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Abstract

Calpains are a large family of Ca2q-dependent cysteine
proteases that are ubiquitously distributed across most
cell types and vertebrate species. Calpains play a role in
cell differentiation, apoptosis, cytoskeletal remodeling,
signal transduction and the cell cycle. The cell cycle pro-
teins cyclin D1 and p21KIP1, for example, have been
shown to be affected by calpains. However, the rules that
govern calpain cleavage specificity are poorly under-
stood. We report here studies on the pattern of m-calpain
proteolysis of the p19INK4d protein, a cyclin-dependent
kinase 4/6 inhibitor that negatively regulates the mam-
malian cell cycle. Our data show new characteristics of
calpain action: m-calpain cleaves p19INK4d immediately
after the first and second ankyrin repeats that are struc-
turally less stable compared to the other repeats. This is
in contrast to features observed so far in the specificity
of calpains for their substrates. These results imply that
calpain may be involved in the cell cycle by regulating
the cell cycle regulatory protein turnover through CDK
inhibitors and cyclins.
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Introduction

Calpains are a family of non-lysosomal, cysteine protein-
ases that show Ca2qdependent papain-like cysteine pro-
tease activity (Goll et al., 2003). The two ubiquitously
expressed calpain forms, with proteolytic activities
requiring mM and mM calcium, were identified and named
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as m and m (also referred to as I and II) calpains, respec-
tively (Mellgren, 1980; Dayton et al., 1981; Goll et al.,
2003). Calpains are heterodimeric proteins, composed of
a large 80-kDa catalytic subunit organized in four
domains (I–IV) and a common, small, 30-kDa regulatory
subunit organized in two domains (V and VI). Domain II
is a cysteine protease domain and contains the catalytic
cysteine, histidine and asparagine residues. Domain IV is
a Ca2q-binding domain in which five EF-hand motifs are
present. The small regulatory subunit is composed of
an N-terminal glycine-clustering hydrophobic region
(domain V) and a C-terminal Ca2q-binding domain
(domain VI). The hydrophobicity of the N-terminal domain
(domain V) has been taken as an indication of its role in
membrane anchoring (Kuboki et al., 1987, 1990; Inomata
et al., 1989, 1990; Lee et al., 1990; Molinari et al., 1994;
Moldoveanu et al., 2002, 2003; Khorchid and Ikura, 2002;
Pal et al., 2003). Calpains have potential biological func-
tions in apoptosis, the pathology of degenerative dis-
eases, and mediating intracellular calcium signals
(Nicotera et al., 1986; Du et al., 1995; Spencer et al.,
1995; Arora et al., 1996; Huang and Wang, 2001; Glading
et al., 2002). A number of studies indicated that calpains
have a role in the cell cycle, specifically in the G1 to S
transition (reviewed in Goll et al., 2003). For example,
rapid loss of cyclin D levels in serum-starved NIH 3T3
cells is restored by synthetic calpain inhibitors or by over-
expression of an endogenous inhibitor of calpain,
calpastatin (Choi et al., 1997). Calpain-mediated de-
gradation of p21KIP1, which is a member of CIP1/KIP1
family of CDKIs, has been reported in preadipocyte cell
cycle progression and differentiation (Patel and Lane,
2000). However, the biological role of calpain in cell cycle
regulation is still poorly understood.

Although the rules that govern calpain specificity have
not yet been determined, experimental reports published
so far indicate that proteolysis by calpains is limited and
does not lead to small peptides, suggesting that calpains
may modulate the functions of substrate proteins by cut-
ting their interdomain regions (Croall and Demartino,
1991). In this study, we attempted to characterize cal-
pain-preferred cleavage positions in p19INK4d. p19INK4d is
a 165-aa protein that comprises 10 a-helices assembled
sequentially in five ankyrin repeats and it shares struc-
tural and biochemical properties of the other three INK4
family proteins, p16INK4a, p15INK4b and p18INK4c (Baumgart-
ner et al., 1998; Sherr and Roberts, 1999). The four INK4
family proteins negatively regulate the mammalian cell
cycle by specifically binding and inhibiting CDK4/CDK6,
which are involved in phosphorylation of the retinoblas-
toma tumor suppressor protein and thereby in G1-S con-
trol (Morgan, 1995; Harper and Elledge, 1996; Pines,
1996; Bartek et al., 1997). CDK inhibitors have also been
implicated in terminal differentiation and senescence
(Bartek et al., 1997; Serrano et al., 1997; Ruas and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/85217297?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


330 J. Joy et al.

Article in press - uncorrected proof

Figure 1 SDS-PAGE analysis of fragments generated by cal-
pain cleavage.
(A) m-Calpain-mediated proteolysis of p19. Lane M, prestained
molecular mass protein marker; lane 1, p19 incubated in the
calpain assay buffer; lane 2, p19 digested with calpain in the
presence of Ca2q at a molar ratio of 50:1; lane 3, p19 digested
with calpain in the presence of Ca2q at a molar ratio of 100:1.
(B) Calpastatin inhibitory and Ca2q-dependent protease assay.
Lane M, prestained molecular mass protein marker; lane 1, p19
incubated in the calpain assay buffer; lanes 2 and 3 show p19
digested with calpain in the absence of calpastatin and presence
of 1 and 5 mM Ca2q, respectively; lanes 4 and 5 show p19
digested with calpain in the absence of calpastatin and Ca2q,
and in the presence of calpastatin and Ca2q.

Figure 2 Western blot of p19 fragments generated by m-cal-
pain protease cleavage.
p19 was digested with calpain in the presence or absence of
calcium and calpastatin, resolved by SDS-PAGE and transferred
onto nitrocellulose membranes. Non-cleaved and cleaved frag-
ments of p19 were detected by immunoassaying with p19 poly-
clonal antibodies. Loading of lanes was as for Figure 1B.

Peters, 1998; Sherr and Roberts, 1999). p16 inactivation
by mutations is one of the frequent defects contributing
to tumorigenesis (Bartek et al., 1997; Serrano, 1997;
Ruas and Peters, 1998; Sherr and Roberts, 1999). Inac-
tivation of p19 through mutations contributes to bladder
cancer (Tsutsumi et al., 1998) and spermatogenesis
defects in mice (Zindy et al., 2001). We have chosen to
study p19 as a model protein because the structure of
this protein is known and, in contrast to the calpain sub-
strate proteins studied so far, it is not composed of glob-
ular domains linked by large solvent-exposed flexible
fragments.

Results

Calpain-mediated proteolysis of p19 and calpastatin
inhibitory actions

Calpain is an autolytic enzyme. Experiments by Tompa
and Friedrich (2000) and Li et al. (2004) have shown that
calpain autolyses within the first 30 min, which results in
protease activation. Our previous studies on calpain

action on IGFBPs (insulin-like growth factor binding pro-
teins) showed the same cleavage pattern, for 1, 2 and
even 4 h (Ghosh et al., 2005). This suggested that an
increased time interval would not result in any extra
cleavage sites. On the basis of this, we carried out our
experiments on calpain-mediated proteolysis of p19INK4d

and performed all our experiments for 1 h. p19INK4d was
recombinantly expressed and purified (Figure 1A, lane 1).
SDS-PAGE analysis of the in vitro assay carried out by
incubating p19 with m-calpain in the presence of Ca2q

resulted in p19 fragmentation. The reaction results were
not dependent on protein concentration, because an
equal amount of p19 was cleaved in the presence of Ca2q

at molar ratios of 50:1 and 100:1 (Figure 1A, lanes 2 and
3). The protein was not cleaved in the calpain assay buf-
fer in the absence of m-calpain (Figure 1B, lane 1), which
acted as a control for the experiment. No fragmentation
of p19INK4d was observed in the presence of the endog-
enous calpain inhibitor, calpastatin, and calcium (Figure
1B, lane 5), or in the absence of calcium and calpastatin
(Figure 1B, lane 4). Hence, calpastatin efficiently blocked
the cleavage of p19INK4d, as no cleavage fragments of the
protein were observed. In addition, no cleavage was
observed in the absence of calcium, which is in agree-
ment with the fact that calcium is necessary to induce
the autocatalytic activity of calpain. On the other hand,
an almost equal amount of p19 was cleaved by m-cal-
pain in the presence of 5 mM CaCl2 (Figure 1B, lane 3)
compared to 1 mM CaCl2 (Figure 1B, lane 2).

Analysis of cleaved p19INK4d products by Western
blotting

To further assay the products after m-calpain digestion,
Western blot analysis was carried on the p19INK4d cleav-
age products. The digested products were resolved by
SDS-PAGE and transferred onto a nitrocellulose mem-
brane and were further detected by p19 polyclonal anti-
bodies, as shown in Figure 2.
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Figure 3 Representation of calpain cleavage sites in p19 and the tertiary structure of p19.
(A) Schematic representation of domain organization and calpain cleavage sites of p19. Peptides generated from p19 in the calpain
cleavage reaction were analyzed by N-terminal amino acid sequencing. Downward and upward arrows indicate major and minor
calpain cleavage sites, respectively. Major fragments generated by calpain are schematically represented below the full-length
sequence of p19. (B) Ribbon diagram schematically depicting p19 tertiary structure and its binding region to CDK4/CDK6. p19
consists of 10 a-helices assembled sequentially as five ankyrin repeats, forming an elongated structure. Ankyrin repeats 1 and 2
bind to CDK4/CDK6, represented by a circle. The calpain cleavage sites of p19 are denoted with gray spheres. Flexible amino acid
residues detected by NMR relaxation studies (H34, E59 and S66) are labeled and the regions corresponding to the respective amino
acid residues are marked in black.

Identification of the major calpain cleavage sites in
p19 by Edman degradation

Characterization of the cleavage sites in p19INK4d was
accomplished by subjecting proteolytic products to NH2-
sequencing by Edman degradation. The amino acid
sequences obtained for p19INK4d were: R26LLHRELV,
R30ELVHPDA, V48MMFGST, A65SPNVQDT, A114VQEGHTA,
and A128ESDLHRR. The results of the fragments gener-
ated from polyvinylidene fluoride (PVDF) analysis and
reverse-phase HPLC were mapped on p19INK4d. From
these sequences, the calpain cleavage sites in p19INK4d

were identified and are schematically shown in Figure 3A.
Fragments containing R30ELVHPDA and A65SPNVQDT as
N-terminal amino acid sequences were obtained in
detectable amounts from reverse-phase HPLC, and
hence we have concluded that the two cleavage sites
located between histidine 29 and arginine 30, and
between glycine 64 and alanine 65 represent major cal-
pain cleavage sites. The remaining four fragments were
obtained in low quantities and thus probably correspond

to minor cleavage sites. Figure 3B shows the positions
of the major calpain cleavage sites in the three-dimen-
sional structure of p19.

The RMSD values for each residue from the 20 NMR
structures of p19 (PDB ID 1AP7) were calculated and are
shown in Figure 4. It is clearly evident from the RMSD
plot that the residues after the first and second ankyrin
repeats (His29/Arg30 and Gly64/Ala65, respectively)
show higher RMSD than the preceding residues.

Discussion

Transition from the G1 to the S phase of the mammalian
cell cycle is regulated by the Rb/E2F pathway (Weinberg,
1995). Cyclin D/cyclin-dependent kinase-4/6 complexes
phosphorylate the retinoblastoma protein (pRb), which
frees E2F from the Rb/E2F complex. The freed E2F acti-
vates the transcription of genes involved in cell proli-
feration (Weinberg, 1995; Leone et al., 1998), and
p53-dependent (De Gregore et al., 1997; Bates et al.,
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Figure 4 Atomic RMS deviation (Å) of the backbone atoms of p19.
A total of 20 NMR structures (PDB ID 1AP7) were used to calculate the RMSD with respect to the mean. The major calpain cleavage
sites His29xArg30 and Gly64xAla65 are marked with arrows. Note that these residues show higher RMSD than the preceding
residues.

1998) and p53-independent apoptosis (Irwin et al., 2000).
INK4 inhibitors specifically inhibit the G1 cyclin-depend-
ent kinase-mediated phosphorylation of pRb, and thus
the normal function of the Rb/E2F pathway is deregulat-
ed. INK4 inhibitors exert their action by binding directly
to CDK4/6 through their two N-terminal ankyrin repeats
(Brotherton et al., 1998; Russo et al., 1998). It is inter-
esting to note that the major calpain cleavage sites in
p19INK4d are located exactly in these two ankyrin repeats.
Calpains should therefore influence p19INK4d inhibitor
binding to CDK4/6 and thus may take part in the regu-
lation of this binding in vivo. This proposition is further
supported by the observation that CDK6 is resistant to
calpain proteolysis. We treated CDK6 with m-caplain and
observed that calpain does not affect CDK6. In addition,
we performed cleavage studies on the CDK6/p19 com-
plex. Calpain did not cleave p19 when complexed to
CDK6 (data not shown). This is because the major cleav-
age sites on p19 described above are not accessible to
calpain in the CDK6-bound p19. CDK4 and CDK6 have
a typical overall bilobal fold found in many eukaryotic
protein kinases, with the smaller N-terminal domain con-
sisting predominantly of b-sheet structure and the larger
C-terminal domain consisting primarily of a-helices (Pav-
letich, 1999; Cheek et al., 2002). The structure is globular,
in contrast to the elongated rod-like structure of p19INK4d.
Resistance of CDK6 and CDK6/p19 to calpain proteoly-
sis, as compared to the propensity of p19INK4d and cyclin
D1 (Choi et al., 1997) for calpain degradation, suggests
that calpain may be involved in the cell cycle by regulat-
ing the cell cycle regulatory protein turnover. p19INK4d may
therefore be a substrate for calpains in these in vivo
situations.

There are a limited number of reports on substrate
specificity of calpains and these have been reviewed by
Croall and Demartino (1991), and more recently by Goll
et al. (2003). Early studies suggested that calpains pre-
ferentially cleave peptide bonds with a Leu or a Val res-
idue in the P2 position. More complete data, however,
indicated that substrate specificity of the calpains is con-
trolled by the conformation of a polypeptide chain and
not by an amino acid sequence (Harris et al., 1988; Sta-
bach et al., 1997; Ghosh et al., 2005). In general, the
literature data indicate that the calpains cleave target
proteins at a limited number of sites and produce large

polypeptide fragments rather than small peptides or ami-
no acids (Sasaki et al., 1984; Croall and Demartino, 1991;
Goll et al., 2003). A typical example is provided by the
m-calpain proteolysis of vimentin. Vimentin belongs to
the intermediate filament (IF) family of proteins (Strelkov
et al., 2002). All IF proteins share a common structural
organization of the dimer that includes a central coiled-
coil ‘rod’ domain flanked by ‘head’ and ‘tail’ domains at
both ends (Fuchs and Weber, 1994; Strelkov et al., 2002).
The a-helical core part is not continuous, however, but
interrupted in several places, resulting in four consecu-
tive a-helical segments that are connected by linkers.
The major calpain proteolytic fragments in vimentin arise
from cleavage in the unordered amino-terminal head-
piece and the tail domain, followed by cleavage in the
linker that separates two major coiled-coil domains
(Fischer et al., 1986). Another example, related to our a-
helical p19, is provided by a-tropomyosin, a polypeptide
that is 100% a-helical. Nine of the 11 calpain cleavages
in the a-tropomyosin polypeptide are in the COOH-ter-
minal half of the molecule (Croall and Demartino, 1991).
The COOH-terminal half of the helix is significantly less
stable than the NH2-terminal half, again suggesting that
the substrate specificity of the calpains depends on the
conformation of the polypeptide, with a more open struc-
ture favoring cleavage.

The p19 calpain cleavage seems to show yet more fea-
tures. The major calpain cleavage sites are located at the
end of the second helix (a-2) of the first ankyrin repeat
(His 29) and again at the end of the second helix (a-4) of
the second ankyrin repeat (Gly 64), as evident from
Figure 3B. It is clearly apparent from the RMSD plot (Fig-
ure 4) that the residues after the first and second ankyrin
repeats (His29/Arg30 and Gly64/Ala65, respectively)
show higher RMSD than the preceding residues, indicat-
ing higher variability and probable flexibility. Our previous
relaxation measurements (Renner et al., 1998) on p19
agree with these results. The relaxation measurements
and the RMSD values clearly indicate that the first two
ankyrin repeats exhibit increased instability. The de-
formed second ankyrin repeat is dynamically most het-
erogeneous. It exhibits high flexibility around Val69 on
fast time scales. The loop between the first and the sec-
ond ankyrin repeats shows strong exchange broadening
for many residues (His34, Gly42, Thr44, Gln47). Thus, it
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is not surprising that the two major cleavage sites are
present around these residues.

In conclusion, our data show new characteristics of
calpain action, in that calpains cleaved p19 immediately
following the stable a-helical segments of the first and
second ankyrin repeats that are less stable compared to
the other repeats.

Materials and methods

Chemicals, plasmid, expression host strain and
growth media

BL21 (DE3), DH5-a competent cells and pET-15 vector were
purchased from Novagen (Darmstadt, Germany). Luria broth,
agar, ampicillin, thrombin, urea were obtained from Sigma (Tauf-
kirchen, Germany). PVDF and nitrocellulose membranes were
bought from Amersham Pharmacia Biotech (Freiburg, Germany).
The restriction enzymes Nde1, BamH1 and T4 DNA ligase were
purchased from New England Biolabs (Beverly, MA, USA). Plas-
mid miniprep kit and Ni-NTA resin were purchased from Qiagen
(Hilden, Germany). p19 anti-rabbit antibody and isopropyl b-D-
thiogalactoside were obtained from Santa Cruz Biotechnology
(Santa Cruz, USA) and PeqLabs (Erlangen, Germany), respec-
tively. All other chemicals used were of analytical grade.

Proteolytic cleavage of p19 by m-calpain

Human p19 was expressed and purified in BL21 (DE 3) as a His-
tag fusion protein (Kalus et al., 1997) using pET15b as an
expression vector. The His-tag was removed using 5 U of throm-
bin per mg of protein. CDK6 was expressed as a GST fusion
protein in Spodoptera frugiperda strain Sf9 and purified as pre-
viously described (Smialowski et al., 2005). The CDK6/p19
complex (1:3) was purified on a HiLoad 26/60 Superdex 75 pre-
parative grade column using an AKTA explorer gel filtration chro-
matographic system. Proteolytic cleavage studies were carried
out at 258C in 20 ml of reaction mixture containing m-calpain
purified from human erythrocytes (Gabrijelcic-Geiger et al., 2001)
and p19 at a molar ratio of 1:50, and a calpain assay buffer
(25 mM Tris-HCl, pH 7.3, 150 mM NaCl, 1 mM CaCl2). A similar
proteolytic assay was conducted on CDK6/p19 complex. After
1-h incubation, the reactions were terminated by addition of
10 mM EDTA. The fragments were then separated by SDS-PAGE
and visualized by Coomassie brilliant blue staining.

Calpain-mediated proteolytic assays of p19 in the
presence or absence of calcium and calpastatin

The inhibitory role of calpastatin on calpainolytic digestion, the
calcium requirement for calpain-mediated proteolysis of p19,
and the stability of p19 in the calpain assay buffer were inves-
tigated by performing three separate proteolytic cleavage
assays: (1) m-calpain, p19 and calpastatin domain 1 were incu-
bated in the calpain assay buffer (25 mM Tris-HCl, pH 7.3,
150 mM NaCl, 1 mM CaCl2) at a molar ratio of 1:50:1; (2) p19
was incubated with m-calpain in the calpain assay buffer (25 mM

Tris-HCl, pH 7.3, 150 mM NaCl) at a molar ratio of 50:1; and (3)
p19 was digested with m-calpain in the absence of calpastatin
and presence of 1 and 5 mM CaCl2. All reactions were carried
out for 1 h at 258C and then stopped by addition of 10 mM EDTA.

Calpain-treated samples were resolved by SDS-PAGE and
then transferred onto a nitrocellulose membrane with the aid of
a semi-dry electroblotting apparatus. Protein transfer from the
gel onto the nitrocellulose membrane was carried out at con-
stant power supply of 125 mV for 1 h. The membrane was ini-

tially incubated with primary antibodies and then with alkaline
phosphatase-conjugated secondary antibodies. It was further
washed with Tris buffer and developed by incubation with BCIP/
NBT alkaline phosphatase substrate for 15–30 min.

N-Terminal amino acid analysis of fragments
generated by calpain

Proteolytic reaction mixtures were resolved by SDS-PAGE and
then transferred onto a PVDF membrane using a semi-dry elec-
troblotting apparatus with a constant power supply of 125 mV
for 1 h. The protein-blotted PVDF membrane was stained with
Coomassie brilliant blue. Coomassie-stained bands were cut out
from the membrane and then used for N-terminal amino acid
analysis by Edman degradation. Sequences obtained were used
to map calpain cleavage sites and fragments generated from
p19 by calpain-mediated proteolysis.
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