating in govern-
ment subsidy programmes (Bokusheva et al., 2009).

Furthermore, several empirical studies have been conducted to analyse the
effect of financial constraints on farms’ investment behaviour in transition
(Latruffe, 2005; Bokusheva et al., 2009). Their results show that financial con-
straints do indeed affect farm investment. However, the rationale of these
studies is limited to testing the sensitivity of farm investment to external
finance as evidence of imperfections in rural financial markets.

The financial crisis of 1998 provoked a considerable increase in demand for
domestic products that positively affected the terms of trade facing Russian
agriculture. The empirical evidence shows that since 1999 Russian farms
have been experiencing increasing returns to scale (Bokusheva and
Hockmann, 2006). At the same time, due to budget constraints, Russian
farms were seriously limited in their use of variable inputs, which restrained
them from exploiting the benefits of economies of scale through the use of
more variable inputs. Because of this, we suggest that output maximisation
might more adequately describe Russian farmers’ behaviour than cost mini-
misation or an unconstrained profit maximisation.

In this study, we extend the approach developed by Lee and Chambers
(1986), who showed that the profit-maximising output supply under expendi-
ture constraints is equal to the revenue-maximising supply evaluated at
optimal input levels. Lee and Chambers derived a methodology that can be
used to test whether expenditure constraints are binding for the entire
sample of farms. In this paper, we consider an extension of their approach
that can determine the level of expenditure constraints for individual produ-
cers as well as their output losses caused by the presence of expenditure
constraints.

Since expenditure-constrained profit maximisation is equivalent to output
maximisation subject to expenditure constraint, we apply the indirect pro-
duction function (IPF) approach.4 The IPF is based on output maximisation
subject to a given technology, a set of quasi-fixed inputs and a given budget
for the purchase of variable inputs. Apart from being an appropriate character-
isation of producer behaviour in the presence of financial constraints, the IPF
approach has the advantage of allowing the direct computation of the effect of
a budget constraint on output produced.

In addition to facing a budget constraint, a farm may be technically ineffi-
cient. That is, it might not be able to operate on the production frontier given

Bezlepkina (2004), about 65 per cent of dairy farms in the sample from the Moscow region were

classified as operating under SBCs from 1996 to 1998, whereas in 1999 this share dropped to 10

per cent.

4 The rationale behind the IPF is similar to cost minimisation. In both optimisation problems, the

marginal rate of substitution is equated to the ratio of factor prices (Chambers, 1982). However,

while the IPF determines output as the solution of the optimisation problem, in the cost-

minimisation framework the output is treated as predetermined and the solution determines

the minimum cost.
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its input quantities. We use stochastic frontier analysis (SFA) to model tech-
nical inefficiency. This enables us to separate output losses due to expenditure
constraints from those due to technical inefficiency. Moreover, we are inter-
ested in identifying factors that might have influenced both the extent to
which individual farms experienced budget constraints and the farm’s techni-
cal efficiency. This part of the analysis may be relevant for deriving policy
implications from the research.

Accordingly, the objectives of this paper are: (i) to represent the
expenditure-constrained technology by specifying a flexible functional form
of the IPF; (ii) to develop methodology for estimating the severity and
testing the significance of an expenditure constraint for an individual produ-
cer; (iii) to incorporate technical inefficiency into the IPF model to disentangle
two independent sources of output loss, namely an expenditure constraint and
technical inefficiency; and (iv) estimate the IPF using a system approach.

Our empirical analysis uses survey data for 90 farms from three different
regions in Central, South and Volga Russia from 1999 to 2003. The data
contain results of structured interviews with farm managers conducted in
2004, as well as farm accounting data from 1999 to 2003. In this paper, we
utilise farm bookkeeping data and data on basic characteristics of the farm,
enterprise organisation, managerial characteristics, production-related charac-
teristics, and the farm’s business environment.

The paper is organised as follows. The next section presents the general
concept of the IPF, both with and without technical inefficiency. Section 3 dis-
cusses the estimation procedure employed. The data are described in Section
4. Estimation results are presented and discussed in Section 5. A summary of
the main findings is reported in the concluding section.

2. Model

2.1. The IPF

The IPF is an appropriate tool to use when the objective is to maximise output
subject to a given technology, a set of quasi-fixed inputs and a given budget
for the purchase of variable inputs. Underlying the IPF is the familiar formu-
lation of a production function that relates inputs to output:

y ¼ f ðx; zÞ; ð1Þ

where y is the output, x denotes a vector of N variable inputs and z denotes the
quasi-fixed input vector of order M, and f(x;z) is a non-decreasing, twice con-
tinuously differentiable and quasi-concave function of x and z.

The budget constraint faced by the producer can be written as

C ¼ w0x; ð2Þ

where w denotes the vector of variable input prices and C represents the
budget available to the producer for the purchase of variable inputs.
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If the producers maximise output, subject to the constraints in equations (1)
and (2), the Lagrangean for the problem is

L ¼ f ð�Þ þ lðC � w0xÞ; ð3Þ

where l denotes the Lagrange multiplier associated with the constraint in
equation (2), and the choice variables are the inputs, x. The exogenous vari-
ables are the elements in vectors z, w and the total budget of the producer,
C, while the input vector x and l are determined endogenously. Solving the
first-order conditions (fj ¼ l wj, 8 j and C 2 w0x ¼ 0), we get the solution
for the endogenous variables in terms of the exogenous variables, that is,

x�j ¼ gjðw; C; zÞ; 8 j ¼ 1; . . . ;N; ð4aÞ

and

l� ¼ hðw; C; zÞ: ð4bÞ

Substituting the optimal values of xj
*(ċ) from equation (4a) into equation (1)

we get the optimal value of output:

y� ¼ cðw; C; zÞ: ð5Þ

Equation (5) represents the IPF, which expresses the maximum attainable
output for the producer in a specified period as a function of the availability
of funds, the price of variable inputs and the quantity of fixed inputs.

Unfortunately, the preceding analysis does not provide a framework within
which we can determine which farms are expenditure-constrained, and what is
the potential output loss due to the presence of budget constraints. To remedy
this, we assume that the desired budget for a particular farm is C*, which by
definition cannot be lower than the actual expenditure (C). That is, C* � C,
where the strict inequality means that the farm in question is expenditure con-
strained. The presence of this constraint means that the farm in question can
only spend C and not C*, and because C* � C, output will be lower, as will be
profit. That is, output associated with C* (i.e. y* ¼ c(w, C*;z)) will be higher
than output associated with the budget C (given in equation (5)).

Without loss of generality, we show this graphically in Figure 1 for a single
input and single output. In this graph, the expression for profit (p ¼ py 2 wx)
is rewritten (in terms of output) as y ¼ (p/p) þ (w/p)x, where p is output price.
Thus, the vertical intercept of the line y ¼ (p/p) þ (w/p)x measures (normal-
ised) profit, p/p. Normalised profit without constraint is measured by the inter-
cept of the solid line (pA) and profit associated with expenditure constraint is
measured by the intercept of the dotted line (pB). It is clear from the figure that
pA . pB, that is, profit is reduced due to the presence of expenditure con-
straints, ceteris paribus.

The optimisation problem with budget constraint involves maximising
equation (1) subject to C* � C)C*e2h ¼ C¼w0x, h � 0, where the
available budget C is expressed as the product of C* and the exponential of
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a non-positive random variable (2h � 0)5. Then, the Lagrangean of the
problem is

L ¼ f ð�Þ þ lðC�e�h � w0xÞ ¼ f ð�Þ þ lðC � w0xÞ; ð6Þ

which is not different from the Lagrangean shown in equation (3). Thus, the
IPF is exactly the same. However, since we do not observe C*, the corre-
sponding output level y* cannot be observed. In other words, one can
neither directly observe which producer is expenditure constrained nor the
extent of such constraints from the IPF.

However, it is possible to get the necessary information and this is the main
contribution of this paper. The information about the expenditure constraint
(for each farm) can be obtained from the Lagrange multiplier l. At the
optimum, l ¼ @L/@C ¼ @y/@C.6 Then, one can obtain an estimate of l by dif-
ferentiating the estimated IPF with respect to the observed expenditure C. If a
farm is not expenditure constrained, its output will be the same as the profit-
maximising level and the value of l will be one, especially when output is
measured in value terms. That is, at the optimum, the return from spending
an additional euro has to be matched by a return of one euro in additional
revenue. If not, its profit can be increased by spending more (less) and the
farm is not operating at the optimum. If the farm is subject to an expenditure
constraint (i.e. C* � C), the value of l will exceed one. This follows from the

Figure 1. Output and profit with and without expenditure constraints.

Source: Authors’ representation.

5 We converted the inequality to an equality by introducing the non-negative random variable h,

which is farm-specific (drawn from a distribution that ensures non-negativity). The value of h

indicates the degree (severity) of the expenditure constraint.

6 In this problem, l is the inverse of the marginal cost, i.e. 1/l¼ @C/@y. The first-order condition

requires that @C/@y ¼ p and since output is measured as farm revenue in our analysis, we normal-

ise p ¼ 1. Thus, at the optimum, 1/l¼@C/@y ¼ 1, which shows that the optimal output level from

the IPF is identical with the one from the unconstrained profit maximisation problem.
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assumption that the production function is concave in x. Since we can estimate
l for each farm (once the IPF is estimated), we can easily find out which farms
are expenditure constrained.

Since at the optimum the value of l for an unconstrained farm is 1, we can
obtain C* as a solution of C from the equation: @y/@C ¼ 1. The budget C* can
then be plugged into the IPF to get the optimum (unconstrained) output level,
y*. The deviation of actual (predicted) output from the optimal output can then
be viewed as output loss due to expenditure constraint. One can examine the
extent (severity) of the expenditure constraint either in terms of cost or output.
In the former case, we compare C* with C and the difference for each farm
indicates the extent of the expenditure constraint. In the latter case, one com-
pares y* with y and the difference for each farm measures the extent to which
output is reduced due to the budget constraint. Since both C* and y* are func-
tions of estimated parameters and data, one can compute confidence intervals
for C* and y* to check whether the confidence interval includes the observed
values. This can be done for each farm. Finally, we can also test the hypothesis
that a particular farm is expenditure constrained. That is, the null hypothesis of
interest is H0:l ¼ @y/@C ¼ 1, which can be tested against the alternative
hypothesis HA:l . 1.

2.2. The IPF with technical inefficiency

We have thus far assumed that all farms are technically efficient. That is, given
the inputs, the output produced is at its maximum from the technological point
of view. If farms fail to produce the technically maximum level of output, the
production function can be expressed as

y ¼ f x; zð Þe�u � 0; ð7Þ

where u is a measure of technical inefficiency. Alternatively, e2u
� 1 is

defined as technical efficiency. We can interpret (1 2 e2u
� 100 as the per-

centage loss of output for being technically inefficient.
Since technical inefficiency in equation (7) is neutral, it does not affect the

marginal rate of technical substitution (the ratio of marginal product of inputs)
between two inputs. Thus, input allocation is not affected by the presence of
technical inefficiency. In other words, the solution for xj in equation (4a) is not
affected by the presence of technical inefficiency.7 However, the solution for l
and y will be affected, in the following fashion:

l�1 ¼ l�e�u ¼ e�u hðw; C; zÞ ð8Þ

y�1 ¼ y�e�u ¼ e�ucðw; C; zÞ: ð9Þ

This is quite straightforward to demonstrate. If we write the Lagrangean for

7 Here, we implicitly assume that farms are allocatively efficient.
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the present problem as

L1 ¼ f ð�Þe�u þ l1ðC � w0xÞ; ð10Þ

the first-order conditions are: fj/f1 ¼ wj/w1, 8j ¼ 2, . . ., N, and C 2 w0x ¼ 0.
Thus, the solutions for xj in this problem are not different from those of the
original problem without technical inefficiency. Since y ¼ f(x;z)e2u, the IPF
takes the form of equation (9). Furthermore, since fj(2) ¼ lwj, the solution
of l from the original problem can be expressed as l* ¼

P
jfj(.)xj/

P
jwj

xþ ¼ h(w;C;z). In the present case with technical inefficiency fj(.) ¼
lwje

2u, the solution for l1 is therefore l1
* ¼ e2uP

jfj(.)xj/
P

jwjxj ¼
e2ul* ¼ e2u h(w;C;z), which gives equation (8). Since e2u

� 1, the marginal
return to the euro (@y/@C¼ l1) is lower. More specifically, the return is only 90
per cent if technical efficiency (e2u) is 0.9.

To find out which farms are expenditure-constrained and by how much (or
the affect it has on output), as well as the impact of inefficiency on output, we
need to estimate l1

* ¼ e2uh(w;C;z) in which the e2u
� 1 term shows the effect

on output due to inefficiency. The effect of the budget constraint on output can
be examined as before (that is, as in the case without inefficiency).8

Technical inefficiency is modelled using the SFA9. Accordingly, the sto-
chastic IPF is specified as follows:

y ¼ cðw; C; zÞ eðv�uÞ ð11Þ

where c(.) represents the indirect production frontier, v is a producer-specific
random noise component and u � 0 represents technical inefficiency. Accord-
ingly, the IPF defines the maximum possible output given fixed input quan-
tities, variable input prices and the budget for the purchase of variable inputs.

To impose minimum a priori restrictions on the underlying production
technology, we use a parametric flexible functional form to approximate the
IPF in equation (5). The translog functional form is chosen because, in con-
trast to the Cobb–Douglas form, it imposes no a priori restrictions on any
of the elasticities. After introducing the firm, fixed and variable input sub-
scripts, i (i[I), m (m[M) and j (j[J), respectively, the IPF specification of

8 In this paper, we do not model the relationship between technical efficiency and budget con-

straints. We suppose that this relationship, if it exists at all, is likely to be complex and will differ

from farm to farm. It might be that the presence of a budget constraint makes a farm more tech-

nically efficient, because then the farm is less likely to waste its resources. Conversely, if techni-

cal inefficiency is regarded as dependent on managerial ability, it might be assumed that

expenditure constraint is positively correlated with technical inefficiency. However, since l

measures the extent of expenditure constraint and it is determined only after the model is esti-

mated, one cannot model the relationship between l and u theoretically (prior to estimation).

This relationship can, however, be examined ex-post.

9 Alternatively, DEA could be employed. In contrast to SFA, no functional form for the frontier is

imposed on the data in DEA. However, DEA is a deterministic approach and thus does not allow

for the possibility of noisy data. Consequently, in DEA, all deviations from the frontier are con-

sidered as due to inefficiency. SFA, an econometric approach, attempts to distinguish the effect

of noise from that of inefficiency. Therefore, SFA is considered to be a more appropriate

approach for an environment characterised by output uncertainty due to random exogenous

shocks beyond farmers’ control.
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the stochastic frontier assumes the following form10:

ln yi ¼ a0 þ
XJ

j¼1

aj ln w ji þ
XM

m¼1

am ln zmi þ aC ln Ci

þ
1

2

XJ

k¼1

XJ

j¼1

a jk ln w ji ln wki þ aCCðln CiÞ
2
þ
XM

l¼1

XM

m¼1

aml ln zmi ln zli

( )

þ
XM

m¼1

XJ

j¼1

a jm ln w ji ln zmi þ
XJ

j¼1

a jC ln w ji ln Ci þ
XF

m¼1

amC

ln zmi ln Ci þ vi � ui: ð12Þ

In addition to the usual symmetry restrictions on the coefficients, bjk, mml, gjm,
economic theory states that the IPF is homogeneous of degree zero in input
prices and C (Chambers, 1982). This gives rise to the following set of restric-
tions on the parameters of the model:

XJ

j¼1

aj þ aC ¼ 0; ð13Þ

XJ

j¼1

a jk þ a jC ¼ 0; 8j ¼ 1; . . . ; J; ð14Þ

XJ

j¼1

a jm þ amC ¼ 0; 8m ¼ 1; . . . ;M; ð15Þ

XJ

j¼1

a jC þ aCC ¼ 0: ð16Þ

These homogeneity conditions can be easily imposed, for example, by scaling
(dividing) input prices and expenditure by one of the input prices. That is, all
prices and C are to be normalised in terms of one input price. Alternatively,
one can scale all the input prices by C.

The constant-cost demand function for the jth variable input can be derived
from the IPF by using Roy’s identity (Chambers, 1982):

xj ¼ �
@y

@w j

=
@y

@C
: ð17Þ

Using this equation, the share of the jth input in total variable cost can be

10 This formulation is for a cross-sectional model. The extension of it to the panel data case is pre-

sented in Appendix 2.
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determined as

Sj ¼ �
@ ln y

@ ln wi

=
@ ln y

@ ln C
; �

1yj

1yC

; ð18Þ

where 1yC denotes the output elasticity with respect to a change in the producer’s
budget and1yj denotes the output elasticity with respect to a change in the price of
input j. In general, IPF should be concave in expenditure and convex in prices, i.e.
the sign of 1yC should be positive (indicating an increase in production as a result
of budget constraints’ relief), whereas the sign of1yj should be negative (implying
a reduction of budget in real terms, if input prices increase).

The full econometric specification of the model can be found in Appendix B.

3. Estimation procedure

Our interest is to estimate not only the parameters of the IPF but also ineffi-
ciency, which is assumed to be distributed randomly subject to a given distri-
bution. The IPF with technical inefficiency can be estimated as a stochastic
frontier model (Kumbhakar and Lovell, 2000). Two approaches are possible.
The first approach (similar to the estimating the cost function) considers the
IPF alone (i.e. without share equations). The second approach (similar to
the estimation of the cost system, i.e. the cost function and cost share
equations) is to consider the IPF and the share equations in (17) and to esti-
mate them jointly using a system approach.

With the first approach, it is possible to estimate the IPF parameters and
technical efficiency in a one-step procedure by applying the maximum likeli-
hood (ML) method. The ML method typically assumes that (i) u is i.i.d.
Nð0;s2

uÞ truncated at zero from below; (ii) v is i.i.d. Nð0;s2
vÞ; (iii) u and v

are independent of each other. With the second approach, the ML method
can also be used; in addition to the assumptions listed above, it also
assumes that the vector of the disturbance terms from the respective share
equations, r ¼ (r1, . . . rJ 2 1), follows a multivariate normal distribution with
zero mean and a constant variance–covariance matrix, and that u and v are
independent of r. Details of both approaches can be found in Kumbhakar
and Lovell (2000: 131–175).11 If the distributional assumptions for the sto-
chastic error components are correct, the ML estimates based on both
approaches are consistent and asymptotically efficient. However, incorrect
distributional assumptions can cause inconsistent parameter estimates of the
production technology represented by the IPF.

Thus, to guard against possible misspecification of distributional assump-
tions, it is often better to use a two-step procedure in which the estimators
in the first step are free from distributional assumptions. In the second step,

11 Since the present set up is mathematically similar to the cost function formulation, we leave the

details to the readers to work out. Note that the IPF system (IPF plus the share equations) is much

more complex (non-linear) than the cost system discussed in Kumbhakar and Lovell (2000) and

Kumbhakar and Tsionas (2005).
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one cannot avoid making distributional assumptions to estimate inefficiency.
However, in this case the distributional assumptions for the inefficiency and
noise terms do not affect the IPF parameter estimates in the first step.

Furthermore, if C is endogenous, the ML estimates are inconsistent. The
ML method cannot handle endogenous regressors in a straightforward
manner. Thus, similar to Guan et al. (2009) we suggest controlling for the
endogeneity by applying a two-step procedure. In the first step, we use an esti-
mation technique that can handle endogenous regressors (i.e. instrumental
variable (IV) approach). In the second step, we employ the ML method to esti-
mate inefficiency using the residuals from the IPF from the first step. In fact,
we extend the Guan et al. (2009) approach in a system framework.12

3.1. First step

In the first-step, we make some adjustments to obtain a disturbance term with
zero mean. We rewrite the composed error term in the IPF as eit ¼ vit 2 uit ¼
vit 2 (uit 2 E(uit)) 2 E(uit) ¼ eit

* 2 E(uit) so that the mean of eit
* is zero. The

E(uit) term is subsumed into the intercept if its mean is constant. This gives
us a system of simultaneous equations that can be easily estimated without
making any specific distributional assumptions about eit

* and rjit, except that
they are distributed with mean zero and constant variances. These covariances
between these disturbances are not restricted to be zero.

If C is exogenous, then the system can be estimated using the seemingly unre-
lated regression (SUR) procedure. However, if C happens to be endogenous, we
have to use a system of IV approach. The instrument for C is the predicted value
of C from a regression of it on all the exogenous variables used in the system.13

We do this because in a micro application like ours, it is difficult to find vari-
ables that are good instruments for C but are not used in the model.

3.2. Second step

Since technical inefficiency appears only in the IPF equation, and does not
influence the share equations, we use the residuals from the IPF from the
first step to recover parameters associated with u as well as obtain observation-
specific estimates of u. To accomplish this, we make some distributional
assumptions that are standard in the stochastic frontier literature (see Kumb-
hakar and Lovell, 2000). These are: (i) u is i.i.d. Nð0;s2

uÞ truncated at zero
from below (half normal); (ii) v is i.i.d. Nð0;s2

vÞ and (iii) u and v are distrib-
uted independent of each other. Based on these assumptions, the probability
density function of (v 2 u) can be easily obtained using the convolution

12 Guan et al. (2009) treat the endogeneity problem in a single equation model.

13 The exogenous variables used to predict C include all the exogenous variables in the IPF plus the

exogenous variables used to explain inefficiency. Note that these latter variables are not used in

the first step.
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formula. The model in the second stage is:

êit ¼ a0 þ vit � uit ð19Þ

where êit is the residual from the IPF. The ML method can be used on the
model in equation (19) to obtain estimates of a0;s

2
u;s

2
v .

Our interest is, however, not only in estimating inefficiency but also in
explaining inefficiency in terms of relevant farms’ characteristics. This can
be done by making (i) the mean of u a function of the exogeneous variables,
(ii) the variance of uðs2

uÞ a function of the exogeneous variables and (iii) both
the mean and variance functions of exogeneous variables. These specifications
allow differences in inefficiency scores to be explained by certain exogeneous
variables and, respectively, to calculate the marginal effect of an exogeneous
variable on inefficiency. These models are discussed in detail in Kumbhakar
and Lovell (2000) as well as in Wang (2002).

There are some differences between our present model and those discussed
in Kumbhakar and Lovell (2000) and Wang (2002). First, their models involve
a single equation (production function) whereas we have a system of
equations. Second, we have an additional endogenous variable (C) as a regres-
sor in the system. This makes the ML estimators inconsistent (see Guan et al.
(2009) for details on this in the context of a single equation model). The
system approach discussed in Kumbhakar and Tsionas (2005) will also give
inconsistent parameter estimates if one or more of the regressors are endogen-
ous. Because of this we use the two-step approach suggested by Guan et al.
(2009) and apply Wang’s model (2002) in the second step.

4. Data

To estimate the model proposed in the preceding section, we employ data
obtained from a farm survey of 90 agricultural enterprises in the Oroel,
Samara and Stavropol regions. In addition to having farm accounting data
from 1999 to 2003, the data also incorporate the results of structured inter-
views with farm managers. After excluding farms with a high level of special-
isation in a particular production line, we formed an unbalanced panel data set
containing 347 observations from a total of 73 farms. In addition, the study
utilises data on the price indices for agricultural output and inputs as provided
by the Russian State Statistical Agency Rosstat (Rosstat 2005).

We define farm output as annual farm revenue from agricultural production
(Y). Land (L) and fixed capital (K) are regarded as quasi-fixed inputs. The
quantity of land is measured in hectares of area sown, adjusted by the
farm’s average soil fertility index. The value of fixed assets used in agricul-
tural production is used as proxy for capital.14

14 All monetary variables are measured in RUB 1,000. Farming revenue and the capital stock value

were adjusted to the price level of 2003 by employing annual price indices for agricultural output

and machines in agriculture, respectively. Note that none of these variables appear in the
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We distinguish between four major variable inputs: labour, fertiliser, fuel
and other variable inputs including plant protection, seed, electricity, etc.
Since we did not have any prices for inputs from the last group (i.e. other vari-
able inputs), we aggregated these inputs with the fuel input. Accordingly, we
consider three cost shares in our empirical analysis: those of labour and ferti-
liser, and an aggregate cost share for fuel and other variable inputs (labelled as
fuel). The cost shares are calculated as the ratio of the respective input costs to
the total expenditure on them.

We measured labour prices by the farms’ average annual labour wages (wL)
in RUB 1,000 per farm worker engaged in agricultural production. To rep-
resent fertiliser prices, we constructed an aggregate fertiliser price index15 cal-
culated as a ratio of farm expenditure for mineral fertilisers in RUB 1,000 to
the total active substance in all fertiliser types, measured in physical units,
used on the farm. Fuel prices were obtained by dividing fuel expenditure by
the total amount of fuel, measured in physical units, used on the farm.
Since no data were available for farms’ predetermined expenditure, we fol-
lowed Lee and Chambers (1986) and defined the expenditure variable as the
observed expenditure on variable inputs in individual years.16 Fuel prices
were used to normalise the observed expenditure volume as well as labour
and fertiliser prices.17

The variables used to explain inefficiency are: farm age/farmer’s manage-
rial experience (qage), extent of the manager’s ownership stake (qown), size
(qsize), initial technology level (qtech99), managerial competence (qmanag),
diversification level (qdiv), and severity of production risk (qrisk).18 All
exogenous variables were constructed using the results of the factor analysis
conducted by Bokusheva et al. (2007) based on the same data as in the present
study.19 The relevant factor solution explains a substantial part of the variation
(75.5 per cent) in the original data set, which contained 31 farm characteristics
related to enterprise organisation, managerial characteristics, production-
related characteristics and the farm’s business environment. Accordingly,
we expect these farm characteristics to explain differences in the farms’ tech-
nical efficiency. In particular, the extent of the managers’ ownership stake in
agricultural enterprises can influence their incentives to improve farm per-
formance, thereby indicating a positive effect of this factor on technical

regressions as raw nominal amounts, but always as ratios or some other money-unit-free form.

Thus, it is not necessary to use a deflator to convert them in real terms.

15 We constructed an aggregate fertiliser price index by dividing each farm’s total fertiliser cost by

the physical amount of fertiliser used, calculated as the sum of the active substances in different

types of fertiliser.

16 Descriptive statistics for the variables employed to specify the IPF can be found in Table A2.

17 The total expenditure volume and variable input prices are measured in nominal prices. Since

these variables are normalised by nominal fuel prices for the model estimation, no deflation

was necessary with regard to these variables.

18 These variables were also used to explain the heteroscedasticity in the noise term.

19 The description of the relevant factors in terms of variables with significant factor loadings can

be found in Table A3.
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efficiency. The level of managerial competence in agricultural enterprises
should positively influence farms’ organisational and technological pro-
cedures, which in turn would imply a positive impact on technical efficiency.
Older farms are more likely to have well-established administrative structures.
From this point of view, farm age should have a positive effect on farm pro-
ductivity. However, newly established farms might be more entrepreneurial
than their older counterparts; indeed, they can enhance their performance
by introducing innovative production practices. Considering this, our esti-
mates should provide empirical evidence on which of these two effects has
been prevailing in Russian farms recently. The effect of farm size on technical
efficiency might be rather diffuse; we suppose that farms in the lower and
higher tails of the distribution (i.e. farms operating at either too small or too
large a scale) might be less efficient than farms in between. These non-
monotonic efficiency effects can be revealed by applying the methodology
suggested by Wang (2002, 2005). The effect of risk and diversification is
assumed to be rather negative than positive. If risk plays an important role
in decision-making, farms might purposely use inputs inefficiently to reduce
their risk exposure. We employed all mentioned exogenous variables to
explain also the heteroscedasticity in the disturbance term and as the exo-
geneous variables in the regression model, which was estimated to explain
the extent of the farms’ budget constraints.

5. Estimation results

Table 1 illustrates the IPF estimates for the farms considered in this analysis.
To account for possible regional differences, we introduced dummy variables
for three selected regions20 into the model. Although only one quarter of all
parameters have significant estimates21 in the translog model specification,
a Cobb–Douglas model specification is rejected against it at the 1 per cent
level of significance using the standard likelihood ratio test.

The partial elasticities for the quasi-fixed inputs, i.e. land and capital, are
positive (0.30 and 0.24 at the mean sample values, respectively). The
output supply elasticity with respect to the farm budget for variable inputs
equals 0.99 on average, indicating that output is expected to rise by 0.99
per cent for a 1 per cent increase in budget. The output supply elasticities
with respect to fertiliser and labour are 0.29 and 0.37, respectively. Conse-
quently, the output supply elasticity of fuel and other variable inputs equals
0.34.22 These results show that farm output is much more sensitive to

20 The IPF constant term coefficient is the intercept estimate for farms in the Oroel region. The coef-

ficient estimates for the dummy variables show differences between the intercept estimates for

farms from Samara and Stavropol, respectively, and that of farms from Oroel.

21 This relatively small number of significant parameter estimates can be explained by the fact that

in general standard errors in IV and GMM models tend to be larger than those from OLS and

SUR.

22 The output supply elasticity for the variable input used for the input price normalisation (in our

case: fuel and further variable inputs) can be calculated as the difference between the output

356 S. C. Kumbhakar and R. Bokusheva



changes in the availability of variable inputs compared with changes in the
quasi-fixed inputs. Moreover, farms’ sensitivity to the availability of
additional funds for purchasing variable inputs does not seem to decrease
during the sample period since the coefficient of the cross-product term
(C*t) is not significantly different from zero.

Table 2 presents our results regarding expenditure constraints and related
output losses in the study farms. We calculated the level of expenditure con-
straint for the individual farms as the difference between the desired budget
and the farm’s observed expenditures.23 The results show that 331 of 347
farm observations (i.e. 95 per cent) faced expenditure constraints during the
sample period. The average level of actual farm expenditures was, on
average, 24 per cent lower than the desired level; half the farms are
expenditure-constrained by more than 22 per cent. In addition, according to
our calculations, the expenditure constraints have caused an output loss of
20 per cent, on average.

Technical inefficiency presents another source of output loss for farms. The
average technical inefficiency of farms in the sample is 0.13. This means that

Table 1. IPF parameter estimates (GMM)

Variable Coefficient

estimate

t-Value Variable Coefficient

estimate

t-Value

Constant 0.982 0.310 wF * wF 20.002 20.340

Dummy

Samara

20.096 21.650 wL * wL 20.027 22.790

Dummy

Stavropol

0.082 1.430 wF * wL 20.002 20.470

wF 20.033 20.850 C2 0.026 0.680

wL 20.192 21.950 Land * Land 0.107 1.100

C 0.343 0.920 Capital * Capital 0.031 0.770

Land 0.012 0.020 Land * Capital 20.042 20.360

Capital 0.093 0.310 wF * Land 20.002 20.440

t 0.030 0.160 wF * Capital 0.008 2.370

t2 0.026 2.310 wL * Land 0.021 1.790

wF * t 0.000 0.210 wL * Capital 20.011 21.330

wL * t 0.004 0.990 wF * C 20.009 22.470

C*t 20.015 21.030 wL * C 0.002 0.160

Land * t 0.024 1.030 Land * C 20.024 20.600

Capital*t 20.013 20.730 Capital * C 0.023 0.780

Note: wF, price of fertiliser; wL, wage; C, expenditure.
Source: Authors’ estimates. Note that the usual diagnostics are not available in GMM. The squared correlation
between actual and predicted outputs (the indicator corresponding to R2) is found to be 0.91.

supply elasticity with respect to the farm budget and the output supply elasticities of all remain-

ing variable inputs employed in the IPF.

23 We determined the desired budget level as described in Section 2.1.
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output is reduced, on average, by 13 per cent due to technical inefficiency.
Figure 2 shows the frequency distribution of the technical inefficiency esti-
mates. Technical inefficiency estimates for most of the farms are within the
range of 5 to 20 per cent. Output loss due to technical inefficiency can be
obtained from the last column of Table 2, as 1 2 TE.

A comparison of the average farm output loss due to technical inefficiency
and budget constraints shows that a larger part of output loss is caused by the
budget constraints of the farms. But we have found only a low association
between the two sources of output loss; the coefficient of correlation

Figure 2. Distribution of technical inefficiency. Source: Authors’ estimates.

Table 2. Expenditure constraints, output loss and technical efficiency estimatesa

Lambda Expenditure

constraints (C* 2 C)/C

Output loss

(Y* 2 YIPF)/YIPF b

Technical

efficiency

Mean 1.09 0.24 0.20 0.87

SD 0.04 0.12 0.12 0.07

Max. 1.18 0.68 0.80 0.97

Min. 1.00 0.00 0.00 0.59

Quantiles (%)

99 1.17 0.55 0.55 0.97

95 1.14 0.47 0.42 0.96

90 1.13 0.41 0.38 0.95

75 1.11 0.30 0.27 0.93

50 1.08 0.22 0.18 0.9

25 1.06 0.15 0.11 0.84

10 1.04 0.10 0.07 0.76

5 1.03 0.07 0.05 0.72

1 1.00 0.01 0.01 0.66

Source: Authors’ estimates.
aEstimates for the constrained farms only.
bYIPF is the constrained output level (deterministic part of the IPF); Y* is the unconstrained output level (calculated by
replacing the observed farm’s expenditure C by the desired budget level C*).
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between technical inefficiency and under-performance due to a budget con-
straint is 0.14.

Table 3 presents average output loss for the whole sample as well as the
regions for individual years. Output loss due to budget constraints and techni-
cal inefficiency assessed for the whole sample seems to decrease slightly over
the sample period. Nonetheless, we observe some differences across regions.
While budget constraints and technical efficiency have a tendency to decrease
in Samara over the period, no clear trend emerges for the two other regions.
Furthermore, though budget constraints have been the major source of
output loss in all three regions, they have been especially pronounced in
Oroel. These results suggest the presence of regional differences in the
business environment of the farms. Additionally, there is a considerable vari-
ation in output loss across farms within individual regions, which hardly
reduces over time. This indicates that independent of the general economic
situation in Russia and the regional business environment, farm characteristics
have a considerable impact on performance and access to finance.

In the second step, we estimated the basic model without heteroscedasticity in
both v and u. This model specification was, however, rejected against the more
general model with heteroscedasticity in u and v.24 The parameter estimates,
reported in Table 4, show that managerial competence and technology level in
1999 have negative coefficient estimates. This implies that these two farm
characteristics reduce variability in technical efficiency across farms, thus nega-
tively affecting the sample mean inefficiency.25 While individual farm charac-
teristics such as farm age and ownership seem to reduce variability in output,
ceteris paribus, management competencies were found to increase output var-
iance. In our view, this suggests that farms with higher managerial competences
may rely on other options of risk management than only technological ones (e.g.
crop insurance, credit and maintaining financial reserves).

Finally, Table 5 presents the estimation results obtained by regressing the
assessed level of the individual farms’ budget constraints (Ci

* 2 Ci)/Ci on the
selected farm characteristics. Only two variables – farm ownership and size –
are found to have a significant effect on farms’ budget constraints. Jointly
with time dummies, they explain 48 per cent of the variation in the individual
farms’ budget constraints (R2 ¼ 0.48). Both factors influence budget constraints
negatively. This indicates that farms with no or only a minor manager–owner-
ship stake have been more likely to experience budget constraints during the
study period. This is in line with the principal-agent hypothesis: farm managers
(non-owners) could be less concerned about reducing farms’ expenditure con-
straints. Input decisions of larger farms also seem to be less affected by

24 The model specification allowing the mean of technical inefficiency to be a function of exo-

geneous variables was rejected against the basic model formulation.

25 This is because E(u)¼
p

2/psu (q) (where p ¼ 3.1416). Thus, if q affects su negatively, the mean

inefficiency reduces when q increases. We specified su and sv as exponential functions of the

q variables and found that the marginal effects on the expected technical inefficiency have

been decreasing with respect to both variables – managerial competence and also level of

technology.
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Table 3. Assessment of farms’ average output loss (in per cent) due to budget constraints (BC) and technical inefficiency (TI) across years and regionsa

Whole sample Oroel sub-sample Samara sub-sample Stavropol sub-sample

BC TI BC TI BC TI BC TI

1999 0.22 (0.14) 0.13 (0.09) 0.30 (0.12) 0.13 (0.08) 0.21 (0.17) 0.17 (0.09) 0.16 (0.07) 0.10 (0.07)

2000 0.18 (0.13) 0.13 (0.08) 0.24 (0.15) 0.12 (0.06) 0.16 (0.12) 0.15 (0.07) 0.14 (0.06) 0.13 (0.09)

2001 0.18 (0.12) 0.13 (0.07) 0.23 (0.14) 0.13 (0.08) 0.16 (0.13) 0.13 (0.07) 0.14 (0.08) 0.13 (0.08)

2002 0.19 (0.13) 0.13 (0.07) 0.24 (0.15) 0.13 (0.08) 0.19 (0.15) 0.15 (0.08) 0.14 (0.07) 0.11 (0.06)

2003 0.18 (0.14) 0.12 (0.07) 0.26 (0.15) 0.13 (0.07) 0.11 (0.12) 0.12 (0.07) 0.17 (0.09) 0.12 (0.06)

Source: Authors’ estimates.
aStandard deviations are shown in parentheses.
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budget constraints. This result is quite reasonable: first, large farms might experi-
ence lower transaction costs when applying for external finance; second, they
can maintain larger financial reserves than their smaller counterparts.

6. Conclusions

In this study we applied the IPF approach to analyse producers’ output and
input allocation choices under expenditure constraints. By deriving the con-
ditions for optimal input use, we determined the effect of expenditure con-
straints on producer output. This allowed us to identify the output loss due
to the presence of budget constraints. An additional source of output loss con-
sidered in our analysis was technical inefficiency. To estimate producers’

Table 4. Parameter estimates of the frontier model (second stage)

Variable Coefficient estimate t-Value

Frontier

Const 0.15 3.34

su

Const 23.78 25.13

qmanag 20.53 22.16

qtech99 21.13 23.39

sv

Const 22.43 221.09

qage 20.19 22.08

qown 20.28 23.13

qmanag 0.37 3.85

LR statistic 95.79*

Source: Authors’ estimates.
The individual coefficients are all statistically significant at the 1 per cent level. The likelihood ratio test shows that
heteroscedasticity cannot be rejected at the 1 per cent level of significance (*).

Table 5. Parameter estimates of factors influencing farms’ budget constraints

Variable Coefficient estimate t-Value

Constant 0.26 19.40

d_2000 20.03 21.83

d_2001 20.04 22.39

d_2002 20.02 21.34

d_2003 20.03 21.52

qown 20.02 24.39

qsize 20.09 215.40

R2 0.52

F-statistics 44.7a

Source: Authors’ estimates.
aThe model is significant at the 1 per cent level.
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technical efficiency under expenditure constraints, we defined IPF as the pro-
duction frontier, thereby allowing it to assess farm-underperformance due to
both budget constraints and technical inefficiencies.

The empirical analysis shows that most (95 per cent) of the sample farms in
the three regions studied were expenditure constrained during 1999–2003, with
farm actual expenditure being on average 24 per cent lower than the desired
level. The budget constraints caused an average output loss of 20 per cent.
Average technical inefficiency of farms was found to be 13 per cent. This indi-
cates that even in the presence of imperfections in financial markets, Russian
farms have the potential to increase their output, ceteris paribus. Managerial
competence and the level of technology were found to determine significantly
the farm technical efficiency. Comparing the extent of the output losses due to
expenditure constraints and technical inefficiency, we conclude that Russian
farms’ production possibilities at present are primarily determined by external
conditions rather than by their internal organisation. Thus, the governmental
policies, in our view, should be directed principally towards advancements in
the external environment of farms, e.g. by improving farms’ access to
finance and input and output markets.

Our estimates of technical inefficiency are rather moderate compared with
those of previous analyses for Russia at the farm level for the corresponding
periods (Grazhdaninova and Lerman, 2005; Grazhdaninova and Brock, 2004;
Bokusheva and Hockmann, 2006). This is likely to be related to the fact that
our study tries to incorporate peculiarities in the farms’ internal and external
environment when representing the production technology. In particular, we
explicitly introduce output (profit) maximisation behaviour when modelling
producers’ input allocation decisions and allow the possibility that producers
might face borrowing constraints.

In a broader context this study highlights two important issues that are often
ignored in the efficiency studies, viz., endogeneity of inputs and the presence
of borrowing constraints. If the inputs are endogenous, the estimates from the
standard production function as well as stochastic production frontier are
biased. Consequently, estimated inefficiencies are likely to be incorrect
(because these are based on biased parameter estimates). Similarly, ignoring
expenditure constraints might lead one to conclude that producers are
inefficient in allocating inputs (allocative inefficiency). Although allocative
inefficiency is not formally introduced in this paper, the error terms in
the share equations (first-order conditions) can be interpreted as allocative
inefficiency.

Acknowledgements

The authors would like to thank three anonymous reviewers and the Editors for their valuable

comments. The study was initiated during a research stay of Raushan Bokusheva at the State

University of New York at Binghamton. She greatly acknowledges the financial support of

the German Research Foundation (DFG) and the Leibniz Institute of Agricultural Development

in Central and Eastern Europe (IAMO).

362 S. C. Kumbhakar and R. Bokusheva



References

Amemiya, T. (1985). Advanced Econometrics. Cambridge, MA: Harvard University Press.

Arnade, C. and Gopinath, M. (2000). Financial constraints and output targets in Russian

agricultural production. Journal of International Development 12: 71–84.

Arnade, C. and Trueblood, M. (2002). Estimating a profit function in the presence of inef-

ficiency: an application to Russian agriculture. Journal of Agricultural and Resource

Economics 27: 94–113.

Bezlepkina, I. V. (2004). Microeconomic analysis of Russian agricultural enterprises.

Ph.D. thesis, Wageningen University, The Netherlands.

Bezlepkina, I., Oude Lansink, A. and Oskam, A. J. (2005). Effects of subsidies in Russian

dairy farming. Agricultural Economics 33: 277–288.

Bokusheva, R., Bezlepkina, I. and Oude Lansink, A. (2009). Exploring investment behav-

ior of farms in transition: the case of Russian agriculture. Journal of Agricultural Econ-

omics 60: 436–464.

Bokusheva, R., Valentinov, V. and Anpilogova, V. (2007). The investment behavior of

Russian farms. Post-Communist Economies 19: 53–71.

Bokusheva, R. and Hockmann, H. (2006). Production risk and technical inefficiency in

Russian agriculture. European Review of Agricultural Economics 33: 93–118.

Chambers, R. G. (1982). Duality, the output effect, and applied comparative statics. Amer-

ican Journal of Agricultural Economics 64: 152–156.

Ferguson, C. E. (1969). Microeconomic Theory, revised edition. Homewood, Illinois:

Richard C. Irvin, Inc.

Gallant, A. R. (1987). Nonlinear Statistical Models. New York: John Wiley.

Government of Russia (2001). On the implementation and the conditions of the implemen-

tation of restructuring farm debts (main debts, interests and fines) to federal budgetary

and non-budgetary funds. Resolution of the Government of Russian Federation N 458, 8

June 2001. Moscow.

Grazhdaninova, M. and Brock, G. (2004). Grain and sunflower on Russian farms in 2001:

how efficient is crop production? Post-Communist Economies 16: 297–305.

Grazhdaninova, M. and Lerman, Z. (2005). Allocative and technical efficiency of corporate

farms in Russia. Comparative Economic Studies 47: 200–213.

Guan, Z., Kumbhakar, S. C., Myers, R. J. and Oude Lansink, A. (2009). Measuring excess

capital capacity in agricultural production. American Journal of Agricultural Econ-

omics 91(3): 765–776.

Kumbhakar, S. C. and Lovell, C. A. K. (2000). Stochastic Frontier Analysis. Cambridge:

Cambridge University Press.

Kumbhakar, S. C. and Tsionas, E. G. (2005). Measuring technical and allocative ineffi-

ciency in the translog cost system: a Bayesian approach. Journal of Econometrics

126: 355–384.

Latruffe, L. (2005). The impact of credit market imperfections on farm investment in

Poland. Post-Communist Economies 17: 349–362.

Lee, H. and Chambers, R. G. (1986). Expenditure constraints and profit maximization in

U.S. agriculture. American Journal of Agricultural Economics 68: 857–865.

Modelling farm production decisions 363



Minselkhoz (2008). Agropromyshlennyi kompleks Rossii 2006. [Russian agro-food sector

in 2006, in Russian]. Electroic database of the Ministry of Agriculture of the Russian

Federation. http://www.mcx.ru. Accessed 20 July 20 2008.

Osborne, S. and Trueblood, M. A. (2002). An examination of economic efficiency of

Russian crop output in the reform period. In: E. Schulze, E. Knappe, E., Serova

and P. Wehrheim (eds), Studies on the Agricultural and Food Sector in Central and

Eastern Europe 21. Success and Failures of Transition – The Russian Agriculture

between Fall and Resurrection. Halle/Saale: Agrimedia, 66–90.

Rosstat (2005). Russian Statistical Yearbook. Moscow, Russia: Russian State Statistical Agency.

Rosstat (annual editions from 1997 to 2007) Selskoe hozjajstvo Rossii Statistical Year-

book: Agriculture in Russia. Moscow, Russia: Russian Statistical Agency (Rosstat).

Sedik, D., Trueblood, M. and Arnade, C. (1999). Corporate farm performance in Russia,

1991–95: an efficiency analysis. Journal of Comparative Economics 27: 514–533.

Sotnikov, S. (1998). Evaluating the effects of price and trade liberalisation on the technical

efficiency of agricultural production in a transition economy: the case of Russia. Euro-

pean Review of Agricultural Economics 25: 412–431.

Wang, H. J. (2002). Heteroskedasticity and non-monotonic efficiency effects of a stochas-

tic frontier model. Journal of Productivity Analysis 18: 241–253.

Wang, H. J. (2005). Stata program for ‘heteroskedasticity and non-monotonic efficiency

effects of a stochastic frontier model’. http://homepage.ntu.edu.tw/~wangh/. Accessed

May 27, 2009.

Appendix A

Table A1. Share of (total) subsidies in total output of Russian corporate farms

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

Share of

subsidies

in total

output

0.15 0.09 0.07 0.07 0.06 0.06 0.08 0.03 0.03 0.03 0.04 0.04 0.04 0.05 0.05

Source: Authors’ presentation based on the data as provided by Rosstat (Rosstat, 1997–2007) and Minselkhoz (2008,
http://www.mcx.ru).

Table A2. Descriptive statistics of the IPF variables (1999–2003)

Output

1,000

RUB of

2003

Land

(hectares

sown

adjusted

for soil

fertility)

Capital

1,000

RUB of

2003

Observed

expenditure

1,000 RUBa

Labour

wages

1,000

RUB

p.a.a

Fertiliser

price

1,000

RUB per

tona

Fuel

price

1,000

RUB

per

tona

Labour

cost

share

Fertiliser

cost share

1999

Mean 35,400 3,361 39,554 15,738 10.25 3.17 3.63 0.25 0.07

SD 52,401 2,822 35,437 16,856 2.58 1.36 1.31 0.10 0.07

Min. 2,392 488 295 1,907 7.10 1.57 1.67 0.09 0.00

Max. 294,557 12,842 183,975 77,319 19.93 7.47 8.90 0.50 0.42

(continued)
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Table A2. Descriptive statistics of the IPF variables (1999–2003) (continued)

Output

1,000

RUB of

2003

Land

(hectares

sown

adjusted

for soil

fertility)

Capital

1,000

RUB of

2003

Observed

expenditure

1,000 RUBa

Labour

wages

1,000

RUB

p.a.a

Fertiliser

price

1,000

RUB per

tona

Fuel

price

1,000

RUB

per

tona

Labour

cost

share

Fertiliser

cost share

2000

Mean 34,933 3,611 52,906 22,561 13.68 3.61 4.74 0.24 0.07

SD 41,387 2,862 54,664 21,356 5.50 1.35 1.24 0.09 0.05

Min. 2,410 488 2,211 1,868 8.66 1.34 2.00 0.08 0.00

Max. 187,650 13,018 282,223 91,158 37.12 8.42 8.90 0.50 0.25

2001

Mean 35,364 3,557 56,152 29,476 18.14 4.78 5.68 0.24 0.08

SD 41,995 2,736 60,546 28,967 6.90 1.57 1.45 0.09 0.06

Min. 1,972 488 2,008 2,108 9.00 2.96 3.50 0.03 0.00

Max. 189,790 12,823 325,205 115,582 34.36 11.14 10.10 0.49 0.41

2002

Mean 40,638 3,614 55,859 33,184 22.52 5.57 6.66 0.26 0.09

SD 50,177 2,806 60,154 33,200 7.69 1.46 1.45 0.09 0.08

Min. 1,440 488 1,950 2,040 10.72 3.44 4.00 0.04 0.00

Max. 224,395 13,047 320,193 142,639 40.10 9.36 10.40 0.54 0.58

2003

Mean 40,642 3,352 54,126 33,869 26.29 9.59 7.97 0.25 0.07

SD 56,276 2,624 54,754 36,131 7.96 3.60 1.26 0.08 0.05

Min. 2,067 536 2,019 2,928 11.69 4.31 5.80 0.05 0.00

Max. 317,239 12,891 261,660 161,283 39.95 16.65 11.20 0.43 0.20

Source: Authors’ calculations.
aNominal prices. Since in the model these variables are normalised by the farms’ nominal fuel prices, it was not
necessary to express them in real terms using deflators.

Table A3. Description of determinants of technical inefficiency and budget constraints

Factor/farms’

characteristic

Variables with significant loadings on the respective factor

Farm age (qage) Period since farm establishment, farm head’s years with the farm,

average farm managers’ years with the farm and dummy for

‘new farm head’.

Farm size (qsize) Farm agricultural area, number of employees, fixed asset value

and livestock number.

Managers’ ownership

stake (qown)

Ownership status of the farm head (dummy variable) and share of

the farm’s co-owners in the total number of farm managers.

Farm managerial

competence (qmanag)

Share of managers with higher education.

Level of initial

technology (qtech99)

Technology level in the crop and livestock production,

respectively, as evaluated by the farm head for 1999 (with

higher scores for more advanced technologies).

Production risk

magnitude (qrisk)

Production risk severity as evaluated by the farm head (with

higher scores indicating higher risk exposure).

(continued)

Modelling farm production decisions 365



Table A3. Description of determinants of technical inefficiency and budget constraints (continued)

Factor/farms’

characteristic

Variables with significant loadings on the respective factor

Farm diversification

(qdiv)

Degree of diversification within agriculture and reliance on

external processing capacities.

The factors used are based on the factor analysis conducted by Bokusheva et al. (2007) for the same data set. The
factors follow a standard normal distribution. More details on the factor analysis and descriptive statistics for relevant
variables can be found in Bokusheva et al. (2007: 60–62 and 71).

Appendix B

B.1. The econometric model

The econometric model consists of the IPF and (J 2 1) cost share equations.
To accommodate panel data, we amend equation (11) by introducing time
variable t. This results in the following IPF system:

ln yit ¼ a0 þ
XJ�1

j¼1

aj ln ~wjit þ
XM

m¼1

am ln zmit þ aC ln ~Cit þ attþ attt
2

þ
XJ�1

j¼1

a jt ln ~wjittþ
XM

m¼1

amt ln zmittþ aCt ln ~Citt

þ
1

2

XJ�1

k¼1

XJ�1

j¼1

a jk ln ~wjit ln ~wkit þ aCCðln ~CitÞ
2
þ
XM

l¼1

XM

m¼1

aml ln zmit ln zlit

( )

þ
XM

m¼1

XJ�1

j¼1

a jm ln ~wjitzmit þ
XJ�1

j¼1

a jC ln ~wjit ln ~Cit þ
XM

m¼1

amC ln zmit

ln ~Cit þ vit � uit ðA1Þ

S jit ¼ �
1yjit

1yCit

þ r jit; 8j ¼ 1; . . . ; J � 1; i ¼ 1; . . . ;n; t ¼ 1; . . . ;T; ðA2Þ

where

1yCit ¼ aC þ aCttþ aCC ln ~Cit þ
XJ�1

j¼1

a jC ln ~wjit þ
XM

m¼1

amC ln zmit; ðA3Þ

1yjit ¼ aj þ a jttþ a jC ln ~Cit þ
XJ�1

j¼1

a jk ln ~wkit þ
XM

m¼1

a jm ln zmit ðA4Þ

and rjit are classical disturbance terms added to the share equations. Note that
homogeneity (of degree zero) conditions are imposed by scaling all the input
prices and cost by the price of the jth input (wJ), i.e. input prices and cost in the

366 S. C. Kumbhakar and R. Bokusheva



IPF and share equations are replaced by the normalised (scaled) prices
~wj ¼ wj=wJ; j ¼ 1; . . . ; J � 1 and normalised cost ~C ¼ C=wJ . This scaling
procedure imposes the homogeneity restrictions and drops the Jth share
equation. Thus, the econometric model consists of equations (A1) and (A2),
which is a system of J equations.

Since we use a translog function for the IPF, the hypotheses about farms
expenditure constraints can be expressed as H0:@ ln y/@ ln C ¼ C/y, HA:@ ln
y/@ ln C = C/y. The null hypothesis is non-linear in parameters and it can
be expressed as gðw;C; z; uÞ ¼ 0, which can tested (at each point) from
g0ðûÞ½G0ðûÞVðûÞGðûÞ��1gðûÞ � x2 (q) where û is the estimated parameter
vector, VðûÞ is the estimated variance–covariance matrix of
û;Gð�Þ ¼ @gð�Þ=@u and q is the number of hypotheses in g(.) ¼ 0 (see
Amemiya, 1985; Gallant, 1987). Since this test is done at every point and
we have one restriction, G(.) is a column vector whose dimension equals
the number of parameters in g(.).
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