MODEL COMPANIONS OF DISTRIBUTIVE p-ALGEBRAS

Jürg Schmid

§0. Introduction. Let $\underline{B}_{n}, 0 \leq n \leq \omega$, be the equational classes of distributive p-algebras (precise definitions are given in §1). It has been known for some time that the elementary theories T_{n} of \underline{B}_{n} possess model companions T_{n}^{*}; see, e.g., [6] and [14] and the references given there. However, no axiomatizations of T_{n}^{*} were given, with the exception of $n=0$ (Boolean case) and $n=1$ (Stonian case). While the first case belongs to the folklore of the subject (see [6], also [11]), the second case presented considerable difficulties (see Schmitt [13]). Schmitt's use of methods characteristic for Stone algebras seems to prevent a ready adaptation of his results to the cases $n \geq 2$.

The natural way to get a hold on T_{n}^{*} is to determine the class $E\left(\underline{B}_{n}\right)$ of existentially complete members of \underline{B}_{n} : Since T_{n}^{*} exists, it equals the elementary theory of $E\left(\underline{B}_{n}\right)$. The present author succeeded [12] in solving the simpler problem of determining the classes $A\left(\underline{B}_{n}\right)$ of algebraically closed algebras in \underline{B}_{n} (exact definitions of $A\left(\underline{B}_{n}\right)$ and $E\left(\underline{B}_{n}\right)$ are given in $\S 1$) for all $0 \leq n \leq \omega . A\left(\underline{B}_{n}\right)$ is easier to handle since it contains sufficiently many "small" algebras-viz. finite direct products of certain subdirectly irreducibles-in terms of which the members of $A\left(\underline{B}_{n}\right)$ may be analyzed (in contrast, all members of $E\left(\underline{B}_{n}\right)$ are infinite and κ_{0}-homogeneous). As it turns out, $A\left(\underline{B}_{n}\right)$ is finitely axiomatizable for all n, and comparing the theories of $A\left(\underline{B}_{0}\right), A\left(\underline{B}_{1}\right)$ with the explicitly known theories of $E\left(\underline{B}_{0}\right), E\left(\underline{B}_{1}\right)$-viz. T_{0}^{*}, T_{1}^{*}, a reasonable conjecture for $T_{n}^{*}, 2 \leq n \leq \omega$, is immediate. The main part of this paper is concerned with verifying that the conditions formalized by T_{n}^{*} suffice to describe the algebras in $E\left(\underline{B}_{n}\right)$ (necessity is easy). This verification rests on the same combinatorial techniques as used in [12] to describe the members of $A\left(\underline{B}_{n}\right)$.
§1 gives the pertinent definitions. For anything not found there, the reader is referred to Grätzer [3, Chapter III, in particular] for the algebraic part and to Hirschfeld and Wheeler [6] for the model-theoretic side. In §2, we summarize the results on $A\left(\underline{B}_{n}\right)$ from [12] and characterize the members of $E\left(\underline{B}_{n}\right)$ within $A\left(\underline{B}_{n}\right)$ by four conditions, EC1 through EC4. Combination of these results yields the desired description of existentially complete algebras in \underline{B}_{n} for $0 \leq n \leq \omega$. Formalizing these descriptions accordingly, T_{n}^{*} may be written down explicitly (§3) and shown to be \aleph_{0}-categorical and complete for all n, whereas only $T_{0}^{*}, T_{1}^{*}, T_{2}^{*}$ and $T_{\omega}{ }^{*}$ are even model completions of their respective T_{i}.

Received September 1, 1980.
§1. Definitions and notation. A (distributive) p-algebra L is an algebra $L(\wedge, \vee$, *, 0,1) such that $L(\wedge, \vee, 0,1)$ is a distributive lattice with universal bounds 0 and 1 and the unary operation * satisfies $x \leq a^{*}$ iff $x \wedge a=0$. Since only distributive p-algebras are considered in this paper, "distributive" will be omitted in the sequel. The class of all p-algebras is equational and will be denoted by \underline{B}_{ω}. The nontrivial equational subclasses of \underline{B}_{ω} may be enumerated in a sequence $\underline{B}_{0} \subseteq \underline{B}_{1} \subseteq \cdots \subseteq$ $\underline{B}_{n} \subseteq \cdots \subseteq \underline{B}_{\omega}(n \in \omega)$ (see Lee [10]). \underline{B}_{0} is the class of all Boolean algebras, \underline{B}_{1} that of all Stone algebras (those satisfying the identity $x^{*} \vee x^{* *}=1$). The easiest way to describe the classes \underline{B}_{n} is by listing their subdirectly irreducible members. We need some notation. Let $\underline{2}$ be the two-element Boolean algebra, and put $F_{n}=\underline{2}_{n}$ for $n \in \omega$. For later reference, we agree to write \underline{C} for the countable atomless Boolean algebra. If L is any lattice, \hat{L} denotes the lattice obtained from L by adjoining a new greatest element to L. Now the subdirectly irreducible algebras in $\underline{B}_{n}(n<\omega)$ are exactly $\hat{F}_{0} \cong \underline{2}, \hat{F}_{1}, \ldots, \hat{F}_{n}$, while an algebra is subdirectly irreducible in \underline{B}_{ω} iff it is of the form \hat{B} for some Boolean algebra B. For details, compare Chapter III of [3].
On the model-theoretic side, we use a first-order language \mathscr{L} with equality. \mathscr{L} has variables x_{1}, x_{2}, \ldots and as nonlogical symbols two binary function symbols \wedge, \vee, a unary function symbol * and two constants 0,1 with the obvious intended interpretations. We define \mathscr{L}-theories T_{n} for $0 \leq n \leq \omega$ as follows: T_{ω} consists of any convenient set of \mathscr{L}-sentences axiomatizing distributive lattices with 0,1 together with $\left(\forall x_{1}, x_{2}\right)\left(x_{1} \wedge\left(x_{1} \wedge x_{2}\right)^{*}=x_{1} \wedge x_{2}^{*}\right)$. For $n \geq 1$, let θ_{n} be the sentence

$$
\begin{aligned}
\left(\forall x_{1}, \ldots, x_{n}\right)\left(\left(x_{1}\right.\right. & \left.\wedge \cdots \wedge x_{n}\right)^{*} \vee\left(x_{1}^{*} \wedge x_{2} \wedge \cdots \wedge x_{n}\right)^{*} \\
& \left.\vee\left(x_{1} \wedge x_{2}^{*} \wedge \cdots \wedge x_{n}\right)^{*} \vee \cdots \vee\left(x_{1} \wedge x_{2} \wedge \cdots \wedge x_{n}^{*}\right)^{*}=1\right)
\end{aligned}
$$

Let θ_{0} be $\left(\forall x_{1}\right)\left(x_{1} \vee x_{1}^{*}=1\right)$. Now define $T_{n}=T_{\omega} \cup\left\{\theta_{n}\right\}$. Then B_{n} is exactly the class of models of T_{n} for $0 \leq n \leq \omega$ (see [10]).

Consider now any fixed $\underline{B}_{n}, 0 \leq n \leq \omega . L \in \underline{B}_{n}$ is called existentially complete (abbreviated e.c.) iff for any \exists_{1}-sentence θ from $\mathscr{L}(L)$ and for any extension $L^{\prime} \in \underline{B}_{n}$ of $L, L^{\prime} \vDash \theta$ implies $L \vDash \theta$. L is called algebraically closed (abbreviated a.c.) if the same holds for positive \exists_{1}-sentences. We put $E\left(\underline{B}_{n}\right)=\left\{L \in \underline{B}_{n} ; L\right.$ is e.c. $\}$ and $A\left(\underline{B}_{n}\right)=\left\{L \in \underline{B}_{n} ; L\right.$ is a.c. $\}$. Hence $E\left(\underline{B}_{n}\right) \subseteq A\left(\underline{B}_{n}\right) \subseteq \underline{B}_{n}$ and all inclusions are strict, as we shall see. Given $L \in \underline{B}_{\omega}, S L=\left\{x \in L ; x=x^{* *}\right\}$ is the skeleton of $L, C L=\left\{x \in L ; x \vee x^{*}=1\right\}$ is the center of L and $D L=\left\{x \in L ; x^{*}=0\right\}$ is the filter of dense elements of L. Any $L \in \underline{B}_{\omega}$ contains a largest subalgebra which is Stonian, i.e., which belongs to \underline{B}_{1}. This is the subalgebra of L generated by $C L \cup$ $D L$, and we denote it by Ston L. This definition is due to Katrinák; see, e.g., [7] for more details. Alternatively, Ston $L=\left\{x \in L ; x^{*} \vee x^{* *}=1\right\}$. The following definition is adopted for technical convenience: Let $L \in \underline{B}_{\omega}, s \in$ Ston L. Define $B_{L}(s)=\left\{b \in S L ; b \leq s\right.$ and $\left.b \vee b^{*}=s \vee s^{*}\right\} \cup\{0, s\}$. The subscript L will be omitted when there is no danger of confusion. In general, $B(s)$ is not closed under \wedge or \vee; however $x \in B(s)$ implies $x^{*} \wedge s \in B(s)$ (since $x \vee\left(x^{*} \wedge s\right)=s$ and $x \wedge\left(x^{*} \wedge s\right)=0$ this defines a relativized complementation on $\left.B(s)\right)$. Details may be found in [12]. Given $x \in L$ and a finite subset $\left\{y_{1}, \ldots, y_{n}\right\} \subseteq L$, we say that $\left\{y_{1}, \ldots, y_{n}\right\}$ is a partition of x provided $y_{1} \vee \ldots \vee y_{n}=x$ and $y_{i} \wedge y_{k}=0$ for $1 \leq i<k \leq n$. A partition is called proper iff it does not contain 0 . Finally,
given two p-algebras L_{1}, L_{2}, we allow ourselves to write $L_{1} \subseteq L_{2}$ whenever L_{2} contains an isomorphic copy of L_{1} as a p-subalgebra.
§2. Existentially complete distributive p-algebras. The members of $A\left(\underline{B}_{n}\right)$ for $0 \leq n \leq \omega$ were determined in [12]. The following two theorems summarize the situation.

Theorem $1(n<\omega)$. Let $L \in \underline{B}_{n}, 0 \leq n<\omega$. The following are equivalent:
(i) $L \in A\left(\underline{B}_{n}\right)$.
(ii) L satisfies the following four conditions:
$\mathrm{AC1} D L$ is relatively complemented.
AC2 For all $d_{1}, d_{2} \in D L$ satisfying $d_{1} \vee d_{2}=1$, there exists $c \in C L$ such that $c \leq d_{1}, c^{*} \leq d_{2}$.
$\mathrm{AC} 3 n$ Assume $n \geq 2$. For all $s \in \operatorname{Ston} L \backslash C L$, there exists a proper partition $\left\{b_{1}, \ldots, b_{n}\right\} \subseteq B_{L}(s)$ of s.
AC4n Assume $n \geq 2$. Put $N=2^{n}+1$. For all $s \in \operatorname{Ston} L \backslash C L$, every proper partition $\left\{b_{1}, \ldots, b_{n}\right\} \subseteq B_{L}(s)$ of s and every $0, s \neq b \in B_{L}(s)$, there exists a partition $\left\{c_{1}, \ldots, c_{N}\right\} \subseteq C L$ of $s^{* *} \in C L$ such that $b=\bigvee\left\{\left(b_{i} \wedge c_{j}\right) ; 1 \leq i \leq n, 1 \leq j \leq N\right\}$.
(iii) If L_{0} is a finite subalgebra of L, there exists a p-algebra L_{1} such that $L_{0} \subseteq L_{1}$ $\subseteq L$ and $L_{1} \cong 2^{i} \times \hat{F}_{n}^{j}$ for some $i, j \in \omega$.

Theorem 1ω. Let $L \in \underline{B}_{\omega}$. The following are equivalent:
(i) $L \in A\left(\underline{B}_{\omega}\right)$.
(ii) L satisfies the following four conditions:

ACl as above.
AC 2 as above.
$\mathrm{AC} 3 \omega$ For all $s \in \operatorname{Ston} L \backslash C L, B_{L}(s) \nexists\{0, s\}$.
$\mathrm{AC} 4 \omega$ For all $s \in \operatorname{Ston} L \backslash C L$ and all $0, s \neq b \in B_{L}(s)$, there exists a proper partition $\left\{b_{1}, b_{2}\right\} \subseteq B_{L}(s)$ of b.
(iii) If L_{0} is a finite subalgebra of L, there exists a p-algebra L_{1} such that $L_{0} \subseteq$ $L_{1} \subseteq L$ and $L_{1} \cong 2^{i} \times \hat{\underline{C}}^{i}$ for some $i, j \in \omega$.
The following definition lists the conditions necessary and sufficient to characterize the members of $E\left(\underline{B}_{n}\right)$ within $A\left(\underline{B}_{n}\right)$ for $0 \leq n \leq \omega$:

Definition. Let $L \in \underline{B}_{n}, 0 \leq n \leq \omega$. L will be said to satisfy.
EC1 iff $C L$ has no atoms.
EC2 iff $D L$ has no antiatoms;
EC3 iff for any $1 \neq c \in C L$ the set $\{d \in D L ; 1 \geq d \geq c\}$ has no least element;
EC4 iff for any $0 \neq b \in S L$ there exists $0 \neq c \in C L$ such that $c \leq b$.
The following theorem contains the main result of this paper.
Theorem 2. An algebra is existentially complete in $\underline{B}_{n}(0 \leq n \leq \omega)$ iff it is algebraically closed and satisfies EC1-EC4. Alternatively, $L \in E\left(\underline{B}_{n}\right)$ iff L satisfies $\mathrm{AC1}-\mathrm{AC} 4 n$ and $\mathrm{EC1}-\mathrm{EC} 4$.

Theorem 2 may be rephrased in a more compact form using Ston L and Theorem 3.2 of [13]:

Corollary 3. $L \in E\left(\underline{B}_{n}\right)(0 \leq n \leq \omega)$ iff Ston $L \in E\left(\underline{B}_{1}\right)$ and L satisfies AC3n, $\mathrm{AC4n}$ and EC4.

Proof. Schmitt [13] proved that $L \in E\left(\underline{B}_{1}\right)$ iff L satisfies AC1, AC2 and EC1EC3.

The proof of Theorem 2 will be broken down into a series of lemmata. We begin with the easy half of the theorem.
Lemma 4. Let $L \in E\left(\underline{B}_{n}\right), 0 \leq n \leq \omega$. Then L satisfies EC1-EC4.
Proof. Consider the following \exists_{1}-sentences from $\mathscr{L}(L)$:
$\theta_{1}(c):\left(\exists x_{1}\right)\left(x_{1} \vee x_{1}^{*}=1 \& 0<x_{1}<c\right), 0 \neq c \in C L$,
$\theta_{2}(d):\left(\exists x_{1}\right)\left(x_{1}^{*}=0 \& d<x_{1}<1\right), 1 \neq d \in D L$,
$\theta_{3}(c, d):\left(\exists x_{1}\right)\left(x_{1}^{*}=0 \& c \leq x_{1}<d\right), 1 \neq c \in C L$ and $c<d \leq 1, d \in D L$,
$\theta_{4}(b) \quad:\left(\exists x_{1}\right)\left(x_{1} \vee x_{1}^{*}=1 \& x_{1} \neq 0 \& x_{1} \leq b\right), 0 \neq b \in S L$.
Each one of these sentences may be satisfied in some direct product $L^{\prime} \supseteq L$ of suitably many subdirectly irreducibles from \underline{B}_{n}, so they must hold in L.

Lemma 5. Let $L \in \underline{B}_{n}, 0 \leq n \leq \omega$, and assume $L \cong \Pi\left(L_{i}, i \in I\right)$. Then any of $\mathrm{EC}, \ldots, \mathrm{EC} 4$ holds in L iff it holds in every $L_{i}, i \in I$.

Proof. Straightforward.

We use the following notation: If $L \in \underline{B}_{\omega}$ and $a_{1}, \ldots, a_{n} \in L,\left\langle a_{1}, \ldots, a_{n}\right\rangle_{L}$ denotes the subalgebra of L generated by $\left\{a_{1}, \ldots, a_{n}\right\}$. A homomorphism f is over an algebra L iff $L \subseteq \operatorname{dom} f$ and f fixes L pointwise.

The following two lemmata take care of the essential cases of the sufficiency half of Theorem 2.

Lemma 6. Assume $L \in \underline{B}_{n}(2 \leq n<\omega)$ satisfies AC1-AC4n and EC1-EC4. Let $L \subseteq L^{\prime}$ and $L^{\prime} \cong \hat{F}_{n}^{T}$ (T some index set) $; L_{0} \subseteq L$ and $L_{0} \cong F_{r}$ for some $1 \leq r \leq$ n or $L_{0} \cong \hat{F}_{n} ; L_{1} \subseteq L^{\prime}$ and $L_{1} \cong F_{s}$ for some $1 \leq s \leq n$ or $L_{1} \cong \hat{F}_{n}$. Then there exists $L_{2} \subseteq L, L_{2} \cong L_{1}$ such that $\left\langle L_{0} \cup L_{1}\right\rangle$ and $\left\langle L_{0} \cup L_{2}\right\rangle$ are isomorphic over L_{0}.

Proof. Assume L, L^{\prime}, L_{0} and L_{1} are given as described. Let p_{1}, \ldots, p_{r} be the atoms of $L_{0}, q_{1}, \ldots, q_{s}$ those of $L_{1} ; d=p_{1} \vee \cdots \vee P_{r}, \delta=q_{1} \vee \cdots \vee q_{s}$; denote by S_{n} the group of permutations of an n-element set.

We define $u_{j}(1 \leq j \leq s), v_{h}\left(h \in S_{n}\right), x_{i}(1 \leq i \leq r)$ and $y_{i j}(1 \leq i \leq r, 1 \leq$ $j \leq s)$ in $C L^{\prime}$ as follows by listing their components $(t \in T)$:
$u_{j t}=\left\{\begin{array}{ll}1, & d_{t} \neq 1 \text { and } q_{j t}=1, \\ 0, & \text { otherwise }\end{array} \quad\left(L_{0} \cong \hat{F}_{n}, r=n\right) ;\right.$
$v_{h t}=\left\{\begin{array}{ll}1, & d_{t}=\delta_{t} \neq 1 \text { and } q_{j t}=P_{h(j) t} \text { for } 1 \leq j \leq s, \\ 0, & \text { otherwise }\end{array} \quad\left(L_{0} \cong \hat{F}_{n} \cong L_{1}, r=s=n\right) ;\right.$
$x_{i t}=\left\{\begin{array}{ll}1, & \delta_{t} \neq 1 \text { and } p_{i t}=1, \\ 0, & \text { otherwise }\end{array} \quad\left(L_{1} \cong \hat{F}_{n}, s=n\right) ;\right.$
$y_{i j t}= \begin{cases}1, & p_{i t}=1=q_{j t}, \\ 0, & \text { otherwise } .\end{cases}$
It is fairly obvious that $u_{j}, v_{k}, x_{i}, y_{i j}$ are central in L^{\prime}, pairwise disjoint and have join 1 . Note that if $u_{j} \neq 0$, then $u_{j} \not \leq d<1$ and similarly for v_{h}, whereas x_{i}, $y_{i j} \leq p_{i} \leq d$. We will now use AC1 through EC4 to "simulate" these members of $C L^{\prime}$ within $C L$.

Suppose $d=1$. Hence $p_{i} \in C L$ for $1 \leq i \leq r$. Use ECl to find $\bar{x}_{i}, \bar{y}_{i j} \in C L$, pairwise disjoint, such that $p_{i}=\bar{x}_{i} \vee \vee{ }_{j} \bar{y}_{i j}$ and $\bar{x}_{i}=0$ iff $x_{i}=0, \bar{y}_{i j}=0$ iff $y_{i j}=0$. Put $\bar{u}_{j}=\bar{v}_{h}=0$ for $1 \leq j \leq s, h \in S_{n}$.

Suppose $d<1$. Use EC4 to find $c_{i} \in C L, c_{i} \neq 0$, such that $c_{i} \leq p_{i}$ for $1 \leq i \leq r$. Use EC1 to find $\bar{x}_{i}, \bar{y}_{i j} \in C L$, pairwise disjoint, such that $c_{i}=\bar{x}_{i} \vee \vee_{j} \bar{y}_{i j}$ for $1 \leq i \leq r$, and $\bar{x}_{i}=0$ iff $x_{i}=0, \bar{y}_{i j}=0$ iff $y_{i j}=0$. Let $c=\left(c_{1} \vee \cdots \vee c_{r}\right)^{*}$. It follows that $c \not \leq d$. We want to construct $\bar{u}_{j}, \bar{v}_{h} \in C L$ for $1 \leq j \leq s, h \in S_{n}$, pairwise disjoint, $\measuredangle d, c=\bigvee_{j} \bar{u}_{j} \vee \bigvee_{h} \bar{v}_{h}, \bar{u}_{j}=0$ iff $u_{j}=0, \bar{v}_{h}=0$ iff $v_{h}=0$. It suffices to show that if $c \not \approx d$, there exist nonzero $c_{1}, c_{2} \in C L$ satisfying $c_{1} \vee c_{2}=c$, $c_{1} \wedge c_{2}=0, c_{1}, c_{2} \not \leq d$. Now $c \not \leq d$ implies $c^{*} \vee d<1$. By EC3, we find $d_{1} \in D L$ such that $c^{*} \vee d<d_{1}<1$. By ACl, there exists $d_{2} \in D L$ such that $d_{2} \wedge d_{1}=$ $c^{*} \vee d, d_{2} \vee d_{1}=1$. By AC2, there exists $c_{0} \in C L$ such that $c_{0} \leq d_{1}, c_{0}^{*} \leq d_{2}$. It is easy to check that $c_{1}=c \wedge c_{0}, c_{2}=c \wedge c_{0}^{*}$ have the required properties.
L_{2} will now be constructed by describing its atoms Q_{1}, \ldots, Q_{s} "piecewise", that is, by listing the meets of Q_{1}, \ldots, Q_{s} with $\bar{u}_{j}, \bar{v}_{k}, \bar{x}_{i}, \bar{y}_{i j}$. This is sufficient since all algebras of type F_{r} or \hat{F}_{r} are generated, as p-algebras, by their atoms. Only Q_{i} $\wedge \bar{x}_{i}$ requires some preliminary work. Assume $\bar{x}_{i} \neq 0$. Apply EC2 to \bar{x}_{i}^{*} in order to produce $d_{i} \in D L$ satisfying $\bar{x}_{i} \wedge d_{i}<\bar{x}_{i}$. Obviously, $\bar{x}_{i} \wedge d_{i} \in \operatorname{Ston} L \backslash C L$, so by $\mathrm{AC} 3 n$ there exists a proper partition $\left\{\beta_{i n}, \ldots, \beta_{i n}\right\} \subseteq B\left(\bar{x}_{i} \wedge d_{i}\right)$ of $\bar{x}_{i} \wedge d_{i}$ (as observed above, $\bar{x}_{i} \neq 0$ implies $L_{1} \cong \hat{F}_{n}$ and thus $s=n$). Now put

$$
Q_{j}=\bar{u}_{j} \vee \underset{h \in S_{n}}{\bigvee}\left(p_{h(j)} \wedge \bar{v}_{k}\right) \vee \bigvee_{\bar{x}_{i} \neq 0} \beta_{i j} \vee \bigvee_{i=1}^{r}\left(p_{i} \wedge \bar{y}_{i j}\right)
$$

and let $L_{2}=\left\langle Q_{1}, \ldots, Q_{s}\right\rangle_{L}$. It is fairly obvious from the construction that $\left\langle L_{0} \cup L_{1}\right\rangle$ and $\left\langle L_{0} \cup L_{2}\right\rangle$ are isomorphic over L_{0}.

Lemma 7. Assume $L \in \underline{B}_{\omega}$ satisfies $\mathrm{AC1-AC4}$ and EC1-EC4. Let $L \subseteq L^{\prime}$ and $L \cong \Pi\left(\hat{A}_{t}, t \in T\right)$, where A_{t} is an atomless Boolean algebra for each $t \in T ; L_{0} \subseteq L$ and $L_{0} \cong F_{r}$ or $L_{0} \cong \hat{F}_{r}$ for some $r \in \omega, r \geq 1 ; L_{1} \cong L^{\prime}$ and $L_{1} \cong F_{s}$ or $L_{1} \cong \hat{F}_{s}$ for some $s \in \omega, s \geq 1$. Then there exists $L_{2} \subseteq L, L_{2} \cong L_{1}$, such that $\left\langle L_{0} \cup L_{1}\right\rangle$ and $\left\langle L_{0} \cup L_{2}\right\rangle$ are isomorphic over L_{0}.

Proof. Assume $L, L^{\prime}, L_{0}, L_{1}$ are given as specified; let p_{1}, \ldots, p_{r} be the atoms of $L_{0}, q_{1}, \ldots, q_{s}$ those of $L_{1} ; d=p_{1} \vee \cdots \vee p_{r}, \delta=q_{1} \vee \cdots \vee q_{s}$. Let M be the set of all $r \times s(0,1)$-matrices having at least one 1 in each row and each column.

We define $u_{j}(1 \leq j \leq s), v_{A}(A \in M), x_{i}(1 \leq i \leq r)$ and $y_{i j}(1 \leq i \leq r, 1 \leq$ $j \leq s$) in $C L^{\prime}$ as follows by listing their components ($t \in T$):

$$
\begin{aligned}
u_{j t} & = \begin{cases}1, & d_{t} \neq 1 \text { and } q_{j t}=1, \\
0, & \text { otherwise } ;\end{cases} \\
v_{A t} & = \begin{cases}1, & d_{t}=\delta_{t} \neq 1 \text { and } p_{i t} \wedge q_{j t}=0 \text { iff } \alpha_{i j}=0, \text { where } A=\left(\alpha_{i j}\right), \\
0, & \text { otherwise; }\end{cases} \\
x_{i t} & = \begin{cases}1, & \delta_{t} \neq 1 \text { and } p_{i t}=1, \\
0, & \text { otherwise } ;\end{cases} \\
y_{i j t} & = \begin{cases}1, & p_{i t}=1=q_{j t}, \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

Again, $u_{j}, v_{A}, x_{i}, y_{i j}$ are central in $C L^{\prime}$, pairwise disjoint and have join $1 ; u_{j} \neq 0$ implies $u_{j} \not \leq d<1$, and similarly for v_{A}.

Proceed as in the proof of Lemma 6 to obtain $\bar{u}_{j}, \bar{v}_{A}, \bar{x}_{i}, \bar{y}_{i j} \in C L$ which are 0 exactly if their counterparts in $C L^{\prime}$ are such, which are pairwise disjoint, have join 1 , and satisfy $\bar{x}_{i}, \bar{y}_{i j} \leq p_{i}, \bar{u}_{j}, \bar{v}_{A} \not \leq d$ provided $d \leq 1$.

We construct Q_{1}, \ldots, Q_{s} in the same way as in the proof of Lemma 6. Let $A=\left(\alpha_{i j}\right) \in M$. To obtain $Q_{j} \wedge \bar{v}_{A}$, consider $p_{i} \wedge \bar{v}_{A}$ for $i \leq 1 \leq r: p_{i} \wedge \bar{v}_{A} \in$ $B\left(d \wedge \bar{v}_{A}\right)$, so use $\mathrm{AC} 3 \omega$ and $\mathrm{AC} 4 \omega$ to get a representation $p_{i} \wedge \bar{v}_{A}=\bigvee_{j=1}^{s} p_{i j A}$, where the $p_{i j A}$ belong to $B\left(d_{i} \wedge \bar{v}_{A}\right)$, are disjoint and $p_{i j A}=0$ iff $\alpha_{i j}=0$. Put $Q_{j} \wedge \bar{v}_{A}=\bigvee_{i=1}^{r} p_{i j A}$. Next, assume $\bar{x}_{i} \neq 0$. Applying EC2 to \bar{x}_{1}^{*} yields $d_{i} \in D L$ satisfying $\bar{x}_{i} \wedge d_{i}<\bar{x}_{i}$. By $\mathrm{AC} 3 \omega, B\left(\bar{x}_{i} \wedge d_{i}\right) \neq\left\{0, \bar{x}_{i} \wedge d_{i}\right\}$, so using $\mathrm{AC} 4 \omega$ suitably often one finds $\beta_{i 1}, \ldots, \beta_{i s} \in B\left(\bar{x}_{i} \wedge d_{i}\right)$, nonzero, pairwise disjoint and satisfying $\bar{x}_{i} \wedge d_{i}=\beta_{i 1} \vee \cdots \vee \beta_{i s}$. Put $Q_{j} \wedge \bar{x}_{i}=\beta_{i j}$. Finally, let

$$
Q_{j}=\bar{u}_{j} \vee \underset{A \in M}{\bigvee} \bigvee_{i=1}^{r} p_{i j A} \vee \bigvee_{x_{i} \neq 0} \beta_{i j} \vee \bigvee_{i=1}^{r}\left(p_{i} \wedge \bar{y}_{i j}\right) .
$$

Define $L_{2}=\left\langle Q_{1}, \ldots, Q_{s}\right\rangle_{L}$. By construction, $\left\langle L_{0} \cup L_{1}\right\rangle$ and $\left\langle L_{0} \cup L_{2}\right\rangle$ are isomorphic over L_{0}.

Proof of Theorem 2, Sufficiency Part. Let $L \in \underline{B}_{n}(2 \leq n \leq \omega)$ and assume L satisfies AC1-AC4n and ECl-EC4. Consider $L_{1} \in \underline{B}_{n}, L_{1} \supseteq L ; a_{1}, \ldots, a_{l} \in L$, $v_{1}, \ldots, v_{m} \in L_{1}$. Proving $L \in E\left(\underline{B}_{n}\right)$ amounts to constructing $u_{1}, \ldots, u_{m} \in L$ such that $\left\langle a_{1}, \ldots, a_{l} v_{1}, \ldots, ., v_{m}\right\rangle$ and $\left\langle a_{1}, \ldots, a_{l}, u_{1}, \ldots, u_{m}\right\rangle$ are isomorphic over $\left\langle a_{1}, \ldots, a_{l}\right\rangle$: If $L_{1} \vDash\left(\exists x_{1}, \ldots, x_{m}\right) \phi\left(x_{1}, \ldots, x_{m}, a_{1}, \ldots, a_{l}\right)$ with ϕ quantifier-free from $\mathscr{L}(L)$, say $L_{1} \vDash \phi\left(v_{1}, \ldots, v_{m}, a_{1}, \ldots, a_{i}\right)$, then by isomorphism over $\left\langle a_{1}, \ldots\right.$, $\left.a_{l}\right\rangle$ we have $L \vDash \phi\left(u_{1}, \ldots, u_{m}, a_{1}, \ldots, a_{l}\right)$, that is, $L \vDash\left(\exists x_{1}, \ldots, x_{m}\right) \phi\left(x_{1}, \ldots\right.$, $x_{m}, a_{1}, \ldots, a_{l}$). Using subdirect representation and the fact that every Boolean algebra may be embedded into an atomless one, it clearly suffices to assume that

$$
\begin{equation*}
L_{1} \cong \hat{F}_{n}^{T}(n<\omega) \quad \text { or } \quad L_{1} \cong \Pi\left(\hat{A}_{t}, t \in T\right) \quad(n=\omega) \tag{*}
\end{equation*}
$$

where A_{t} is an atomless Boolean algebra for each $t \in T$ (T any suitable index set).
Next, we may assume w.l.o.g. that $\left\{a_{1}, \ldots, a_{l}\right\}$ actually is a subalgebra of L. L is a.c. since it satisfies $\mathrm{ACl}-\mathrm{AC4n}$, so by Theorem 1(iii) there exists a subalgebra L^{\prime} of L such that $\left\{a_{1}, \ldots, a_{l}\right\} \subseteq L^{\prime}$ and $L^{\prime} \cong \underline{2}^{i} \times \hat{F}_{n}^{j}(n<\omega)$ or $L^{\prime} \cong \underline{2}^{i} \times \hat{C}^{j}$ $(n=\omega)$ for suitable $i, j \in \omega$. In the second case, we may conclude that $\left\{a_{1}, \ldots, a_{l}\right\}$ $\subseteq 2^{i} \times \hat{F}_{r}^{j}$ for some $r \geq 1$. Hence, we may assume w.l.o.g. that $\left\{a_{1}, \ldots, a_{l}\right\}$ is isomorphic to $2^{i} \times \hat{F}_{n}^{j}(n<\omega)$ or to $2^{i} \times \hat{F}_{r}^{j}(n=\omega)$ for some $i, j ; r$. The centers of these finite subalgebras of L contain $i+j$ atoms $c_{1}, \ldots, c_{i+j} \in C L \subseteq C L_{1}$. Divide L_{1} by the canonical congruences $\theta\left(c_{k}\right), 1 \leq k \leq i+j . L_{1} / \theta\left(c_{k}\right)$ is still a direct product of type (*), and $L / \theta\left(c_{k}\right)$ still satisfies EC1-EC4 by Lemma 5 and $\mathrm{ACl}-\mathrm{AC} 4 n$ by Lemma 2.2 of [12]. Since $L \cong \Pi\left(L / \theta\left(c_{k}\right), 1 \leq k \leq i+j\right)$, it will obviously suffice to construct the desired u_{1}, \ldots, u_{m} modulo $\theta\left(c_{k}\right)$ for each k. Summing up, the problem reduces to the case where L_{1} is a direct product of type $(*)$, and $\left\{a_{1}, \ldots, a_{l}\right\}$ is a subalgebra of L isomorphic to 2 or $\hat{F}_{n}(n<\omega)$ or to $\underline{2}$ or \hat{F}_{r} for some $r \geq 1(n=\omega)$.

We turn to v_{1}, \ldots, v_{m}. Observe L_{1} is a.c. as a direct product of a.c. factors [12, Lemma 2.2]. So we may proceed as above and replace $\left\{v_{1}, \ldots, v_{m}\right\}$ by a"subalgebra of L_{1} isomorphic to $\underline{2}^{p} \times \hat{F}_{n}^{q}(n<\omega)$ or to $2^{p} \times \hat{F}_{r}^{q}(n=\omega)$ for suitable $p, q ; r$. The centers of these finite algebras contain $p+q$ atoms $c_{1}^{\prime}, \ldots, c_{p+q}^{\prime} \in C L_{1}$.

To carry out the same factorization as above, we have to find $c_{1}, \ldots, c_{p+q} \in C L$ (nonzero, pairwise disjoint, with join 1) and $v_{1}^{\prime}, \ldots, v_{m}^{\prime} \in L_{1}$ such that

$$
\begin{aligned}
& j_{k}\left(a_{1} / \theta\left(c_{k}^{\prime}\right)\right)=a_{1} / \theta\left(c_{k}\right) \\
& \vdots \\
& j_{k}\left(a_{l} / \theta\left(c_{k}^{\prime}\right)\right)=a_{l} / \theta\left(c_{k}\right) \\
& j_{k}\left(v_{1} / \theta\left(c_{k}^{\prime}\right)\right)=v_{1}^{\prime} / \theta\left(c_{k}\right) \\
& \vdots \\
& j_{k}\left(v_{m} / \theta\left(c_{k}^{\prime}\right)\right)=v_{m}^{\prime} / \theta\left(c_{k}\right)
\end{aligned}
$$

induces an isomorphism

$$
j_{k}:\left\langle a_{1}, \ldots, a_{l}, v_{1}, \ldots, v_{m}\right\rangle / \theta\left(c_{k}^{\prime}\right) \cong\left\langle a_{1}, \ldots, a_{l}, v_{1}^{\prime}, \ldots, v_{m}^{\prime}\right\rangle \mid \theta\left(c_{k}\right)
$$

If $\left\{a_{1}, \ldots, a_{l}\right\}$ is $\underline{2}$, let $\left\{c_{1}, \ldots, c_{p+q}\right\}$ be an arbitrary proper central partition of 1 in L. If $\left\{a_{1}, \ldots, a_{l}\right\}$ is \hat{F}_{r} for some $r \in \omega$, let $\beta_{1}, \ldots, \beta_{r}$ be the atoms of \hat{F}_{r} and d their join. Proceed as in the proof of Lemma 6 to produce $c_{k} \in C L$, $1 \leq k \leq p+q$ (nonzero, disjoint, with join 1) such that $c_{k} \leq d$ iff $c_{k}^{\prime} \leq d$ and $c_{k} \wedge \beta_{i} \neq 0$ iff $c_{k}^{\prime} \wedge \beta_{i} \neq 0$ for $1 \leq i \leq r$. Obviously, then, j_{k} as defined above will induce an isomorphism $\left\langle a_{1}, \ldots, a_{l}\right\rangle / \theta\left(c_{k}^{\prime}\right) \cong\left\langle a_{1}, \ldots . a_{l}\right\rangle / \theta\left(c_{k}\right) . v_{1}^{\prime}, \ldots$, $v_{m}^{\prime} \in L_{1}$ will be constructed in the same way as Q_{1}, \ldots, Q_{s} were obtained in the proof of Lemma 7; the difference being that all the auxiliary elements used in that construction live trivially within the direct product L_{1} so we need not appeal to the EC and AC conditions at this point (except for EC1 which guarantees the existence of arbitrarily fine central partitions of c_{k} within L, thus within L_{1}).
Now the problem of finding the required $u_{1}, \ldots, u_{m} \in L$ may be factorized again since $L \cong \Pi\left(L / \theta\left(c_{k}\right), 1 \leq k \leq p+q\right)$. Observing that every nontrivial homomorphic image of $\hat{F}_{r}(r \in \omega)$ is some $F_{s}(s \leq r)$, we are reduced to considering the two cases dealt with in Lemmata 6 and 7. In view of Lemma 4, the proof of Theorem 2 is now complete, since the cases $\underline{B}_{0}, \underline{B}_{1}$ are known [11], [13].
§3. Model companions for T_{n}. The existence of T_{n}^{*}, the model companion of T_{n}, for $0 \leq n \leq \omega$ has been known for some time. As far as the author knows, it appeared in print first in Burris [1]. However, as noted there, no description of the theories T_{n}^{*} was known then. T_{0}^{*} belongs to the folklore of the subject: It is the elementary theory of atomless Boolean algebras, see, e.g., [6] or, for an elementary account, [11]. An explicit description of T_{1}^{*} appeared in Schmitt [13]. Schmitt's constructions are based on some specific features of Stone algebras: The availability of a workable "triple" characterization of Stone algebras, and the coincidence between skeleton and center in such algebras. While the second property fails for $n \geq 2$, triple constructions for algebras in \underline{B}_{n} exist for $n \geq 2$; see Katriňák [8] and [9]. Their technical complexity seems, however, to prevent a ready adaptation of Schmitt's techniques to the cases $n \geq 2$. A further existence proof for T_{0}^{*}, T_{1}^{*} and T_{2}^{*} was given by Weispfenning in [14]. No axiomatization of T_{2}^{*} is provided there, however, and the absence of the amalgamation property in \underline{B}_{n} for $2<n<\omega$ prevents a direct extension of Weispfenning's results to T_{n} for these values of n.

It is well known that if $E(\underline{K})$ is a generalized elementary class for $\underline{\underline{K}}$ the class of all models of some universal theory T, then $T^{*}=\operatorname{Th}(E(\underline{K}))$ is the model companion of T. The T_{n} are obviously universal for $0 \leq n \leq \omega$. Now, for $L \in \underline{B}_{n}, 0 \leq$ $n \leq \omega$, the sets $C L, S L, D L$, Ston $L, B_{L}(s)$ are clearly definable by formulae from $\mathscr{L}(\mathscr{L}(L)$ for the last); and so is the concept of a partition (proper partition) of fixed length. It follows that conditions AC1-AC4n and EC1-EC4 may be formalized by \forall_{2}-sentences from \mathscr{L}. Let $\phi_{1}, \phi_{2}, \phi_{3}(n), \phi_{4}(n)$ be such formalizations of $\mathrm{AC} 1, \mathrm{AC} 2, \mathrm{AC} 3 n, \mathrm{AC} 4 n$ for $2 \leq n \leq \omega$, and similarly θ_{i} for $\mathrm{EC} i(1 \leq i \leq 4)$. We may now rephrase Theorem 2 as follows:

Theorem 8. The model companions T_{n}^{*} of T_{n} for $0 \leq n \leq \omega$ are given by:
$T_{0}^{*}=T_{0} \cup\left\{\phi_{1}\right\}$,
$T_{1}^{*}=T_{1} \cup\left\{\phi_{1}, \phi_{2}, \theta_{1}, \theta_{2}, \theta_{3}\right\}$,
$T_{n}^{*}=T_{n} \cup\left\{\phi_{1}, \phi_{2}, \phi_{3}(n), \phi_{4}(n), \theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right\}$ for $2 \leq n \leq \omega$.
Hence, T_{n}^{*} is finitely axiomatizable for all n.
Corollary 9. T_{n}^{*} is κ_{0}-categorical for all n.
Proof. See Burris [1].
Corollary 10. T_{n}^{*} is a model completion of T_{n} precisely for $n=0,1,2, \omega$.
Proof. $\underline{B}_{n}=\operatorname{Mod}\left(T_{n}\right)$ has the amalgamation property exactly for these values of n (see [4]). The result follows (see [2]).

Corollary 11. T_{n}^{*} is a complete theory for all n.
Proof. T_{n}^{*} is complete iff $\underline{B}_{n}=\operatorname{Mod}\left(T_{n}\right)$ has the joint embedding property (see [6]). Now 2 is an absolute subretract in \underline{B}_{n} for all n (see [5]), hence $L_{1}, L_{2} \in \underline{B}_{n}$ may be embedded into $L_{1} \times L_{2} \in \underline{B}_{n}$.

REFERENCES

[1] S. Burris, An existonce theorem for model companions, Proceedings of the Ulm Lattice Theory Conference (G. Kalmbach, Editor), Ulm, 1975, pp. 33-37.
[2] P. Eklof and G. Sabbagh, Model completions and modules, Annals of Mathematical Logic, vol. 2 (1970), pp. 251-295.
[3] G. Grätzer, Lattice theory: First concepts and distributive lattices, Freeman, San Francisco, 1971.
[4] G. GräTZER and H. Lakser, The structure of pseudocomplemented distributive lattices. II: Congruence extension and amalgamation, Transactions of the American Mathematical Society, vol. 156 (1971), pp. 343-357.
[5] ——, The structure of pseudocomplemented distributive lattices. III: Injective and absolute subretracts, Transactions of the American Mathematical Society, vol. 169 (1972), pp. 475-487.
[6] J. Hirschfeld and W. H. Wheeler, Forcing, arithmetic, division rings, Lecture Notes in Mathematics, vol. 454, Springer-Verlag, Berlin and New York, 1975.
[7] T. KATRIŇÁk, Subdirectly irreducible modular p-algebras, Algebra Universalis, vol. 2 (1972), pp. 166-173.
[8] ——Ueber eine Konstruktion der distributiven pseudokomplementären Verbände, Mathematische Nachrichten, vol. 53 (1972), pp. 85-99.
[9] —_, Die Kennzeichnung der distributiven pseudokomplementären Halbverbände, Journal fûr die Reine und Angewandte Mathematik, vol. 241 (1970), pp. 160-179.
[10] K. B. Lee, Equational classes of distributive pseudo-complemented lattices, Canadian Journal of Mathematics, vol. 22(1970), pp. 881-891.
[11] J. Schmid, Algebraically and existentially closed distributive lattices, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 25 (1979), pp. 525-530.
[12] ——, Algebraically closed distributive p-algebras, Algebra Universalis (to appear).
[13] P.H. Schmitt, The model completion of Stone algebras, Annales Scientifiques de IVUiversité de Clermont, Série Mathématique, fasc. 13 (1976), pp. 135-155.
[14] V. Weispfenning, A note on K_{0}-categorical model companions, Archiv für Mathematische Logik und Grundlagenforschung, vol. 19(1978), pp. 23-29.

UNIVERSITÄT BERN

BERN, SWITZERLAND

