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1. Introduction

Suppose that u is a subharm onic function on the open unit disk satisfying
the condition

limsup \u(reid)\d6 < +00. (1.1)

r-»l Jo

Then, as has been shown by Littlewood [2 ; p. 393], the radial limit

\imu{rei0) (1.2)
r-»l

will exist finitely for almost all directions 6. Ifu is harmonic, the limit even
exists non-tangentially. That this conclusion is, however, no longer true in
the subharmonic case has been pointed out by Zygmund [4; pp. 644-645];
there exists an admitted function u which has no non-tangential limits.

To ensure the existence almost everywhere of non-tangential limits for
u, a further condition is therefore needed. As such a condition it is natural
to consider some restriction on the mass distribution (harmonicity being a
rather severe restriction of this type); one might reasonably require that
the mass distribution be given by a density function A for which | A | does
not grow too rapidly near the boundary. A result of this sort, due to
Tolsted [5; pp. 330-332], asserts that non-tangential limits exist almost
everywhere if the density A is such that

{l-r)\X{rei6)\\og+\X{reid)\rdddr< + 00. (1.3)
Jo Jo

Our objective here is to establish, the existence almost everywhere of
non-tangential limits under some rather simple growth-rate conditions
on |A| which are fundamentally different from (1.3). The following two
theorems are proved.

THEOEBM 1. Let u be a subharmonic function on the open unit disk
satisfying (1.1), and suppose iliat the mass distribution for u is given by a
density function A. If there exist real numbers M and 8 (< 1) such that

M

for 8 < r < 1 and all 6, then u has finite non-tangential limits at almost all
boundary points. The exponent 2 in (1.4) is best possible.
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THEOREM 2. Let u be a subharmonic function on the open unit disk
satisfying (1.1), and suppose that the mass distribution for u is given by a
density function A. / / there exist real numbers p>\ and S( < 1) such that

P f 7 7 ( l -
Js Jo

+oo, (1.5)

then u has finite non-tangential limits at almost all boundary points. The
conditionp>\ here cannot be replaced by p^ 1.

2. Preliminaries
In all of the above situations the role of (1.1) is merely to shift the

burden of proof from u to a corresponding Green's potential U. That is,
by virtue of (1.1) u can be expressed as

u=U + h, (2.1)

where U is the Green's potential of the mass distribution for u and h is a
harmonic function satisfying the condition on u in (1.1). Since this
condition forces h to have finite non-tangential limits at almost all boundary
points, the problem reduces to that of determining when U will admit
such limits.

The latter problem was attacked by Tolsted in [5] by obtaining some
rather delicate estimates for both the Green's function and the mass density.
Our procedure is quite different. It evolves from a technique used by
Privalov [3; pp. 31-32] to infer the existence of non-tangential limits of
analytic functions as a consequence of the existence of radial limits.
Although this technique, based on Vitali's theorem, breaks down even in
the case of harmonic functions, certain refinements permit its application
to Green's potentials. These involve the normal family theory developed
in [1] and the extension of Littlewood's theorem by Tolsted [4] to the
effect that at almost all boundary points £ the Green's potential U has
limit 0 along almost all segments terminating in £.

The following notational conventions will be adopted. We use a for
2-dimensional Lebesgue measure, Nr(z) for the open disk of radius r about z,
and Cr{z) for the circumference of this disk. The unit disk thus appears
as iVr

1(0), and we denote by R^ the radius of this disk which terminates
in a given point £ of C^O). At any point £ of Cx(0) the Stolz domain
£«(£) (0<a<7r/2) will be defined as the circular sector in N^O) having
vertex at £, axis along R^, vertex angle 2a and radius pa equal to half the
length of each of the chords of CjjO) lying on the sides of the sector.

In studying the Green's potential U it will be convenient to deal with
positive mass distributions, and we shall therefore take the given function
as superharmonic, rather than subharmonic. Our derivations centre
about four fundamental propositions, which we now list.

PROPOSITION A. (Tolsted). / / U is the Green's potential of a positive
mass distribution on N^O), then for almost all points £ on C^O) the relation
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U(z)->0 holds as z->-£ along almost all segments in N^O) terminating in £.
(See [4; p. 644].)

PROPOSITION B. (Tolsted-Zygmund). If m is a positive mass dis-
tribution on iV1(0) satisfying

— \z\)dm(z) < +oo,

then for almost all £ on G'̂ O) the mass m[#a(£)] is finite for each a(0 < a < 7r/2).
(See [5; p. 325]; the fact that a can be chosen after £ follows by con-
sidering a sequence of oc's increasing to TT/2.)

PROPOSITION C. (Arsove). For each n( = l, 2, ...) let un be a super-
harmonic function on a region £1 with mass distribution given by a density
function Xn. If {un} is bounded in L1 over D. and {A,J is bounded in Lv over Q,
for some p>l, then {un} is a normal family of continuous functions. If,
further, un^-0 on a set dense in Q., then wn->0 uniformly on compact sitbsets
of Q.. (See [1]; the final assertion here is an evident consequence of
normality.)

PROPOSITION D. Let U be the Green's potential of a positive mass
distribution on iV1(O), and suppose that U is bounded above on a radius R^.
Then there exists a real number K such that

JE.

Fig. 1
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where Es is defined for 0<8<pa as the subsector of 8a(£) of radius S given

Proposition D is easily deduced from the super mean-value property,
and we indicate the proof with reference to Fig. 1. Here a circle Cp(z)
is taken internally tangent to C1(0) at £, the radius p being so chosen that
Cp(z) passes through the three vertices of the sector Es. Thus,
p = hj{2 cos a). By the areal super mean-value property for U over Np(z)
we obtain

f Uda^ f
JES JN

f Uda^TTPU(z)^ J 8 ,
S NP(Z) 4 cos2 a

The proposition then follows from the boundedness of U on R^.
Proceeding now to the proofs of Theorems 1 and 2, we first establish

Theorem 2 and then apply this result in proving Theorem 1.

3. Proof of Theorem 2

As has been observed, it suffices to replace u by the Green's potential U
of a positive mass distribution with density A satisfying (1.5) for some
p > 1. There is no loss of generality in also taking & = 0, and we shall then
show that U has non-tangential limit 0 at almost all points of C^O).

Before embarking on the proof, however, we remark that the above
conclusion is not ensured by (1.5) in the case of p=l. Indeed, when
p=l, (1.5) reduces to

(l-r)\\(reid)\rdddr<+<x), (3.1)JT
Jo Joand this condition is known to be necessary and sufficient for the mass

distribution with density A to admit a Green's potential. On the other
hand, an easy modification of the Zygmund example gives rise to a Green's
potential admitting no non-tangential limits and having its mass
distribution given by a density function.

Returning to the case of p > 1, we invoke Propositions A and B to infer
that for almost all points £ of (^(O) and all a (0<a<?r/2) the following
properties hold:

U(z) -> 0 as z -*• £ along R^ and along almost all other segments

in 2^(0) terminating in £, and (3.2)

]pda(z)< + oo. (3.3)

Let us fix our attention on one such Stolz domain #a(£) and take £
as the origin of polar coordinates (/>, <f>) as indicated in Fig. 2. Conditions
(3.2) and (3.3) then result in

\imU(pei*) = 0 (3.4)
p-*0
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for <f> = 0 and for almost all <f> on [ — a, a] and

P P p2(p~1)[Mpei'f>)]ppd(f>dp< +00. (3.5)
o J-a.

Here we use the fact that there is a constant c such that p^c( l —|z|)
(this follows, for example, by applying the law of sines to the triangle with
vertices at £, z, and the point on C^O) intersected by the radius from 0
through z).

The key step in the proof is.to subdivide $a(£) into countably many
annular sectors by inserting arcs of radius p = pJ2n (n = 1, 2, ...). Let us use
the notation A (pf, p") for the open annular sector with inner radius p and
outer radius p", i.e.,

A(p')p")={pei*:pf<p<p", - a<0<a} ,

and write D. for the annular sector A (pa/4, 2pa).
For each n we map A{2-n-2pa, 2-n+1pa) conformally onto Q. by means

of a dilation having scale factor 2n, so that the point pe^ goes over into the
point te^ with

t = 2n
P.

The image of U confined to A{2-n~2pa, 2~n+1pa) is thus a superharmonic
function un on H such that

un(te
i*)=U{pei*),

and it is readily seen that the mass distribution for un is given by a density
function Xn satisfying

p=o

JOUll. 165

Fig. 2
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This leads at once to the following estimate for the IP norm of Att

over Q.

J PoJi J —a,

P2~n+1 o Ca
a (2-^-^[X{Pe^)f pd<j>dP

h'^Pa J-*

( 4 \ 2(p-l) C Pa f «— I
pa I Jo J-a

It is thus apparent from (3.5) that {\n} is bounded in Lv norm over Q.
To show that {un} is bounded in L1 norm, we appeal to Proposition D,
which yields

J2-"-2Pa J-*

We are now in a position to apply Proposition C, and for this we first
observe from (3.4) that un-> 0 on a dense subset of Q. consisting of almost
all radial segments. Hence, un->0 uniformly on compact subsets of Q..
For any given jS (0 < /J < TT/2) we can assume that a has been chosen larger
than /?. The convergence of {&„} to 0 is then uniform on the compact
sector determined by the inequalities pJ2^t^pa and — jS^^^jS. This
implies that ?7(z)->0 as z->^ within the Stolz domain 8p(£), completing
the proof.

4. Proof of Theorem 1

It is now an easy matter to verify that the condition (1.4) guarantees the
existence of finite non-tangential limits at almost all points of (^(O).
In fact, fixing p > 1, we have

and hence

f l /*27T f l f2ff
(l-r)2P-1|A(rei*)|Prd0d5r^if*J-1 {l-r)\\{reid)\rdddr.

J8 Jo JS Jo

Since the mass distribution with density A necessarily admits a Green's
potential, the inequality in (3.1) ensures that the right-hand integral
here is finite, and there remains only to apply Theorem 2.

To prove Theorem 1 in its entirety, we are still obliged to show that the
exponent 2 in (1.4) is best possible, i.e., that 2 cannot be replaced by any
larger exponent. This will be done by establishing the following property.
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LEMMA. For every e > 0 there exists a positive mass distribution m on
such that

(1) mis given by a density function A satisfying

uniformly in 6, and

(2) m admits a Green's potential U satisfying

lim sup U(z) ^ — e
z-+C 2

for all £ on G^O) and all Stolz domains Sa(£,).

From (1) we see that if the exponent 2 in (1.4) were increased to 2 + e,
the hypothesis of Theorem 1 would be fulfilled by the subharmonic function
u — — U. On the other hand, (2) shows that U can admit non-tangential
limits only at those points £ of C^O) where the radial upper limits of U are
positive. Since we know that such points form a set of angular measure zero,
it is plain that Theorem 1 would no longer hold with the exponent 2 replaced
by 2 + e.

In order to prove the lemma, we fix e > 0 and construct the mass
distribution m by spreading mass uniformly over small disks placed on
concentric circles about the origin. Let {S,J be any monotone decreasing
sequence of numbers 0 < 8n < 1 such that the series

converges (for example, 8n = exp( — w4)), and put

Nn = greatest integer ^ — | log Sn |* ,
L on J

I " 1 -
For each n there will be inserted Nn small disks an of radius an with centres
equally spaced on Crn(Q), and mass will be distributed uniformly on these
Nn disks so as to have density

Carrying out this procedure for all n gives rise to the mass distribution m.
I t is easily verified that every Stolz domain contains infinitely many

of the inserted disks. We note also that

l im-2S-=0,
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and the inequality

for reie on an yields conclusion (1). That m admits a Green's potential is
apparent from the expression

n = l

I-*

together with the convergence of the final series.
We proceed now to estimate the Green's potential U of m at the centre z

of an arbitrary disk an. This can be done simply by observing that the
Green's function Gz{t) for iV^O) is given by

-log
1-lz

and evaluating the Green's potential of m confined to the one disk centred
at z. There results

f
Jo

o Jo \ p

An elementary calculation then shows that the right-hand member tends
to 7re/2 as n-> oo, establishing (2) and completing the proof.
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