Cancellation of hyperbolic ε -hermitian forms and of simple knots

BY EVA BAYER-FLUCKIGER*

Section de Mathématiques, Université de Genève, Switzerland

(Received 6 November 1984)

Introduction

An *n*-knot will be a smooth, oriented submanifold $K^n \subset S^{n+2}$ such that K^n is homeomorphic to S^n . Given two knots K_1^n and K_2^n , we define their connected sum $K_1^n \# K_2^n$ as in [13], p. 39. The cancellation problem for *n*-knots is the following.

Problem. Assume that K_1^n , K_2^n and K^n are *n*-knots such that $K_1^n \# K^n$ is isotopic to $K_2^n \# K^n$. Does this imply that K_1^n and K_2^n are isotopic?

The cancellation problem has a positive solution if n = 1. Indeed, Schubert has shown that every 1-knot has a unique decomposition as a connected sum of finitely many indecomposable 1-knots (cf. [14]).

For n odd, counter-examples to the cancellation of n-knots have been given in [2]. In the present note we shall show that the cancellation problem also has a negative solution for n even, $n \ge 4$. The case n = 2 remains open.

The first section is entirely algebraic, and contains counter-examples to the cancellation of hyperbolic ϵ -hermitian forms ($\epsilon = \pm 1$) over orders in algebraic number fields. This is inspired by results of Wiegand concerning the cancellation of torsion-free modules over commutative rings of dimension 1, see [17]. We shall apply this in Section 2 to obtain the desired knot-theoretical examples.

1. Cancellation of hyperbolic ϵ -hermitian forms

Let F be an algebraic number field with a Q-involution, which we shall denote by $x \to \overline{x}$. Let S be a Dedekind set of primes of F (cf. [11], §21), and let \tilde{R} be the ring of S-integers of F. Let R be an S-order of F, i.e. a subring of finite index of \tilde{R} . Assume $\overline{R} = R$. Let M be a torsion free R-module of finite rank, and let $M' = \text{Hom}_R(M, R)$ with the R-module structure given by $rf(x) = f(\overline{r}x)$. We shall say that M is reflexive if the evaluation homomorphism $e: M \to M''$, defined by $e(m)(f) = \overline{f(m)}$, is an isomorphism.

If M is a reflexive R-module, let us associate to M the hyperbolic ϵ -hermitian $(\epsilon = \pm 1)$ form H(M), defined as follows:

$$\begin{array}{c} M \oplus M' \times M \oplus M' \to R \\ (x,f) \times (y,g) \to f(y) + \overline{\epsilon g(x)}. \end{array}$$

Let N be a torsion free R-module, and let $h: N \times N \to R$ be an ϵ -hermitian form. We shall say that (N, h) is unimodular if the homomorphism induced by h, ad $(h): N \to N'$, is bijective.

If M is reflexive, then it is easy to check that H(M) is a unimodular form.

* Supported by the 'Fonds National de la Recherche Scientifique' of Switzerland.

EVA BAYER-FLUCKIGER

Bak and Scharlau have proved that if R is Dedekind, and if the involution is non-trivial, then cancellation holds for hyperbolic forms, i.e.

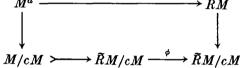
$$H(M_1) \boxplus H(M) \cong H(M_2) \boxplus H(M)$$

implies $H(M_1) \cong H(M_2)$, where \boxplus denotes the orthogonal sum, cf. [1], theorem 7.1 (ii). We shall see that this is not necessarily the case when R is not Dedekind. Notice that if the involution is trivial, then there are counter-examples to the cancellation of hyperbolic forms even if R is Dedekind (see Parimala[12]).

Our examples are inspired by some results of Wiegand [17]. We shall begin by recalling these results. Let $c = \{r \in R \text{ such that } r\tilde{R} \subseteq R\}$ be the conductor of R in R. For any ring S, we shall denote by S^* the group of units of S. Let

$$E(R) = \operatorname{Coker} (\tilde{R}^* \to (\tilde{R}/c)^*)$$

and let D(R) be the cokernel of the composition $(R/c)^* \to (\tilde{R}/c)^* \to E(R)$. Let M be a torsion-free R-module, and let $a \in E(R)$. Let ϕ be an automorphism of $\tilde{R}M/cM$ such that det (ϕ) maps to a in E(R). We shall define a torsion-free R-module M^a by the pullback $M^a \longrightarrow \tilde{R}M$



Wiegand shows that the correspondence $(a, M) \to M^a$ is a well-defined action of the group E(R) on the set of isomorphism classes of torsion free *R*-modules, cf. [17], proposition $2 \cdot 2$.

Let J be an invertible R-ideal, and let $a, b \in E(R)$. Then $J^a J^b = J^{ab}$. In particular, J^a is also invertible.

It is easy to check that \tilde{R} is a reflexive *R*-module (use the identification of $\tilde{R}' = \operatorname{Hom}_{R}(\tilde{R}, R)$ with c). Therefore $H(\tilde{R})$ is a unimodular ϵ -hermitian form.

PROPOSITION. Let $a \in E(R)$, and set $I = R^a$. Then

(i) $H(I) \boxplus H(\tilde{R}) \cong H(R) \boxplus H(\tilde{R})$.

(ii) If $\epsilon = +1$ and the involution is trivial, then $H(I) \cong H(R)$ if and only if the class of a is trivial in D(R).

(iii) Let us assume that the class of $a\bar{a}^{-1}$ is non-trivial in D(R). Then $I \oplus \bar{I}^{-1} \ncong R \oplus R$. In particular, $H(I) \ncong H(R)$.

Proof. (i) follows immediately from the fact that $I \oplus \tilde{R} \cong R \oplus \tilde{R}$, see Wiegand [17], theorem 2.3 (iv).

(ii) As the involution is trivial, there are only two isotropic lines in H(R). This implies that if $H(I) \cong H(R)$, then $I \cong R$. Therefore by Wiegand [17], proposition $2 \cdot 2$ (iv), the class of a is trivial in D(R).

(iii) As $I = R^a$, it is easy to check that $\overline{I} = R^{\overline{a}}$. We are assuming that the class of $a\overline{a}^{-1}$ is not trivial in D(R). By Wiegand [17], proposition 2.2 (iv), this implies that $I\overline{I}^{-1} = R^{a\overline{a}^{-1}}$ is not isomorphic to R. Therefore $I \oplus \overline{I}^{-1} \not\cong R \oplus R$. But $I \oplus \overline{I}^{-1}$ is the underlying module of H(I), so $H(I) \not\cong H(R)$.

Using the above Proposition it is easy to obtain explicit examples of orders R and ideals I such that $H(I) \boxplus H(\tilde{R}) \cong H(R) \boxplus H(\tilde{R})$, but $H(I) \ncong H(R)$. The following

examples have been obtained in this way, but they are so simple that we shall check everything by direct computation. These examples have been chosen in such a way that they can be used in Section 2 to construct the desired knot-theoretical examples.

Example 1

$$R = \mathbb{Z}[t, t^{-1}]/(43t^2 - 85t + 43) = \mathbb{Z}[3\alpha][\frac{1}{43}],$$

where $\alpha = (1 - \sqrt{-19})/2$. Then $\tilde{R} = \mathbb{Z}[\alpha][\frac{1}{43}]$, and $c = 3\tilde{R}$. Let I be the kernel of the \mathbb{Z} -homomorphism $\phi: R \to \mathbb{F}_5$ defined by $\phi(\sqrt{-19}) = 1$. It is easy to check that $I\bar{I}^{-1}$ is not a principal ideal, so $I \oplus \bar{I}^{-1} \ncong R \oplus R$. In particular, $H(I) \ncong H(R)$.

On the other hand, we have $H(I) \boxplus H(\tilde{R}) \cong H(\tilde{R}) \boxplus H(\tilde{R})$. To see this, it is enough to check that $I \oplus \tilde{R} \cong R \oplus \tilde{R}$. Let us define an *R*-homomorphism $f: R \oplus \tilde{R} \to I \oplus \tilde{R}$ by the matrix

$$A = \begin{pmatrix} 10 & 1 \\ 9\alpha & \alpha \end{pmatrix}.$$

It is easy to check that $f(R \oplus \tilde{R}) \subseteq I \oplus \tilde{R}$: for instance, $f(\tilde{R}) \subseteq I$ because $3\tilde{R} \subseteq R$ and $3\alpha \in I$. It remains to see that f is an isomorphism. Let us consider the diagram

$$\begin{split} R \oplus \tilde{R} & \stackrel{f}{\to} I \oplus \tilde{R} \\ \tilde{R} & \stackrel{f}{\oplus} \tilde{R} & \stackrel{f}{\to} \tilde{R} \oplus \tilde{R}. \end{split}$$

The index of $R \oplus \tilde{R}$ in $\tilde{R} \oplus \tilde{R}$ is 3. We have det $A = \alpha$, therefore the index of $f(\tilde{R} \oplus \tilde{R})$ in $\tilde{R} \oplus \tilde{R}$ is 5. On the other hand, the index of $I \oplus \tilde{R}$ in $\tilde{R} \oplus \tilde{R}$ is 15, therefore $f(R \oplus \tilde{R}) = I \oplus \tilde{R}$.

To understand this example from the point of view of Wiegand's results, notice that $D(R) \cong \mathbb{F}_{9}^{\cdot}/\mathbb{F}_{3}^{\cdot}$ and that $I = R^{a}$, where a is the class of α in D(R). It is straightforward to check that $a \neq \overline{\alpha}$ in D(R).

Example 2

Let $R = \mathbb{Z}[t]/(t^2 - t + 16) = \mathbb{Z}[3\alpha]$, where $\alpha = (1 + \sqrt{-7})/2$. Then $\tilde{R} = \mathbb{Z}[\alpha]$ and $c = 3\tilde{R}$. Let *I* be the *R*-ideal, which is generated by 2 and by $3\alpha + 1$. As in Example 1, we check that $H(I) \ncong H(R)$ and that $H(I) \boxplus H(\tilde{R}) \cong H(R) \boxplus H(\tilde{R})$. An isomorphism $f: R \oplus \tilde{R} \to I \oplus \tilde{R}$ is given by the matrix

$$A = \begin{pmatrix} 4 & 1 \\ 3(3\alpha+1) & 2\alpha+1 \end{pmatrix}.$$

Let us consider $S = \mathbb{Z}[t, t^{-1}]/(16t^2 - 31t + 16) = R[\frac{1}{2}]$. Then $S = R[\frac{1}{2}]$, and the conductor of \tilde{S} in S is $3\tilde{S}$. Set J = IS. Then J = S, so H(J) = H(S).

Notice that $D(R) \cong \mathbb{F}_9^{\cdot}/\mathbb{F}_3^{\cdot}$, and that $I = R^a$, where a is the class of $1 - \alpha$ in D(R). On the other hand, D(S) is trivial.

2. Cancellation of simple knots

Let K^n be an *n*-knot, and let U be a tubular neighbourhood of K^n . Let $X = \overline{S^{n+2}\setminus U}$ be the *complement* of K^n . We shall say that K^n is simple if $\pi_i(X) \cong \pi_i(S')$ for i < q, where n = 2q or 2q - 1.

Odd dimensional simple knots

Let $\Lambda = \mathbb{Z}[t, t^{-1}]$ and let L be a \mathbb{Z} -torsion free Λ -module such that $1 - t: L \to L$ is an isomorphism. Let us consider the \mathbb{Z} -involution of Λ which sends t to t^{-1} . Assume that there exists a unimodular $(-1)^{q+1}$ -hermitian form $h: L \times L \to \mathbb{Q}(t)/\Lambda$. Then Kervaire's construction ([8], theorem II. 3) can be used to show that for every integer $q \geq 3$, there exists a simple (2q-1)-knot K such that the Blanchfield form associated to K is (L, h); see Kearton [6], addendum 8.3. In particular, $L \cong H_q(\tilde{X}, \mathbb{Z})$, where X is the complement of K and \tilde{X} is the infinite cyclic cover of X. Moreover, if (L, h) is skew-hermitian and if the signature of the rational quadratic form associated to (L, h) is divisible by 16 (see Trotter [15] or [16] for the definition of this form), then there exists a simple 3-knot with Blanchfield form isometric to (L, h). Recall that L is called the *knot module* of K.

Example 3

Let $R = \mathbb{Z}[t, t^{-1}]/(43t^2 - 85t + 43)$ and let us consider the ϵ -hermitian forms H(I), H(R) and $H(\tilde{R})$, as in § 1, Example 1. It is easy to see that these forms and their underlying modules have the properties that we have just described. Moreover, if $\epsilon = -1$ then it is straightforward to check that the associated rational quadratic forms have signature zero. Let K_1^{2q-1} , K_2^{2q-1} and K^{2q-1} be the simple knots associated to H(I), H(R) and $H(\tilde{R})$, for $q \ge 2$. By results of Levine[10], Trotter[15] and Kearton[6], two simple (2q-1)-knots $(q \ge 2)$, are isotopic if and only if the associated Blanchfield forms are isometric. Therefore $K_1 \# K$ is isotopic to $K_2 \# K$, but K_1 is not isotopic to K_2 . Notice that these knots are not fibred, whereas the counter-examples of [2] are fibred.

Example 4

Let $R = \mathbb{Z}[t]/(t^2 - t + 16)$ and $S = \mathbb{Z}[t, t^{-1}]/(16t^2 - 31t + 16) = R[\frac{1}{2}]$ as in §1, Example 2. Let K_1^{2q-1} and K^{2q-1} be the simple (2q-1)-knots $(q \ge 3)$, associated to H(S) and $H(\tilde{S})$. The ϵ -hermitian forms H(I) and H(R) correspond to minimal Seifert surfaces M_1 and M_2 of K_1^{2q-1} . Similarly $H(\tilde{R})$ corresponds to a minimal Seifert surface M^{2q} of K^{2q-1} . Then $M_1^{2q} = M^{2q}$ is isotopic to $M_2^{2q} = M^{2q}$, but M_1^{2q} and M_2^{2q} are not isotopic (cf. [3], §1).

Even-dimensional simple knots

We shall obtain the counter-examples to the cancellation of even-dimensional knots by spinning: this is an idea of Kearton, cf. [7]. If Σ^n is any *n*-knot, we shall denote by $\sigma(\Sigma^n)$ the (n+1)-knot obtained by spinning Σ^n (cf. [9]). Let $X, \sigma X$ be the complements of the knots $\Sigma, \sigma \Sigma$ and let $\tilde{X}, \sigma \tilde{X}$ be the infinite cyclic covers. If Σ^{2q-1} is simple, then $\sigma \Sigma^{2q-1}$ is also simple, and $H_q(\sigma \tilde{X}) \cong H_{q+1}(\sigma \tilde{X}) \cong H_q(\tilde{X})$, cf. Gordon [4], theorem 4.1.

Example 5

Let K_1^{2q-1} , K_2^{2q-1} and K^{2q-1} be the simple knots of Example 3 $(q \ge 2)$. Then $K_1^{2q-1} \# K^{2q-1}$ and $K_2^{2q-1} \# K^{2q-1}$ are isotopic. As spinning commutes with connected sums (cf. [5]), the (2q)-knots $\sigma(K_1^{2q-1})$ and $\sigma(K_2^{2q-1}) \# \sigma(K^{2q-1})$ are also isotopic. Recall that the knot modules of K_1^{2q-1} and K_2^{2q-1} are $I \oplus \overline{I}^{-1}$ and $R \oplus R$, which are not isomorphic. Therefore by the above result of Gordon we see that $\sigma(K^{2q-1})$ and $\sigma(K^{2q-1})$ are not isotopic.

Cancellation and simple knots

I thank Jean-Pierre Serre for pointing out to me [17], and Cherry Kearton for stimulating my interest in the cancellation problem for even-dimensional knots.

REFERENCES

- A. BAK and W. SCHARLAU. Grothendieck and Witt groups of orders and finite groups. Invent. Math. 23 (1974), 207-240.
- [2] E. BAYER. Definite hermitian forms and the cancellation of simple knots. Archiv der Math. 40 (1983), 182-185.
- [3] E. BAYER-FLUCKIGER. Higher dimensional simple knots and minimal Seifert surfaces. Comment. Math. Helv. 58 (1983), 646-655.
- [4] C. MCA. GORDON. Some higher-dimensional knots with the same homotopy groups. Quart. J. Math. Oxford Ser. (2), 24 (1973), 411-422.
- [5] C. McA. GORDON. A note on spun knots. Proc. Amer. Math. Soc. 58 (1976), 361-362.
- [6] C. KEARTON. Blanchfield duality and simple knots. Trans. Amer. Math. Soc. 202 (1975), 141-160.
- [7] C. KEARTON. Spinning, factorisation of knots, and cyclic group actions on spheres. Arch. Math. 40 (1983), 361-363.
- [8] M. KERVAIRE. Les noeuds de dimensions supérieures. Bull. Soc. Math. France 93 (1965), 225-271.
- [9] M. KERVAIRE and C. WEBER. A survey of multidimensional knots. In Knot Theory Proceedings, Plans-sur-Bex, Lecture Notes in Math. vol. 685. Springer-Verlag. (1977).
- [10] J. LEVINE. An algebraic classification of some knots of codimension two. Comm. Math. Helv. 45 (1970), 185-198.
- [11] O'MEARA. Introduction to Quadratic Forms. Springer-Verlag (1973).
- [12] R. PARIMALA. Cancellation of quadratic forms over principal ideal domains. J. Pure Appl. Algebra 24 (1982), 213-216.
- [13] D. ROLFSEN. Knots and Links, Mathematics Lecture Notes, Series 7. Publish or Perish (1976).
- [14] H. SCHUBERT. Die eindeutige Zerlegbarkeit eines Knotens in Primknoten. Sitzungsber. Heidelb. Akad. Wiss. Math.-Natur. Kl. 1, 3 (1949), 57-104.
- [15] H. TROTTER. On S-equivalence of Seifert matrices. Invent. Math. 20 (1970), 173-207.
- [16] H. TROTTER. Knot modules and Seifert matrices. In Knot Theory Proceedings, Plans-sur-Bex, Lecture Notes in Math. vol. 685. Springer-Verlag (1977).
- [17] R. WIEGAND. Cancellation over commutative rings of dimension one and two. J. Algebra 88 (1984), 438-459.