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Introduction
An Ti-knot will be a smooth, oriented submanifold Kn c= Sn+2 such that Kn is

homeomorphic to Sn. Given two knots K™ and K%, we define their connected sum
K\ # K% as in [13], p. 39. The cancellation problem for w-knots is the following.

Problem. Assume that iT™, K% and Kn are »-knots such that K* # Kn is isotopic to
K% # Kn. Does this imply that K\ and K% are isotopic?

The cancellation problem has a positive solution if n = 1. Indeed, Schubert has
shown that every 1-knot has a unique decomposition as a connected sum of finitely
many indecomposable 1-knots (cf. [14]).

For n odd, counter-examples to the cancellation of n-knots have been given in [2].
In the present note we shall show that the cancellation problem also has a negative
solution for n even, n ̂  4. The case n = 2 remains open.

The first section is entirely algebraic, and contains counter-examples to the cancel-
lation of hyperbolic e-hermitian forms (e = ± 1) over orders in algebraic number fields.
This is inspired by results of Wiegand concerning the cancellation of torsion-free
modules over commutative rings of dimension 1, see [17]. We shall apply this in
Section 2 to obtain the desired knot-theoretical examples.

1. Cancellation of hyperbolic e-hermitian forms

Let F be an algebraic number field with a Q-involution, which we shall denote by
x -*• x. Let S be a Dedekind set of primes of F (cf. [11], § 21), and let R be the ring of
^-integers of F. Let R be an $-order of F, i.e. a subring of finite index of R. Assume
R = R. Let M be a torsion free i?-module of finite rank, and let M' = TA.ora.R{M, R)
with the ^-module structure given by rf(x) = f{rx). We shall say that M is reflexive if
the evaluation homomorphism e:M^>M", defined by e(m)(/) =/(m), is an
isomorphism.

If M is a reflexive ^-module, let us associate to M the hyperbolic e-hermitian
(e = + 1) form H(M), defined as follows:

M@M'xM@M'->R

(*>/) x (y,g) -

Let N be a torsion free i?-module, and let h: N x N -> R be an e-hermitian form. We
shall say that (N, h) is unimodular if the homomorphism induced by h, ad (h): N -*• N',
is bijective.

If M is reflexive, then it is easy to check that H(M) is a unimodular form.
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Bak and Scharlau have proved that if R is Dedekind, and if the involution is non-
trivial, then cancellation holds for hyperbolic forms, i.e.

H{MX) ffl H{M) ~ H(M2) B H(M)

implies HiM^ ^ H(M2), where EB denotes the orthogonal sum, cf. [1], theorem 7-1
(ii). We shall see that this is not necessarily the case when R is not Dedekind. Notice
that if the involution is trivial, then there are counter-examples to the cancellation of
hyperbolic forms even if R is Dedekind (see Parimala[12]).

Our examples are inspired by some results of Wiegand[17]. We shall begin by
recalling these results. Let c = {r eR such that rR c Rj be the conductor of R in R. For
any ring S, we shall denote by S* the group of units of 8. Let

E(R) = Goker(R* ^ (M/c)*)

and let D(R) be the cokernel of the composition {R/c)* -> (R/c)* -> E(R). Let M be a
torsion-free i2-module, and let aeE(R). Let <j> be an automorphism of RM/cM such
that det(0) maps to a in E(R). We shall define a torsion-free i?-module Ma by the
pullback m

M/cM > *• RM/cM —f—• RM/cM

Wiegand shows that the correspondence (a, M) -*• Ma is a well-defined action of the
group E(R) on the set of isomorphism classes of torsion free i?-modules, cf. [17],
proposition 2-2.

Let J be an invertible iJ-ideal, and let a,be E(R). Then JaJb = J"". In particular, Ja

is also invertible.
It is easy to check that R is a reflexive i?-module (use the identification of

R' = HomR(R,R) with c). Therefore H(R) is a unimodular e-hermitian form.

PROPOSITION. Let aeE(R), and set I = Ra. Then

(i) H(I)mH(R)zH(B)mH(R).
(ii) Ife = + 1 and the involution is trivial, then H(I) ^ H(R) if and only if the class

of a is trivial in D(R).
(iii) Let us assume that the class ofaa'1 is non-trivial in D(R). Then I © J"1 ^ R® R.

In particular, H(I) £ H(R).

Proof, (i) follows immediately from the fact that / © R ^ R © R, see Wiegand [17],
theorem 2-3 (iv).

(ii) As the involution is trivial, there are only two isotropic lines in H(R). This
implies that if H(I) ~ H(R), then / ~ R. Therefore by Wiegand[17], proposition
2-2 (iv), the class of a is trivial in D(R).

(iii) As / = Ra, it is easy to check that / = Rs. We are assuming that the class of
aa~l is not trivial in D{R). By Wiegand[17], proposition 2-2 (iv), this implies that
/ / - ! = R"*'1 is not isomorphic to R. Therefore / © I'1 £ R © R. But I © 7"1 is the
underlying module of H(I), so H(I) % H(R).

Using the above Proposition it is easy to obtain explicit examples of orders R and
ideals / such that H{I)SH(R) g H(R)mH(R), but H(I) £ H(R). The following
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Cancellation and simple knots 113
examples have been obtained in this way, but they are so simple that we shall check
everything by direct computation. These examples have been chosen in. such a way
that they can be used in Section 2 to construct the desired knot-theoretical examples.

Example 1
Let

R = Z[M

where a = (1 - V - 19)/2. Then R = Z[a] [±], and c = 3.R. Let / be the kernel of the
Z-homomorphism (j>: R -> F5 defined by <j>{^j— 19) = 1. It is easy to check that II^1 is
not a principal ideal, so / © I"1 £ R © R. In particular, H(I) c£ H(R).

On the other hand, we have H(I) ffl H(R) s H(R) EB H(R). To see this, it is enough
to check that / © R ^ R © R. Let us define an iMiomomorphism f:R@R^-I@R
by the matrix

10

It is easy to check that/(i2 © R)c / © R; for instance, f(R) £ / because 3^£ R and
3a 61. It remains to see that/is an isomorphism. Let us consider the diagram

n / n
R © R -> R © R.

The index of R © £ in ^ © R is 3. We have det A = a, therefore the index of/(^ © R)
in R® R h 5. On the other hand, the index of I © R in ^ © R is 15, therefore
f(R®R) = I® R.

To understand this example from the point of view of Wiegand's results, notice that
D(R) ~ F9/F3 and that / = Ra, where a is the class of a in D(R). It is straightforward to
check that a 4= a in D(R).

Example 2

Let i? = Z[«]/(«2-<+16) = Z[3a], where a = (l + V~7)/2. Then R = Z[a] and
c = 3$. Let / be the .R-ideal, which is generated by 2 and by 3a + 1. As in Example 1,
we check that H(I) £H(R) and that H(I) ffl H{R) ~ H(R) ffl 5(5). An isomorphism
/ : R®R->I@Ris given by the matrix

A \3(3a+l)

Let us consider £ = I.[t,t-v]/{lQt2-^U + \Q) = R[$. Then 8 = JB[J], and the
conductor of S in S is 3S. Set J = IS. Then J = 8, so #(J) = #(£).

Notice that -D(-R) ^ Fj/Fj, and that / = Ra, where a is the class of 1 - a in D(R). On
the other hand, D(S) is trivial.

2. Cancellation of simple knots

Let JTn be an «-knot, and let U be a tubular neighbourhood of Kn. Let X = <Sn+2\E7
be the complement of if™. We shall say that Kn is simple if TT^X) ~ ^(/S") for i < q,
where n = 2q or 2g — 1.
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Odd dimensional simple knots

Let A = l[t, I'1] and let L be a Z-torsion free A-module such that i-t: L-+ L is an
isomorphism. Let us consider the Z-involution of A which sends t to t~l. Assume that
there exists a unimodular (— l)9+1-hermitian form h: LxL-> Q(t)/A. Then Kervaire's
construction ([8], theorem II. 3) can be used to show that for every integer q > 3, there
exists a simple (2q — 1 )-knot K such that the Blanchfield form associated to K is (L, h);
see Kearton[6], addendum 8-3. In particular, L ^ Ha(X, Z), where X is the complement
of K and X\& the infinite cyclic cover of X. Moreover, if (L, h) is skew-hermitian and if
the signature of the rational quadratic form associated to (L, h) is divisible by 16 (see
Trotter[15] or [16] for the definition of this form), then there exists a simple 3-knot
with Blanchfield form isometric to (L, h). Recall that L is called the knot module oiK.

Example 3
Let i2 = Z[«,r1]/(43i2-85< + 43) and let us consider the e-hermitian forms H(I),

H(R) and H{R), as in § 1, Example 1. It is easy to see that these forms and their under-
lying modules have the properties that we have just described. Moreover, if e = — 1
then it is straightforward to check that the associated rational quadratic forms have
signature zero. Let iff9"1, Kg-1 and K2*-1 be the simple knots associated to H{I),
H(R) and H{R), for q > 2. By results of Levine[10], Trotter [15] and Kearton[6], two
simple (2q — 1 )-knots (q ^ 2), are isotopic if and only if the associated Blanchfield forms
are isometric. Therefore Kx # K is isotopic to K2 # K, but K1 is not isotopic to K2.
Notice that these knots are not fibred, whereas the counter-examples of [2] are
fibred.

Example 4
Leti? = l[t]/\t*-t+ 16) and S = I[t,t-1]/(l6t2-Blt+ 16) = JR[|]asin§l,Example2.

Let K^'1 and Z29"1 be the simple (2#-l)-knots (q > 3), associated to H(S) and
H($). The e-hermitian forms H(I) and H(R) correspond to minimal Seifert surfaces Mx

and M2 of K^~x. Similarly H(R) corresponds to a minimal Seifert surface if29 of
if29"1. Then Jf2« # if29 is isotopic to if|9 # if29, but Mf and M%* are not isotopic
(cf. [3], §1).

Even-dimensional simple knots
We shall obtain the counter-examples to the cancellation of even-dimensional knots

by spinning: this is an idea of Kearton, cf. [7]. If 2n is any ri-knot, we shall denote by
<r(Zn) the (n+ l)-knot obtained by spinning Sn (cf. [9]). Let X, crX be the complements
of the knots S, <rZ and let X, o~Xbe the infinite cyclic covers. If S29-1 is simple, then
o-S29"1 is also simple, and Hq(o-X) ^ Hq+1(al) ^ Hq{X), cf. Gordon [4], theorem 4-1.

Example 5
Let Kf-\ Kg-1 and Z29"1 be the simple knots of Example 3 (q > 2). Then

Zf9"1 # Z29"1 and Kg-1 # K2*-1 are isotopic. As spinning commutes with connected
sums (cf. [5]), the (2g)-knots al.K^-1) and crlKg-1) # ^(Z29"1) are also isotopic. Recall
that the knot modules of K^-1 and Kg-1 are / © I'1 and R® R, which are not iso-
morphic. Therefore by the above result of Gordon we see that ô lsT29"1) and cr(K!iQ-1) are
not isotopic.
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I thank Jean-Pierre Serre for pointing out to me [17], and Cherry Kearton for

stimulating my interest in the cancellation problem for even-dimensional knots.
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