Cancellation of hyperbolic ε-hermitian forms and of simple knots

By EVA BAYER-FLUCKIGER*
Section de Mathématiques, Université de Genève, Switzerland

(Received 6 November 1984)

Introduction

An n-knot will be a smooth, oriented submanifold $K^{n} \subset S^{n+2}$ such that K^{n} is homeomorphic to S^{n}. Given two knots K_{1}^{n} and K_{2}^{n}, we define their connected sum $K_{1}^{n} \# K_{2}^{n}$ as in [13], p. 39. The cancellation problem for n-knots is the following.
Problem. Assume that K_{1}^{n}, K_{2}^{n} and K^{n} are n-knots such that $K_{1}^{n} \# K^{n}$ is isotopic to $K_{2}^{n} \# K^{n}$. Does this imply that K_{1}^{n} and K_{2}^{n} are isotopic?

The cancellation problem has a positive solution if $n=1$. Indeed, Schubert has shown that every 1 -knot has a unique decomposition as a connected sum of finitely many indecomposable 1-knots (cf. [14]).

For n odd, counter-examples to the cancellation of n-knots have been given in [2]. In the present note we shall show that the cancellation problem also has a negative solution for n even, $n \geqslant 4$. The case $n=2$ remains open.

The first section is entirely algebraic, and contains counter-examples to the cancellation of hyperbolic ϵ-hermitian forms ($\epsilon= \pm 1$) over orders in algebraic number fields. This is inspired by results of Wiegand concerning the cancellation of torsion-free modules over commutative rings of dimension 1, see [17]. We shall apply this in Section 2 to obtain the desired knot-theoretical examples.

1. Cancellation of hyperbolic ϵ-hermitian forms

Let F be an algebraic number field with a \mathbb{Q}-involution, which we shall denote by $x \rightarrow \bar{x}$. Let S be a Dedekind set of primes of F (cf. [11], §21), and let \tilde{R} be the ring of S-integers of F. Let R be an S-order of F, i.e. a subring of finite index of \widetilde{R}. Assume $\bar{R}=R$. Let M be a torsion free R-module of finite rank, and let $M^{\prime}=\operatorname{Hom}_{R}(M, R)$ with the R-module structure given by $r f(x)=f(\bar{r} x)$. We shall say that M is reflexive if the evaluation homomorphism $e: M \rightarrow M^{n}$, defined by $e(m)(f)=\overline{f(m)}$, is an isomorphism.

If M is a reflexive R-module, let us associate to M the hyperbolic ϵ-hermitian ($\epsilon= \pm 1$) form $H(M)$, defined as follows:

$$
\begin{aligned}
M \oplus M^{\prime} \times M \oplus M^{\prime} & \rightarrow R \\
\quad(x, f) \times(y, g) & \rightarrow f(y)+\overline{\epsilon g(x)} .
\end{aligned}
$$

Let N be a torsion free R-module, and let $h: N \times N \rightarrow R$ be an ϵ-hermitian form. We shall say that (N, h) is unimodular if the homomorphism induced by $h, \operatorname{ad}(h): N \rightarrow N^{\prime}$, is bijective.

If M is reflexive, then it is easy to check that $H(M)$ is a unimodular form.

[^0]Bak and Scharlau have proved that if R is Dedekind，and if the involution is non－ trivial，then cancellation holds for hyperbolic forms，i．e．

$$
H\left(M_{1}\right) \boxplus H(M) \cong H\left(M_{2}\right) \boxplus H(M)
$$

implies $H\left(M_{1}\right) \cong H\left(M_{2}\right)$ ，where $⿴ 囗 十 ⺝$ denotes the orthogonal sum，cf．［1］，theorem $7 \cdot 1$ （ii）．We shall see that this is not necessarily the case when R is not Dedekind．Notice that if the involution is trivial，then there are counter－examples to the cancellation of hyperbolic forms even if R is Dedekind（see Parimala［12］）．

Our examples are inspired by some results of Wiegand［17］．We shall begin by recalling these results．Let $c=\{r \in R$ such that $r \tilde{R} \subseteq R\}$ be the conductor of R in R ．For any ring S ，we shall denote by S^{*} the group of units of S ．Let

$$
E(R)=\operatorname{Coker}\left(\tilde{R}^{*} \rightarrow(\tilde{R} / c)^{*}\right)
$$

and let $D(R)$ be the cokernel of the composition $(R / c)^{*} \rightarrow(\tilde{R} / c)^{*} \rightarrow E(R)$ ．Let M be a torsion－free R－module，and let $a \in E(R)$ ．Let ϕ be an automorphism of $\tilde{R} M / c M$ such that $\operatorname{det}(\phi)$ maps to a in $E(R)$ ．We shall define a torsion－free R－module M^{a} by the pullback

Wiegand shows that the correspondence $(a, M) \rightarrow M^{a}$ is a well－defined action of the group $E(R)$ on the set of isomorphism classes of torsion free R－modules，cf．［17］， proposition 2．2．

Let J be an invertible R－ideal，and let $a, b \in E(R)$ ．Then $J^{a} J^{b}=J^{a b}$ ．In particular，J^{a} is also invertible．

It is easy to check that \tilde{R} is a reflexive R－module（use the identification of $\tilde{R}^{\prime}=\operatorname{Hom}_{R}(\tilde{R}, R)$ with $\left.c\right)$ ．Therefore $H(\tilde{R})$ is a unimodular ϵ－hermitian form．

Proposition．Let $a \in E(R)$ ，and set $I=R^{a}$ ．Then
（i）$H(I) \boxplus H(\tilde{R}) \cong H(R) \boxplus H(\widetilde{R})$ ．
（ii）If $\epsilon=+1$ and the involution is trivial，then $H(I) \cong H(R)$ if and only if the class of a is trivial in $D(R)$ ．
（iii）Let us assume that the class of a \bar{a}^{-1} is non－trivial in $D(R)$ ．Then $I \oplus \bar{I}^{-1} \not \nexists R \oplus R$ ． In particular，$H(I) \neq H(R)$ ．

Proof．（i）follows immediately from the fact that $I \oplus \tilde{R} \cong R \oplus \tilde{R}$ ，see Wiegand［17］， theorem 2.3 （iv）．
（ii）As the involution is trivial，there are only two isotropic lines in $H(R)$ ．This implies that if $H(I) \cong H(R)$ ，then $I \cong R$ ．Therefore by Wiegand［17］，proposition $2 \cdot 2$（iv），the class of a is trivial in $D(R)$ ．
（iii）As $I=R^{a}$ ，it is easy to check that $\bar{I}=R^{\bar{a}}$ ．We are assuming that the class of $a \bar{a}^{-1}$ is not trivial in $D(R)$ ．By Wiegand［17］，proposition $2 \cdot 2$（iv），this implies that $I \bar{I}^{-1}=R^{a \bar{a}^{-1}}$ is not isomorphic to R ．Therefore $I \oplus \bar{I}^{-1} \not \not \nexists R \oplus R$ ．But I $\oplus \bar{I}^{-1}$ is the underlying module of $H(I)$ ，so $H(I) \nsubseteq H(R)$ ．

Using the above Proposition it is easy to obtain explicit examples of orders R and ideals I such that $H(I) \boxplus H(\tilde{R}) \cong H(R) \boxplus H(\tilde{R})$ ，but $H(I) \nsubseteq H(R)$ ．The following
examples have been obtained in this way, but they are so simple that we shall check everything by direct computation. These examples have been chosen in such a way that they can be used in Section 2 to construct the desired knot-theoretical examples.

Example 1

Let

$$
R=\mathbb{Z}\left[t, t^{-1}\right] /\left(43 t^{2}-85 t+43\right)=\mathbb{Z}[3 \alpha]\left[\frac{1}{43}\right],
$$

where $\alpha=(1-\sqrt{ }-19) / 2$. Then $\tilde{R}=\mathbb{Z}[\alpha]\left[\frac{1}{43}\right]$, and $c=3 \tilde{R}$. Let I be the kernel of the \mathbb{Z}-homomorphism $\phi: R \rightarrow \mathbb{F}_{5}$ defined by $\phi(\sqrt{ }-19)=1$. It is easy to check that $I \bar{I}^{-1}$ is not a principal ideal, so $I \oplus \bar{I}^{-1} \not \not 二 R \oplus R$. In particular, $H(I) \not \nVdash H(R)$.

On the other hand, we have $H(I) \boxplus H(\tilde{R}) \cong H(\tilde{R}) \boxplus H(\widetilde{R})$. To see this, it is enough to check that $I \oplus \tilde{R} \cong R \oplus \tilde{R}$. Let us define an R-homomorphism $f: R \oplus \tilde{R} \rightarrow I \oplus \tilde{R}$ by the matrix

$$
A=\left(\begin{array}{ll}
10 & 1 \\
9 \alpha & \alpha
\end{array}\right)
$$

It is easy to check that $f(R \oplus \tilde{R}) \subseteq I \oplus \tilde{R}$: for instance, $f(\tilde{R}) \subseteq I$ because $3 \tilde{R} \subseteq R$ and $3 \alpha \in I$. It remains to see that f is an isomorphism. Let us consider the diagram

$$
\begin{gathered}
R \oplus \tilde{R} \xrightarrow{f} I \oplus \tilde{R} \\
\tilde{R} \oplus \tilde{R} \tilde{R}^{f} \underset{R}{\cap} \oplus \tilde{R} .
\end{gathered}
$$

The index of $R \oplus \tilde{R}$ in $\tilde{R} \oplus \tilde{R}$ is 3. We have $\operatorname{det} A=\alpha$, therefore the index of $f(\tilde{R} \oplus \tilde{R})$ in $\tilde{R} \oplus \tilde{R}$ is 5 . On the other hand, the index of $I \oplus \tilde{R}$ in $\tilde{R} \oplus \tilde{R}$ is 15 , therefore $f(R \oplus \tilde{R})=I \oplus \tilde{R}$.

To understand this example from the point of view of Wiegand's results, notice that $D(R) \cong \mathbb{F}_{9}^{\prime} / \mathbb{F}_{3}^{\prime}$ and that $I=R^{a}$, where a is the class of α in $D(R)$. It is straightforward to check that $a \neq \bar{a}$ in $D(R)$.

Example 2

Let $R=\mathbb{Z}[t] /\left(t^{2}-t+16\right)=\mathbb{Z}[3 \alpha]$, where $\alpha=(1+\sqrt{ }-7) / 2$. Then $\tilde{R}=\mathbb{Z}[\alpha]$ and $c=3 \widetilde{R}$. Let I be the R-ideal, which is generated by 2 and by $3 \alpha+1$. As in Example 1, we check that $H(I) \nexists H(R)$ and that $H(I) \boxplus H(\tilde{R}) \cong H(R) \boxplus H(\tilde{R})$. An isomorphism $f: R \oplus \tilde{R} \rightarrow I \oplus \tilde{R}$ is given by the matrix

$$
A=\left(\begin{array}{cc}
4 & 1 \\
3(3 \alpha+1) & 2 \alpha+1
\end{array}\right)
$$

Let us consider $S=\mathbb{Z}\left[t, t^{-1}\right] /\left(16 t^{2}-31 t+16\right)=R\left[\frac{1}{2}\right]$. Then $S=R\left[\frac{1}{2}\right]$, and the conductor of \tilde{S} in S is $3 \widetilde{S}$. Set $J=I S$. Then $J=S$, so $H(J)=H(S)$.

Notice that $D(R) \cong \mathbb{F}_{\theta}^{\cdot} / \mathbb{F}_{3}^{-}$, and that $I=R^{a}$, where a is the class of $1-\alpha$ in $D(R)$. On the other hand, $D(S)$ is trivial.

2. Cancellation of simple knots

Let K^{n} be an n-knot, and let U be a tubular neighbourhood of K^{n}. Let $X=\overline{S^{n+2} \backslash U}$ be the complement of K^{n}. We shall say that K^{n} is simple if $\pi_{i}(X) \cong \pi_{i}\left(S^{\prime}\right)$ for $i<q$, where $n=2 q$ or $2 q-1$.

Odd dimensional simple knots

Let $\Lambda=\mathbb{Z}\left[t, t^{-1}\right]$ and let L be a \mathbb{Z}-torsion free Λ-module such that $1-t: L \rightarrow L$ is an isomorphism. Let us consider the \mathbb{Z}-involution of Λ which sends t to t^{-1}. Assume that there exists a unimodular (-1$)^{q+1}$-hermitian form $h: L \times L \rightarrow \mathbb{Q}(t) / \Lambda$. Then Kervaire's construction ([8], theorem II. 3) can be used to show that for every integer $q \geqslant 3$, there exists a simple $(2 q-1)$-knot K such that the Blanchfield form associated to K is (L, h); see Kearton [6], addendum 8•3. In particular, $L \cong H_{q}(\tilde{X}, \mathbb{Z})$, where X is the complement of K and \tilde{X} is the infinite cyclic cover of X. Moreover, if (L, h) is skew-hermitian and if the signature of the rational quadratic form associated to (L, h) is divisible by 16 (see Trotter [15] or [16] for the definition of this form), then there exists a simple 3 -knot with Blanchfield form isometric to (L, h). Recall that L is called the knot module of K.

Example 3

Let $R=\mathbb{Z}\left[t, t^{-1}\right] /\left(43 t^{2}-85 t+43\right)$ and let us consider the ϵ-hermitian forms $H(I)$, $H(R)$ and $H(\tilde{R})$, as in $\S 1$, Example 1. It is easy to see that these forms and their underlying modules have the properties that we have just described. Moreover, if $\epsilon=-1$ then it is straightforward to check that the associated rational quadratic forms have signature zero. Let $K_{1}^{2 q-1}, K_{2}^{2 q-1}$ and $K^{2 q-1}$ be the simple knots associated to $H(I)$, $H(R)$ and $H(\tilde{R})$, for $q \geqslant 2$. By results of Levine [10], Trotter[15] and Kearton [6], two simple ($2 q-1$)-knots ($q \geqslant 2$), are isotopic if and only if the associated Blanchfield forms are isometric. Therefore $K_{1} \# K$ is isotopic to $K_{2} \# K$, but K_{1} is not isotopic to K_{2}. Notice that these knots are not fibred, whereas the counter-examples of [2] are fibred.

Example 4

Let $R=\mathbb{Z}[t] /\left(t^{2}-t+16\right)$ and $S=\mathbb{Z}\left[t, t^{-1}\right] /\left(16 t^{2}-31 t+16\right)=R\left[\frac{1}{2}\right]$ asin § 1, Example 2. Let $K_{1}^{2 q-1}$ and $K^{2 q-1}$ be the simple ($2 q-1$)-knots ($q \geqslant 3$), associated to $H(S)$ and $H(\tilde{S})$. The ϵ-hermitian forms $H(I)$ and $H(R)$ correspond to minimal Seifert surfaces M_{1} and M_{2} of $K_{1}^{2 q-1}$. Similarly $H(\widetilde{R})$ corresponds to a minimal Seifert surface $M^{2 q}$ of $K^{2 q-1}$. Then $M_{1}^{2 q} \# M^{2 q}$ is isotopic to $M_{2}^{2 q} \# M^{2 q}$, but $M_{1}^{2 q}$ and $M_{2}^{2 q}$ are not isotopic (cf. [3], §1).

Even-dimensional simple knots

We shall obtain the counter-examples to the cancellation of even-dimensional knots by spinning: this is an idea of Kearton, cf. [7]. If Σ^{n} is any n-knot, we shall denote by $\sigma\left(\Sigma^{n}\right)$ the $(n+1)$-knot obtained by spinning Σ^{n} (cf. [9]). Let $X, \sigma X$ be the complements of the knots $\Sigma, \sigma \Sigma$ and let $\tilde{X}, \sigma \tilde{X}$ be the infinite cyclic covers. If $\Sigma^{2 q-1}$ is simple, then $\sigma \Sigma^{2 q-1}$ is also simple, and $H_{q}(\sigma \tilde{X}) \cong H_{q+1}(\sigma \tilde{X}) \cong H_{q}(\tilde{X})$, cf. Gordon [4], theorem 4•1.

Example 5

Let $K_{1}^{2 q-1}, K_{2}^{2 q-1}$ and $K^{2 q-1}$ be the simple knots of Example $3(q \geqslant 2)$. Then $K_{1}^{2 q-1} \# K^{2 q-1}$ and $K_{2}^{2 q-1} \# K^{2 q-1}$ are isotopic. As spinning commutes with connected sums (cf. [5]), the ($2 q$)-knots $\sigma\left(K_{1}^{2 q-1}\right)$ and $\sigma\left(K_{2}^{2 q-1}\right) \# \sigma\left(K^{2 q-1}\right)$ are also isotopic. Recall that the knot modules of $K_{1}^{2 q-1}$ and $K_{2}^{2 q-1}$ are $I \oplus \bar{I}^{-1}$ and $R \oplus R$, which are not isomorphic. Therefore by the above result of Gordon we seethat $\sigma\left(K^{2 q-1}\right)$ and $\sigma\left(K^{2 q-1}\right)$ are not isotopic.

I thank Jean-Pierre Serre for pointing out to me [17], and Cherry Kearton for stimulating my interest in the cancellation problem for even-dimensional knots.

REFERENCES

[1] A. Bak and W. Scharlau. Grothendieck and Witt groups of orders and finite groups. Invent. Math. 23 (1974), 207-240.
[2] E. Bayer. Definite hermitian forms and the cancellation of simple knots. Archiv der Math. 40 (1983), 182-185.
[3] E. Bayer-Fluckiger. Higher dimensional simple knots and minimal Seifert surfaces. Comment. Math. Helv. 58 (1983), 646-655.
[4] C. McA. Gordon. Some higher-dimensional knots with the same homotopy groups. Quart. J. Math. Oxford Ser. (2), 24 (1973), 411-422.
[5] C. McA. Gordon. A note on spun knots. Proc. Amer. Math. Soc. 58 (1976), 361-362.
[6] C. Kearton. Blanchfield duality and simple knots. Trans. Amer. Math. Soc. 202 (1975), 141-160.
[7] C. Kearton. Spinning, factorisation of knots, and cyclic group actions on spheres. Arch. Math. 40 (1983), 361-363.
[8] M. Kervaire. Les noeuds de dimensions supérieures. Bull. Soc. Math. France 93 (1965), 225-271.
[9] M. Kervatre and C. Weber. A survey of multidimensional knots. In Knot Theory Proceedings, Plans-sur-Bex, Lecture Notes in Math. vol. 685. Springer-Verlag. (1977).
[10] J. Levine. An algebraic classification of some knots of codimension two. Comm. Math. Helv. 45 (1970), 185-198.
[11] O'Meara. Introduction to Quadratic Forms. Springer-Verlag (1973).
[12] R. Parimala. Cancellation of quadratic forms over principal ideal domains. J. Pure Appl. Algebra 24 (1982), 213-216.
[13] D. Rolfsen. Knots and Liniss, Mathematics Lecture Notes, Series 7. Publish or Perish (1976).
[14] H. Schubert. Die eindeutige Zerlegbarkeit eines Knotens in Primknoten. Sitzungsber. Heidelb. Akad. Wiss. Math.-Natur. Kl. 1, 3 (1949), 57-104.
[15] H. Trotter. On S-equivalence of Seifert matrices. Invent. Math. 20 (1970), 173-207.
[16] H. Trotter. Knot modules and Seifert matrices. In Knot Theory Proceedings, Plans-surBex, Lecture Notes in Math. vol. 685. Springer. Verlag (1977).
[17] R. Wiegand. Cancellation over commutative rings of dimension one and two. J. Algebra 88 (1984), 438-459.

[^0]: * Supported by the 'Fonds National de la Recherche Scientifique' of Switzerland.

